
JSS
University of Bristol Research Report 08:16

July 2008 http://www.stats.bris.ac.uk/

SMCTC: Sequential Monte Carlo in C++

Adam M. Johansen

Abstract

Sequential Monte Carlo methods are a very general class of Monte Carlo methods
for sampling from sequences of distributions. Simple examples of these algorithms are
used very widely in the tracking and signal processing literature. Recent developments
illustrate that these techniques have much more general applicability, and can be applied
very effectively to statistical inference problems. Unfortunately, these methods are often
perceived as being computationally expensive and difficult to implement. This article
seeks to address both of these problems.

A C++ template class library for the efficient and convenient implementation of very
general Sequential Monte Carlo algorithms is presented. Two example applications are
provided: a simple particle filter for illustrative purposes and a state-of-the-art algorithm
for rare event estimation.

Keywords: Monte Carlo, particle filtering, Sequential Monte Carlo, simulation, template class.

1. Introduction

Sequential Monte Carlo (SMC) methods provide weighted samples from a sequence of distri-
butions using sampling and resampling mechanisms. They have been widely employed in the
approximate solution of the optimal filtering equations (see, for example, Doucet, de Freitas,
and Gordon (2001); Liu (2001); Doucet and Johansen (2008) for reviews of this literature)
over the past fifteen years (in this domain, the technique is often termed particle filtering).
More recently, it has been established that the same techniques could be much more widely
employed to provide samples from essentially arbitrary sequence of distributions (Del Moral,
Doucet, and Jasra 2006a,b).

SMC algorithms are perceived as being difficult to implement and yet there is no existing
software or library which provides a cohesive framework for the implementation of general
algorithms. Even in the field of particle filtering, little generic software is available. Imple-
mentations of various particle filters described in van der Merwe, Doucet, de Freitas, and Wan
(2000) were made available and could be adapted to some degree; more recently, a MatLab
implementation of a particle filter entitled PFlib has been developed (Chen, Lee, Budhiraja,
and Mehra 2007). This software is restricted to the particle filtering setting and is somewhat
limited even within this class.

Furthermore, many interesting algorithms are computationally intensive: a fast implementa-

http://www.stats.bris.ac.uk/
mailto:adam.johansen@bristol.ac.uk

2 SMCTC: Sequential Monte Carlo in C++

tion in a compiled language is essential to the generation of results in a timely manner. There
are two situations in which fast, efficient execution is essential to practical SMC algorithms:

• Traditionally, SMC algorithms are very widely used in real-time signal processing situ-
ations. Here, it is essential that an update of the algorithm can be carried out in the
time between two consecutive observations.

• SMC samplers are often used to sample from complex, high-dimensional distributions.
Doing so can involve substantial computational effort. In a research environment, one
typically requires the output of hundreds or thousands of runs to establish the properties
of an algorithm and in practice it is often necessary to run algorithms on very large data
sets. In either case, efficient algorithmic implementations are needed.

The purpose of the present paper is to present a flexible framework for the implementation
of general SMC algorithms. This flexibility and the speed of execution come at the cost of
requiring some simple programming on the part of the end user. It is our perception that this
is not a severe limitation and that a place for such a library does exist. It is our experience
that with the widespread availability of high-quality mathematical libraries, particularly the
GNU Scientific Library (Galassi, Davies, Theiler, Gough, Jungman, Booth, and Rossi 2006),
there is little overhead associated with the development of software in C or C++ rather than
an interpreted statistical language — although it may be slightly simpler to employ PFlib if
a simple particle filter is required, it is not difficult to implement such a thing using SMCTC
(the Sequential Monte Carlo Template Class) as illustrated in section 5.1.

Using the library should be simple enough that it is appropriate for fast prototyping and use
in a standard research environment (as the examples in section 5 hopefully demonstrate).
The fact that the library makes use of a standard language which has been implemented for
essentially every modern architecture means that it can also be used for the development of
production software: there is no difficulty in including SMC algorithms implemented using
SMTC as constituents of much larger pieces of software.

2. Sequential Monte Carlo

Sequential Monte Carlo methods are a general class of techniques which provide weighted
samples from a sequence of distributions using importance sampling and resampling mech-
anisms. A number of other sophisticated techniques have been proposed in recent years to
improve the performance of such algorithms. However, these can almost all be interpreted
as techniques for making use of auxiliary variables in such a way that the target distribution
is recovered as a marginal or conditional distribution or simply as a technique which makes
use of a different distribution together with an importance weighting to approximate the
distributions of interest.

2.1. Sequential Importance Sampling and Resampling

The Sequential Importance Resampling (SIR) algorithm is usually regarded as a simple exam-
ple of an SMC algorithm which makes use of importance sampling and resampling techniques
to provide samples from a sequence of distributions defined upon state-spaces of strictly-
increasing dimension. Here, we will consider SIR as being a prototypical SMC algorithm of

3

which it is possible to interpret essentially all other such algorithms as a particular case. Some
motivation for this is provided in the following section. What follows is a short reminder of
the principles behind SIR algorithms; see Doucet and Johansen (2008) for a more detailed
discussion and an interpretation of most SMC algorithms as particular forms of SIR.

Importance sampling is a technique which allows the calculation of expectations with respect
to a distribution π using samples from some other distribution, q with respect to which π is
absolutely continuous. To maximise the accessibility of this document, we assume throughout
that all distributions admit a density with respect to Lebesgue measure and use appropriate
notation; this is not a restriction imposed by the method or the software, simply a deci-
sion made for convenience. Rather than approximating

∫
ϕ(x)π(x)dx as the sample average

of ϕ over a collection of samples from π, one approximates it with the sample average of
ϕ(x)π(x)/q(x) over a collection of samples from q. Thus, we approximate

∫
ϕ(x)π(x)dx with

the sample approximation

ϕ̂1 =
1
n

n∑
i=1

π(Xi)
q(Xi)

ϕ(Xi).

This is justified by the fact that

Eq [π(X)ϕ(X)/q(X)] = Eπ[ϕ(X)].

In practice, one typically knows π(X)/q(X) only up to a normalising constant. We define
w(x) ∝ π(x)/q(x) and note that this constant is usually estimated using the same sample as
the integral of interest leading to the consistent estimator of

∫
ϕ(x)π(x)dx given by:

ϕ̂2 :=
n∑

i=1

w(Xi)ϕ(Xi)

/
N∑

i=1

w(Xi).

Sequential importance sampling is a simple extension of this method. If a distribution q is
defined over a product space

∏n
i=1 Ei then it may be decomposed as the product of condi-

tional distributions q(x1:n) = q(x1)q(x2|x1) . . . q(xn|x1:n). In principle, given a sequence of
probability distributions {πn (x1:n)}n≥1 over the spaces {

∏n
i=1 Ei}n≥1, we could estimate ex-

pectations with respect to each in turn by extending the sample used at time k− 1 to time k
by sampling from the appropriate conditional distribution and then using the fact that:

wn(x1:n) ∝ πn(x1:n)
q(x1:n)

=
πn(x1:n)

q(xn|x1:n−1)q(x1:n−1)

=
πn(x1:n)

q(xn|x1:n−1)πn−1(x1:n−1)
πn−1(x1:n−1)

q(x1:n−1)
∝ πn(x1:n)

q(xn|x1:n−1)
wn−1(x1:n−1)

to update the weights associated with each sample from one iteration to the next.

However, this approach fails as n becomes large as it amounts to importance sampling on a
space of high dimension. Resampling is a technique which helps to retain a good representation
of the final time-marginals (and these are usually the distributions of interest in applications of
SMC). Resampling is the principled elimination of samples with small weight and replication
of those with large weights and resetting all of the weights to the same value. The mechanism
is chosen to ensure that the expected number of replicates of each sample is proportional to
its weight before resampling.

4 SMCTC: Sequential Monte Carlo in C++

Algorithm 1 The Generic SIR Algorithm
At time 1

for i = 1 to N do
Xi

1 ∼ q1(·)
W i

1 ∝
π1(Xi

1)

q1(Xi
1)

end for
Resample

{
Xi

1,W
i
1

}
to obtain

{
X ′i

1 , 1
N

}
At time n ≥ 2

for i = 1 to N do
Set Xi

1:n−1 = X ′i
1:n−1

Sample Xi
n ∼ qn(·|Xi

1:n−1)

Set W i
n ∝

πn(Xi
1:n)

qn(Xi
n|Xi

1:n−1)πn−1(Xi
1:n−1)

end for
Resample

{
Xi

1:n,W i
n

}
to obtain

{
X ′i

1:n, 1
N

}
Algorithm 1 shows how this translates into an algorithm for a generic sequence of distribu-
tions. It is, essentially, precisely this algorithm which SMCTC allows the implementation of.
However, it should be noted that this algorithm encompasses almost all SMC algorithms.

2.2. Particle Filters

The majority of SMC algorithms were developed in the context of approximate solution of
the optimal filtering and smoothing equations (although it should be noted that their use in
some areas of the physics literature dates back to at least the 1950s). Their interpretation as
SIR algorithms, and a detailed discussion of particle filtering and related fields is provided by
Doucet and Johansen (2008). Here, we attempt to present a concise overview of some of the
more important aspects of the field. Particle filtering provides a strong motivation for SMC
methods more generally and remains their primary application area at present.

State space models (SSMs, and the closely related hidden Markov models) are very popular
statistical models for time series. Such models describe the trajectory of some system of
interest as an unobserved E-valued Markov chain, known as the signal process, which for
the sake of simplicity is treated as being time-homogeneous in this paper. Let X1 ∼ ν and
Xn|(Xn−1 = xn−1) ∼ f(·|xn−1) and assume that a sequence of observations, {Yn}n∈N are
available. If Yn is, conditional upon Xn, independent of the remainder of the observation and
signal processes, with Yn|(Xn = xn) ∼ g(·|xn), then this describes an SSM.

A common objective is the recursive approximation of an analytically intractable sequence of
posterior distributions {p (x1:n| y1:n)}n∈N, of the form:

p(x1:n|y1:n) ∝ ν(x1)g(y1|x1)
n∏

j=2

f(xj |xj−1)g(yj |xj). (1)

There are a small number of situations in which these distributions can be obtained in closed
form (notably the linear-Gaussian case, which leads to the Kalman filter). However, in gen-
eral it is necessary to employ approximations and one of the most versatile approaches is
to use SMC to approximate these distributions. The standard approach is to use the SIR

5

Algorithm 2 SIR for Particle Filtering
At time 1

for i = 1 to N do
Sample Xi

1 ∼ q(x1| y1).

Compute the weights w1

(
Xi

1

)
=

ν(Xi
1)g(y1|Xi

1)
q(Xi

1|y1)
and W i

1 ∝ w1

(
Xi

1

)
.

end for
Resample

{
W i

1, X
i
1

}
to obtain N equally-weighted particles

{
1
N , X

i
1

}
.

At time n ≥ 2
for i = 1 to N do

Sample Xi
n ∼ q(xn| yn, X

i
n−1) and set Xi

1:n ←
(
X

i
1:n−1, X

i
n

)
.

Compute the weights W i
n ∝

g(yn|Xi
n)f(Xi

n|Xi
n−1)

q(Xi
n|yn,Xi

n−1)
.

end for
Resample

{
W i

n, X i
1:n

}
to obtain N new equally-weighted particles

{
1
N , X

i
1:n

}
.

algorithm described in the previous section, targetting this sequence of posterior distributions
— although alternative strategies exist. This leads to algorithm 2.2.

We obtain, at time n, the approximation:

p̂ (dx1:n| y1:n) =
N∑

i=1

W i
nδXi

1:n
(dx1:n) .

Notice that, if we are interested only in approximating the marginal distributions {p (xn| y1:n)}
and {p (y1:n)}, then we need to store only the terminal-value particles

{
Xi

n−1:n

}
to be able

to compute the weights: the algorithm’s storage requirements do not increase over time.

2.3. SMC Samplers

It has recently been established that similar techniques can be used to sample from a general
sequence of distributions defined upon general spaces (i.e. the requirement that the state
space be strictly increasing can be relaxed and the connection between sequential distributions
can be rather more general). This is achieved by applying standard SIR-type algorithms to
a sequence of synthetic distributions defined upon an increasing sequence of state spaces
constructed in such a way as to preserve the distributions of interest as their marginals.

SMC Samplers are a class of algorithms for sampling iteratively from a sequence of distri-
butions, denoted by {πn(xn)}n∈N, defined upon a sequence of potentially arbitrary spaces,
{En}n∈N, (Del Moral et al. 2006a). The approach involves the application of SIR to a cleverly
constructed sequence of synthetic distributions which admit the distributions of interest as
marginals.

The synthetic distributions are π̃n(x1:n) = πn(xn)
n−1∏
p=1

Lp (xp+1, xp) , where {Ln}n∈N is a se-

quence of “backward-in-time” Markov kernels from En into En−1. With this structure, an
importance sample from π̃n is obtained by taking the path x1:n−1, an importance sample
from π̃n−1, and extending it with a Markov kernel, Kn, which acts from En−1 into En, pro-

6 SMCTC: Sequential Monte Carlo in C++

viding samples from π̃n−1 ×Kn and leading to the incremental importance weight:

wn(xn−1:n) =
π̃n(x1:n)

π̃n−1(x1:n−1)Kn(xn−1, xn)
=

πn(xn)Ln−1(xn, xn−1)
πn−1(xn−1)Kn(xn−1, xn)

. (2)

In most applications, each πn(xn) can only be evaluated point-wise, up to a normalizing
constant and the importance weights defined by (2) are normalised in the same manner as in
the SIR algorithm. Resampling may then be performed.

The choice of auxiliary kenels, Ln is critical to the performance of the algorithm. As was
demonstrated in Del Moral et al. (2006b) the optimal form (if resampling is used at every
iteration) is Ln−1(xn, xn−1) ∝ πn−1(xn−1)Kn(xn−1, xn) but it is typically impossible to eval-
uate the associated normalising factor (which cannot be neglected as it depends upon xn and
appears in the importance weight). In practice, obtaining a good approximation to this kernel
is essential to obtaining a good estimator variance; a number of methods for doing this have
been developed in the literature.

It should also be noted that a number of other modern sampling algorithms can be interpreted
as examples of SMC samplers. Algorithms which admit such an interpretation include an-
nealed importance sampling (Neal 2001), population Monte Carlo (Cappé, Guillin, Marin, and
Robert 2004) and the particle filter for static parameters (Chopin 2002). It is consequently
straightforward to use SMCTC to implement these classes of algorithms.

Although it is apparent that this technique is applicable to numerous statistical problems
and has been found to outperform existing techniques, including MCMC, in at least some
problems of interest (for example, see, Fan, Leslie, and Wand (2007); Johansen, Doucet, and
Davy (2008)) there have been relatively few attempts to apply these techniques. Largely, in
the opinion of the author, due to the perceived complexity of SMC approaches. Some of the
difficulties are more subtle than simple implementation issues (in particular selection of the
forward and backward kernels — an issue which is discussed at some length in the original
paper, and for which sensible techniques do exist), but we hope that this library will bring
the widespread implementation of SMC algorithms for real-world problems one step closer.

3. Using SMCTC

This section documents some practical considerations: how the the library can be obtained
and what must be done in order to make use of it.

The software has been successfully compiled and tested under a number of environments
(including Gentoo, SuSe and Ubuntu linux utilising GCC-3 and GCC-4 and Microsoft Visual
C++ 5 under the Windows operating system). Microsoft Visual C++ project files are also
provided in the msvc subdirectory of the appropriate directories and these should be used in
place of the Makefile when working with this operating system/compiler combination. The
file smctc.sln in the top-level directory comprises a Visual C++ solution which incorporates
each of the individual projects.

The remainder of this section assumes that working versions of the GNU C++ compiler
(g++) and make are available. In principle, other compatible compilers and makers should
work although it might be necessary to make some small modifications to the Makefile or
source code in some instances.

7

3.1. Obtaining SMCTC

The SMCTC can be obtained from the author’s website (http://www.stats.bris.ac.uk/
~maamj/smctc/smctc.html at the time of writing) and is released under version 3 of the GNU
General Public License (Free Software Foundation 2007). A link to the latest version of the
software should be present on the SMC methods preprint server (http://www-sigproc.eng.
cam.ac.uk/smc/software.html).

Software is available in source form archived in .tar, .tar.bz2 and .zip formats.

3.2. Installing SMCTC

Having downloaded and unarchived the library source (for example, using tar xvf smctc.tar)
it is necessary to perform a number of operations in order to make use of the library:

1. Compile the binary component of the library.

2. Install the library somewhere in your library path.

3. Install the header files somewhere in your include path.

4. Compile the example programs to verify that everything works.

Actually, only the first of these steps is essential. The library and header files can reside
anywhere provided that the directory in which they specify is provided at compile and link
times, respectively.

Compiling the library

Enter the top level of the SMCTC directory and run make libraries. This produces a static
library named libsmctc.a and copies it to the lib directory within the SMCTC directory.
Alternatively, make all will compile the library, the documentation and the example pro-
grams. After compiling the library and any other components which are required, it is safe
to run make clean which will delete certain intermediate files.

Optional Steps

After compiling the library there will be a static library named libsmctc.a within the
lib subdirectory. This should either be copied to your preferred library location (typically
/usr/lib on a Linux system) or its locations must be specified every time the library is used.

The header files contained within the include subdirectory should be copied to a system-wide
include directory (such as /usr/include) or it will be necessary to specify the location of the
SMCTC include directory whenever a file which makes use of the library is compiled.

In order to compile the examples, enter make examples in the SMCTC directory. This will
build the examples and copy them into the bin subdirectory.

3.3. Building Programs with SMCTC

It should be noted that SMCTC is dependent upon the GNU Scientific Library (GSL) (Galassi
et al. 2006) for random number generation. It would be reasonably straightforward to adapt

http://www.stats.bris.ac.uk/~maamj/smctc/smctc.html
http://www.stats.bris.ac.uk/~maamj/smctc/smctc.html
http://www.stats.bris.ac.uk/~maamj/smctc/smctc.html
http://www-sigproc.eng.cam.ac.uk/smc/software.html
http://www-sigproc.eng.cam.ac.uk/smc/software.html
http://www-sigproc.eng.cam.ac.uk/smc/software.html

8 SMCTC: Sequential Monte Carlo in C++

the library to work with other random number generators but there seems to be little merit
in doing so given the provisions of the GSL and its wide availability. It is necessary, therefore,
to link executables against the GSL itself and a suitable CBLAS implementation (one is
ordinarily provided with the GSL if a locally optimised version is not available).
None of these things is likely to pose problems for a machine used for scientific software
development. Assuming that the appropriate libraries are installed, it is a simple matter of
compiling your source files with your preferred C++ compiler and then linking the resulting
object files with the SMCTC and GSL libraries. The following commands, for example, are
sufficient to compile the example program described in section 5.1:
g++ -I../../ include -c pfexample.cc pffuncs.cc
g++ pfexample.o pffuncs.o -L../../ lib -lsmctc -lgsl -lgslcblas -opf

It is, of course, advisable to include some additional options to encourage the compiler to
optimise the code as much as possible once it has been debugged.

3.4. Additional Documentation

The library is fully documented using the Doxygen system (van Heesch 2007). This includes
a comprehensive class and function reference for the library. It can be compiled using the
command make docs in the top level directory of the library, if the freely-available Doxygen
and GraphViz (Gansner and North 2000) programs are installed. It is available compiled in
both HTML and PDF formats from the same place as the library itself.

4. The SMCTC Library

The principal rôle of this article is to introduce a C++ template class for the implementation
of quite general SMC algorithms. It seems natural to consider an object orientated approach
to this problem: a sampler itself is a single object, it contains particles and distributions;
previous generations of the sampler may themselves be viewed as objects. For convenience it
is also useful to provide an object which provides random numbers (via the GSL).
Templating is an object oriented programming (OOP) technique which abstracts the operation
being performed from the particular type of object upon which the action is carried out. One
of its simplest uses is the construction of “container classes” – such as lists – whose contents
can be of essentially any type but whose operation is not qualitatively influenced by that
type. See (Stroustrup 1991, chapter 8) for further information about templates and their use
within C++. Stroustrup (1991) helpfully suggests that, “One can think of a template as a
clever kind of macro that obeys the scope, naming and type rules of C++”.
It is natural to use such an approach for the implementation of a generic SMC library:
whatever the state space of interest, E, (and, implicitly, the distributions of interest over
those spaces) it is clear that the same actions are carried out during each iteration and the
same basic tasks need to be performed. The structure of a simple particle filter with a real-
valued state space (allowing a simple double to store the state associated with a particle) or a
sophisticated trans-dimensional SMC algorithm defined over a state space which permits the
representation of complex objects of a priori unknown dimension are, essentially the same.
An SMC algorithm iteratively carries out the following steps:

• Move each particle according to some transition kernel.

9

sampler <T>

particle <T>

history <T> moveset <T> rng

historyelement <T>

historyflags

gslrnginfo exception

Figure 1: Collaboration Diagram.T denotes the type of the sampler: the class used to represent
an element of the sample space.

• Weight the particles appropriately..

• Resample (perhaps only if some criterion is met).

• Optionally apply an MCMC move of appropriate invariant distribution1.

The SMCTC library attempts to perform all operations which are related solely to the fact
that an SMC algorithm is running (iteratively moving the entire collection of particles, resam-
pling them and calculating appropriate integrals with respect to the empirical measure associ-
ated with the particle set, for example) whilst relying upon user-defined callback functions to
perform those tasks which depend fundamentally upon the state space, target and proposal
distributions (such as proposing a move for an individual particle and weighting that particle
correctly). Whilst this means that implementing a new algorithm is not completely trivial, it
provides considerable flexibility and transfers as much complexity and implementation effort
from individual algorithm implementations to the library as possible whilst preserving that
flexibility.

4.1. Library and Program Structure

Almost the entire template library resides within the smc namespace, although a small number
of objects are defined in std to allow for simpler stream I/O in particular. Figure 1 shows the
essential structure of the library, which makes use of five templated classes and four standard
ones.

The highest level of object within the library corresponds to an entire algorithm, it is the
smc::sampler class.

smc::particle holds the value and (logarithmic, unnormalised) weight associated with an
individual sample.

1Strictly, this step could be incorporated into step 1 during the next iteration, but it is such a common
technique that it is convenient to incorporate it explicitly as an additional step.

10 SMCTC: Sequential Monte Carlo in C++

smc::history describes the state of the sampler after each previous iteration (if this data is
recorded).
smc::historyelement is used by smc::history to hold the sampler state at a single earlier
iteration.
smc::historyflags contains elementary information about the history of the sampler. Presently
this is simply used to record whether resampling occurred after a particular iteration.
smc::moveset deals with the initialisation of particles, proposal distributions and additional
MCMC moves.
smc:rng provides a wrapper for the GSL random number facilities. Presently only a subset
of its features are available, but direct access to the underlying GSL object is possible.
smc:gslrnginfo is used only for the handling of information about the GSL random number
generators.
smc::exception is used for error handling.
The general structure of a program (or program component) which carries out SMC using
SMCTC consists of a number of sections, regardless of the function of that program.

Initialisation Before the sampler can be used it is necessary to specify what the sampler
does and the parameters of the SMC algorithm.

Iteration Once a sampler has been created it is iterated either until completion or for one or
more iterations until some calculation or output is required. Depending upon the pur-
pose of the software this phase, in which the sampler actually runs, may be interleaved
with the output phase.

Output If the sampler is to be of any use, it is also necessary to output either details of
the sampler itself or, more commonly, the result of calculating some expectations with
respect to the empirical measure associated with the particle set.

Section 4.2 describes how to carry out each of these phases and the remainder of this section is
then dedicated to the description of some implementation details. This section serves only to
provide a conceptual explanation of the implementation of a sampler. For detailed examples,
together with annotated source code, see section 5.

4.2. Creating, Configuring and Running a Sampler: smc::sampler

The top-level class is the one which most programs are going to make most use of. Indeed,
it is possible to use the SMCTC library to perform SMC with almost no direct reference
to any of its lower-level components. The first interaction between most programs and the
SMCTC library is the creation of a new sampler object. It is necessary to specify the number
of particles which the sampler will use at this stage (although some use of a variable number
of particles has been made in the literature, this is very much less common than the use of
a fixed number and for simplicity and efficiency the present library does not support such
algorithms).
The constructor of smc::sampler must be supplied with two parameters2, the first indicates
the number of particle to use and the other must take one of two values: SMC_HISTORY_RAM

2A more complex version of the constructor which provides control over the nature of the random number
generator used is also available; see section 4.5 or the library documentation for details.

11

or SMC_HISTORY_NONE. If SMC_HISTORY_RAM is used then the sampler retains the full history
of the sampler in memory3. Whilst this is convenient in some applications it uses a much
greater amount of memory and has some computational overheads; if SMC_HISTORY_NONE is
used, then only the most recent generation of particles is stored in memory. The latter setting
is to be preferred in the absence of a reason to retain historical information.

As the smc::sampler class is really a template class, it is necessary to specify what type
of SMC sampler is to be created. The type in this case corresponds to a class (or native
C++ type) which describes a single point in the state space of the sampler of interest. So, for
example we could create an SMC sampler suitable for performing filtering in a one-dimensional
real state space using 1000 particles and no storage of its history using the command:

smc::sampler <double > Sampler (1000, SMC_HISTORY_NONE);

or, using the C++ standard template library to provide a class of vectors, we could define a
sampler with a vector-valued real state space using 1000 particles that retains its full history
in memory using

smc::sampler <std::vector <double > > Sampler (1000, SMC_HISTORY_RAM);

Such recursive use of templates is valid although some early compilers failed to correctly
implement this feature. Note that this is the one situation in which C++ is white-space-
sensitive: it is essential to close the template-type declaration with > > rather than >> for
some rather obscure reasons.

Proposals and Importance Weights

All of the functions which move and weight individual particles are supplied to the smc::sampler
object via an object of class smc::moveset. See section 4.3 for details. Once an smc::moveset
object has been created, it is supplied to the smc::sampler via the SetMoveSet mem-
ber function. This function takes a single argument which should be an already initialised
smc::moveset object which specifies functions used for moving and weighting particles.

Once the moveset has been specified, the sampler will call these functions as needed with no
further intervention from the user.

Resampling

A number of resampling schemes are implemented within the library. Resampling can be
carried out always, never or whenever the effective sample size (ESS) in the sense of (Liu
2001, p. 35–36) falls below a specified threshold.

To control resampling behaviour, use the SetResampleParams(int, double) member func-
tion. The first argument should be set to a constant indicating the resampling scheme to use
(see table 1) and the second controls when resampling is performed. If the second argument
is negative, then resampling is never performed; if it lies in [0, 1] then resampling is performed
when the ESS falls below that proportion of the number of particles and when it is greater
than 1, resampling is carried out when the ESS falls below that value. Note that if the sec-
ond parameter is larger than the total number of particles, then resampling will always be
performed.

3In this case, the history means the particle set as it was at every iteration in the samplers evolution. This

12 SMCTC: Sequential Monte Carlo in C++

Constant Resampling Scheme Used
SMC RESAMPLE MULTINOMIAL Multinomial

SMC RESAMPLE RESIDUAL Residual (Liu and Chen 1998)
SMC RESAMPLE STRATIFIED Stratified (Carpenter, Clifford, and Fearnhead 1999)
SMC RESAMPLE SYSTEMATIC Systematic (Kitagawa 1996)

Table 1: Constants defined in sampler.hh which can be used to specify a resampling scheme.

The default behaviour is to perform stratified resampling whenever the ESS falls below half
the number of particles. If this is acceptable then no call of SetResampleParams is required,
although such a call can improve the readability of the code.

MCMC Diversification

Following the lead of the resample-move algorithm (Gilks and Berzuini 2001), many users of
SMC methods make use of an MCMC kernel of the appropriate invariant distribution after
the resampling step. This is done automatically by SMCTC if the appropriate component
of the moveset supplied to the sampler was non-null. See section 5.2 for an example of an
algorithm with such a move.

Running the Algorithm

Having set all of the algorithm’s operating parameters — including the smc::moveset; it is
not possible to initialise the sampler before the sampler has been supplied with a function
which it can initialise the particles with — the first step is to initialise the particle system.
This is done using the Initialise method of the smc::sampler which takes no arguments. This
function eliminates any information from a previous run of the sampler and then initialises
all of the particles by calling the function specified in the moveset once for each of them.

Once the particle system has been initialised, one may wish to output some information
from the first generation of the system (see the following section). It is then time to begin
iterating the particle system. The sampler class provides two methods for doing this: one
which should be used if the program must control the rate of execution (such as in a real-
time environment) or to interact with the sampler each iteration (perhaps obtaining the next
observation for the likelihood function and calculating estimates of the current state) and
another which is appropriate if one is interested in only the final state of the sampler. The
first of these is Iterate() and it takes no arguments: it simply propagates the system to the
next iteration using the moves specified in the moveset, resampling if the specified resampling
criterion is met. The other, IterateUntil(int) takes a single argument: the number of the
iteration which should be reached before the sampler stops iterating. The second function
essentially calls the first iteratively until the desired iteration is reached.

Output

The smc::sampler object also provides the interface by which it is possible to perform some
basic integration with respect to empirical measures associated with the particle set and to

is different to the path-space implementation of the sampler — if one wishes to work on the path-space then
it is necessary to store the full path in the particle value.

13

obtain the locations and weights of the particles.

Simple Integration The most common use for the weighted sample associated with an
SMC algorithm is the approximation of expectations with respect to the target measure. The
Integrate function performs the appropriate calculation (for a user-specified function) and
returns the estimate of the integral.

In order to use the built-in sample integrator, it is necessary to provide a function which
can be evaluated for each particle. The library then takes care of calculating the appropriate
weighted sum over the particle set. The function, assumed to be named integrand should
take the form:

double integrand(T , void *)

where T denotes the type of the smc::sampler template class in use. This function will be
called with the first argument set to the value associated with each particle in turn by the
smc::sampler class. The function has an additional argument of type void * to allow the user
to pass arbitrary additional information to the function.

Having defined such a function, its integral with respect to the weighted empirical measure
associated with the particle set associated with an smc::sampler object named Sampler is
provided by calling

Sampler.Integrate(integrand , void *(p));

where p is a pointer to auxiliary information that is passed directly to the integrand function
via its second argument – this may be safely set to NULL if no such information is required
by the function. See example 5.1 for examples of the use of this function with and without
auxiliary information.

Path-sampling Integration As is described in section 5.2 it is sometimes useful to esti-
mate the normalising constant of the final distribution using a joint Monte Carlo/numerical
integration of the path-sampling identity of Gelman and Meng (1998). The IntegratePS per-
forms this task, again using a user-specified function. This function can only be used if the
sampler was created with the SMC_HISTORY_RAM option as it makes use of the full history of
the particle set.

The function to be integrated may have an explicit dependence upon the generation of the
sampler and so an additional argument is supplied to the function which is to be integrated.
In this case, the function (assumed to be named integrand_ps) should take the form:

double integrand_ps(long , T , void *)

Here, the first argument corresponds to the iteration number which is passed to the func-
tion explicitly and the remaining arguments have the same interpretation as in the simple
integration case.

An additional function is also required: one which specifies how far apart successive distribu-
tions are — this information is required to calculate the trapezoidal integral used in the path
sampling approximation. This function, here termed width_ps, takes the form

double width_ps(long , void *)

14 SMCTC: Sequential Monte Carlo in C++

where the first argument is set to an iteration time and the second to user-supplied auxiliary
information. It should return the width of the bin of the trapezoidal integration in which the
function is approximated by this particle generation.

Once these functions have been defined, the full path sampling calculation is calculated by
calling

Sampler.IntegratePS(integrand_ps , width_ps , void *(p));

where p is a pointer to auxiliary information that is passed directly to the integrand_ps

function via its third argument — this may be safely set to NULL if no such information is
required by the function. Section 5.2 provides an example of the use of the path-sampling
integrator.

General Output For more general tasks it is possible to access the locations and weights
of the particles directly.

Three low-level member functions provide access to the current generation of particles, each
takes a single integer argument corresponding to a particle index. The functions are

GetParticleValue(int n)
GetParticleLogWeight(int n)
GetParticleWeight(int n)

and they return a constant reference to the value of particle n, the logarithm of the unnor-
malised weight of particle n and the unnormalised weight of that particle, respectively.

The GetHistory() member of the smc::sampler class returns a constant pointer to the smc::

history class in which the full particle history is stored to allow for very general use of the
generated samples. This function is used in much the same manner as the simple particle-
access functions described above; see the user manual for detailed information.

Finally, a human-readable summary of the state of the particle system can be directed to an
output stream using the usual << operator.

4.3. Specifying Proposals and Importance Weights: smc::moveset

It is necessary to provide SMCTC with functions to initialise a particle; move a particle at
each iteration and weight it appropriately and, if MCMC moves are required, then a function
to apply such a move to a particle is needed. The following sections describe the functions
which must be supplied for each of these tasks and this section concludes with a discussion
of how to package these functions into an smc::moveset object and to pass the object to the
sampler.

Initialising the particles

The first thing that the user needs to tell the library how to do is to initialise an individual
particle: how should the initial value and weight be set?

This is done via an initialisation function which should have prototype:

smc::particle <T> fInitialise(smc::rng *pRng);

where T denotes the type of the sampler and the function is assumed to be named fInitialise.

15

When the sampler calls this function, it supplies a pointer to an smc::rng class which serves
as a source of random numbers (the user is, of course, free to use an alternative source if
they prefer) which can be accessed via member functions in that class which act as wrappers
to some of the more commonly-used of the GSL random variate generators or by using the
GetRaw() member function which returns a pointer to the underlying GSL random number
generator. Note that the GSL contains a very large number of efficient generators for random
variables with most standard distributions.

The function is expected to produce a new smc::particle of type T and to return this object
to the sampler. The simplest way to do this is to use the initialising-constructor defined for
smc::particle objects. If an object, value of type T and a double named dLogWeight are
available then

smc::particle <T> (value , dLogWeight)

will produce a new particle object which contains those values.

Moving and Weighting the particles

Similarly, it is necessary for a proposal function to be supplied. Such a function follows broadly
the same pattern as the initialisation function but is supplied with the existing particle value
and weight (which should be updated in place), the current iteration number and a pointer
to an smc::rng class which serves as a source of randomness.

The proposal function(s) take the form:

void fMove(long , smc::particle <T> &, smc::rng *)

When the sampler calls this function, the first argument is set to the current iteration number,
the second to an smc::particle object which corresponds to the particle to be updated (this
should be amended in place and so the function need return nothing) and the final argument
is the random number generator.

There are a number of functions which can be used to determine the current value and weight
of the particle in question and to alter their values. It is important to remember that the
weight must be updated as well as the particle value. Whilst this may seem undesirable,
and one may ask why the library cannot simply calculate the weight automatically from
supplied functions which specify the target distributions, proposal densities (and auxiliary
kernel densities, where appropriate), there is a good reason for this. The automatic calculation
of weights from generic expressions has two principle drawbacks: it need not be numerically
stable if the distributions are defined on spaces of high dimension (it is likely to correspond
to the ratio of two very small numbers) and, it is very rarely an efficient way to update
the weights. One should always eliminate any cancelling terms from the numerator and
denominator as well as any constant (independent of particle value) multipliers in order to
minimise redundant calculations. Note that the sampler assumes that the weights supplied are
not normalised; no advantage is obtained by normalising them (this also allows the sampler
to renormalise the weights as it sees fit to obtain numerical stability).

Changing the value There are two approaches to accessing and changing the value of
the particle. The first is to use the GetValue() and SetValue(T) (where T, again serves as
shorthand for the type of the sampler) functions to retrieve and then set the value. This is

16 SMCTC: Sequential Monte Carlo in C++

likely to be satisfactory when dealing with simple objects and produces safe, readable code.
The alternative, which is likely to produce substantially faster code when T is a complicated
class, is to use the GetValuePointer() function which returns a pointer to the internal rep-
resentation of the particle value. This pointer can be used to modify the value in place to
minimize the computational overhead.

Updating the weight The present unnormalised weight of the particle can be obtained
with the GetWeight() method; its logarithm with GetLogWeight(). The SetWeight(double)

and SetLogWeight(double) functions serve to change the value. As one generally wishes to
multiply the weight by the current incremental weight the functions AddToLogWeight(double)

and MultiplyWeightBy(double) are provided and perform the obvious function. Note that
the logarithmic version of all these functions should be preferred for two reasons: numerical
stability is typically improved by working with logarithms (weights are often very small and
have an enormous range) and the internal representation of particle weights is logarithmic so
using the direct forms requires a conversion.

Mixtures of Moves

It is common practice in advanced SMC algorithms to make use of a mixture of several
proposal kernels. So common, in fact, that a dedicated interface has been provided to remove
the overhead associated with selecting and applying an individual move from application
programs. If there are several possible proposals, one should produce a function of the form
described in the previous section for each of them and, additionally, a function which selects
(possibly randomly) the particular move to apply to a given particle during a particular
iteration. The sampler can then apply these functions appropriately, minimising the risk of
any error being introduced at this stage.

In order to use the automated mixture of moves, two additional objects are required. One is
a list of move functions in a form the sampler can understand. This amounts to an array of
pointers to functions of the appropriate form. Although the C++ syntax for such objects is
slightly messy, it is very straightforward to create such an object. For example, if the sampler
is of type T and fMv1 and fMv2 each correspond to a valid move function then the following
code would produce an array of the appropriate type named pfMoves which contains pointers
to these two functions:

void (* pfMoves [])(long , smc::particle <T> &,smc::rng*) = {fMv1 , fMv2};

The other requirement is the function which selects which move to make at any given moment.
In general, one would expect the selection to have some randomness associated with it. The
function which performs the selection should have prototype:

long fSelect(long lTime , const smc::particle <T> & p, smc::rng *pRng)

When it is called by the sampler, lTime will contain the current iteration of the sampler, p
will be an smc::particle object containing the state and weight of the current particle and
the final argument corresponds to a random number generator. The function should return
a value between 0 and one below than the number of moves available (this is interpreted by
the sampler as an index into the array of function pointers defined previously).

17

Additional MCMC moves

If MCMC moves are required then one should simply produce an additional move function
with an almost identical prototype to that used for proposal moves. However, proposals have
a void return type, but the MCMC move function should return int. The function should
return zero if a move is rejected and a positive value if it is accepted4. In addition to allowing
SMCTC to monitor the acceptance rate, this ensures that no confusion between proposal
and MCMC moves is possible. Ordinarily, one would not expect these functions to alter the
weight of the particle which they move but this is not enforced by the library.

Creating an smc::moveset object

Having specified all of the individual functions, it is necessary to package them all into a
moveset object and then tell the sampler to use that moveset.

The simplest way to fill a moveset is to use an appropriate constructor. There is a three-
argument form which is appropriate for samplers with a single proposal function and a five-
argument variant for samplers with a mixture of proposals.

Single-proposal Movesets If there a single proposal, then the moveset must contain
three things: a pointer to the initialisation function, a pointer to the proposal function and,
optionally, a pointer to an MCMC move function (if one is not required, then the argument
specifying this function should be set to NULL). A constructor which takes three arguments
exists and has prototype

moveset (particle <T>(* pfInit)(rng *),
void(* pfNewMoves)(long , particle <T> &, rng *),
int(* pfNewMCMC)(long , particle <T> &, rng *))

indicating that the first argument should correspond to a pointer to the initialisation function,
the second to the move function and the third to any MCMC function which is to be used
(or NULL). Section 5.1 shows this approach in action.

Mixture-proposal Movesets There is also a constructor which initialises a moveset for
use in the mixture-formulation. Its prototype takes the form:

moveset (particle <T>(* pfInit)(rng *),
long(* pfMoveSelector)(long , const particle <T> &, rng *),
long nMoves ,
void (** pfNewMoves)(long , particle <T> &, rng *),
int(* pfNewMCMC)(long , particle <T> &, rng *))

Here, the first and last arguments coincide with those of the single-proposal-moveset construc-
tor described above; the second argument is the function which selects a move, the second
is the number of different moves which exist and the fourth argument is an array of nMoves
pointers to move functions. This is used in section 5.2.

Using a Moveset Having created a moveset by either of these methods, all that remains
is to call the SetMoveSet member of the sampler, specifying the newly-created moveset as the

4It is advisable to return a positive value in the case of moves which do not involve a rejection step.

18 SMCTC: Sequential Monte Carlo in C++

sole argument. This tells the sampler object that this moveset contains all information about
initialisation, proposals, weighting and MCMC moves and that calling the appropriate mem-
bers of this object will perform the low-level application-specific functions which it requires
the user to specify.

4.4. Error Handling: smc::exception

If an error that is too serious to be indicated via the return value of a function within the
library occurs then an exception is thrown.

Exceptions indicating an error within SMCTC are of type smc::exception. This class con-
tains four pieces of information:

char* szFile;
long lLine;
long lCode;
char* szMessage;

szFile is a NULL-terminated string specifying the source file in which the exception occurred;
lLine indicates the line of that file at which the exception was generated. lCode provides a
numerical indication of the type of error (this should correspond to one of the SMCX_* constants
defined in smc-exception.hh) and, finally, szMessage provides a human-readable description
of the problem which occurred. For convenience, the << operator has been overloaded so that
os << e will send a human-readable description of the smc::exception, e to an ostream, os
– see section 5.1 for an example.

4.5. Random Number Generation

In principle, no user involvement is required to configure the random number generation used
by the SMCTC library. However, if no information is provided then the sampler will use the
same pseudorandom number sequence for every execution: it simply uses the GSL default
generator type and seed. In fact, complete programmatic control of the random number
generator can be arranged via the random number generator classes (it is possible to supply
one to the smc::sampler class when it is created rather than allowing it to generate a default).
However, this is not an essential feature of the library, the details can be found in the class
reference and are not reproduced here.

For day-to-day use, it is probably sufficient for most users to take advantage of the fact that
the GSL checks two environment variables before using its default generator (this is true of
the mode in which it is invoked by SMCTC in its default mode). Consequently, it is possible
to control the behaviour of the random number sequence provided to any program which uses
the SMCTC library by setting these environment variables before launching the program.
Specifically, GSL_RNG_SEED specifies the random number seed and GSL_RNG_TYPE specifies
which generator should be used — see Galassi et al. (2006) for details.

By way of an example, the pf binary produced by compiling the example in section 5.1 can
be executed using the “ranlux”generator with a seed of 36532673278 by entering the following
at a BASH (Bourne Again Shell) prompt from the appropriate directory:

GSL_RNG_TYPE=ranlux GSL_RNG_SEED =36532673278 ./pf

19

5. Examples Applications

This section provides two sample implementations: a simple particle filter in section 5.1 and
a more involved SMC sampler which estimates rare event probabilities in section 5.2. This
section shows how one can go about implementing SMC algorithms using the SMCTC library
and (hopefully) emphasizes that no great technical requirements are imposed by the use of
a compiled language such as C++ in the development of software of this nature. It is also
possible to use these programs as a basis for the development of new algorithms.

5.1. A Simple Particle Filter

Model

It is useful to look at a basic particle filter in order to see how the description above relates to
a real implementation. The following simple state space model, known as the almost constant
velocity model in the tracking literature, provides a simple scenario.

The state vector Xn contains the position and velocity of an object moving in a plane: Xn =
(sx

n, ux
n, sy

n, uy
n). Imperfect observation of the position, but not velocity, is possible at each

time instance. The state and observation equations are linear with additive noise:

Xn = AXn−1 + Vn

Yn = BXn + αWn

where

A =


1 ∆ 0 0
0 1 0 0
0 0 1 ∆
0 0 0 1

 B =
[

1 0 0 0
0 0 1 0

]
α = 0.1,

and we assume that the elements of the noise vector Vn are independent normal with variances
0.02 and 0.001 for position and velocity components, respectively. The observation noise,
Wn, comprise independent, identically distributed t-distributed random variables with ν = 10
degrees of freedom. The prior at time 0 corresponds to an axis-aligned Gaussian with variance
4 for the position coordinates and 1 for the velocity coordinates.

Implementation

For simplicity, we define a simple bootstrap filter (Gordon, Salmond, and Smith 1993) which
samples from the system dynamics (i.e. the conditional prior of a given state variable given
the state at the previous time but no knowledge of any subsequent observations) and weights
according to the likelihood.

The pffuncs.hh header performs some basic housekeeping, with function prototypes and
global-variable declarations. The only significant content is the definition of the classes used
to describe the states and observations:

3 class cv_state
4 {

20 SMCTC: Sequential Monte Carlo in C++

5 public:
6 double x_pos , y_pos;
7 double x_vel , y_vel;
8 };
9

10 class cv_obs
11 {
12 public:
13 double x_pos , y_pos;
14 };

In this case, nothing sophisticated is done with these classes: a shallow copy suffices to
duplicate the contents and the default copy constructor, assignment operator and destructor
are sufficient. Indeed, it would be straightforward to implement the present program using no
more than an array of doubles. The purpose of this (apparently more complicated) approach
is twofold: it is preferable to use a class which corresponds to precisely the objects of interest
and, it illustrates just how straightforward it is to employ user-defined types within the
template classes.

The main function of this particle filter, defined in pfexample.cc, looks like this:

18 int main(int argc , char** argv)
19 {
20 long lNumber = 1000;
21 long lIterates;
22

23 try {
24 //Load o b s e r v a t i o n s

25 lIterates = load_data("data.csv", &y);
26

27 // I n i t i a l i s e and run the samp le r

28 smc::sampler <cv_state > Sampler(lNumber , SMC_HISTORY_NONE);
29 smc::moveset <cv_state > Moveset(fInitialise , fMove , NULL);
30

31 Sampler.SetResampleParams(SMC_RESAMPLE_RESIDUAL , 0.5);
32 Sampler.SetMoveSet(Moveset);
33 Sampler.Initialise ();
34

35 for(int n=1 ; n < lIterates ; ++n) {
36 Sampler.Iterate ();
37

38 double xm,xv,ym,yv;
39 xm = Sampler.Integrate(integrand_mean_x ,NULL);
40 xv = Sampler.Integrate(integrand_var_x , (void*)&xm);
41 ym = Sampler.Integrate(integrand_mean_y ,NULL);
42 yv = Sampler.Integrate(integrand_var_y , (void*)&ym);
43

44 cout << xm << "," << ym << "," << xv << "," << yv << endl;
45 }
46 }
47

48 catch(smc:: exception e)
49 {

21

50 cerr << e;
51 exit(e.lCode);
52 }
53 }

This should be fairly self-explanatory, but some comments are justified. Line 25 serves to
load some observations from disk (the LoadData function is included in the source file but
is not detailed here as it could be replaced by any method for sourcing data; indeed, in real
filtering applications one would anticipate this data arriving in real time from a signal source).
This function assumes that a file called Data.csv exists in the present directory; the first line
of this file identifies the number of observation pairs present and the remainder of the file
contains these observations in a comma-separated form. A suitable data file is present in the
downloadable source archive.

Lines 23–45 are enclosed in a try block so that any exceptions thrown by the sampler can be
caught, allowing the program to exit gracefully and display a suitable error message should
this happen. Line 48–52 perform this elementary error handing.

Line 28 creates an smc::sampler which employs lNumber= 1000 particles and which does
not store the history of the system. It is followed by line 28 which creates an smc::moveset
comprising an initialisation function fInitialise and a proposal function fMove — the final
argument is NULL as no additional MCMC moves are used. These functions are described
below.

Once the basic objects have been created, lines 31–33 initialise the sampler by:

• Specifying that we wish to perform residual resampling when the ESS drops below 50%
of the number of particles.

• Supplying the moveset-information to the sampler.

• Telling the sampler to initialise itself and all of the particles (the fInitialise function
is called for each particle at this stage).

Lines 35–45 then iterate through the observations, propagating the particle set from one
filtering distribution to the next and outputting the mean and variance of sx

n and sy
n for

each n. Line 35 causes the sampler to predict and update the particle set, resampling if the
conditions specified in line 30 are met. The remaining lines calculate the mean and variance
of the x and y coordinates using the simple integrator built in to the sampler.

Consider the x components (the y components are dealt with in precisely the same way with
essentially identical code). The mean is calculated by line 39 which asks the sampler to obtain
the weighted average of function integrand_mean_x over the particle set. This function, as
we require the mean of sx

n, simply returns the value of sx
n for the specified particle:

79 double integrand_mean_x(cv_state s, void *)
80 {
81 return s.x_pos;
82 }

Line 40 then calculates the variance. Whilst it would be straightforward to estimate the mean
of (sx

n)2 using the same method as sx
n and to calculate the variance from this, an alternative

is to supply the mean calculated in line 38 to a function which returns the squared difference

22 SMCTC: Sequential Monte Carlo in C++

between sx
n and an estimate of its mean. We take this approach to illustrate the use of the

final argument of the integrand function. The function, in this case is:

84 double integrand_var_x(cv_state s, void* vmx)
85 {
86 double* dmx = (double *)vmx;
87 double d = (s.x_pos - (*dmx));
88 return d*d;
89 }

as the final argument of the Sampler.Integrate() call is set to a pointer to the mean of sx
n

estimated in line 38, this is what is supplied as the final argument of the integrand function
when it is called for each individual particle.

Finally, the functions used by the particle filter are contained in pffuncs.cc. The first of
these is the initialisation function:

31 smc::particle <cv_state > fInitialise(smc::rng *pRng)
32 {
33 cv_state value;
34

35 value.x_pos = pRng ->Normal(0,sqrt(var_s0));
36 value.y_pos = pRng ->Normal(0,sqrt(var_s0));
37 value.x_vel = pRng ->Normal(0,sqrt(var_u0));
38 value.y_vel = pRng ->Normal(0,sqrt(var_u0));
39

40 return smc::particle <cv_state >(value ,logLikelihood (0,value));
41 }

Line 33 declares and object of the same type as the value of the particle. Lines 35–38 use
the SMCTC random number class to initialise the position and velocity components of the
state to samples from appropriate independent Gaussian distributions. As the particle has
been drawn from a distribution corresponding to the prior distribution at time 0, it should be
weighted by the likelihood. Line 40 returns an smc::particle object with the value of value
and a weight obtained by calling the logLikelihood function with the first argument set to
the current iteration number and the second to value.

The logLikelihood function

23 double logLikelihood(long lTime , const cv_state & X)
24 {
25 return - 0.5 * (nu_y + 1.0) * (log(1 + pow((X.x_pos - y[lTime].x_pos

)/scale_y ,2) / nu_y) + log(1 + pow((X.y_pos - y[lTime]. y_pos)/
scale_y ,2) / nu_y));

26 }

is slightly misnamed. It does not return the log likelihood, but the log of the likelihood up
to a normalising constants. Its operation is not significantly more complicated than it would
be if the same function were implemented in a dedicated statistical language.

Finally, the move function takes the form:

49 void fMove(long lTime , smc::particle <cv_state > & pFrom , smc::rng *
pRng)

50 {
51 cv_state * cv_to = pFrom.GetValuePointer ();

23

52

53 cv_to ->x_pos += cv_to ->x_vel * Delta + pRng ->Normal(0,sqrt(var_s));
54 cv_to ->x_vel += pRng ->Normal(0,sqrt(var_u));
55 cv_to ->y_pos += cv_to ->y_vel * Delta + pRng ->Normal(0,sqrt(var_s));
56 cv_to ->y_vel += pRng ->Normal(0,sqrt(var_u));
57

58 pFrom.AddToLogWeight(logLikelihood(lTime , *cv_to));
59 }

Again, this is reasonably straightforward. Line 51 obtains a pointer to the value associated
with the particle so that it can be modified in place. Lines 53–56 add appropriate Gaussian
random variables to each element of the state, according to the system dynamics, using the
SMCTC random number class. Finally, line 58 adds the value of the log likelihood to the
logarithmic weight (this, of course, is equivalent to multiplying the weight by the likelihood).

Between them, these functions comprise a complete working particle filter. In total, 156
lines of code and 28 lines of header file are involved in this example program — including
significant comments and white-space. Figure 2 shows the output of this algorithm running
on simulated data, together with the simulated data itself and the observations. Only the
position coordinates are illustrated. For reference, using a 1.7 GHz Pentium-M, this simulation
takes 0.35 s to run for 100 iterations using 1000 particles.

5.2. Gaussian Tail Probabilities

The following example is an implementation of an algorithm, described in (Johansen, Del
Moral, and Doucet 2006, section 2.3.1), for the estimation of rare event probabilities. A
detailed discussion is outside the scope of this paper.

Model and Distribution Sequence

In general, estimating the probability of rare events (by definition, those with very small
probability) is a difficult problem. In this section we consider one particular class of rare
events. We are given a (possibly inhomogeneous) Markov chain, (Xn)n∈N, which takes its
values in a sequence of measurable spaces (En)n∈N with initial distribution η0 and elementary
transitions given by the set of Markov kernels (Mn)n≥1.

The law P of the Markov chain is defined by its finite dimensional distributions:

P ◦X−1
0:N (dx0:N) = η0(dx0)

N∏
i=1

Mi(xi−1, dxi). (3)

For this Markov chain, we wish to estimate the probability of the path of the chain lying
in some “rare” set, R, over some deterministic interval 0 : P . We also wish to estimate the
distribution of the Markov chain conditioned upon the chain lying in that set, i.e., to obtain
a set of samples from the distribution:

Pη0 ◦X−1
0:P (·|X0:P ∈ R) . (4)

In general, even if it is possible to sample directly from η0(·) and from Mn(xn−1, ·) for all n and
almost all xn−1 it is difficult to estimate either the probability or the conditional distribution.

24 SMCTC: Sequential Monte Carlo in C++

 2

 4

 6

 8

 10

 12

 14

-7 -6 -5 -4 -3 -2 -1

Ground Truth
Filtering Estimate

Observations

Figure 2: Proof of concept: simulated data, observations and the posterior mean filtering
estimates obtained by the particle filter.

25

The approach which we propose is to employ a sequence of intermediate distributions which
move smoothly from P ◦X−1

0:P to the target distribution P ◦X−1
0:P (·|X0:P ∈ R) and to obtain

samples from these distributions using SMC methods. By operating directly upon the path
space, we obtain a number of advantages. It provides more flexibility in constructing the
importance distribution than methods which consider only the time marginals, and allows us
to take complex correlations into account.

We can, of course, cast the probability of interest as the expectation of an indicator function
over the rare set, and the conditional distribution of interest in a similar form as:

P (X0:P ∈ R) = E [IR(X0:P)] ,

P (dx0:p |X0:P ∈ R) =
P (dx0:p ∩R)
E [IR(X0:P)]

.

We concern ourselves with those cases in which the rare set of interest can be characterised
by some measurable function, V : E0:P → R, which has the properties that:

V : R → [V̂ ,∞),
V : E0:P \ R → (−∞, V̂).

In this case, it makes sense to consider a sequence of distributions defined by a potential
function which is proportional to their Radon-Nikodým derivative with respect to the law of
the Markov chain, namely:

gθ(x0:p) =
(
1 + exp

(
−α(θ)

(
V (x0:P)− V̂

)))−1

where α(θ) : [0, 1]→ R+ is a differentiable monotonically-increasing function such that α(0) =
0 and α(1) is sufficiently large that this potential function approaches the indicator function
on the rare set as we move through the sequence of distributions defined by this potential
function at the parameter values θ ∈ {t/T : t ∈ {0, 1, . . . , T}}.
Let

{
πt(dx0:P) ∝ P(dx0:P)gt/T (x0:P)

}T

t=0
be the sequence of distributions which we use. The

SMC samplers framework allows us to obtain a set of samples from each of these distributions
in turn via a sequential importance sampling and resampling strategy. Note that each of
these distributions is over the first P + 1 elements of a Markov chain: they are defined upon
a common space.

In order to estimate the expectation which we seek, make use of the identity:

E [IR(X0:P)] = πT

[
Z1

g1(X0:P)
IR(X0:P)

]
,

where Zθ =
∫

gθ(xo:P)P(dx0:P) and use the particle approximation of the right hand side of
this expression. This is simply importance sampling: Z1/g1(·) is simply the density of π0 with
respect to πT and we wish to estimate the expectation of this indicator function under π0.
Similarly, the subset of particles representing samples from πT which hit the rare set can be
interpreted as (weighted) samples from the conditional distribution of interest.

We use the notation (Y i
t)N

i=1 to describe the particle set at time t and Y
(i,j)
t to describe the jth

state in the Markov chain described by particle i at time t. We further use Y
(i,−p)
t to refer to

26 SMCTC: Sequential Monte Carlo in C++

every state in the Markov chain described by particle i at time t except the pth, and similarly,
Y

(i,−p)
t ∪ Y ′ ,

(
Y

(i,0:p−1)
t , Y ′, Y

(i,p+1:P)
t

)
, i.e., it refers to the Markov chain described by the

same particle, with the pth state of the Markov chain replaced by some quantity Y ′.

The Path Sampling Approximation

The estimation of the normalising constant associated with our potential function can be
achieved by a Monte Carlo approximation of the path sampling formulation given by Gelman
and Meng (1998). Given a parameter θ such that a potential function gθ(x) allows a smooth
transition from a reference distribution to a distribution of interest, as some parameter in-
creases from zero to one, one can estimate the logarithm of the ratio of their normalising
constants via the integral relationship:

log
(

Z1

Z0

)
=

∫ 1

0
Eθ

[
dq

dθ

]
dθ, (5)

where Eθ denotes the expectation under πθ.

In our cases, we can describe our sequence of distributions in precisely this form via a discrete
sequence of intermediate distributions parametrized by a sequence of values of θ:

d log gθ

dθ
(x) =

(V (x)− V̂)
exp(α(θ)(V (x)− V̂)) + 1

dα

dθ

⇒ log
(

Zt/T

Z0

)
=

∫ t/T

0
Eθ

[
(V (·)− V̂)

exp(α(θ)(V (·)− V̂)) + 1

]
dα

dθ
dθ

=
∫ α(t/T)

0
Eα(t/T)

α(1)

[
(V (·)− V̂)

exp(α(V (·)− V̂)) + 1

]
dα,

where Eθ is used to denote the expectation under the distribution associated with the potential
function at the specified value of its parameter.

The SMC sampler provides us with a set of weighted particles obtained from a sequence of
distributions suitable for approximating the integrals in (5). At each αt we can obtain an
estimate of the expectation within the integral via the usual importance sampling estimator;
and the integral over θ (which is one dimensional and over a bounded interval) can then be
approximated via a trapezoidal integration. As we know that Z0 = 0.5 we are then able
to estimate the normalising constant of the final distribution and then use an importance
sampling estimator to obtain the probability of hitting the rare set.

A Gaussian Case

It is useful to consider a simple example for which it is possible to obtain analytic results
for the rare event probability. The tails of a Gaussian distribution serve well in this context,
and we borrow the example of Del Moral and Garnier (2005). We consider a homogeneous
Markov chain defined on (R,B(R)) for which the initial distribution is a standard Gaussian
distribution and each kernel is a standard Gaussian distribution centred on the previous
position:

η0(dx) = N (dx; 0, 1) ∀n > 0 : Mn(x, dy) = N (dy;x, 1).

27

The function V (x0:P) := xP corresponds to a canonical coordinate operator and the rare set
R := EP × [V̂ ,∞) is simply a Gaussian tail probability: the marginal distribution of XP is
simply N (0, P + 1) as XP is the sum of P + 1 iid standard Gaussian random variables.

Sampling from π0 is trivial. We employ an importance kernel which moves position i of the
chain by ijδ. j is sampled from a discrete distribution. This distribution over j is obtained
by considering a finite collection of possible moves and evaluating the density of the target
distribution after each possible move. j is then sampled from a distribution proportional
to this vector of probabilities. δ is an arbitrary scale parameter. The operator, Gε, defined

by GεY
i
n =

(
Y

(i,p)
n + pε

)P

p=0
, where ε is interpreted as a parameter, is used for notational

convenience.

This forward kernel can be written as:

Kn(Y i
n−1, Y

i
n) =

S∑
j=−S

ωn(Y i
n−1, Y

i
n)δGδjY i

n−1
(Y i

n),

where the probability of each of the possible moves is given by

ωn(Y i
n−1, Y

i
n) =

πn(Y i
n)∑S

j=−S πn(GδjY
i
n−1)

.

This leads to the following optimal auxiliary kernel:

Ln−1(Y i
n, Y i

n−1) =

πn−1(Y i
n−1)

S∑
j=−S

ωn(Y i
n−1, Y

i
n)δGδjY i

n−1
(Y i

n)

S∑
j=−S

πn−1(G−δjY i
n)ωn(G−δjY i

n, Yn)
.

The incremental importance weight is consequently:

wn(Y i
n−1, Y

i
n) =

πn(Y i
n)

S∑
j=−S

πn(G−δjY i
n)wn(G−δjY i

n, Y i
n)δGδjY i

n−1
(Y i

n)
.

As the calculation of the integrals involved in the incremental weight expression tend to be
analytically intractable in general, we have made use of a discrete grid of proposal distributions
as proposed by Peters (2005). This naturally impedes the exploration of the sample space.
Consequently, we make use of a Metropolis-Hastings kernel of the correct invariant distribution
at each time step (whether resampling has occurred, in which case this also helps to prevent
sample impoverishment, or not). We make use of a linear schedule α(θ) = kθ and show the
results of our approach (using a chain of length 15, a grid spacing of δ = 0.025 and S = 12 in
the sampling kernel) in table 2.

It should be noted that constructing a proposal in this way has a number of positive points: it
allows the use of a (discrete approximation to) essentially any proposal distribution, and it is
possible to use the optimal auxiliary kernel with it. However, there are also some drawbacks
and we would not recommend the use of this strategy without careful consideration. In
particular, the use of a discrete grid limits the movement which is possible considerably and

28 SMCTC: Sequential Monte Carlo in C++

Threshold, V̂ True log10 probability SMC Mean SMC Variance k T
5 -2.32 -2.30 0.016 2 333
10 -5.32 -5.30 0.028 4 667
15 -9.83 -9.81 0.026 6 1000
20 -15.93 -15.94 0.113 10 2000
25 -23.64 -23.83 0.059 12.5 2500
30 -33.00 -33.08 0.106 14 3500

9
√

15 -43.63 -43.61 0.133 12 3600
10
√

15 -53.23 -53.20 0.142 11.5 4000

Table 2: Means and variances of the estimates produced by 10 runs of the proposed algorithm
using 100 particles at each threshold value for the Gaussian random walk example.

it will generally be necessary to make use of accompanying MCMC moves to maintain sample
diversity. More seriously, these grid-type proposals are typically extremely expensive to use
as they require numerous evaluations of the target distribution for each proposal. Although
it provides a more-or-less automatic mechanism for constructing a proposal and using its
optimal auxiliary kernel, the cost of each sample obtained in this way can be sufficiently high
that using a simpler proposal kernel with an approximation to its optimal auxiliary kernel
could yield rather better performance at a given computational cost.

Implementation

The simfunctions.hh file in this case contains the usual overhead of function prototypes and
global variable definitions. It also includes a file markovchain.h which provides a template
class for objects corresponding to evolutions of a Markov chain. This is a container class
which operates as a doubly-linked list. The use of this class is intended to illustrate the ease
with which complex classes can be used to represent the state space. The details of this class
are not documented here, as it is somewhat outside the scope of this article; it should be
sufficiently straightforward to understand the features used here.

The file main.cc contains the main function:

14 int main(int argc , char** argv)
15 {
16 cout << "Number of Particles: ";
17 long lNumber;
18 cin >> lNumber;
19 cout << "Number of Iterations: ";
20 cin >> lIterates;
21 cout << "Threshold: ";
22 cin >> dThreshold;
23 cout << "Schedule Constant: ";
24 cin >> dSchedule;
25

26 try{
27 ///An a r r a y o f move f u n c t i o n p o i n t e r s

28 void (* pfMoves [])(long , smc::particle <mChain <double > > &,smc::rng
*) = {fMove1 , fMove2 };

29 smc::moveset <mChain <double > > Moveset(fInitialise , fSelect , sizeof

29

(pfMoves) / sizeof(pfMoves [0]), pfMoves , fMCMC);
30 smc::sampler <mChain <double > > Sampler(lNumber , SMC_HISTORY_RAM);
31

32 Sampler.SetResampleParams(SMC_RESAMPLE_STRATIFIED ,0.5);
33 Sampler.SetMoveSet(Moveset);
34

35 Sampler.Initialise ();
36 Sampler.IterateUntil(lIterates);
37

38 /// Es t imate the n o rma l i s i n g con s t an t o f the t e rm i n a l d i s t r i b u t i o n

39 double zEstimate = Sampler.IntegratePathSampling(pIntegrandPS ,
pWidthPS , NULL) - log (2.0);

40 /// Es t imate the we i gh t i n g f a c t o r f o r the t e rm i n a l d i s t r i b u t i o n

41 double wEstimate = Sampler.Integrate(pIntegrandFS , NULL);
42

43 cout << zEstimate << " " << log(wEstimate) << " " << zEstimate +
log(wEstimate) << endl;

44 }
45 catch(smc:: exception e)
46 {
47 cerr << e;
48 exit(e.lCode);
49 }
50

51 return 0;
52 }

Lines 16–24 allow the runtime specification of certain parameters of the model and of the
employed sequence of distributions. The remainder of the function takes essentially the same
form as that described in the particle filter example — in particular, the same error handling
mechanism is used.

The core of the program is contained in lines 28–43. In this case, the more complicated form
of moveset is used: we consider an implementation which makes use of a mixture of the grid
based moves described above and a simple “update” move (which does not alter the state of
the particle, but reweights it to account for the change in distribution — the inclusion of such
moves can improve performance at a given computational cost in some circumstances).

Following the approach detailed in section 4.3, the program first populates an array of pointers
to move functions with references to fMove1 and fMove2 in line 28. Line 29 causes the
generation of a moveset with initialisation function fInitialise, the function fSelect used
to select which move to apply, two (generated automatically using the ratio of sizeof operators
to eliminate errors) moves, which are specified in the aforementioned array and, finally, an
MCMC move available in function fMCMC. Line 30 creates a sampler, stipulating that the full
history of the particle system should be retained in memory (we wish to use the entire history
to calculate some integrals used in path sampling at the end; whilst this could be done with
a calculation after each iteration it is simpler to simply retain all of the information and to
calculate the integral at the end). Line 32 tells the sampler that we wish to use stratified
resampling whenever the ESS drops below half the number of particles and line 33 specifies
the moveset.

Lines 35–36 initialise the sampler and then iterate until the desired number of iterations have

30 SMCTC: Sequential Monte Carlo in C++

elapsed. These two lines are in some sense responsible for the SMC algorithm running.

Output is then generated in the remainder of the function. Line 39 calculates the normalising
constant of the final distribution using path sampling as described above, it does this by
calling the SMCTC function which does this automatically using widths supplied by a function
pWidthPS (defined in simfunctions.cc):

149 double pWidthPS(long lTime , void* pVoid)
150 {
151 if(lTime > 1 && lTime < lIterates)
152 return ((0.5)*double(ALPHA(lTime +1.0)-ALPHA(lTime -1.0)));
153 else
154 return ((0.5)*double(ALPHA(lTime +1.0) -ALPHA(lTime)) +(ALPHA (1) -0.0)

);
155 }

and integrand pIntegrandPS

142 double pIntegrandPS(long lTime , smc::particle <mChain <double > > pPos ,
void* pVoid)

143 {
144 double dPos = pPos.GetValue ().GetTerminal ()->value;
145 return (dPos - THRESHOLD) / (1.0 + exp(ALPHA(lTime) * (dPos -

THRESHOLD)));
146 }

This operates in the same manner as the simple integrator, and example of which was given
in section 5.1. For details about the origin of the terms being integrated etc. see Johansen
et al. (2006).

Line 41 then calculations a correction term arising from the fact that the final distribution is
not the indicator function on the rare set (this is essentially an importance sampling correc-
tion) using the simple integrator and the following integrand function:

158 double pIntegrandFS(mChain <double > dPos , void* pVoid)
159 {
160 if(dPos.GetTerminal ()->value > THRESHOLD) {
161 return (1.0 + exp(-FTIME*(dPos.GetTerminal ()->value -THRESHOLD)));
162 }
163 else
164 return 0;
165 }

The result of these two calculates, and an estimate of the natural logarithm of the rare event
probability are then produced in line 43.

Finally, the detailed functions are provided in simfunctions.cc

The following function is used throughout to calculate probabilities:

14 double logDensity(long lTime , const mChain <double > & X)
15 {
16 double lp;
17

18 mElement <double > *x = X.GetElement (0);
19 mElement <double > *y = x->pNext;
20 // Begin wi th the d e n s i t y e x l u d i n g the e f f e c t o f the p o t e n t i a l

31

21 lp = log(gsl_ran_ugaussian_pdf(x->value));
22

23 while(y) {
24 lp += log(gsl_ran_ugaussian_pdf(y->value - x->value));
25 x = y;
26 y = x->pNext;
27 }
28

29 //Now i n c l u d e the e f f e c t o f the m u l t i p l i c a t i v e p o t e n t i a l f u n c t i o n

30 lp -= log (1.0 + exp(-(ALPHA(lTime) * (x->value - THRESHOLD))));
31 return lp;
32 }

It should be fairly self-explanatory, but this function calculates the unnormalised density
under the target distribution at time lTime of a point in the state space, X (which is, of
course, a Markov chain). It does this by calculating its probability under the law of the
Markov chain and then correcting for the potential.

Initialisation is straightforward in this case as the first distribution is simply the law of the
Markov chain with independent standard Gaussian increments. This function simulates from
this distribution and sets the weight equal to 0 (this is the preferred constant value for
numerical reasons and should be used whenever all particles should have the same weight):

36 smc::particle <mChain <double > > fInitialise(smc::rng *pRng)
37 {
38 // Crea te a Markov cha i n wi th the a p p r o p r i a t e i n i t i a l i s a t i o n and then a s s i g n tha t to

the p a r t i c l e s .

39 mChain <double > Mc;
40

41 double x = 0;
42 for(int i = 0; i < PATHLENGTH; i++) {
43 x += pRng ->NormalS ();
44 Mc.AppendElement(x);
45 }
46

47 return smc::particle <mChain <double > >(Mc ,0);
48 }

As described above, and in the original paper, the grid-based move is used for every particle
at every iteration. Consequently, the selection function simply returns zero indicating that
the first move should be used, regardless of its arguments:

4 long fSelect(long lTime , const smc::particle <mChain <double > > & p, smc
::rng *pRng)

5 {
6 return 0;
7 }

It would be straightforward to modify this function to return 1 with some probability (using
the random number generator to determine which action to use). This would lead to a
sampler which makes uses of a mixture of these grid-based moves (fMove1)and the update
move provided by fMove2.

The main proposal function is:

32 SMCTC: Sequential Monte Carlo in C++

59 void fMove1(long lTime , smc::particle <mChain <double > > & pFrom , smc::rng *pRng)

60 {

61 // The d i s t a n c e between p o i n t s i n the random g r i d .
62 static double delta = 0.1;

63 static double gridweight [2* GRIDSIZE +1], gridws = 0;

64 static mChain <double > NewPos [2* GRIDSIZE +1];

65 static mChain <double > OldPos [2* GRIDSIZE +1];

66

67 // F i r s t s e l e c t a new p o s i t i o n from a g r i d c en t r e d on the o l d p o s i t i o n , we i gh t i n g
the p o s s i b l e c h o i s e s by the

68 // p o s t e r i o r p r o b a b i l i t y o f the r e s u l t i n g s t a t e s .
69 gridws = 0;

70 for(int i = 0; i < 2* GRIDSIZE +1; i++) {

71 NewPos[i] = pFrom.GetValue () + ((double)(i - GRIDSIZE))*delta;

72 gridweight[i] = exp(logDensity(lTime ,NewPos[i]));

73 gridws = gridws + gridweight[i];

74 }

75

76 double dRUnif = pRng ->Uniform(0,gridws);

77 long j = -1;

78

79 while(dRUnif > 0 && j <= 2* GRIDSIZE) {

80 j++;

81 dRUnif -= gridweight[j];

82 }

83

84 pFrom.SetValue(NewPos[j]);

85

86 // Now c a l c u l a t e the we ight change which the p a r t i c l e s u f f e r s as a r e s u l t
87 double logInc = log(gridweight[j]), Inc = 0;

88

89 for(int i = 0; i < 2* GRIDSIZE +1; i++) {

90 OldPos[i] = pFrom.GetValue () - ((double)(i - GRIDSIZE))*delta;

91 gridws = 0;

92 for(int k = 0; k < 2* GRIDSIZE +1; k++) {

93 NewPos[k] = OldPos[i] + ((double)(k-GRIDSIZE))*delta;

94 gridweight[k] = exp(logDensity(lTime , NewPos[k]));

95 gridws += gridweight[k];

96 }

97 Inc += exp(logDensity(lTime -1, OldPos[i])) * exp(logDensity(lTime , pFrom.GetValue

())) / gridws;

98 }

99 logInc -= log(Inc);

100

101 pFrom.SetLogWeight(pFrom.GetLogWeight () + logInc);

102

103 for(int i = 0; i < 2* GRIDSIZE +1; i++)

104 {

105 NewPos[i].Empty ();

106 OldPos[i].Empty ();

107 }

108

109 return;

110 }

This is a reasonably large amount of code for an importance distribution, but that is largely
due to the complex nature of this particular proposal. Even in this setting, the code is
straightforward, consisting of four basic operations: lines 61–74 produce a representation of
the state after each possible move and calculate the proposal probability of each one, 76–84
samples from the resulting distribution, 87–101 calculates the weight of the particle, and the
remainder of the function deletes the states produced by the first section.

In contrast, the update move takes the rather trivial form:

33

112 void fMove2(long lTime , smc::particle <mChain <double > > & pFrom , smc::
rng *pRng)

113 {
114 pFrom.SetLogWeight(pFrom.GetLogWeight () + logDensity(lTime ,pFrom.

GetValue ()) - logDensity(lTime -1,pFrom.GetValue ()));
115 }

It simply updates the weight of the particle to take account of the fact that it should now
target the proposal at time lTime rather than lTime−1.

The following function provides an additional MCMC move:

118 int fMCMC(long lTime , smc::particle <mChain <double > > & pFrom , smc::rng
*pRng)

119 {
120 static smc::particle <mChain <double > > pTo;
121

122 mChain <double > * pMC = new mChain <double >;
123

124 for(int i = 0; i < pFrom.GetValue ().GetLength (); i++)
125 pMC ->AppendElement(pFrom.GetValue ().GetElement(i)->value + pRng ->

Normal(0, 0.5));
126 pTo.SetValue (*pMC);
127 pTo.SetLogWeight(pFrom.GetLogWeight ());
128

129 delete pMC;
130

131 double alpha = exp(logDensity(lTime ,pTo.GetValue ()) - logDensity(
lTime ,pFrom.GetValue ()));

132 if(alpha < 1)
133 if (pRng ->UniformS () > alpha) {
134 return false;
135 }
136

137 pFrom = pTo;
138 return true;
139 }

This is a simple Metropolis-Hastings (Metropolis, Rosenbluth, Rosenbluth, and Teller 1953;
Hastings 1970) move. Lines 120–130 produce a new state by adding a Gaussian random
variable of variance 1/4 to each element of the state. Lines 131–138 then determine whether
to reject them move — in which case the function returns false — or to accept it, in which
case the value of the existing state is set to the proposal and the function returns true. This
should serve as a prototype for the inclusion of Metropolis-Hastings moves within SMCTC
programs.

Again this comprises a full implementation of the SMC algorithm; in this instance one which
uses 229 lines of code and 32 lines of header. Although some of the individual functions are
relative complex in this case, that is a simple function of the model and proposal structure.
Fundamentally, this program has the same structure as the simple particle filter introduced
in the previous section.

34 SMCTC: Sequential Monte Carlo in C++

6. Discussion

This article has introduced a C++ template class intended to ease the development of efficient
SMC algorithms in C++. Whilst some work and technical proficiency is required on the part
of the user to implement particular algorithms using this approach — and it is clear that
demand also exists for a software platform for the execution of SMC algorithms by users
without the necessary skills — it seems to us to offer the optimal compromised between
speed, flexibility and effort.

SMCTC currently represents a first step towards the provision of software for the implemen-
tation of SMC algorithms. Sequential Monte Carlo is a young and dynamic field and it is
inevitable that other requirements will emerge and that some desirable features will prove to
have been omitted from this library. The author envisages that SMCTC will continue to be
developed for the foreseeable future and would welcome any feedback.

Acknowledgements

The author thanks Dr. Mark Briers and Dr. Edmund Jackson for their able and generous
assistance in the testing of this software on a variety of platforms.

References

Cappé O, Guillin A, Marin JM, Robert CP (2004). “Population Monte Carlo.” Journal of
Computational and Graphical Statistics, 13(4), 907–929.

Carpenter J, Clifford P, Fearnhead P (1999). “An Improved Particle Filter for Non-linear
Problems.” IEEE Proceedings on Radar, Sonar and Navigation, 146(1), 2–7.

Chen L, Lee C, Budhiraja A, Mehra RK (2007). “PFlib: An Object Oriented MATLAB
Toolbox for Particle Filtering.” In “Proceedings of SPIE Signal Processing, Sensor Fusion
and Target Recognition XVI,” volume 6567.

Chopin N (2002). “A sequential particle filter method for static models.” Biometrika, 89(3),
539–551.

Del Moral P, Doucet A, Jasra A (2006a). “Sequential Monte Carlo Methods for Bayesian
Computation.” In “Bayesian Statistics 8,” Oxford University Press.

Del Moral P, Doucet A, Jasra A (2006b). “Sequential Monte Carlo Samplers.” Journal of the
Royal Statistical Society B, 63(3), 411–436.

Del Moral P, Garnier J (2005). “Genealogical Particle Analysis of Rare Events.” Annals of
Applied Probability, 15(4), 2496–2534.

Doucet A, de Freitas N, Gordon N (eds.) (2001). Sequential Monte Carlo Methods in Practice.
Statistics for Engineering and Information Science. Springer Verlag, New York.

Doucet A, Johansen AM (2008). “Particle Filtering and Smoothing: Fiteen years later.” In
review.

35

Fan Y, Leslie D, Wand MP (2007). “Generalized linear mixed model analysis via sequential
Monte Carlo sampling.” Statistics Group Research Report 07:10, University of Bristol,
Department of Mathematics.

Free Software Foundation (2007). “GNU General Public License.” URL http://www.gnu.
org/licenses/gpl-3.0.html.

Galassi M, Davies J, Theiler J, Gough B, Jungman G, Booth M, Rossi F (2006). GNU
Scientific Library Reference Manual. Network Theory Limited, revised 2nd edition.

Gansner ER, North SC (2000). “An open graph visualization system and its applications to
software engineering.” Software: Practice and Experience, 30(11).

Gelman A, Meng XL (1998). “Simulating Normalizing Constants: From Importance Sampling
to Bridge Sampling to Path Sampling.” Statistical Science, 13(2), 163–185.

Gilks WR, Berzuini C (2001). “Following a moving target – Monte Carlo inference for dynamic
Bayesian models.” Journal of the Royal Statistical Society B, 63, 127–146.

Gordon NJ, Salmond SJ, Smith AFM (1993). “Novel approach to nonlinear/non-Gaussian
Bayesian state estimation.” IEE Proceedings-F, 140(2), 107–113.

Hastings WK (1970). “Monte Carlo Sampling Methods Using Markov Chains and their Ap-
plications.” Biometrika, 52, 97–109.

Johansen AM, Del Moral P, Doucet A (2006). “Sequential Monte Carlo samplers for rare
events.” In “Proceedings of the 6th International Workshop on Rare Event Simulation,” pp.
256–267. Bamberg, Germany.

Johansen AM, Doucet A, Davy M (2008). “Particle Methods for Maximum Likelihood Pa-
rameter Estimation in Latent Variable Models.” Statistics and Computing, 18(1), 47–57.

Kitagawa G (1996). “Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State
Space Models.” Journal of Computational and Graphical Statistics, 5, 1–25.

Liu JS (2001). Monte Carlo Strategies in Scientific Computing. Springer Series in Statistics.
Springer Verlag, New York.

Liu JS, Chen R (1998). “Sequential Monte Carlo Methods for Dynamic Systems.” Journal of
the American Statistical Association, 93(443), 1032–1044.

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH (1953). “Equation of State Cal-
culations by Fast Computing Machines.” Journal of Chemical Physics, 21, 1087–1092.

Neal RM (2001). “Annealed Importance Sampling.” Statistics and Computing, 11, 125–139.

Peters GW (2005). Topics In Sequential Monte Carlo Samplers. M.Sc. thesis, University of
Cambridge, Department of Engineering.

Stroustrup B (1991). The C++ Programming Language. Addison Wesley, 2nd edition.

van der Merwe R, Doucet A, de Freitas N, Wan E (2000). “The Unscented Particle Fil-
ter.” Technical Report CUED-F/INFENG-TR380, University of Cambridge, Department
of Engineering.

http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/gpl-3.0.html

36 SMCTC: Sequential Monte Carlo in C++

van Heesch D (2007). doxygen Manual, 1.5.5 edition. URL http://www.doxygen.org.

Affiliation:

Adam Johansen,
University of Bristol Department of Mathematics,
University Walk,
Bristol, BS3 3HY,
United Kingdom
E-mail: Adam.Johansen@bristol.ac.uk
URL: http://stats.bris.ac.uk/~maamj/

University of Bristol Research Report http://www.stats.bris.ac.uk/

http://www.doxygen.org
mailto:Adam.Johansen@bristol.ac.uk
http://stats.bris.ac.uk/~maamj/
http://www.stats.bris.ac.uk/

	Introduction
	Sequential Monte Carlo
	Sequential Importance Sampling and Resampling
	Particle Filters
	SMC Samplers

	Using SMCTC
	Obtaining SMCTC
	Installing SMCTC
	Compiling the library
	Optional Steps

	Building Programs with SMCTC
	

	The SMCTC Library
	Library and Program Structure
	Creating, Configuring and Running a sampler: smc::sampler
	Proposals and Importance Weights
	Resampling
	MCMC Diversification
	Running the Algorithm
	Output

	Specifying Proposals and Importance Weights: smc::moveset
	Initialising the particles
	Moving and Weighting the particles
	Mixtures of Moves
	Additional MCMC moves
	Creating and smc::moveset object

	Error Handling: smc::exception
	Random Number Generation

	Examples Applications
	A Simple Particle Filter
	Model
	Implementation

	Gaussian Tail Probabilities
	Model and Distribution Sequence
	The Path Sampling Approximation
	A Gaussian Case
	Implementation

	Discussion

