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Abstract. The paper presents some algorithms in digital geometry based on the 
topology of cell complexes. The paper contains an axiomatic justification of the 
necessity of using cell complexes in digital geometry. Algorithms for solving 
the following problems are presented: tracing of curves and surfaces, 
recognition of digital straight line segments (DSS), segmentation of digital 
curves into longest DSS, recognition of digital plane segments, computing the 
curvature of digital curves, filling of interiors of n-dimensional regions 
(n=2,3,4), labeling of components (n=2,3), computing of skeletons (n=2, 3). 

1   Introduction 
First of all let us discuss the question, why should one use cell complexes in digital 
geometry. The author supposes that there are three categories of researchers in this 
field. Those of the first category would prefer a mathematical proof of the assertion 
that cell complexes belong to the class of locally finite topological spaces that are in 
agreement with the axioms and with most definitions of the classical topology.  

Researchers of the second category would perhaps ask, whether classical axioms 
are really important for applications. They may believe that it is possible to find 
another set of axioms and deduce the properties of the topological space best suitable 
for applications in image analysis and in computer graphics from these new axioms.  

Researchers of the third category pay no attention at all to axiomatic theories. They 
are only interested in methods enabling one to develop efficient solutions of 
geometric and topological problems in image analysis and in computer graphics. 

The author hopes to satisfy with the present paper the desires of researchers of all 
three categories. 

Let us start with the second category. First of all it is necessary to mention that we 
don't need considering spaces in which each neighborhood of a point contains an 
infinite number of points, since such a space cannot be explicitly represented in a 
computer. A space in which each element has a neighborhood containing a finite 
number of elements is called a locally finite space (LFS). 

The author believes that everybody will agree that the features of a space, most 
important for applications are those of connectivity and of boundary. Therefore we 
suggest the following set of axioms concerned with these notions. We denote the 
elements of the space not as "points" since, as we shall see soon, there are in an LFS 
elements with different neighborhoods. They have different topological properties and 
thus must have different notations. 

Axiom 1: For each space element e there are certain subsets containing e, which 
are neighborhoods of e. Since the space is locally finite there exists the smallest 
neighborhood of e. 
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We shall denote the smallest neighborhood of e by SON(e). The exact definition of 
the neighborhood will be derived from the whole set of the Axioms below. 

Axiom 2: There are space elements whose SON consists of more than one element. 
If a and b are space elements and b∈SON(a ) then the set {a, b} is connected. Also the 
set {a} consisting of a single space element is connected.  

We shall say that a and b are directly connected  or incident to each other. This is a 
binary relation Inc. Since {a, b} and {b, a} denote one and the same set, the incidence 
relation Inc is symmetric. It is reflexive since according to Axiom 2 the set {a} is 
connected. 

Axiom 3: The connectivity relation is the transitive hull of the incidence relation. It 
is symmetric, reflexive and transitive. Therefore it is an equivalence relation. 

Let us now formulate the axioms related to the notion of a boundary. The classical 
definition of a boundary (exactly speaking, of the topological boundary or of the 
frontier) is as follows: 

Definition BD: The topological boundary of a subset T of the space S is the set of 
all space elements whose each neighborhood intersects both T and its complement 
S−T. 

In the case of a locally finite space it is obviously possible to replace "each 
neighborhood" by "smallest neighborhood". We shall denote the topological boundary 
i.e. the frontier of the subset T of the space S by Fr(T,S). Now we introduce the notion 
of a thin boundary: 

Definition TB: The boundary Fr(T,S) of a subset T of an n-dimensional space S is 
called thin if it contains no n-dimensional cube of 2n mutually incident space 
elements. 

Axiom 4: The topological boundary of any subset T is thin and is the same as the 
topological boundary of the complement S−T. 

Let us remain the reader the classical axioms of the topology. The topology of a 
space S is defined if a collection of subsets of S is declared to be the collection of the 
open subsets. These subsets must satisfy the following Axioms: 

Axiom C1: The entire set S and the empty subset ∅ are open. 
Axiom C2: The union of any number of open subsets is open. 

Axiom C3: The intersection of a finite number of open subsets is open. 
Axiom C4: The space has the separation property. 

There are (at least) three versions of the separation property and therefore three 
versions of Axiom C4 (Fig. 1.1) : 

Axiom T0: For any two distinct points x and y there is an open subset containing 
exactly one of the points. 

Axiom T1: For any two distinct points x and y there is an open subset containing x 
but not y and another open subset, containing y but not x. 

Axiom T2: For any two distinct points x and y there are two non-intersecting open 
subsets  containing exactly one of the points. 
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A space with the separation property T2 is called Hausdorff space. The well-known 
Euclidean space is a Hausdorff space. 

 

 

 

       T0               T1              T2  

Fig. 1.1. A symbolic illustration to the separation axioms 

It is easily seen that if a single point is not an open subset, then only the Axiom T0 
may be applied to a locally finite space (LFS). Really, Axioms T1 and T2 demand that 
the open subsets under consideration contain infinitely many points, no matter how 
small they are. Such subsets do not exits in a LFS and cannot be explicitly represented 
in a computer. Therefore only Axiom T0 is relevant for an LFS. 

The author has proved [11] that the above set of Axioms C1, C2, C3 and T0 is 
equivalent to the set of our suggested set of Axioms 1 to 4. This means that Axioms 
C1 to C3 and T0 may be deduced from Axioms 1 to 4 as theorems. This proves that 
the classical notion of open subsets is important for providing a space with the 
features of connectivity and boundary that satisfy the "obviously true" demands 
formulated as our Axioms 1 to 4. 

Unfortunately, it is impossible to repeat here the proof because of lack of space. 
We shall only show that the classical Axiom T0 follows from the demands that the 
boundaries be thin and that the boundary of a subset T be the same as the boundary of 
its complement S−T. 

Theorem NT. If the neighborhood of a space element e in the Definition BD 
contains besides e itself all elements that stay in a symmetric binary relation with e 
then there exist subsets whose boundary is not thin. 

 

 

 

 

 

 
 

Fig. 1.2. An illustration to the proof of Theorem NT for n=2 

Proof: We presume that two elements whose one coordinate differs by 1 while all 
other coordinates are equal satisfy the symmetric relation mentioned in Theorem NT. 
Let T be a subset of the space S that contains an (n−1)-dimensional cube 
C1={x1=m}×{x2, x2+1}×...×{xn, xn+1} while all elements of the "adjacent" cube 
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C2={x1=m+1}×{x2, x2+1}×...×{xn, xn+1} belong to the complement S−T (Fig. 1.2). 
The neighborhood of any element a∈C1 contains the element b∈C2 whose coordinate 
x1 is equal to m+1 and all other coordinates are equal to the corresponding coordinates 
of a. Thus b∈S−T and a belongs to the boundary of T. Since the relation defining the 
neighborhoods is symmetric, a belongs to the neighborhood of b, that intersects T at a 
and S−T at b. Therefore b belongs to the boundary of T. This is true for all elements of 
the cube C2. Thus both cubes C1 and C2 are in the boundary of T. Their union is an n-
dimensional cube and hence the boundary is not thin.g 

There are two possibilities to achieve that the boundary be thin for any subset: 
1. To change the Definition BD of the boundary so that only elements of T may 

belong to the boundary of T. 
2. To define the neighborhood by means of an antisymmetric relation, which means 

that if b is in the smallest neighborhood of a then a is not in the smallest 
neighborhood of b.  

The first possibility leads to different boundaries of T and of its complement S−T, 
which contradicts our Axiom 4 and thus may be considered a topological paradox. 
The remaining possibility 2 demands that the smallest neighborhoods satisfy the 
classical Axiom T0. This is exactly what we wanted to demonstrate. 

In the next chapters we will describe some algorithms in digital geometry that are 
based on the theory of abstract cell complex (AC complexes). In an AC complex the 
neighborhoods are defined by means of an antisymmetric bounding relation. 
Therefore the boundaries in AC complexes are thin and they satisfy the classical 
axioms. The author hopes that this will satisfy the desire of a reader of the first 
category mentioned at the beginning of Introduction. As to a reader of the second 
category, we have demonstrated that an attempt to "invent" a new "obviously true" set 
of axioms leads to no new concept of a topological space: the set of the new axioms 
has turned out to be equivalent to that of classical axioms. We suppose that this will 
be the case of all other sets of axioms that are in accordance with our "healthy" 
understanding of topology. 

As to the readers of the third category, we hope that they will be convinced and 
satisfied after having read Part II "The Algorithms". 
 

Part I −  Theoretical Foundations  

2    Short Remarks on Cell Complexes 

We presume that the reader is acquainted with the theory of AC complexes. To make 
the reading of the paper easier we have summarized the most important definitions in 
the Appendix. For more details we refer to [2, 5, 8]. 

 

3    Data Structures 
In this Section we shall describe some data structures used in algorithms for solving 
topological and geometrical problems when using AC complexes. 
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3.1    The standard raster 
Two- and three-dimensional images are usually stored in a computer in arrays of the 
corresponding dimension. Each element of the array contains either a gray value, or a 
color, or a density. This data structure is called the standard raster. It is not designed 
for topological calculations, nevertheless, it is possible to perform topological 
calculations without changing the data structure. For example, it is possible to trace 
and encode the frontier of a region in a two-dimensional image in spite of the 
apparent difficulty that the frontier according to Definition FR (see Appendix) 
consists of 0- and 1-cells, however, the raster contains only pixels that must be 
interpreted as 2-cells. The reason is that a pixel is a carrier of an optical feature that is 
proportional to certain elementary area. Thus pixels, which are the 2-cells, must 
correspond to elementary areas rather than 0- or 1-cells whose area is zero. On the 
same reason voxels must correspond to 3-cells. 

When considering an image as an AC complex one must admit that a 2-
dimensional image contains besides the pixels also cells of lower dimension 0 and 1. 
This often arises objections since we can see on a computer display only the pixels, 
i.e. the cells of the highest dimension. However, this fact is not important: really, one 
should think about the rendering of a 3-dimensional object that is a set of voxels. 
What we see are not the 3-dimensional voxels but rather their 2-dimensional facets 
and 1-dimensional edges. This fact does not prevent us from working with voxels that 
we do not see on the display. All these are peculiarities of the human viewing system 
rather than that of the objects. By the way, it is no problem to make, if desired, the 
lower dimensional cells visible on a display [2]. 

The tracing in the standard raster is possible because the concept of an AC 
complex is the way of thinking  about topological properties of digitized images rather 
than a way of encoding them. Let us explain this idea for the case of tracing frontiers. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.1. Non-topological coordinates of cells of lower dimensions 

We think of a two-dimensional (2D) image as of a 2D Cartesian complex (Appendix) 
containing cells of dimensions form 0 to 2. The 2-cells (pixels) have in the standard 
raster coordinates which, unlike to topological coordinates of a pixel being always 
odd (Appendix and Fig. A.1), may take in the standard raster any integer values, both 
odd and even. Pixels are explicitly represented in the raster, however, the 0- and 1-
cells are present implicitly. 

Coordinate Assignment Rule: Each pixel F of a 2D image gets one 0-cell 
assigned to it as its "own" cell. This is the 0-cell lying in the corner of F which is the 
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nearest to the origin of the coordinates (P1 in Fig. 3.1). Also two 1-cells incident to F 
and to P1 are declared to be own cells of F (C1 and C2 in Fig. 3.1). Thus each pixel 
gets three own cells of lower dimensions. All own cells of F get the same coordinates 
as F. They can be distinguished by their type. 

In the three-dimensional case each voxel gets seven own cells of lower dimensions 
that are arranged similarly. These seven cells get the same coordinates as the 
corresponding voxel. 

Unfortunately, some cells in the boundary of the raster remain without an 
"owner". In most applications this is of no importance. Otherwise the raster must be 
correspondingly enlarged. 

According to the above rule, it is not difficult to calculate the coordinates of all 
pixels incident to a given point. This coordinates are used to get the gray values of the 
pixels from the array containing the image. Depending on these gray values the 
virtual tracing point P moves for one position to the next . The movement is 
represented by the changing coordinates of the virtual point. The details of the tracing 
algorithm are described in Section 4. 

The majority of low-level topological problems in image processing may be 
solved in a similar way, i.e. without representing cells of lower dimension as elements 
of some multidimensional array. A typical exception is the problem of filling the 
interior of a region defined by its frontier (Section 8). The solution is simpler when 
using two array elements per pixel: one for the pixel itself and one more for its own 
vertical crack (1-cell). The solution consists in reading the description of the frontier 
(e.g. its crack code), labeling all vertical cracks of the frontier in the array and in 
counting the labeled cracks in each row (starting with 0) and filling the pixels 
between the crack with an even count 2⋅i and the next crack (with the count 2⋅i+1). 
The details of this algorithm are described in Section 8 

Even more complicated topological problems may be solved by means of the 
standard raster. For example, when tracing surfaces (Section 7) or producing 
skeletons (Section 11) the so-called simple pixels must be recognized. It is easier to 
correctly recognize all simple pixels if cells of all dimensions of the region under 
consideration are labeled. To perform this in a standard raster, it is possible to assign a 
bit of a raster element representing the pixel F to each own cell of F. For example, 
suppose that one byte of a two-dimensional array is assigned to each pixel of the 
image shown in Fig. 3.1. Consider the pixel F with coordinates (1, 2) and the byte 
assigned to it. The bit 0 of the byte may be assigned to the 0-cell P1, the bit 1 to the 1-
cell C1, the bit 2 to the 1-cell C2. The remaining bits may be assigned to F itself. 
Similar assignments are also possible in the 3D case. 

As we see, there is no necessity to allocate memory space for each cell of a 
complex, which would demand four times more memory space than that needed for 
pixels only, or eight times more than that needed for the voxels in the 3D case. 

 
3.2    The Topological Raster  

To explicitly represent an image as a Cartesian AC complex the so-called topological 
raster [8] must be used. It is again a 2- or 3-dimensional array in which a memory 
element is reserved for each cell of each dimension. 
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In a topological raster each cell has different coordinates that simultaneously are the 
indices of the array. Each coordinate axis is a topological line (Definition TL, 
Appendix). The 0-cells of the axis have even coordinates, the 1-cells have odd 
coordinates (Fig. A1, Appendix). The dimension and the orientation (if defined) of 
any cell may be calculated from its topological coordinates. The dimension of any cell 
is the number of its odd coordinates, the orientation is specified by indicating which 
of the coordinates are odd. For example, the cell C1 in Fig. A.1 has one odd 
coordinate and this is its X-coordinate. Thus it is a one-dimensional cell oriented 
along the X-axis. The 2-cell F  has two and the 0-cell P  has no odd coordinates. In a 
three-dimensional complex the orientation of the 2-cells may be specified in a similar 
way: if the ith coordinate of a 2-cell F is the only even one then the normal to F is 
parallel to the ith coordinate axis.  

The advantages of the topological raster are shaded by its drawback that it 
demands 2n times more memory space than the standard raster. Also the time needed 
to process it is correspondingly greater. Therefore it is reasonable to use the 
topological raster to save images only for not too large images or for research 
purposes where the processing time is not so important.  

The best way to use the topological coordinates consists in the following. When 
thinking about the problem to be solved one should use the topological coordinates. 
Also any program for solving a topological or geometrical problem in which notions 
like the connectivity, boundary, incidence etc. are involved should work with 
topological coordinates. Only the storage of values assigned to the ground cells, i.e. to 
pixels or voxels, should be performed in the standard raster to save memory space. 
This is possible since the cells of lower dimension do not carry values like color, gray 
value or density. They only carry indices of subsets to which they belong, i.e. 
foreground or background. These indices may be specified by means of predefined 
rules called membership rules [2].  

For example, to compute the connected components of a binary 2D image the rule 
may be formulated which says that each cell of dimension 0 or 1, which is incident to 
a foreground pixel, belongs also to the foreground. There are relatively seldom 
problems the solution of which demands that certain values must be assigned to cells 
of lower dimensions and then evaluated during the computation. For example, when 
tracing the boundaries of all connected components of a binary 2D image it is 
necessary to label the cells of the boundaries that are already processed. Otherwise 
one and the same component may be found many times. This, however, does not 
mean that one must label all cells of a boundary. If the process of finding a new 
component looks for vertical 1-cells of a boundary while comparing the values of two 
adjacent pixels in a row then it is sufficient to label only the vertical cracks of the 
boundary being processed. It is sufficient to have one bit of memory to save such a 
label. This bit may be located in the byte of the standard raster, which byte is assigned 
to the pixel lying in the same row as the crack to be labeled just to the right from the 
crack. In this case 7 bits remain for the gray values of the pixels, and this is sufficient 
in the most cases.  

It is also possible to have another array for the cracks along that for the pixels. In 
this case one needs two times more memory space than for the pixels only. However, 
it is still more economical than using a topological raster, which would need 4 times 
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more memory space. We shall show more examples of using the standard raster while 
working with cells of lower dimensions in the algorithms of Part II. 
 

Part II  −  The Algorithms 
We describe here some algorithms for computing topological features of subsets in 
2D and 3D digitized images. Since the programming languages of the C-family are 
now more popular than that of the PASCAL-family, we use here a pseudo-code that 
resembles the C-language. 

4    Boundary tracing in 2D images 

Boundary tracing becomes extremely simple when thinking of a 2D image as of a 2D 
complex. The main idea of the algorithm consists in the following: at each boundary 
point (0-cell) P (Fig. 4.1) find the next boundary crack C incident to P and make a 
step along the crack to the next boundary point. Repeat this procedure until the 
starting point is reached again. Starting points of all boundary components must be 
found during an exhaustive search through the whole image. The following 
subroutine Trace() is called each time when a not yet visited boundary point of a 
region is found.  

To avoid calling Trace() more than once for one and the same foreground 
component vertical cracks must be labeled (e.g. in a bit of Image[]) as "already 
visited". Trace() follows the boundary of one foreground region while starting and 
stopping at the given point (x,y). Points and cracks are present only implicitly (see 
Section 3). Trace()  starts always in the direction of the positive Y-axis.   
 
 
 
 
 
 
 

 

Fig. 4.1. The four directions (a) and the right and left pixels (b)  

After each move along a boundary crack C the values of only two pixels R and L of 
SON(P) of the end point P of C must be tested since the values of the other two pixels 
of SON(P) have been already tested during the previous move. Note that the cracks in 
a 2D Cartesian complex have only 4 different directions. Therefore the variable 
"direction" takes the values from 0 to 3 (Fig. 4.1a).  

The point corresponding to the corner of a pixel, which is the nearest to the 
coordinate origin, has the same coordinates as the pixel. For a detailed description of 
this algorithm see [4]. 
The pseudo-code of Trace(): Image[NX, NY] is a 2D array (standard raster) 
whose elements contain gray values or colors. The variables P, R, L and the 
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elements of the arrays right[4], left[4] and step[4] are structures each 
representing a 2D vector with integer coordinates, e.g. P.X and P.Y. The operation 
"+" stands for vector addition. Text after // is a comment. 

void Trace(int x, int y, char image[]) 
{ P.X=x; P.Y=y; direction=3; 
  do  
  { R=P+right[direction];  // R is the "right" pixel 
    L=P+left[direction];    // L is the "left" pixel 
    if (image[R]==foreground)  
      direction=(direction+3) MOD 4; // right turn 
    else 
      if (image[L]==background) 
        direction=(direction+1) MOD 4; // left turn 
    P=P+step[direction]; //a move in the new direction 
  } while( P.X!=x || P.Y!=y); 
} // end Trace 

 
This simple algorithm is used in any program for the analysis of boundaries in 2D 
images, e.g. in segmenting the boundary into digital straight segment, in the 
polygonal approximation of boundaries, in calculating the curvature etc. 
 
5    Segmentation of Digital Curves into Longest DSSs  

5.1    Theoretical Preliminaries 

Definition HS : A digital half-space is a region (Definition RG, Appendix) containing 
all ground cells of the space, whose coordinates satisfy a linear inequality. A digital 
half-plane is a half-space of a two-dimensional space. 

Definition DSS: A digital straight line segment (DSS) is any connected subset of 
the frontier of a digital half-plane. 
 
 

 
 

 

 

 

 

 

 

 

 
 

Fig. 5.1. Examples of a half-plane and of a DSS in topological coordinates 
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Fig. 5.1 shows an examp le of the half-plane defined by the inequality 2·x−3·y+3 ≥ 0. 
All pixels of the half-plane are represented by shaded squares. 

We suggest to consider two kinds of digital curves: visual curves as sequences of 
pixels and boundary curves as sequences of alternating points and cracks. We 
consider DSSs as boundary curves while in the most publication (e.g. in [14]) they are 
considered as visual curves, i.e. as sequences of pixels.  

Since in practice DSSs are mostly used in image analysis rather than in computer 
graphics, considering them as boundary curves is more adequate to the demands of 
applications as this will be shown below in Section 5.3. 
 
5.2    Most Important Properties of a DSS 

To investigate the properties of DSSs it is easier and more comprehensible to consider 
at first the 2-cells (pixels) incident to the cells of a DSS rather than the cells of the 
DSS themselves. Consider a digital curve K in a two-dimensional space. It is possible 
to assign an orientation to K and thus to the 1-cells of K. Suppose that K does not 
intersect the boundary of the space. Then each 1-cell C of K is incident to exactly two 
pixels. One of them lies to the positive side and the other to the negative side of the 
ordered pair of the end points of C.  Remember that the cell c is said to lie to the 
positive side of the ordered pair (a, b) if the rotation from b to c about a is in the 
mathematically positive direction, as e.g. the rotation from the positive X-axis to the 
positive Y-axis. 

Definition PP: A pixel P that is incident to an oriented crack C of the curve K and 
lies to the positive side of the ordered pair of the end points of C is called a positive 
pixel of K.  Similarly, the incident pixel lying to the negative side of the ordered pair 
of the end points of C is called a negative pixel of K.  

In Fig. 5.1 the positive pixels are labeled by "+" and the negative ones by "−". 
The set of all positive pixels of K will be called the positive pixel set of K and 

denoted by SP(K). The set of all negative pixels of K will be called the negative pixel 
set of K and denoted by SN(K).  

If K  is a DSS then SP(K) lies in a half-plane while SN(K ) lies in its complement. 
Therefore there is a linear form H(x , y) such that H(x, y)≥0 for all positive pixels of K 
and H(x, y)<0 for the negative ones.  We shall call H(x, y) the separating  linear form 
of the DSS. 

The properties of a DSS that we are interested in and which are important for the 
recognition of a DSS are well known. However, most publications consider visual 
lines in standard coordinates. We repeat here the properties necessary for the 
recognition of DSS and reformulate them for boundary lines in topological 
coordinates. The necessary proofs are to be found in [12]. The most part of our results 
is applicable for both standard and topological coordinates due to introducing a 
parameter e  which is the minimum distance between two pixels: e is equal to 1 in 
standard coordinates and to 2 in topological ones.  

Definition SSF: The separating linear form H(x, y)=a·x+b·y+r of a DSS D is called 
the standard separating form (SSF) of D if it satisfies the following conditions: 

H(x, y)≥0 for all positive pixels of D, H(x, y)<0 for all negative ones; 
The coefficients of H(x, y) are integers while a and b are mutually prime; 
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There are either at least two positive pixels P1 and P2 of D at which H(x , y) takes 
its minimum value with respect to all positive pixels of D or at least two negative 
pixels N1 and N2 of D at which H(x, y) takes its maximum value with respect to  all 
negative pixels of D. 

Definition BS: The set of positive pixels of a DSS D at which the SSF of D takes its 
minimum value with respect to all positive pixels of D is called the positive base of D.  
Similarly, the set of negative pixels of a DSS D at which the SSF of D takes its 
maximum value with respect to all negative pixels of D is called the negative base of 
D.  
The pixel of the base B, which is the nearest to the starting point (respectively, end 
point) of the oriented DSS is called the starting pixel (respectively, the end pixel) of 
B. In Fig. 5.1 the starting pixel of the positive base is denoted by SP, its end pixel is 
denoted by EP. Similarly, the starting and the end pixel of the negative base are 
denoted by SN and EN. 

It is well known and proved in [12] that a DSS contains cracks of at most two 
different directions and that the values of  H(.) satisfy the inequalities: 
  0≤H(x, y)≤e ·(max(|a|,|b |)−1)   for positive pixels; 
  −e·max(|a|,|b|)≤H(x, y)≤−e   for negative ones. 
Let S and E be the starting and the end pixel of those base of the DSS, which contains 
more than one pixel. Then the vector parallel to E−S whose components are mutually 
prime is called the base vector of the DSS. If both bases contain a single pixel, which 
is only the case, when the DSS consists of a single crack, then the base vector is a unit 
vector parallel to that crack. 

The problem most important for applications is that of segmenting a given digital 
curve into as long as possible DSSs. The author has developed an algorithm [3] which 
starts with the first two cracks of the curve (two adjacent cracks with the point 
between them compose always a DSS) and then tests the following cracks one crack 
after another whether the sequence of cracks is still a DSS. Section 5.3 describes a 
slightly modified more comprehensible version of the algorithm. The idea is as 
follows. 

The first two cracks uniquely specify the bases and the SSF H(V) of the DSS. The 
algorithm checks whether the direction of the next crack C is allowed. If not then C 
does not belong to the actual DSS which ends at the starting point of C. Otherwise the 
values H(P) and H(N) of the SSF for the two pixels P and N incident to C must be 
checked. If both  H(P) and H(N) are in the allowed intervals then C belongs to the 
actual DSS. If one of these values is at the boundary of the allowed interval then the 
corresponding pixel P or N belongs to the corresponding base, and the base must be 
prolonged until P or N. If one of the values H(P) and H(N) deviates from the 
boundary of the allowed interval by the value of e (e=1 for standard coordinates and 
e=2 for topological coordinates) then the coefficients of H(V) must be redefined: the 
sequence of cracks is a DSS slightly different from the actual DSS. If one of the 
values H(P) and H(N) deviates from the boundary of the allowed interval by a value 
greater than e then there is no DSS containing C and all previous cracks. The actual 
DSS ends at the starting point of C.  

The author has proved the correctness of the algorithm [12]. The proofs of all 
necessary lemmas and theorems take about 10 pages and cannot be repeated here.  
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5.3    The Algorithm "SubdivideInDSS" 
In this section we describe an algorithm that traces a given digital curve CV in a 2D 
image, e.g. the boundary of a region, and subdivides the curve into the  longest 
possible DSSs. The output of the algorithm is a list of the coordinates of the endpoints 
of the DSSs. 

Tracing the curve: Call the subroutine Ini (see below). Choose an arbitrary crack 
SC of CV , choose its orientation while specifying its direction dir as one of the 
numbers 0 to 3 as shown in Fig. 4.1a. SC is the starting crack. Save the coordinates of 
the starting point of SC as the starting point of the first DSS. Set the running crack 
C=SC and start the tracing loop. The loop runs through all cracks of CV. For each new 
location of the running crack C call the subroutine Reco(C, dir) (see below) where dir 
is the direction of the oriented crack C. If the return value of Reco is zero go over to 
the next crack. Otherwise save the starting point of the running crack C as the end 
point of the current DSS and start the recognition of the next DSS while calling Ini 
and Reco(C, dir) again. Stop when the starting crack SC is reached again. The curve 
CV is subdivided into as long as possible DSSs by the saved points. 

Subroutine Ini: Set the crack counter CC to zero and the two prohibited directions 
Proh1 and Proh2 to  −1 as "unknown". 

Subroutine Reco: It gets as parameters the coordinates of the running crack C and 
its direction dir. The subroutine performs as follows.  

As the first step it calculates the coordinates of the positive P and the negative N 
pixels incident to C while considering the value of dir. 

If the counter CC=0 then set the first prohibited direction Proh1 as opposite to dir. 
Set the starting pixe l StartP and the end pixel EndP of the positive base both equal to 
P.  Similarly set StartN and EndN equal to N.  Set the base vector (b, −a) equal to the 
unit vector with the direction dir.  Increment CC and return 0. 

If CC≠0 then, independently upon the value of CC, test whether dir is equal to one 
of the prohibited directions. If this is the case then return 1: the actual crack C  does 
not belong to the running DSS. If dir is not prohibited and Proh2 is still unknown 
then set Proh2 as opposite to dir.  
   If CC=1 then  
   BEGIN 

Set EndP=P and EndN=N and increment CC. If Proh2 is still unknown return 0: 
the first two cracks have the same direction, the parameters a and b remain 
unchanged. Otherwise calculate the coefficients a, b, r of the separating linear 
form H(x, y)=a·(x−StartP.x)+b·(y−StartP.y) so that H(x, y)=0 for the positive 
pixels and H(x, y)=−e for the negative ones. Concretely: if the endpoints of the 
positive base coincide then  

a=−(EndN.y−StartN.y)/e; 
b=(EndN.x−StartN.x)/e; 

otherwise        (5.3.1) 
a=−(EndP.y−StartP.y)/e; 
b=(EndP.x−StartP.x)/e; 

Return 0. 
   END IF 
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For all subsequent cracks (CC>1) calculate the values HP and HN of the separating 
form for P  and for N : HP=H(P) and HN=H(N).  
The following steps of the Algorithm are the decisive ones: 

If HP<−e or HN>0 then return 1: the actual crack C  does not belong to the running 
DSS. 
If HP=0 then set EndP=P: P  lies on the positive base and it must be prolonged.  
Otherwise, if HP=−e then redefine both bases while setting EndP=P; 
StartN=EndN and redefine the parameters a and b of H(x, y) according to the 
redefined bases. 
If HN=−e then set EndN=N: N lies on the negative base and it must be prolonged.  
Otherwise, if HN=0 then redefine both bases while setting EndN=N; StartP=EndP 
and redefine the parameters a and b of H(x, y) according to the redefined bases. 
return 0. 

End of Subroutine Reco. 
 
The pseudo-code of Reco: 
int CRecoDSS::Reco(CPoint Crack, int dir) 
{ P=Crack+ToPos[dir]; // The Array "ToPos[4]" contains vectors pointing 

// from a crack to its positive pixel P 
  N=Crack-ToPos[dir];  // N is the negative pixel of Crack 
  if (CC==0)   // "CC" is the number of tested cracks 
  { Prohibit1=Opposite(dir);  Prohibit2=-1; CC=1; 
    StartP=EndP=P;   StartN=EndN=N;  
    a=−Param[dir].y;  b=Param[dir].x; // a unit vector along "dir" 
    return 0; 
  } 
  if (dir==Prohibit1 || dir==Prohibit2) return 1;  
  if (dir!=Opposite(Prohibit1) && Prohibit2==-1) 

Prohibit2=Opposite(dir); 
if (CC==1) 
  { EndP=P; EndN=N; CC=2; 
    if (Prohibit2==-1) return 0; // only one direction 
    if (EndP==StartP)  
    { a=−(EndN.y-StartN.y)/e;  b=(EndN.x-StartN.x)/e; 
    } 
    else   
    { a=−(EndP.y-StartP.y)/e;   b=(EndP.x-StartP.x)/e; 
    }  
    return 0;     // any two allowed cracks compose a DSS 
  } 
  int HP=GetH(P);  int HN=GetH(N); //the values of the SSF "H" 
  if (HP<-e || HN>0) return HP;    // not a DSS 
  if (HP==0)  EndP=P;  
  else 
    if (HP==-e)  
    { EndP=P; StartN=EndN;  
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      a=−(EndP.y-StartP.y)/e; b=(EndP.x-StartP.x)/e; 
    } 
  if (HN==-e) EndN=N; 
  else 
    if (HN==0)   
    { EndN=N; StartP=EndP;  
      a=−(EndN.y-StartN.y)/e; b=(EndN.x-StartN.x)/e; 
    } 
  return 0; 
} //************************** end Reco ******************************* 
 
The recognition of DSS is one of the fastest and most economical methods of 
encoding geometrical objects. For example, it is possible to encode the boundary of a 
region as a sequence of DSSs while saving the coordinates of a single point and four 
integer parameters for each DSS [6]. The parameters exactly specify the location of 
the DSS in the image thus enabling the exact reconstruction of the region. The author 
has developed an economical code that needs on the average 2.3 bytes per one DSS. 
When encoding a quantified gray value image a compression rate of 3.1 was reached 
[6]. The method is very fast: for example, it encodes a binary image of 640×480 
pixels containing about 30 disk-shaped objects in 20 ms on a PC with a processor of 
700 MHz. In that time also the recognition of the disks and estimating their locations 
and diameters was performed. 

6  Recognition of Digital Plane Patches (DPP) 
The notion of a digital plane patch (or segment) is well known from the literature. [1, 
15]. The DPPs were mostly considered as sets of voxels, i.e. as three-dimensional 
objects ("thick DPPs"). However, it is more appropriate to consider a DPP as a subset 
of a surface, i.e. as a two-dimensional object. Our approach based on cell complexes 
makes it possible. 

Definition DPP:  A connected subset of the frontier of a three-dimensional half-
space (Definition HS, Section 5.1) is called a digital plane patch (DPP). 

A DPP contains no voxels (as any frontier in a 3D space does). It contains only 2-
cells called facets, 1-cells called cracks and 0-cells called points. 

6.1  The Problem of the Segmentation of Surfaces into DPPs 
This problem is of great practical importance since its solution promises an 
economical and precise encoding of 3D scenes. 
The Problem Statement:  
Given: a surface in a 3D space, e.g. the boundary of a connected subset. 
Find: the minimum numb er of DPPs representing the surface in such a way that it is 

possible to reconstruct the surface, at least with a predefined precision, from the 
code of the DPPs. 
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The problem consists of two partial problems: 
1. Recognition: Given a set of facets decide whether it is a DPP or not. 
2. Choice: Given a surface S and a subset of facets, which is known to be a DPP, 

decide which facet of S should be appended to the subset to achieve that the 
number of the DPPs in the segmentation of S be minimal. 

6.2    The Partial Problem of the Recognition of a DPP 
Similarly as in the case of the DSS (Section 5), a surface S specifies two sets of 
voxels incident to the facets of S: a positive and a negative set. The voxels of the 
positive set lie outside of the body whose boundary is S, that of the negative set lie 
inside. If a subset T 2 of facets of S is a DPP then it lies in the frontier of a half-space 
whose voxels satisfy a linear inequality. The inequality separates the positive voxels 
of T 2 from its negative voxels. 

To decide whether T 2 is a DPP it is sufficient to solve the following system of 2·N 
linear inequalities in the components Hk, k=1, 2, 3; of a 3D vector H and a scalar 
value C where N  is the number of facets in T 2.  
   ∑k Hk ⋅Vk

+(Fi) − C ≥ 0; 
     with Fi∈T 2; i=1...N;   (UV) 
   ∑k Hk ⋅Vk

−(Fi) − C < 0; 
Vk

+(Fi) stays for the kth topological coordinate of the positive voxel incident to the 
face Fi. Similarly, Vk

−(Fi) is the kth topological coordinate of the negative voxel 
incident to Fi. The vector H is the normal to a plane separating all positive voxels 
from the negative ones, while C specifies the distance of the plane from the 
coordinate origin.  

It is possible to solve the problem by a fast method similar to that of recognizing a 
DSS (Section 5). The corresponding algorithm and the related theory are, however, 
rather complicated. Their presentation here is impossible because of the page limit. 
We describe a rather simple algorithm [13] whose only drawback is its low speed: it is 
an O(N²) algorithm. Nevertheless, the algorithm is well suited for research purposes. 

The algorithm solves the following problem: 
Given are two sets M+ and M − of points in an n-dimensional space. 
Find an (n−1)-dimensional hyperplane HP separating the sets. 

The solution: HP is specified by two vectors A+ and A− as the middle 
perpendicular to the line segment (A+, A−). Let Dist(P) be the signed distance of the 
point P to HP. 



 

 

 

16

Fig. 6.1 shows an example of two point sets in a 2D space. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.1. An example of the correction of the separating plane 
 

The Algorithm: 
1. Set A+ equal to an arbitrary point from M+ and A− equal to an arbitrary point from 

M −. Carry out a sequence of the following iterations. 
2. During each iteration test all points P from  M + and M − as follows: 

If the point P∈M  + lies on the wrong side of HP which means Dist(P)<0, then set: 
  A+:= Foot of the perpendicular from A− to the segment (A+, P).  
If P∈M − and Dist(P)>0, then set: 

 A−:= Foot of the perpendicular from A+ to the segment (A− , P). 
3. If there is  no point on the wrong side of HP stop the Algorithm. The separating 

hyperplane is the middle perpendicular to the line segment (A+, A−).  
4. If the distance between A+ and A− is less than a predefined threshold then there 

exists no separating hyperplane; the convex hulls of  M + and M − intersect. 
Fig. 6.1 shows an example of separating two point sets in a 2D space. The point sets 
are represented by "+" and "−" signs, the vectors A+ and A− by encircled signs; the old 
and the new separation plane by a dashed and a solid line. The point P lies on the 
wrong side of the old plane. It is connected with the old vector A+ and a perpendicular 
has been dropped from A− onto the segment (A+, P). The foot of the perpendicular is 
the new vector A+. 

We have applied this method to recognize DPPs while using the set of the positive 
voxels V + as M + and that of the negative voxels V − as M −.  

6.3    The Partial Problem of the "Choice" 
There is no efficient method for the solution of the partial problem "Choice" known 
until now. It should be mentioned that this problem is much more difficult in the case 
of DPPs as in the case of DSSs. Really, in the latter case there are exactly two 
possibilities to continue a partially recognized DSS: forward or backward along the 
digital curve. But in the case of a DPP there are as many possibilities to continue as 

  P      A+  

   A−  

HP old  

HP new  
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the number of facets adjacent to a partially recognized DPP. There is no known 
criterion to decide which of them should be preferred. When choosing the next facet 
arbitrarily then the found DPPs look chaotic even for surfaces of regular polyhedrons 
(Fig. 6.2a). 
 

 
a     b 

Fig. 6.2. Examples of segmenting the boundary of a digital ball into DPPs  
by arbitrarily choosing the next facet (a) and by computing its convex hull (b) 

 
7    Tracing Surfaces in 3D 
The algorithm [7] presented here traces a surface S of a three-dimensional body in a 
way similar to that of peeling a potato: the facets of S are visited one after another 
composing a continuous sequence. Each facet is encoded by one byte. If the genus of 
S is zero then each facet is contained in the encoded sequence only once. The code of 
a surface of a greater genus contains a small number of facets many times which 
makes the code a little longer. In any case it is possible to reconstruct the surface and 
the body from the code exactly.  

To explain the algorithm we need the following notions from the theory of AC 
complexes: 

Definition OF: The open frontier Of(L, S) of a subcomplex L of a complex S  
relative to S  is the subcomplex of S containing all cells C of S whose closure Cl(C, S) 
contains both cells of L as well as cells of the complement S−L. 

Definition SI: A facet F of S is called simple relative to the subcomplex L if F∉L,  
the intersection Cl(F , S)∩L is connected and Cl(F , S)∩(S−L)≠∅. 

The algorithm works as follows: It chooses an arbitrary facet of the surface S as the 
starting one and labels its closure. Then it traces the open frontier Of(L, S) of the set L 
of labeled cells, encodes the facets of Of(L, S ) (1 byte per facet), and labels the 
closures of simple facets.  
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This ensures that L remains homeomorphic to a closed 2-ball (a disk). 
 
 
 
 
 
 
 
 
 

 

Fig. 7.1. The moves at the beginning of the tracing 

The author has proved that if the surface S is homeomorphic to a sphere then the 
traced sequence is a Hamilton path: each facet is visited exactly once. Otherwise there 
remain a few non-simple facets that are visited at least twice. Their code elements are 
attached to the end of the sequence of simple facets. Thus the code sequence is always 
connected. A verbal description of the algorithm follows. A detailed description and 
the related proofs may be found in [7]. 

The Algorithm: 
Notations: S is the surface to be traced. L⊂S is the subset of labeled cells; it is 
homeomorphic to a closed 2-ball. The "rest sequence" is the set of non-simple facets 
at the stage when all simple facets of S are already labeled. The rest sequence consists 
of a  single facet if the genus of S is zero. 
1. Take any facet of S as the starting facet F0, label its closure and save its 

coordinates as the starting coordinates of the code. This is the seed of L, i.e. 
L={F0}. Denote any one crack of the boundary Fr(F0,S ) as Cold and find the facet F 
of S that is incident to Cold and adjacent to F0. Set Fold equal to F0 and the logical 
variable REST to FALSE. REST indicates that the tracing of the rest sequence is 
running. 

2. (Start of the main loop) Find the crack Cnew as the first unlabeled crack of Fr(F,S) 
encountered during the scanning of Fr(F,S) clockwise while starting with the end 
point of Cold, which is in Fr(L,S). If there is no such crack and F is labeled stop the 
Algorithm: the encoding of S is finished. 

3. If F  is simple label its closure. 
4. Put the direction of the movement from Fold to Cold and that of the movement from 

Cold to F into the next byte of the code. If the facet F  is non-simple set the 
corresponding bit in the code (to recognize codes of non-simple facets in the 
ultimate sequence). 

5. If REST is TRUE check, whether F is equal to Fstop and Cnew is equal to Cstop. 
(These variables were defined in item 6 of the previous loop ). If this is the case 
stop the Algorithm and analyze the rest sequence to specify the genus of S as 
explained in [7]. Delete multiple occurrences of facets from the rest sequence. 

6. If F is simple set REST equal to FALSE; else set Fstop equal to F, Cstop equal to Cnew 
and REST equal to TRUE. 

S 

a simple cell F L 

Of(L, S) the common boundary is 
connected 
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7. Set Fold equal to F. Find the facet Fnew of S incident to Cnew and adjacent to F. Set F 
equal to Fnew and Cold equal to Cnew. Go to item 2.  

End of the Algorithm. 

The algorithm was successfully tested by the author for surfaces of genus up to 5. The 
bodies were exactly reconstructed. A graduate student of the University of Applied 
Sciences Berlin [16] has also programmed the algorithm and has made many 
successful experiments with very complicated bodies of high genus. 

8    Filling the Interiors of Surfaces in Multi-Dimensional Images 
To test whether an n-cell P of an n-space lies in the interior of a given closed hyper-
surface S it is sufficient to count the intersections of S with a ray from P to any point 
outside the space: iff the count is odd then P is within S. However, it is difficult to 
distinguish between intersection and tangency (Fig. 8.1 a and b).  
The solution becomes easy if the surface is given as one or many (n−1)-dimensional 
manifolds in an n-dimensional Cartesian AC complex and the "ray" is a sequence of 
alternating n- and (n−1)-cells all lying in one row of the raster (Fig. 8.1c).  
 

 
Fig. 8.1. Intersection (a) and tangency (b) are difficult to distinguish in "thick" boundaries; 

this is easy at boundaries in complexes (c) 

In a 2D image the "surface" must be a closed sequence of cracks and points (Fig. 
8.1c). Then intersections are only possible at vertical cracks and the problem of 
distinguishing between intersections and points of tangency does not occur. If one 
knows which n-cells are within S then one can fill the interior of S by labeling these 
cells. The method has been successfully implemented for dimensions n=2, 3, 4. 
The pseudo-code: 
Denote by F the current n-cell of the n-dimensional standard raster. Choose a 
coordinate axis A of the Cartesian space (e.g. A=X  in the 2D case). Denote by C(F) 
the  (n−1)-cell incident to F, whose normal is parallel to A (e.g. the vertical crack 
incident to F in the 2D case). Label all (n−1)-cells of S whose normal is parallel to A. 
In the 2D case when A=X these are the vertical cracks of S. 

for each row R parallel to A do 
{ BOOLEAN fill=FALSE; 
  for each n-cell F in the row R do 
  { if C(F) is labeled then fill=NOT fill;  // inverting fill 
    if fill is TRUE then F=foreground; 
    else                 F=background; 
  } 

} 

a       b       c 
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9    Component Labeling in an n-Dimensional Space 
We consider here the simplest case of a 2D binary image in a standard raster while the 
algorithm is applicable also to multi-valued and multi-dimensional images in a 
topological raster. In a standard raster a function must be given which specifies which 
raster elements are adjacent to each other and thus are connected if they have the 
same color. In our simple 2D example we use the well-known "(8,4)-adjacency". In 
the general case the adjacency of the n-cells of an n-dimensional complex must be 
specified by rules specifying the membership of cells of lower dimensions [2] since 
an (a, b)-adjacency  is not applicable for multi-valued images [5]. 

In a topological raster the connectivity of two cells is defined by their incidence 
that in turn is defined by their topological coordinates (Section 3.2).  

The Algorithm: 
It is expedient to consider a multi-dimensional image as a one-dimensional array 
Image[N]. For example, in the 2D case the pixel with coordinates (x, y) may be 
accessed as Image[y⋅NX+x] where NX is the number of pixels in a row. The value 
y⋅NX+x is called the index of the pixel  (x, y).  
 
 
 
 
 
 
 
 
   first run      second run 

Fig. 9.1. Illustration to the algorithm of component labeling 

Given are a binary array Image[] of N  elements and two functions 
NumberNeighb(color) and Neighb(i,k). The first function returns the 
number of adjacent pixels depending on the color of a given pixel; the second one 
returns the index of the kth neighbor of the ith pixel. As the result of the labeling 
each pixel additionally gets (in another array Label[]) the label of the connected 
component that it  belongs to. 
The pseudo-code: 
Allocate the array Label[N] of the same size as Image[N]. Each element of 
Label is initialized by its own index: 

for (i=1; i<N; i++) Label[i]=i; // first loop 
for (i=1; i < N; i++)  
{ color=Image[i]; 
  for (j=0; j<NumberNeighb(color); j++)  
  { k=Neighb(i, j); //the index of the jth neighbor of  i  
    if (Image[k]==color) SetEquivalent(i,k,Label);  
  } 
} // end of the first run 
SecondRun(Label,N); // end of the Algorithm 

1       2       3 2    4 1  

5 1     6 2   7 2    8 1  

9 1  10 2   11 2   12 1 

131  14 1   15 1  16 1 

1       2       2        1 

1       2       2        1  

1       2       2        1  

1        1       1       1  
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Each element of Label[N] must have at least log 2 N bits N being the number of 
elements in Image[N]. The subroutine SetEquivalent() makes the preparation 
for labeling the pixels having the indices i and k as belonging to one and the same 
component. For this purpose the subroutine find the "roots" of both pixels  i and k, 
and the greater root gets the smaller one as its label. The function Root() (see 
below) returns the last value in the sequence of indices where the first index k is that 
of the given pixel, the next one is the value of Label[k] etc. until Label[k] 
becomes equal to k. The subroutine SecondRun() replaces the value of 
Label[k] by the value of a component counter or by the root of k depending on 
whether Label[k] is equal to k or not. 
Pseudo-codes of the subroutines: 
subroutine SetEquivalent(i,k,Label) 
{ if (Root(i,Label)<Root(k,Label))  
       Label[Root(k,Label)]=Root(i,Label); 
  else Label[Root(i,Label)]=Root(k,Label); 
} // end of SetEquivalent 
 
int Root(k, Label)  
{ do  
  { if (Label[k]==k) return k;  
    k=Label[k]; 
  } while(1); 
} // end of Root 
 
subroutine SecondRun(Label,N) 
{ count=1;  
  for (i=0; i<N; i++) 
  { value=Label[i]; 
    if (value==i) 
    { Label[i]=count;  count=count+1;  
    } 
    else Label[i]=Label[value]; 
  } 
} // end of SecondRun 
 

10    Computing the Curvature of Digital Curves 
The most of the algorithms for computing the curvature suggested during the last 
decades have a common drawback: they have a very low precision. The reason is that 
the precision of calculating the curvature of a curve depends dramatically on the 
precision of estimating the coordinates of the points of the curve. Coordinates of 
points in digital images are specified with a precision of about ±0.7 pixel. The author 
has demonstrated [9] that estimating the curvature with a precision of for example 
10% is impossible for digital curves with the curvature radius less than 270 pixels 
because of not sufficient precision of the coordinates. 



 

 

 

22

We suggest a method of using the gray values in a digital image to essentially 
increase the precision of estimating the coordinates. The method is applicable for gray 
value images of objects having an almost constant brightness against a homogeneous 
background.  

In this case the gray values at the boundary of the object contain information about 
the sub-pixel position of the boundary. 
 
 

 

 

 

 

 

 

 
Fig. 10.1. Dependence of the portion of a pixel covered by the object  

on the sub-pixel location of its boundary (marked by a cross) 

The precision of estimating the coordinates is about 1/100 of a pixel. The curvature 
may be calculated as the inverse of the radius of a circle through three sub-pixel 
points. The optimal distance between the points must be calculated as a function of a 
coarse estimate of the expected curvature [9]. 

The precision of estimating the curvature is essentially higher than that of known 
methods. Fig. 10.2 and 10.3 show an example. 

 

 
Fig. 10.2. The gray value image of a link of a bicycle chain 

The curvature radius of the left and right outer boundary of the object shown in Fig. 
10.2 is about 25 pixels. The curvature was estimated with a relative error of about 4% 
(see Fig. 10.3). When estimating the curvature starting with pixel coordinates without 
using the gray values the relative error would be according to equation (13) of [9] at 
least 33%. 

Case 0 Case 1 Case 2 

t  t  
t  



 

 

 

23

Fig. 10.3 shows the curvature of the outer boundary of the object of Fig. 10.2 
calculated by our method.  

Fig. 10.3. The curvature of the outer boundary of the object of Fig. 10.2; 
the dashed lines show the true values of the minimum and maximum curvature 

The relative error is of about 4%. We hope that Fig. 10.3 gives a general impression 
of the accuracy of the method as applied to real objects. 

11    Skeleton of a Subset in 2D and 3D Images 
Definition SK: The skeleton of a given set T of an n-dimensional (n=2,3) image I is a 
subset S ⊂ T with the following properties:  

a) S has the same number of connected components as T;  
b) The number of connected components of I−S is the same as that of I−T; 
c) Certain singularities of T are retained in S; 
d) S is the smallest subset of T having the properties a) to c). 

Singularities may be defined e.g. as the "end points" in a 2D image or "borders of 
layers" in a 3D image etc. 

When considering an n-dimensional image (n=2,3) as an AC complex I the 
problem of the skeletonization consists in finding the condition under which a cell of 
the foreground T may be reassigned to the background B=I−T without changing the 
number of the components of both T and B. To derive the condition we need the 
following notion: 

Curvature 
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Definition IS: The complex IS(C, I)=SON(C, I)∪Cl(C, I)−{C} is called the incidence 
structure of the cell C relative to the space I. It is the complex consisting of all cells 
incident to the cell C excluding C itself [10]. 

The author has proved that the membership of a cell C of any dimension may be 
changed between T and B without changing the number of the components of both T 
and B iff each of the intersections IS(C, I)∩T and IS(C, I)∩B are not empty and 
connected. We shall call such cells IS-simple relative to the set T. In the rest of this 
Section we call them "simple". 

Thus to calculate the skeleton of a set T one must remove all IS-simple cells of T 
while reassigning them to B and regarding the singularities. 

A well-known difficulty in calculating skeletons is that it is impossible to remove 
all simple pixels simultaneously without violating the skeleton conditions. However, 
representing an image as a complex C makes it possible to calculate the skeleton by a 
procedure that may be either sequential or parallel. It is based on the notion of the 
open frontier (s. Section 7 above). The procedure consist in removing IS-simple non-
singular cells of T alternatively from the frontier Fr(T, C) and from the open frontier 
Of(T, C ). We present below a simple version of the algorithm for the 2D topological 
raster.  
 
 
 
 
 
 
     a   b              c 
 
 
 
 
 
 

     d   e              f 
Fig. 11.1. a) a given 2D subcomplex T; b) its frontier Fr; c) the set T−Fr: the simple cells of the 
frontier deleted; d) the open frontier Of of the set T−Fr;   e) the set T−Fr−Of: the simple cells of 

the open frontier deleted;   f) the skeleton 

The Algorithm: 
Let I[NX , NY] be a 2D array with topological coordinates. The subset T is given by 
labeling cells of all dimensions of T: I[x, y] >0 iff the cell (x, y)∈T. To delete a cell 
means to set its label I[x , y] to zero. A cell C is singular iff it is incident to exactly one 
labeled cell other than C.  
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To calculate the skeleton of T run the following loop: 
  do { Scan I and delete all simple and non-singular cells of T∩Fr(T, I); 
          CountClose = number of cells deleted during this scan; 
          Scan I and delete all simple and non-singular cells of T∩Of(T, I); 
          CountOpen = number of cells deleted during this scan; 
       } while (CountClose+CountOpen > 0); 
      // end of Algorithm 

 
Fig. 11.1 above shows an example. The result may be, if desired, easily transformed 
either to a sequence of pixels or to a one-dimensional complex containing only points 
and cracks. 

In the case of 3D images the algorithm can produce either 1D or 2D skeletons 
depending upon the choice of the kind of the singularities. 
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Appendix: The Topology of Abstract Cell Complexes 
An abstract cell complex (AC complex) is a locally finite topological space (LFS). 
Elements of this space are called cells. As we have seen in Introduction, in a space 
satisfying the Axioms 1 to 4 that are equivalent to the classical Axioms C1 to C4, 
neighborhoods must be defined by means of an antisymmetric binary relation. It is 
usual to use in the topology of cell complexes the so-called bounding relation , which 
is antisymmetric, irreflexive and transitive. Thus it is a partial order. 

It is possible either to consider the cells as subsets of an Euclidean space or as 
some abstract objects having certain properties and relations to each other. In the first 
case the complex is called Euclidean complex, in the second case it is an abstract cell 
complex, or AC complex. The author is successfully working with AC complexes and 
is convinced that considering besides the complex itself also the Euclidean space in 
which the complex is embedded brings no advantages. The concept of AC complexes 
opens the exiting possibility to develop digital topology and digital geometry 
independently of the general topology and of Euclidean geometry.  

The most important notions are surely acquainted to the reader from earlier 
publications (e.g. [2, 5, 8]. Therefore we shall repeat here only the definitions that are 
necessary to follow the presentation. Other definitions, necessary for certain 
algorithms are given at the corresponding place. 

Definition AC: An abstract  cell complex (AC complex) C=(E, B, dim) is a set E 
of abstract elements (cells) provided with an antisymmetric, irreflexive, and transitive 
binary relation B ⊂ E  × E called the bounding relation , and with a dimension function 
dim: E →  I from E into the set I of non-negative integers such that dim(e') < dim(e") 
for all pairs (e ',e")∈B.  

The maximum dimension of the cells of an AC complex is called its dimension. 
We shall mainly consider complexes of dimensions 2 and 3. Their cells with 
dimension 0 (0-cells) are called points, cells of dimension 1 (1-cells) are called cracks 
(edges), cells of dimension 2 (2-cells) are called pixels (or facets) and that of 
dimension 3 are the voxels.  

If (e ', e")∈B then it is usual to write e'<e" or to say that the cell e' bounds the cell 
e". Two cells  e' and e" of an AC complex C are called incident to each other in C iff 
either e'=e", or e' bounds e", or e" bounds e'. In AC complexes no cell is a subset of 
another cell, as it is the case in simplicial and Euclidean complexes. Exactly this 
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property of AC complexes makes it possible to define a topology on the set of abstract 
cells independently from any Hausdorff space. 
The topology of AC complexes with applications to computer imagery has been 
described in [2]. We recall now a few most important definitions. In what follows we 
say "complex" for "AC complex". 

Definition SC: A subcomplex S = (E', B', dim') of a given complex C = (E, B, 
dim)  is a complex whose set E' is a subset of E and the relation B' is an intersection of 
B with E' × E'. The dimension dim' is equal to dim for all cells of E'.  

Since a subcomplex is uniquely defined by the subset E' it is possible to apply set 
operations as union, intersection and complement to complexes. We will often say 
"subset" while meaning "subcomplex". 

The connectivity in complexes is the transitive hull of the incidence relation. It can 
be shown that the connectivity thus defined corresponds to classical connectivity. 

Definition OP: A subset OS of cells of a subcomplex S of a complex C  is called 
open in S if it contains all cells of S bounded by cells of OS. An n-cell cn of an n-
dimensional complex C n is an open subset of C n since cn bounds no cells of C n. 

Definition SON: The smallest subset of a set S which contains a given cell c of S 
and is open in S is called the smallest (open) neighborhood of c relative to S and is 
denoted by SON(c , S). 

The word "open" in "smallest open neighborhood" may be dropped since the 
smallest neighborhood is always open, however, we prefer to retain the notation 
"SON" since it has been used in many publications by the author. 

Definition CL: The smallest subset of a set S which contains a given cell c of S 
and is closed in S is called the closure of c relative to S and is denoted by Cl(c , S). 

Definition FR: The frontier Fr(S, C) of a subcomplex S of a complex C relative to 
C is the subcomplex of C containing all cells c of C whose SON(c, C ) contains both 
cells of S as well as cells of the complement C−S. 

Illustrations to AC complexes, SONs and closures of cells of different dimensions 
may be found in [2, 4, 10]. 

Definition OF: The open frontier Of(S, C) of a subcomplex S of a complex C  
relative to C  is the subcomplex of C  containing all cells c  of C  whose closure Cl(c, C) 
contains both cells of S as well as cells of the complement C−S. 

Definition BD: The (combinatorial) boundary ∂S of an n-dimensional subcomplex 
S of a comple x C is the union of the closures of all (n−1)-cells of C each of which 
bounds exactly one n-cell of S. 

Definition HN: An n-dimensional subcomplex S of a complex C is called 
homogeneously n-dimensional iff each cell of S bounds at least one n-cell of S. 

Definition RG: An n-dimensional subcomplex S of a complex C is called a region 
of C iff it is homogeneously n-dimensional and C−S−∂C is also homogeneously n-
dimensional. 

Definition TL: A connected one-dimensional complex whose each cell, except 
two of them, is incident to exactly two other cells, is called a topological line.  

It is easily seen that it is possible to assign integer numbers to the cells of a 
topological line in such a way that a cell incident to the cell having the number k  has 
the number k−1 or k+1. These numbers are called the topological coordinates of the 
cells [8]. 
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Definition CR: A Cartesian (direct) product C n of n topological lines is called an 
n-dimensional Cartesian complex [8].  
The set of cells of C n is the Cartesian product of n sets of cells of the topological lines 
that are the coordinate axes of the n-dimensional space C n. They are denoted by Ai, 
i=1,2,...,n. A cell of C  n is an n-tuple (a1, a2,..., an) of cells ai of the corresponding 
axes: ai∈Ai. The bounding relation of C n is defined as follows: the n-tuple (a1, a2,..., 
an) is bounding another distinct n-tuple (b1, b2,..., bn) iff for all i=1,2,...n the cell ai is 
incident to bi in Ai and dim(ai) ≤ dim(bi) in Ai.  

The dimension of a product cell is defined as the sum of dimensions of the factor 
cells in their one-dimensional spaces. Topological coordinates of a product cell are 
defined by the vector whose components are the coordinates of the factor cells in their 
axes.  

Fig. A.1a shows four cells in a two-dimensional Cartesian complex: P is a 0-cell 
(point), C1 and C2 are 1-cells (a horizontal and a vertical crack), F is a 2-cell (pixel).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
     a            b 

Fig. A.1. Example of a two-dimensional Cartesian (a) and non-Cartesian (b) complexes 

If we assign even numbers to the 0-cells and odd ones to the 1-cells of the axes then 
the dimension of a cell in a Cartesian complex is equal to the number of its odd 
coordinates. 
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