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Abstract

In this paper we propose a matching algorithm for measuring the structural similarity between an XML document

and a DTD. The matching algorithm, by comparing the document structure against the one the DTD requires, is able

to identify commonalities and differences. Differences can be due to the presence of extra elements with respect to those

the DTD requires and to the absence of required elements. The evaluation of commonalities and differences gives raise

to a numerical rank of the structural similarity. Moreover, in the paper, some applications of the matching algorithm

are discussed. Specifically, the matching algorithm is exploited for the classification of XML documents against a set of

DTDs, the evolution of the DTD structure, the evaluation of structural queries, the selective dissemination of XML

documents, and the protection of XML document contents.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Similarity plays a crucial role in many research
fields. Similarity serves as an organization princi-
ple by which individuals classify objects, form
concepts, and make generalization [1]. Similarity
can be computed at different layers of abstraction:
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at data layer (i.e. similarity between data), at type
layer (i.e. similarity between types—also referred
to as schema, models, or structures, depending on
the application domain) or between the two layers
(i.e. similarity between data and types). Evaluating
similarity among data is relevant for creating
clusters of information related to the same topic.
For example, in the image field, the similarity
measure can be exploited for grouping together
images containing the same subject. Evaluating
similarity between types is relevant for the
integration of schema describing the same kind
of information but using different structures [2]
and for schema clustering [3]. Evaluating similarity
between data and types is relevant for identifying
hts reserved.
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a data generator, and thus, applying to data the
properties specified for the type. Moreover, to this
classification, similarity can be focused on the
contents or on the structures of data involved.
In the XML [4] arena, the possibility of

evaluating similarity has been receiving a lot of
attention because more and more information
exchanged on the Web is adhering to this format
and applications need to retrieve, access, and
handle XML documents imposing relaxed condi-
tions and returning approximate results. At the
data layer, many approaches have been developed
for measuring the similarity among XML docu-
ments in order to cluster together documents
dealing with the same topic. Standard approaches
consider the textual content of the documents [5],
whereas, recently, some new approaches consider
also the structure of documents [6,7]. For what
concerns structural similarity, many approaches
rely on the hierarchical structures of documents
exploiting evaluation functions based on the tree
edit distance [8]. At the type layer, other
approaches have been developed for the integra-
tion of schemas that represent the same kind of
data [9–11] and for schema clustering [3].
Despite this huge activity at data and type layers

and the attractive potential applications in many
fields, no efforts have been devoted to the
computation of structural similarity between an
XML document (the data) and a schema (the
type). In this paper we introduce a matching
algorithm for computing the structural similarity
between an XML document and a DTD, which is
the simplest means by which structural properties
of an XML document can be specified.
In matching a document against a DTD, some

attributes and subelements specified for an element
in the DTD can be missing from the corresponding
element of the document, and, vice versa, the
document can contain some additional attributes
and subelements not appearing in the DTD.
Moreover, since we are focusing on data-centric
documents, elements/attributes in the document
can follow a different order w.r.t. the one specified
in the DTD. Finally, document and DTD tags
may not be exactly the same, provided they are
stems or are similar enough according to a given
Thesaurus. Therefore, tag similarity rather than
tag equality is supported. In matching a document
against a DTD the goal is then to quantify,
through an appropriate measure, the structural
similarity between the document and the DTD.
Though our technique handles all features of
XML documents, in the paper we focus on the
most meaningful core of the approach, thus we
restrict ourselves to a subset of XML documents
and to tag equality. We refer the interested reader
to [12,13] for the general case.
Many applications can be devised for the

matching algorithm. For example, in the exchange
of XML documents on the Web it is not always
possible to force a database to adhere or to
integrate its schema with other schemas describing
the same kind of data. Therefore, the matching
algorithm can be employed for computing the
similarity between documents arriving at a given
XML database and the local schema. As another
example, the possibility to exploit the structure of
documents for their retrieval is pushing the need
for query engines able to evaluate structural
queries (i.e. queries in which conditions are
imposed on the structure of the required docu-
ments). The query engines can employ the match-
ing algorithm for evaluating the similarity between
a document (possible answer of the query) and a
structural query represented as a schema plus
content conditions. By means of this, the query
engine can filter and rank answers to the query.
In this paper we focus on five applications of the

algorithm: (1) the classification of XML docu-
ments against a set of DTDs; (2) the generation of
a new schema for a DTD by extracting structural
information during the classification of XML
documents; (3) the development of an XML-based
search engine able to answer approximate struc-
tural queries; (4) the selective dissemination of
XML documents; (5) the protection of the con-
tents of documents classified against a set of DTDs
of a database, by propagating the authorization
policies specified at DTD level.
The remainder of the paper is organized as

follows. Section 2 presents our tree representation
for XML documents and DTDs. Section 3
discusses the basic principles underlying the
behavior of the matching algorithm. Section 4
discusses in details the matching algorithm,
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whereas Section 5 presents the matching algorithm
applications. Section 6 discusses related work, and,
finally, Section 7 concludes the work and outlines
future research directions.
2. Documents and DTDs as trees

A key feature of XML is represented by
the various options one has available when
modeling document subelements. We illustrate
those options by means of the document and
DTD reported respectively in Figs. 1 and 2. The
DTD in the figure shows that for each subele-
Fig. 1. An example of XML document.

Fig. 2. An example of DTD.

1 In the remainder of the paper, for sake of simplicity, we

denote with C the subtrees of T (i.e. C ¼ ½T1;y; Tn�) when it is
only relevant to know that T is an internal subtree of a DTD.
ment it is possible to specify whether it is
optional (‘?’), whether it may occur several times
(‘*’ for 0 or more times, and ‘+’ for 1 or
more times), whether some subelements are
alternative with respect to each other (‘j’) or
are grouped in a sequence (‘,’). We focus on
a subset of XML documents. Specifically, we
only consider elements (that can have a nested
structure) disregarding attributes (that can be
seen as a particular case of elements). Since
we disregard attributes, we only consider none-
mpty elements. However, empty elements
can be simply handled as #PCDATA elements
with the constraint to have a null content.
In the matching process, we represent both

DTDs and XML documents through labeled trees.
The document representation is compliant with the
tree representation of DOM [14]. By contrast, the
DTD representation makes easy the description of
the algorithms.

2.1. Tree representation of documents

An XML document is represented as
a labeled tree. This representation only relies
on information determined from the structure
of the document. Our definition is based on
the classical definition of labeled tree. We
recall that, given a set N of nodes, a tree is defined
by induction as follows: vAN is a tree;
if T1;y;Tn are trees, then ðv; ½T1;y; Tn�Þ is
a tree.1 Let NðTÞDN denote the set of nodes
of a tree T ; and given a set A of labels, a labeled
tree is a pair ðT ;jÞ; where T is a tree, and j
is a labeling function s.t. 8vANðTÞ;jðvÞAA:
In our representation of documents each
node represents an element tag or a value.
The labels used to label the tree belong to
a set of element tags (EN ) and to a set of
values that the data contents of an element
can assume (V). In each tree representing
a document the label of the root belongs
to EN (it is the name of the document
element). Moreover, leaves of the tree are labeled
by values in V:
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Definition 1 (XML document). An XML docu-
ment is a labeled tree ðD;jDÞ defined on the set of
labels EN,V with the following properties:

1. D ¼ ðv;CÞ with jDðvÞAEN ;
2. for each subtree ðv;CÞ of D; jDðvÞAEN ; and
3. for each (leaf) subtree v of D; jDðvÞAV:
#PCDATA

Fig. 4. Tree representation of DTD in Fig. 2.
For the sake of simplicity, in the graphical
representation we omit the explicit direction of
edges. All edges are oriented downward. Fig. 3
shows the tree representation of the XML docu-
ment in Fig. 1.

2.2. Tree representation of DTDs

A DTD is also represented as a labeled tree. In
the tree representation, in order to represent
optional elements, repeatable elements, sequence
and alternative of elements, the set of operators
OP ¼ f?, *, +, AND, ORg is introduced. The AND

operator represents a sequence of elements, the OR
operator represents an alternative of elements
(exactly one of the alternatives must be selected),
the ? operator represents an optional element,
whereas the * and + operators represent repeatable
elements (0 or more times, 1 or more times,
respectively). In the matching process we do not
consider sequences of unary operators (that is, ?,
*, +) because a concise and equivalent representa-
tion with a single operator always exists.
In our representation of DTDs each node

corresponds to an element, or to an element type,
or to an operator. In each tree representing a
DTD the label of the root belongs to EN (it is the
name of the main element of documents described
by the DTD) and there is a single edge outgoing
from the root. Moreover, there can be more than
one edge outgoing from a node, only if the node is
urls

"http://...""ftp://..." "Chip" "Salzenberg"

product

version

"2.1.13"

name

"Deliver"

homepage fName lName

author
description

"..."
download

Fig. 3. Tree representation of the XML document in Fig. 1.
labeled by AND or OR. Finally, all nodes labeled
by types are leaves of the tree. Let ET be the
set of possible basic types for elements (ET ¼
f#PCDATA; ANYg).

Definition 2 (DTD). A DTD is a labeled tree
ðT ;jT Þ defined on the set of labels EN,ET ,OP
with the following properties:

1. T is of the form ðv; ½T 0�Þ with jT ðvÞAEN ;
2. for each subtree ðv;CÞ of T ; jT ðvÞAEN,OP;
3. for each (leaf) subtree v of T ; jT ðvÞAET ;
4. for each subtree ðv;CÞ of T ; if jT ðvÞAfOR; ANDg;
then C ¼ ½T1;y;Tn�; n > 1; and

5. for each subtree ðv;CÞ of T ; if
jT ðvÞAf?; * ;þg,EN ; then C ¼ ½T 0�:
Fig. 4 shows the tree representation of the DTD
in Fig. 2. We remark that the introduction of
operators OP ¼ fAND; OR; ?; * ;þg allows us to
represent the structure of all kinds of DTDs. The
introduction of the AND operator is required in
order to distinguish between an element containing
an alternative between sequences (e.g.
o!ELEMENT aðbjðc1; c2ÞÞ >) and an element con-
taining the alternative between all the elements in
the sequence (e.g. o!ELEMENT aðbjc1jc2Þ >). The
two different tree representations are shown in
Fig. 5(a,b). The document in Fig. 5(c) is valid with
respect to the DTD (b) but it is not valid with
respect to the DTD (a).

3. Principles in matching an XML document

against a DTD

In this section we introduce by means of some
examples the behavior of the matching algorithm
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for the evaluation of the similarity between an
XML document and a DTD. In particular we
discuss the most relevant issues in this match and
how the algorithm addresses them.
We remark that we have chosen simple exam-

ples that allow us to focus on the behavior of the
algorithm in common cases. The matching algo-
rithm is complete enough to be used in the
similarity evaluation of arbitrary documents and
DTDs, characterized by any combination of the
features discussed in this section.

3.1. Matching a document against a set of

documents

Two different approaches can be devised for
measuring the structural similarity between an
XML document and a DTD: the DTD can be
exploited either as a generator of document
structures (extensional approach) or as a set of
rules constraining the content of each element
(intensional approach). According to the exten-
sional approach, the set of possible document
structures of documents valid for the DTD is
considered.2 By considering a document structure
at a time, existing algorithms for measuring the
structural similarity between XML documents
[6,7] can be applied. The match resulting in the
highest similarity value is considered as the best
match and its evaluation as the structural similar-
ity degree between the document and the DTD.
According to the intensional approach, by con-
trast, the structural similarity measure is computed
2Note that this set can be infinite. Taking the document being

matched against the DTD into account allows one to consider

only a finite, though potentially big, set of document structures.
by means of a matching algorithm that compares
the document structure to the DTD. The rules
constraining the element contents are exploited for
determining the best match. The set of document
structures the DTD describes is not computed.
Rather, the best structure for an element specifica-
tion, for elements containing alternatives or
repetitions, is locally determined as soon as the
structure of its subelements in the document is
known.
Since the extensional approach can result in

exponential complexity even for very common
cases, we present a matching algorithm based on
the intensional approach. Note that also the
intensional approach has, in the general case,
exponential complexity. However, in a significant
subset of cases, the most common in practice, the
algorithm is polynomial as we show in Section 4.4.

3.2. Common, plus, and minus elements

The matching algorithm relies on the identifica-
tion and proper evaluation of: elements appearing
both in the document and in the DTD, referred to
as common elements; elements appearing in the
document but not in the DTD, referred to as plus

elements; elements appearing in the DTD but not
in the document, referred to as minus elements.

Example 1. Consider the document D in Fig. 6(a)
and DTDs Tb; Tc in Fig. 6(b,c), respectively. The
matching algorithm identifies that D and Tb have
the same tag for the document element but some of
#PCDATA
#PCDATA#PCDATA

(c)

Fig. 6. Identification of plus, minus, and common elements.
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the subelements are different. In particular, D and
Tb share elements b and c, whereas D contains
elements d and f not appearing in Tb; and Tb

contains elements g and h not appearing in D:
Thus, the algorithm detects that the two structures
have two common elements, two minus elements,
and two plus elements.
Consider now the DTD Tc: The matching

algorithm determines that D and Tc share elements
b, c, and d, whereas D contains element f not
appearing in Tc; and Tc contains elements g, h, and
i not appearing in D: Thus, the two structures
have three common elements, one plus element,
and three minus elements.

In the two examples the identified common,
plus, and minus elements have to be properly
evaluated in order to identify the best DTD
between Tb and Tc: Obviously, to achieve the best
similarity, plus and minus elements should be
minimized and common elements should be
maximized. If we consider the absence of an
element equivalent to the presence of an additional
element, D is more similar to Tc because they have
more common elements. However, there are
situations in which plus and minus elements
cannot be considered equivalent. For this reason
we introduce a and b; two real numbers
greater than 0, that allow us to properly weight
plus and minus elements as we will discuss
in Section 4.
The evaluation of such elements is performed by

taking into account two main factors. First, the
matching algorithm assigns a weight according to
the level in which common elements are detected in
the hierarchical structure of the two tree represen-
tations. Elements at higher levels in the document
structure are more relevant than subelements
deeply nested in the document structure. Then,
the evaluation takes into account the structure of
plus and minus elements. Complex elements have a
greater impact on the evaluation than simpler
ones.
In the remainder of the section we discuss how

the matching algorithm determines the number of
levels of a document/DTD, and we define the
function Weight used for determining the struc-
tural complexity of an element.
3.2.1. Level of an element

The similarity measure catches the intuition that
elements at a higher level in a document are more
relevant than elements at a lower level.

Example 2. Consider the documents and the
DTD in Fig. 7. Element f, subelement of element
d, is missing in the document in Fig. 7(b). By
contrast, element b, subelement of element a, is
missing in the document in Fig. 7(c). The docu-
ment in Fig. 7(b) is more similar to the DTD in
Fig. 7(a).

We thus introduce the notion of level of an
element, related to the depth of the corresponding
tree. Given a tree T ; representing a document, the
level of T is its depth as a tree, that is, the number
of nodes along the longest maximal path (that is, a
path from the root to a leaf) in T : By contrast,
given a tree T ; representing a DTD, its level is the
number of nodes, not labeled by an operator,
along the longest maximal path in T : This is
because edges labeled by operators in DTD trees
only influence the breadth of the corresponding
document trees, not their depths. These notions
are formalized by the following definition.
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Fig. 8. Documents and DTDs of Example 4.
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Definition 3 (Function level). Let T = ðv; ½T1;
y;Tn�Þ be a subtree of a document or a DTD.
Function Level is defined as follows:

LevelðTÞ ¼

1þmaxn
i¼1 LevelðTiÞ if jðvÞAEN ;

maxn
i¼1 LevelðTiÞ if jðvÞAOP;

0 otherwise:

8><
>:

Example 3. Let T denote the DTD in Fig. 4, then
LevelðTÞ ¼ 3:

In computing the level of a tree leaves are not
considered. This is because we are interested in the
number of nested elements and leaves only have
data contents. Now, the matching algorithm can
assign a different weight to elements at different
levels of the tree. Let l ¼ LevelðTÞ be the level of a
document/DTD T and g be the factor of relevance
of a level with respect to the underlying level, the
root of T will have weight gl ; and the weight is
then divided by g when going down a level to its
children. Thus, for a generic level i of T ; gl�i is the
corresponding weight. Such weight is multiplied
for the number of common, plus, and minus
elements identified at that level in order to take
also the level into account in the match of the two
structures.
3.2.2. Weight of an element

In the evaluation of plus and minus elements the
matching algorithm considers their structures, as
shown in the following example.

Example 4. Consider the documents and DTDs in
Fig. 8. If we match the document in Fig. 8(a)
against the DTD in Fig. 8(d), we can see that the
document lacks element c and the corresponding
#PCDATA value. By contrast, if we match the
document in Fig. 8(a) against the DTD in Fig.
8(b), we can see that the document lacks element c
and the corresponding subtree. The lack of
element c must be evaluated differently, since in
the first case it has a simple data content, whereas
in the second one it has a complex substructure.
Consider now the document in Fig. 8(c) and the
DTD in Fig. 8(d). The DTD specifies a #PCDATA
content for element c, whereas in the document
element c has a more complex substructure.

The example above shows that the matching
algorithm should take into account the structure
of plus and minus elements. In case of minus
elements, however, the structure is not fixed.
Consider element c in Fig. 8(b): it has an optional
subelement (element tagged d) and an alternative
of subelements (element tagged f or element
tagged g). Our idea is to consider, as structure of
the minus elements, the simplest document struc-
ture that can be generated from that portion of
DTD. Thus, the measure should not take into
account optional or repeatable elements and, in
case of alternative elements, the measure should
take into account only one of the alternative
elements (reasonably the one with the simplest
structure). We thus introduce function Weight to
evaluate a subtree of a document or of a DTD.

Definition 4 (Function Weight). Let T be a
subtree of a document or a DTD ðD;jÞ; and wl
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be the weight associated with the level of T in D:
Function Weight is defined as follows:3
c

5

c

9

a

c
#PCDATA

d

#PCDATA

b

c

AND

*

a

WeightðT ;wlÞ ¼

wl if labelðTÞ 2 V,ET ;

0 if labelðTÞAf* ; ?g;

WeightðT 0;wlÞ if labelðTÞ ¼ þ and T ¼ ðv; ½T 0�Þ;Pn
i¼1 WeightðTi;wlÞ if labelðTÞ ¼ AND and T ¼ ðv; ½T1;y;Tn�Þ;

minn
i¼1 WeightðTi;wlÞ if labelðTÞ ¼ OR and T ¼ ðv; ½T1;y;Tn�Þ;Pn

i¼1 Weight Ti;
wl

g

� �
þ wl otherwise; where T ¼ ðv; ½T1;y;Tn�Þ:

8>>>>>>>>>>><
>>>>>>>>>>>:
Given a subtree of the document and a weight
wl ; function Weight multiplies the number of
elements in each level for the weight associated
with the level. The weight of the level is wl for
the first level, wl=2 for the second level, wl=4 for
the third level, and so on. The resulting values are
then summed. Given a subtree of the DTD and a
weight wl ; function Weight works as on a
document, but it takes into account only manda-
tory elements in the DTD. That is, the function
does not consider optional elements or repeatable
elements labeled by *. Moreover, in case of OR
labeled nodes, the weights associated with the
possible alternatives are evaluated and the minimal
value is chosen. The choice of the minimal value
corresponds to selecting the subtree with the
simplest structure.

Example 5. Let T be the DTD in Fig. 4, and
assume g ¼ 2; WeightðT ; 8Þ ¼ 27: Note that, in
this case, the weight 8 is 23; where 3 is the
number of levels of T : Moreover, the elements
that contribute to the weight of T are the
mandatory name, and description elements
and the urls element because it is repeatable
from 1 to many times (thus an occurrence is
mandatory). The total weight of these elements
is 19. The others do not contribute because
they are optional or repeatable from 0 to many
times. Note that, the OR subtree does not
contribute to the weight because one of the
alternatives it bounds is repeatable from 0 to
3Given T ¼ v or T ¼ ðv;CÞ; labelðTÞ ¼ jðvÞ:
many times. The weight of the root is 8, therefore
the total weight is 27.
3.3. Optional and repeatable elements

In case of repeatable elements, the similarity
measure must identify the best number of repeti-
tions, that is, the one that maximizes common
elements and minimizes plus and minus elements.
Note that a higher number of repetitions can result
in every element in the document to match with an
element in the DTD (no plus) but, by contrast, it
can increase the number of unmatched elements in
the DTD (minus). Optional elements can be
considered as special cases of repeatable elements
with a constraint on the maximal number of
repetitions.

Example 6. Consider the document D and the
DTD T in Fig. 9. The possibility of repeating an
arbitrary number of times the sequence of elements
(b, c, d) allows us to map each element c in D to a
corresponding element in T : However, since D

contains three c elements, the sequence in T must
be repeated three times, resulting in a total of nine
7

(a)

#PCDATA

(b)

Fig. 9. Document and DTD of Example 6.
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Table 1

Measuring the similarity between the document and the DTD

of Example 6

Repetitions Common Plus Minus

0 0 3 0

1 1 2 2

2 2 1 4

3 3 0 6

4 3 0 9

Table 2

Parameters of the matching algorithm

Parameter Description

a Weight of plus elements (aX0)
b Weight of minus elements (bX0)
g Relevance factor of a level (gAN)

E. Bertino et al. / Information Systems 29 (2004) 23–46 31
elements: three present in D (three c elements) and
six missing from D (three d and three b elements).
If, by contrast, we had repeated the sequence
twice, we would have obtained two common
elements and four minus elements. The situation
is summarized in Table 1.

The matching algorithm handles repeatable
elements in the following way. The algorithm
matches all the elements (at the current level)
against the repeatable element in order to deter-
mine the evaluation of common, minus, and plus
elements. After that, it determines the best number
of repetitions by applying the evaluation function
and choosing the maximal value. The evaluation is
more complicated when a sequence or alternative
of elements should be handled. The behavior of
the algorithm in these situations is shown in the
following section.

3.4. Sequences and alternatives of elements

The evaluation of sequences of elements is
performed in two steps. The first step identifies
the presence or absence of single elements of the
sequence (i.e. it identifies the minus and common
elements). Minus and common elements are
evaluated as described above. Then, the sequence
of elements is evaluated by summing up the
evaluations obtained for the single minus and
common elements. The evaluation is more com-
plicated when the sequence is repeatable. In this
situation, indeed, the algorithm should identify the
possible repetitions of the sequence. The evalua-
tion of each sequence corresponds to the sum of
the evaluation of common and missing elements
and the best number of repetitions of the sequence
is determined by exploiting the evaluation func-
tion.

Example 7. Consider the document and the DTD
of Example 6. In the evaluation of the AND

operator (which is repeatable), the algorithm first
finds that element c in the DTD has 3 matches in
the document, whereas elements b and d in the
DTD have no match in the document. Taking into
account the evaluation obtained for the single
elements, the possible repetitions of the sequence
are computed. Zero repetitions of the sequence
means that the three c elements are plus, and there
are no common and minus elements. One repeti-
tion of the sequence means that one of the three c
elements is common, the other two c elements are
plus, and b and c elements are minus. The other
repetitions of the sequence are computed in a
similar way. Note that, a new repetition of the
sequence is considered till a common element has
to be matched. Therefore, in this case four
repetitions are considered. The best one is then
selected by means of the evaluation function.

The matching algorithm handles alternatives in
a similar way. However, in this case the evalua-
tions obtained are not summed up, rather the best
one, that is the evaluation corresponding to the
best alternative among the possible ones, is chosen.

3.5. Role and setting of parameters

The behavior and results of the matching
algorithm rely on some parameters previously
outlined and reported in Table 2.
A user sets these parameters depending on

the application domain in which the matching
algorithm is used. Some examples will be shown in
Section 5 when we discuss some applications of the
matching algorithm.
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Depending on the values assigned to a and
b; the matching algorithm gives more relevance
to plus elements with respect to minus elements,
or vice-versa. For example, if a ¼ 0 and b ¼ 1
plus elements are not taken into account in
measuring similarity. Therefore, a document
with only extra elements with respect to the
ones specified in the DTD has a similarity
degree equal to 1. By contrast, if a ¼ 1 and b ¼
0 the minus elements are not taken into
account in the similarity measure. In the follow-
ing examples we assume that a ¼ b ¼ 1; thus
giving the same relevance to plus and minus
elements.
Depending on the value assigned to gAN;

the matching algorithm gives more relevance
to common elements at higher levels in the
document with respect to others at lower levels.
By taking g ¼ 1 all the information is considered
equally relevant, and thus the fact that elements
appear at different levels in the nested structure
is not taken into account. By contrast, taking
g ¼ 2 elements at a given level have double
relevance with respect to their children. In what
follows, we consider g ¼ 2:
#PCDATA #PCDATA

b40b1

c AND

OR

a

#PCDATA
...

(a)

a

b1

5

(b)

Fig. 10. Tree representations of document and DTD of

Example 8.
4. The matching algorithm

In the previous section we have outlined the
behavior of the matching algorithm in the most
relevant cases. In this section we point out some
details of the developed algorithm.

4.1. Evaluation function

In order to obtain the best match between the
two structures, common elements must be max-
imized, whereas plus and minus elements must be
minimized. However, we want to obtain a numeric
value that quantifies the similarity between the
document and the DTD. Thus, we assume plus,
minus, and common elements to be evaluated to
three natural values p;m; c; taking into account the
levels and the weights, as discussed in Section 3.
These three values are combined through an
evaluation function for determining an overall
similarity evaluation. The evaluation function we
choose is function E; formally defined in the
following, which is based on the ratio model [1].
This function computes the ratio between the
evaluation c of the common elements between
the two structures (i.e., elements in the ‘‘inter-
section’’ between the two structures) and the
evaluation p þ m þ c of all the elements in the
two structures (i.e., elements in the ‘‘union’’ of
the two structures). The evaluation of plus and
minus elements are weighted according to a
and b parameters. The obtained similarity value
is a real number in the range [0,1].

Definition 5 (Function E). Let ðp;m; cÞ be a triple
of natural numbers and a; b be real numbers s.t.
a; bX0: Function E is defined as

Eðp;m; cÞ ¼
0 if ðp;m; cÞ ¼ ð0; 0; 0Þ

c
apþcþbm

otherwise:

(

Relying on function E; an order relationship$
has been defined. This order is exploited for
selecting among a set of matches (represented
as ðp;m; cÞ triples) the optimal ones (i.e. the
maximal triple). Details on the $ order can be
found in [12].

Example 8. Consider the document and the DTD
in Fig. 10. Since the document only contains
element b1, if we choose the right branch of the OR
we have one common element and 39 missing
elements. By contrast, if we choose the left branch
of the OR, we have no common elements, but only
a plus and a minus element.
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4.2. A sketch of the matching algorithm

An algorithm, namedMatch; that allows one to
assign a ðp;m; cÞ triple to a pair of trees
ðdocument;DTDÞ has been defined. Such algorithm
is based on the idea of locally determining the best
structure for a DTD element, for elements contain-
ing alternatives or repetitions, as soon as the
information on the structure of its subelements in
the document is known.
The algorithm is general enough to evaluate the

similarity between any kind of XML documents
and DTDs. In this paper, however, we focus on the
most meaningful core of the algorithm, based on
the assumption that, in the declaration of an
element, two subelements with the same tag are
forbidden. That is, element declarations such as
o!ELEMENT a ðb* ; ðcjbÞÞ > are not considered. De-
tails on the general version of the algorithm can be
found in [12,13].
Given a document D; and a DTD T ; algorithm

Match first checks whether the root labels of the
two trees are equal. If not, then the two structures
do not have common parts, and a null triple
is returned. If the root labels are equal, the
maximal level l between the levels of the two
structures is determined, and the recursive func-
tionM is called on:

1. the root of the document,
2. the first (and only) child of the DTD,
3. the level weight (gl�1) taking into account that
functionM is called on the second level of the
DTD structure, and

4. a flag indicating that the current element (the
root element) is not repeatable.

Function M recursively visits the document and
the DTD, at the same time, from the root to the
leaves, to match common elements. Specifically,
two distinct phases can be distinguished:

1. in the first phase, moving down in the trees
from the roots, the parts of the trees to visit
through recursive calls are determined, but no
evaluation is performed;

2. when a terminal case is reached, on return from
the recursive calls and going up in the trees, the
various alternatives are evaluated and the best
one is selected.

Intuitively, in the first phase the DTD is used as a
‘‘guide’’ to detect the common elements between
the document and the DTD, disregarding the
operators that bind together subelements of an
element. In the second phase, by contrast, the
DTD operators are considered in order to verify
which elements are bound as prescribed by the
DTD, and to define an evaluation of the missing or
exceeding parts of the document with respect to
the DTD. Terminal cases are the following: a leaf
of the DTD is reached, or an element of the DTD
not present in the document is found. In these
cases a ðp;m; cÞ triple is returned. Then, the second
phase starts and the evaluation of internal nodes is
performed, driven by their labels.

4.3. An illustrative example

We now illustrate the behavior of function M
on the document and the DTD in Fig. 11(a,b). For
sake of clarity, in the discussion of the algorithm,
we denote the element of the document labeled by
a as aD; and the element of the DTD labeled by a
as aT :
During the first phase, function M; driven by

the label of the current DTD node, is called on
subtrees of the document and the DTD. For
example, on the first call of M on (aD; ANDT ),
recursive calls on aD and all the subtrees of ANDT

are performed (i.e., on (aD; bT ), and (aD; ANDT )).
Recursive calls are performed disregarding the
operators in the DTD and moving down only
when an element declared in the DTD is found in
the document as child of the current node.
Moreover, in such cases, the weight level is divided
by g in order to determine the level weight of the
underlying level. Fig. 11(a,b) shows the performed
recursive calls. An edge (v; v0Þ of the tree is bold if a
recursive call of functionM has been made on the
subtree rooted at v0: Note that no recursive calls
have been made on bT ; cT ; and gT because such
elements are missing in the document. Note also
that mD has not been visited by function M;
because this element is not required in the DTD.
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#PCDATA

d

OR

a

AND

AND

AND

*

e

f

*

c
#PCDATA

g

#PCDATA

b

(b)

f: [(0,0,3)]

*: [(0,3,3)]

e:[(0,3,7)]

[(0,0,0)]c:

[(0,0,0)]*:

[(0,6,0)]b: AND:[(0,3,13)]

AND:[(0,9,13)]

[(6,9,21)]a:

[(0,0,0)]g:

AND: [(0,3,3)]

#PCDATA

#PCDATA

#PCDATA

#PCDATA:[(0,0,2)]

[(0,0,6)]d:

OR: [(0,0,6)]

#PCDATA:[(0,0,1)]

(c)

Fig. 11. Execution of functionM:
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When a terminal case is reached, a ðp;m; cÞ triple
is produced. For example, when function M is
called on (fD; #PCDATAT ), the triple ð0; 0; 1Þ is
generated, because the DTD requires a data
content for fD and, actually, such element has a
textual content. By contrast, when function M is
called on (aD; bT ), the triple ð0; 6; 0Þ is generated,
because the DTD requires an element tagged b,
but such element is missing in the document.
Therefore, function Weight is called on bT and,
since the current level weight is 4, the value 6 is
returned as weight of the missing subtree.
On return from the recursive calls, the operators

and the repeatability of the node are considered in
order to select the best choice among the possible
ones for binding together subelements. For exam-
ple, returning from the evaluation of subtrees of
the OR element, which is not repeatable, the triples
(0,0,0) and (0,0,6) obtained for the evaluation of
subtrees are considered. The best one is selected
relying on the E evaluation function. By contrast,
returning from the evaluation of subtrees of an
AND element, which is not repeatable, the obtained
evaluations are summed in order to determine the
evaluation of the sequence of elements. The
behavior of the algorithm is much more articu-
lated when elements are repeatable. In such cases,
indeed, not only a triple is generated, but a list of
triples. The lists of triples are then combined in
order to evaluate internal nodes.
The intermediate evaluations are reported in

Fig. 11(c). If an edge is bold the label is followed
by the ðp;m; cÞ triple obtained from the evaluation
of the corresponding subtree. If an edge is not
bold, but the label is followed by a ðp;m; cÞ triple, it
represents the evaluation of minus elements of the
subtree.
The triple associated with the main element of

the DTD (i.e. (6,9,21)) is obtained by the Match

algorithm summing up the evaluation returned by
function M ((0,9,13)), the evaluation of the plus
element m ((6,0,0)) and the identification of
common root label ((0,0,8)).

4.4. Algorithm complexity

The running time of the Match algorithm
depends on the running time of function M: Let
M be the number of nodes of the document, N be
the number of nodes of the DTD, and G the
maximal number of edges outcoming from a node
of the document, the running time of functionM
is OðG2 � ðN þ MÞÞ [12]. This complexity deeply
depends on the assumption we started with. That
is, the assumption that in the declaration of an
element, two subelements with the same tag are
forbidden.
Relying on this assumption, in the first phase of

the algorithm, recursive calls are performed only
until common elements between the structures are
detected. In this phase of the algorithm no ‘‘wrong
matches’’ are determined, because at most one
match is possible between an element of the
document and an element of the DTD. Therefore,
this phase has a running time linear in the number
of nodes of the two structures. Then, in the second
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phase, the matching algorithm evaluates the DTD
operators. For each common element, this phase
has a running time quadratic in the number of
edges outcoming from the node of the document.
Combining the two results, the above complexity
is obtained.
In the general version of the algorithm [12] the

above assumption does not hold. In such a case,
‘‘wrong matches’’ can arise during the first phase.
For example, consider an element of the document
that matches with n elements with the same tag in
the DTD. In order to identify the best match, the
second phase should be performed n times. Each
time the element of the document is considered in
common with one of the n elements of the DTD,
and, at the end, the match that maximizes the
evaluation function is chosen. It is easy to under-
stand that, when the numbers of elements with the
same tag either in the document or in the DTD
increases, the complexity of the general version of
functionM changes from polynomial to exponen-
tial.
We would like to remark, however, that the

presence in the DTD of elements with the same tag
is often due to a wrong design of the DTD.
However, in [12] some techniques have been
proposed for reducing the execution time of the
matching algorithm, even if, in the worst case, the
complexity is still exponential.

4.5. Similarity measure

The similarity measure between a document and
a DTD is defined as follows.

Definition 6 (Similarity measure). Let D be a
document and T a DTD. The similarity measure
between D and T is defined as follows:

SðD;TÞ ¼ EðMatch/D;TSÞ

Example 9. Let D and T be the document and

the DTD in Fig. 11(a,b). Their similarity degree
is SðD;TÞ ¼ EðMatch/D;TSÞ ¼ Eð/6; 9; 21SÞ ¼
0:58:

The following proposition states the relation-
ship between the notion of validity and our
similarity measure.
Proposition 1. Let D be a document, T a DTD, and

a; b the parameters of function E: If a;ba0 the

following properties hold:

* if D is valid with respect to T ; then SðD;TÞ ¼ 1;
and

* if SðD;TÞ ¼ 1; then D is valid with respect to T ;
disregarding the order of elements.
Proof (Sketch). The first assertion follows from
the fact that if a document D is valid for a DTD T ;
this means that its structure is exactly one of the
structures described by the DTD. Thus, the
document neither contains elements not appearing
in the DTD (thus, plus ¼ 0), nor it misses elements
required by the DTD (thus, minus ¼ 0). There-
fore, when function E is applied, the ratio between
c and 0þ 0þ c is computed, thus obtaining 1. The
second assertion holds since the similarity value
can be 1 only if the two values of which we
compute the ratio are equal. Since a and b are not
null, and the p;m; c values are natural, thus,
non negative, this can happen only if p ¼ m ¼ 0:
This means that the document neither contains
elements not appearing in the DTD, nor it
misses elements required by the DTD. Thus,
according to the notion of validity, if we dis-
regard the order of elements, the document is valid
for the DTD. &
5. Applications

In this section we discuss applications of the
matching algorithm we are investigating.

5.1. Classification of documents

A first application of the matching algorithm is
for the classification of XML documents gathered
from the Web against a set of DTDs declared in an
XML database. The scenario we refer to is
characterized by a number of heterogeneous
databases of XML documents able to exchange
documents among each other. Each database
stores and indexes the local documents according
to a set of local DTDs. An XML document
entering a database is matched, by means of the
matching algorithm, against the local DTDs. If a
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DTD exists to which the document conforms
according to the usual notion, then the document
is accepted as valid for this DTD. Otherwise, the
proposed algorithm is used for selecting the DTD,
among the ones in the database, that best describes
the structure of the document. In this scenario, a
similarity threshold should be fixed. Such threshold
represents the minimal degree of similarity re-
quired for binding an XML document to a DTD.
Obviously, the DTD for which the similarity
degree is the highest, and above the fixed thresh-
old, is selected. Whenever the similarity degree is
not above the threshold for any DTD of the
database, the document is considered ‘‘unclassi-
fied’’ and stored in a repository of unclassified
documents. For the retrieval, protection and
indexing of such documents none of the facilities
specified at DTD level can be applied.

Example 10. Consider the document D and the
two DTDs T1 and T2 in Fig. 12. The similarity
degree between D and T1 is SðD;T1Þ ¼ 0:62;
whereas the similarity degree between D and T2
is SðD;T2Þ ¼ 0:52: Document D is more similar to
DTD T1 than to T2; because SðD;T1Þ > SðD;T2Þ:
If we set the similarity threshold to 0:6;

document D is classified in T1: By contrast, if we
set the similarity threshold to 0:8; document D

cannot be classified in T1; and, thus, it is stored in
the repository of unclassified documents.

Several experiments have been carried on in
order to assess the similarity measure and the
year

actor

*

#PCDATA

#PCDATA
#PCDATA

AND

film

production

year

film

1997
La vita e’ bella

title

0.62 >

Fig. 12. Classification
matching algorithm both from the correctness and
from the efficiency viewpoint. First, we considered
both real and synthetic data and classified them
against a set of DTDs in order to verify that the
algorithm correctly ranks documents according to
the similarity measure. In both the experiments, we
obtained that for each document D; and for each
pair of DTDs T1;T2 such that D is not valid
neither for T1 nor for T2; whenever SðD;T1Þ >
SðD;T2Þ; D actually is more similar to T1 than to
T2 [12]. Then, some performance evaluations have
been carried on in order to show that the matching
algorithm is reasonably efficient to be used in
practice. Note that this is a crucial issue as
similarity checks are supposed to be performed
frequently and online. The execution time of the
algorithm varies from few milliseconds for simple
XML documents and DTDs, to few seconds for
very huge documents and DTDs (i.e. whose size is
in the order of 4–5 Mbytes).

5.2. Evolution of DTD structures

After having classified a certain number of
documents, the documents instances of a DTD
can present some regularities that, if captured by
the DTD, would restrict the divergence between
the structure of documents as specified by the
DTD and the actual structures of documents
instances of the DTD. The goal of the evolution
approach is to capture these regularities thus
adapting the set of DTDs to the set of documents.
Preliminary results have been reported in [15].
AND

OR

director

film

#PCDATA *

actor

#PCDATA

#PCDATA

title

producer

production

G. Braschi

0.52

of a document.
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The data flow of the evolution approach is
shown in Fig. 13, in which rectangles denote the
main functional components of the approach,
cylinders denote data stores, thick arrows denote
the control flow, and thin arrows denote data flow.
Each time a document, created outside the
database, enters the database it is initially inserted
in a queue of ‘‘to-be-processed’’ documents. When
it is then selected, it is associated with a DTD of
the database, that is, the one best describing its
structure, through the classification algorithm. If a
document, matched against each DTD, does not
produce a similarity value above the similarity
threshold, it is inserted in the repository of
unclassified documents. Otherwise, the document
is handled as an instance of the DTD for which the
evaluation produced the highest similarity value.
Once the classification phase is completed (i.e,

the DTD of which the document is an instance has
been selected) some structural information are
extracted from the document. Specifically, infor-
mation about frequent ‘‘patterns’’ identified in the
elements of a document that are not valid with
respect to the corresponding DTD declaration. A
pattern is a subset of the tags of subelements of a
nonvalid element env of the document with respect
to a DTD. Patterns are used for identifying groups
…
Document queue

XML
document

DTDs

XML
docs

XML databa

Classification Recording

Similarity threshold

Fig. 13. Data flow of the
of subelements of env frequently bound together
and, thus, to extract the new structure of the DTD
declaration of env: In the recording phase this
information is associated with the DTD in a data
structure referred to as extended DTD. The use of
this information avoids analyzing again the docu-
ment in the subsequent phases. Moreover, this
information is structural rather than content
information, and it is aggregate over the whole
set of analyzed documents, and thus it does not
require much storage space. These activities are
iterated till the evolution phase is triggered.
The evolution phase is activated after a certain

number of documents have been classified. The
evolution phase has a high cost in terms of re-
writing the applications that are working on the
database. Therefore, it should be triggered when-
ever the DTD is not representative anymore of its
instances and such ‘‘update’’ improves the perfor-
mance of applications that work on them. The
event can depend on the access frequency to the
DTD instances, on the number of nonconforming
elements w.r.t the DTD, and on the number of
documents currently considered as instances of the
DTD. The check component is responsible to
determine whether the evolution phase should be
activated.
Activation threshold

repository

se

Check Evolution

Classification
of repository
documents

evolution approach.
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The evolution phase of the evolution process is
responsible for generating a new set of DTDs and
can work at different granularities, ranging from a
very coarse granularity, regenerating the whole
DTD, to a very fine granularity, regenerating the
structure of a single element in the DTD. By
making use of the information collected in the
recording phase, some association rules are ex-
tracted that represent relationships between pre-
sence/absence of subelements of an element. Based
on such rules and on some heuristics we have
identified, the new DTD is generated. Finally, after
the evolution phase, the documents in the reposi-
tory are classified again against the restructured set
of DTDs in order to check whether the similarity is
now above the threshold for a DTD of the
database so that the document can be considered
as instance of such a DTD.
The evolution phase is based on three key

principles.

1. Use of data mining association rules [16,17] for

determining the most frequent patterns in the

structure of subelements of each element. For
each element of the DTD, by relying on the
patterns stored in the data structure, it is
possible to determine elements that are always
together (i.e. bound by an AND operator),
elements that are never together (i.e. bound by
an OR operator), elements, or groups of
elements, that are repeated the same number
of times (i.e. bound by a * or + operator),
elements, or groups of elements, that are
optional (i.e. bound by an ? operator).4 More-
over, in order to establish when the presence of
an element implies the absence of another
element, association rules like ‘‘if element a is

absent then element b is present’’ have been
considered.

2. Incremental modification of the DTD. Ap-
proaches proposed in [18,19] for inferring the
‘‘type’’ of a set of documents consider all the
documents at once. Therefore, when a new
documents is added to the set, in order to
determine a new ‘‘type’’, the process starts from
4Note that the terms ‘‘always’’, ‘‘never’’, and ‘‘same number’’

should be considered in their statistical sense, i.e. in most cases.
scratch. By contrast, in our approach we
incrementally store the relevant information in
the data structures and use them during the
evolution process.

3. Relevance of previous instances of the DTD.
Different relevance can be given to the current
structure of the DTD with respect to the
documents classified against it since last DTD
evolution. If the DTD was a dummy DTD
generated from a training set of documents or,
for the particular application area, the rule
‘‘more recent, more relevant’’ holds, then the
DTD evolution process should forget the
previous structure of the DTD and deeply
modify it in order to obtain a new structure
that closely represents the documents classified
in the DTD since last evolution. By contrast, if
the DTD structure is consolidated we want to
minimize the DTD modifications in order to
cover both the previous structure of the
documents and the new structure deduced from
the documents classified since last evolution.

Example 11. Let T be the DTD in Fig. 14(a) and
D1 and D2 be two sets of documents whose
structures are reported in Fig. 14(b). The label of
root elements is a both for documents in D1 and
D2 and all documents contain a sequence of b and
c elements. However, this sequence in documents
in D1 is followed by a sequence of d elements,
whereas in documents in D2 it is followed by an e
element. Documents in both sets are not valid with
respect to T : Fig. 14(c) presents a sketch of the
extended DTD. Element a is associated with the
set fb; c; d; eg of element tags found in the
documents classified against T : Moreover, fb; cg
forms a group since elements b and c are repeated
the same number of times and element d is marked
as repeatable and optional (some documents do
not contain it).
Suppose that according to the ‘‘more recent,

more relevant’’ rule, we decide to update the
DTD structure. The evolution algorithm, by
means of a set of policies, determines the new
structure of the DTD. We do not detail the
heuristic policies developed and simply outline the
behavior of the algorithm in this specific example
by means of Fig. 15.
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Fig. 14. (a) DTD, (b) kind of documents classified against the DTD, and (c) extended DTD.
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Fig. 15. Application of the evolution algorithm.
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The evolution algorithm first determines that
elements b and c appear always together (i.e., the
presence of b implies the presence of c, and vice
versa), and they have the same number of
occurrences (i.e., they form a group). Therefore,
the new tree (1) in Fig. 15 is obtained. Then, the
evolution algorithm determines that elements d

and e are complementary (i.e., the presence of d
implies the absence of e, and the absence of e
implies the presence of d), and d is repeatable.
Therefore, the new tree (2) in Fig. 15 is obtained.
Trees (1) and (2) in Fig. 15 are, finally, combined
together (tree (3) in Fig. 15) by means of the AND
operator in order to obtain the final new DTD
structure reported as tree (4) in the figure.
5.3. Structural queries

Recent approaches to the retrieval of XML
documents exploit the structure of documents for
improving both accuracy and efficiency. Such
queries are referred to as structural queries. More-
over, several of those approaches have the
capability of returning ranked answers, in the
spirit of information retrieval.
Structural queries are normally expressed as

labeled trees, representing either structural or
content constraints on the documents which are
possible answers to the query. By means of a
match between the tree representation of the
structural query and an XML document it is
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possible to verify whether the document is an
answer to the query, to compute their degree of
similarity, and to extract the parts of the document
that the query should return.
In our context, a structural query can be

represented as a DTD, in which some additional
constraints on the value of data content elements
have been posed.5 Therefore, a query is modeled as
a labeled tree representing the structural and
content constraints a document should verify in
order to be considered an answer to the query.
Then, the matching algorithm can be exploited for
evaluating the degree of similarity between the two
structures. If such a degree is above a given
threshold, the document is added to the set of
answers for the query (query answer set). The
query answer set is ranked relying on the similarity
degree.
Two different interpretations can be given to a

structural query expressed as a labeled tree. First,
it can represent a template of the documents we are
looking for. Second, it can represent the minimal
constraints a document should meet in order to
belong to the query answer set. According to this
interpretation, a document can contain other
elements with respect to those of the query in
which some conditions have been specified.
With a small extension of the matching algo-

rithm we developed (in order to handle content
conditions) both the interpretations are supported.
The first one is obtained without any effort.
Actually, this corresponds to the application of
the classification approach in which some addi-
tional constraints have been added for the data
content elements. By contrast, the second one is
obtained by setting a to 0: In this way all the plus
elements found in the document are not considered
in the evaluation. Therefore, only elements re-
quired by the query but not present in the
document are taken into account for properly
evaluating the similarity degree between the
document and the query.
5Note that by exploiting the DTD operators more expressive

structural queries can be specified than the ones possible with

current approaches. The ? operator, for example, can be

exploited for expressing optional conditions.
Example 12. Consider the following query ex-
pressed through the Xpath [20] notation:

=film½director ¼ ‘‘Fellini’’�

AND

=film½date > ‘‘1974’’�

By exploiting the structure of the document
deduced by the query formulation, the tree
representation in Fig. 16 can be generated.
Consider now the documents in the lower side of

Fig. 16. Assuming the interpretation of a query as
a document template the similarity degrees the
matching algorithm returns are used to rank the
documents.

Some experiments have been carried on for
testing the approach. The obtained results are
similar to those for the classification of XML
documents against a set of DTDs.

5.4. Selective dissemination of XML documents

As the amount of XML data available online
and the number of pervasive applications that take
advantage of these data increase, systems that
support selective dissemination of information

(called SDI systems) are more and more popular
[21].
A selective dissemination system manages user

preferences as well as a stream of incoming
documents. For each incoming document, the
system searches for the set of user preferences that
match it in order to identify the users to whom the
Fig. 16. Evaluation of a structural query.
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document should be broadcasted. Users can set
their preferences when they connect the first time
to the system (by filling up a form) or the
preferences can be dynamically discovered by
monitoring the documents users frequently access.
A key capability of a SDI system is the effective
filtering of a continuous stream of XML docu-
ments according to user preferences. Indeed, a too
selective filter may not send any documents to
users, while a too liberal filter may spam users with
irrelevant documents. Another key capability of a
SDI system is the adaptability of user profiles to
the new user preferences. In a dynamic world as
the Web, it is not possible to assume that the
preferences of users do not change.
Our classification and evolution approaches can

be employed for enhancing a SDI system in order
to provide such key capabilities. Specifically, our
classification approach can be used to filter XML
documents based on their structure and content. A
user profile could be expressed as a DTD, in which
some constraints on the value of data content
elements have been posed. This DTD could
initially be specified by the user or automatically
inferred from documents previously deemed valu-
able by the user, by means of document clustering
[7,21] and structure extraction techniques [18]. A
selective dissemination of information can then be
implemented by matching each document in the
continuous incoming data stream against the
DTD(s) modeling the user profile, and distributing
the document to a user if it is similar enough,
according to our measure, to her profile. More-
over, our evolution approach can be exploited for
automatically adapting a set of DTDs to the actual
set of documents classified against the user
profiles. The evolution of the user profiles allows
users to receive documents they actually are
interested in. During the classification of the
incoming documents against the user profiles,
some structural and content properties can be
extracted and used for the evolution of the profiles
to the new preferences the users express by
accessing such documents.
Fig. 17 shows how our classification and

evolution approaches can be integrated in an
SDI system. An SDI system receives a continuous
stream of XML documents and, by classifying
them against the user profiles, filters out the users
that are not interested in the documents. Then,
documents are broadcasted only to the interested
users. A Monitor can check the documents users
normally access in order to generate the initial user
profiles and also the documents, among those
broadcasted to a user, that she actually accesses. In
this way, a weight can be associated with the
documents actually accessed and used during the
execution of the evolution process in order to give
more relevance to these documents.

5.5. Protection of XML documents

XML security has become a relevant research
topic due to the widespread use of XML as the
language for information representation and
exchange on the Web. In [22] a suitable access
control model has been defined that addresses all
the fundamental requirements for access protec-
tion of XML documents: varying granularity
levels of protection ranging from a single element
of a document to a set of documents; the presence
into a database of both valid and well-formed
documents; hierarchical inter-linked structure of
XML documents; releasing of documents relying
on subject properties (specified by means of
credentials) instead of subject identity. Moreover,
a prototype, called Author-X [23], has been
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developed. Author-X provides facilities for enfor-
cing the security policies and for helping the
Security Officer in his work to protect the
sensitivity information contained in huge amount
of documents gathered from the Web.
In this field the matching algorithm has been

exploited for the protection of new, well-formed
XML documents that enter the database. Indeed,
an important issue is the definition of access
control policies to such documents. Because it is
most likely the case that authorization policies are
specified in terms of DTDs (i.e. at schema level), it
is important to discover whether a well-formed
document conforms to an existing DTD. In such a
case, the document can be totally or partially
covered by the policies defined for this DTD, and a
DTD-based policy can be adopted. Otherwise,
only document-based policies can be adopted to
specify all required authorizations directly on the
well-formed document.
The use of the matching algorithm has two main

advantages. First, the matching algorithm is used
for the classification of the documents against the
set of DTDs. Then, it is used for identifying the
parts of the document that are covered (or not) by
the DTD. The DTD policies are directly propa-
gated to the covered parts. Moreover, some
propagating options can be exploited for associat-
ing an authorization policy to the parts of the
document that are not covered by the DTD.

Example 13. Suppose to have an XML document
that is valid with respect to the DTD in Fig. 2 with
the exception of element author. Element author
is not valid because it contains the subelement
affiliation which is not required by the DTD.
According to the downward propagation option, if
an access control policy has been specified for the
author element, such policy can be propagated to
the affiliation subelement.

In this context, then, the matching algorithm is
used for identifying the DTD that best covers a
document. Therefore it is more relevant to
minimize the number of plus elements rather than
the minus one. This behavior can be enforced by
setting the b parameter to zero and, thus,
disregarding minus elements and giving more
relevance to plus elements in the evaluation of
the structural similarity.
The presence of the matching algorithm and of

the propagation options offer a different degree of
automation and support to the Security Officer.
The Security Officer can exploit such facilities for
automatically protecting the content of documents
entering the database, or for identifying the
policies that could be associated with the new
documents and then decide whether the automatic
policies should be enforced, or it is better to enter
new specific policies.
6. Related work

In this section we review related work for
measuring the structural similarity at document
layer, at schema layer, and between the two layers,
and compare the different approaches with ours.

6.1. Structural similarity among documents

Some approaches have been proposed [6,7] to
quantify the structural similarity between XML
documents. The main application of these propo-
sals is for structural clustering. As clustering [24]
assembles together documents with similar terms,
structural clustering assembles together documents
with a similar structure. Two relevant fields of
application of structural clustering are the integra-
tion of semi-structured data and structural analy-
sis of Web sites [6]. Indeed, grouping structurally
similar documents can help in recognizing sources
containing the same kind of information and in
presenting the information provided by a site.
Both approaches only focus on the structure of the
documents, disregarding their content, that is,
values of data content elements.
In [7] Nierman and Jagadish measure the

structural similarity among XML documents.
Since XML documents are modeled as ordered
labeled trees, they suggest to measure the distance
between two ordered labeled trees relying on the
notion of tree edit distance [25–27]. However, two
XML documents produced from the same DTD
can have very different sizes due to optional and
repeatable elements. Any tree edit distance that
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permits changes to only one node at a time will
necessarily find a large distance between such a
pair of documents, and consequently will not
recognize that these documents should be clustered
together as being derived by the same DTD. Thus,
they develop an edit distance metric that is more
indicative of this notion of structural similarity.
Specifically, in addition to insert, delete, and
relabel operations, they also introduce the insert
subtree and delete subtree editing operations,
allowing the cutting and pasting of whole sections
of a document. Then, both for computational
reasons and for improving their results in the
XML domain, they restrict themselves to ‘‘allow-
able sequences’’ of edit operations.
Flesca et al. in [6], by contrast, do not rely on

graph matching algorithms. They represent the
structure of an XML document as a time series in
which each occurrence of a tag corresponds to a
given impulse. Thus, they also take into account
the order in which tags appear in the documents.
Then, by analyzing the frequencies of the corre-
sponding Fourier transform, they can state the
degree of similarity between document structures.
These approaches measure the structural simi-

larity between two XML documents, thus their
goal is the same of the tree-to-tree transformation
problem, and is substantially different from ours,
which measures the structural similarity between a
tree (the document) and a set of trees, intensionally
represented as a DTD. Thus, as discussed above,
these approaches could be adopted to measure the
structural similarity between a document and a
DTD through the extensional approach described
in Section 3.

6.2. Structural similarity among schemas

The issue of measuring the structural similarity
between two schemas has been extensively inves-
tigated in the context of heterogeneous data
integration [2,28–30] and, recently, in the context
of clustering of XML DTDs [3].
The problem of heterogeneous data integration

is that of identifying corresponding components in
different schemas, keeping into account both the
names and the structure of schema elements. Thus,
the need arises also in that context of analyzing
structure similarity.
A recent survey on automatic schema matching

proposed a taxonomy of solutions differentiating
between schema-and-instance level, element-and-
structure level, and language-and-constraint-based
matching approaches [31,32]. Furthermore, the
distinction between hybrid and composite combi-
nation approaches is introduced. An hybrid
approach consists in the integration of many
matching approaches in the taxonomy in an
integrated system, whereas a composite approach
exploits different matching approaches and com-
bines their results in a single evaluation. Cupid
[11], LSD [10], and COMA [9] are prototypes of
data integration systems supporting XML schema
matching.
Cupid [11] is an hybrid approach that considers

both tag names and hierarchical structures of
schema. The similarity between an element of the
first schema and an element of the second schema
relies on the similarity of their components hereby
emphasizing the name and data type similarities
present at the finest granularity level (leaf level).
Learning Source Description (LSD) [10] is a
composite approach based on machine learning
techniques. The application of such a system
requires a training phase which can incur a
substantial manual effort. Finally, COMA [9] is a
composite approach, which provides an extensible
library for the application of different approaches
and supports various ways for combining match-
ing results.
Despite their differences these approaches map a

schema (expressed through a DTD or an XML
schema) into an internal schema. This internal
schema is more similar to a data guide for semi-
structured data [33] than to a DTD. Therefore,
constraints on the occurrences of an element or
group of elements are not considered in perform-
ing the structural match. In our matching algo-
rithm, by contrast, we consider both optional and
repeatable elements as well as alternative of
elements. Moreover, our matching algorithm
differs from them because it consider the match
between a value (i.e. the document) and a type (i.e.
a DTD) and the presence of the ANY and EMPTY

types.
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In [3] the authors propose XClust, an integration
strategy that involves the clustering of DTDs. A
matching algorithm based on the semantics,
immediate descendent and leaf-context similarity
of DTD elements is developed. The matching
algorithm analyzes element by element in order to
identify possible matches among direct subele-
ments, considering the cardinality of the elements
(optional, repeatable or mandatory) and the
similarity of their tags. The internal representation
of DTDs is more sophisticated than the integra-
tion systems presented above. However, they do
not consider DTDs that specify alternative ele-
ments as our matching algorithm does.

6.3. Structural similarity among data and schema

To the best of our knowledge, almost no
approach has been developed to measure structure
similarity, despite the practical relevance of the
problem, both from a data modeling and a
querying perspective. The only approaches we
are aware of are by Grahne and Thomo in [34] and
by us in [35].
In [34] the problem of determining whether

semi-structured data, represented as edge-labeled
graphs, approximately conform to a data guide is
mentioned. The focus of this approach is, how-
ever, on approximate querying: starting from a
regular path query and a regular transducer6

specifying the allowed sequences of elementary
‘‘distortions’’, the answers that are within an
approximation of the original query are deter-
mined. The transducer also defines a function for
the distance from the original query. That paper
also discusses how the approach can be used for
detecting whether data instances approximately
satisfy a schema such as a data guide. A basic
assumption in such work is that users specify a
distortion transducer, through which they can
distort the data guide through allowed elementary
distortions and then test if the database conforms
to the distorted data guide. A notion of k-
satisfaction is also introduced meaning that k is
6A transducer ðS; I ;O; t; s;F Þ is a finite set of states S; an
input alphabet I ; an output alphabet O; a starting state s; a set
of final states F ; and a transition-output function t from finite
subsets of S � In to finite subsets of S � On:
the bound of the distance between the database
and the data guide, thus providing a quantitative
measure of approximate satisfaction. The main
difference between that approach and the one we
propose in this paper is that the former is based on
the assumption that the possible deviations from
the original schema specification and their im-
portance (weight) are specified by users through
the distortion transducer, whereas we assume no a-
priori knowledge of possible deviations. More-
over, the approach in [34] has not been developed
for XML documents and DTDs, but for generic
semi-structured data and data guides represented
as edge-labeled graph. A data guide, however, is
simpler than a DTD since it does not contain
constraints on the repeatability or alternativeness
of elements. Finally, no experimental results
assessing the practical effectiveness and efficiently
of the approach have been reported.
In [35] we proposed an approach to automatic

object classification. This approach is based on an
object-oriented data model whose type system has
been extended to handle semi-structured data, for
instance with union types. In this approach a
predefined database schema exists but objects are
allowed to be created without associating them
with a class of the schema. For these objects, the
class that most closely describes the object
structure is automatically determined. The notion
of membership is weakened in weak membership,
only requiring that the components in the object
state be a subset of the components of the class.
Since an object can be weak member of several
classes, two measures are employed to determine
the most appropriate class for an object, among the
ones of which the object is a weak member. The
conformity degree measures the similarity degree
between the type of the semi-structured object and
the type of the class, and the heterogeneity degree

of the class measures how much the extension of
the class is heterogeneous. Besides the differences
resulting from the different underlying models (an
ad hoc object data model for semi-structured data
rather than XML7), the main differences between
7A relevant difference is that collection values are explicitly

described in the object type system, whereas in XML no explicit

collection value is given and thus they need to be discovered.
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that approach and the one described in this paper
are that in [35] only minus elements are considered
(weak membership does not allow plus elements)
and that tag similarity is not considered (weak
membership requires that attribute names be
identical).
7. Concluding remarks

In this paper we have proposed a matching
algorithm for measuring the structural similarity
between an XML document and a DTD. More-
over, some applications of the matching algorithm
have been presented for the classification of
XML documents against a set of DTDs, the
evolution of DTD structures, the evaluation of
structural queries, the selective dissemination of
XML documents, and the protection of document
contents.
We are currently investigating some extensions

of the matching algorithm along different direc-
tions. For what concerns the matching algorithm,
we are extending it for taking into account the
new features of XML schema with respect to
DTDs (definition of subtypes, constraints on
the repetition of elements, a richer set of types,
etc.). Moreover, for what concerns applications
we are developing a tool which integrates all
the features illustrated in the paper. Finally, we
are currently exploiting the similarity measure
as an alternative approach for clustering XML
documents.
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