
Stupid OpenGL
Shader Tricks
Simon Green, NVIDIA

Overview
• New OpenGL shading capabilities:

– fragment programs
– floating point textures
– high level shading languages

• Make possible interesting new effects
• 2 examples:

– Image space motion blur
– Cloth simulation using fragment

programs

Motion Blur
• What is motion blur?

– Rapidly moving objects appear to be
blurred in direction of motion

• What causes motion blur?
– In real cameras, film is exposed to

moving scene while shutter is open
• Why do motion blur?

– Avoids temporal aliasing (jerkiness)
– Adds realism, “cinematic” look to games
– 24fps with motion blur can look better

than 60fps without

Image Space Motion Blur
• To do motion blur correctly is hard:

– Temporal supersampling (accumulation/T-buffer)
– Distributed ray tracing

• Drawing trails behind objects is not the
same as real motion blur

• Image space (2.5D) motion blur
– Works as a post process (fast)
– Blurs an image of the scene based on object

velocities
– Preserves surface detail
– Is a commonly used shortcut in production

(available in Maya, Softimage, Shake)
– Doesn’t handle occlusion well

Algorithm
• 3 stages:

– 1. Render scene to texture
• At current time

– 2. Calculate velocity at each pixel
• Using vertex shader
• Calculate current position – previous position

– 3. Render motion blurred scene
• Using fragment shader
• Look up into scene texture

• Last two stages can be combined into
a single pass

Motion Blur

Pt-1

Pt

Velocity = dP / dt

0
1

2
3

4

Nsamples = 5

dP = Pt – Pt-1

Psample = P + dP * u

Calculating Velocities
• We need to know the window space velocity

of each pixel on the screen
• Reverse of “optical flow” problem in image

processing
• Easy to calculate in vertex shader

– transform each vertex to window coordinates by
current and previous transform

– for skinning / deformation, need to do all
calculations twice

– Velocity = (current_pos – previous_pos) / dt

• Velocity is interpolated across triangles
• Can render to float/color buffer, or use

directly

Calculating Velocities (2)
• Problem: velocity outside silhouette of

object is zero (= no blur)
• Solution: use Matthias Wloka’s trick to

stretch object geometry between previous
and current position

• Compare normal direction with motion
vector using dot product

• If normal is pointing in direction of motion,
transform vertex by current transform, else
transform it by the previous transform

• Not perfect, but it works

Geometry Stretching

N (normal)

dP (motion vector)
Pt

Pt-1

Vertex Shader Code
struct a2v {
float4 coord;
float4 prevCoord;
float3 normal;
float2 texture;

};
struct v2f {
float4 hpos : HPOS;
float3 velocity : TEX0;

};

v2f main(a2v in,
uniform float4x4 modelView,
uniform float4x4 prevModelView,
uniform float4x4 modelViewProj,
uniform float4x4 prevModelViewProj,
uniform float3 halfWinSize,
)

{
v2f out;

// transform previous and current pos to eye space
float4 P = mul(modelView, in.coord);
float4 Pprev = mul(prevModelView, in.prevCoord);

// transform normal to eye space
float3 N = vecMul(modelView, in.normal);

// calculate eye space motion vector
float3 motionVector = P.xyz - Pprev.xyz;

// calculate clip space motion vector
P = mul(modelViewProj, in.coord);
Pprev = mul(prevModelViewProj, in.prevCoord);

// choose previous or current position based
// on dot product between motion vector and normal
float flag = dot(motionVector, N) > 0;
float4 Pstretch = flag ? P : Pprev;
out.hpos = Pstretch;

// do divide by W -> NDC coordinates
P.xyz = P.xyz / P.w;
Pprev.xyz = Pprev.xyz / Pprev.w;
Pstretch.xyz = Pstretch.xyz / Pstretch.w;

// calculate window space velocity
float3 dP = halfWinSize.xyz * (P.xyz - Pprev.xyz);

out.velocity = dP;
return v2f;

}

Motion Blur Shader
• Looks up into scene texture multiple times

based on motion vector
• Result is weighted sum of samples

– Can use equal weights (box filter), Gaussian or
emphasise end of motion (ramp)

• Number of samples needed depends on
amount of motion
– 8 samples is good, 16 is better
– Ironically, more samples will reduce frame rate,

and therefore increase motion magnitude

• Effectively we are using velocity information
to recreate approximate in-between frames

Motion Blur Shader Code
struct v2f {
float4 wpos : WPOS;
float3 velocity : TEX0;

};
struct f2f {
float4 col;

};

f2fConnector main(v2f in,
uniform samplerRECT sceneTex,
uniform float blurScale = 1.0
)

{
f2f out;
// read velocity from texture coordinate
half2 velocity = v2f.velocity.xy * blurScale;

// sample scene texture along direction of motion
const float samples = SAMPLES;
const float w = 1.0 / samples; // sample weight

fixed4 a = 0; // accumulator
float i;
for(i=0; i<samples; i+=1) {
float t = i / (samples-1);
a = a + x4texRECT(sceneTex, in.wpos + velocity*t) * w;

}
out.col = a;

}

Original Image

Stretched Geometry

Velocity Visualization

Motion Blurred Image

Future Work
• Stochastic sampling

– Replaces banding with noise

• Use depth information to avoid
occlusion artifacts

• Store image of previous and current
frame, interpolate in both directions

• Motion blurred shadows, reflections

Physical Simulation
• Simple CA-like simulations were possible on

previous generation hardware:
– Greg James’ Game of Life / water simulation
– Mark Harris’ CML work

• Use textures to represent physical
quantities (e.g. displacement, velocity,
force) on a regular grid

• Multiple texture lookups allow access to
neighbouring values

• Pixel shader calculates new values, renders
results back to texture

• Each rendering pass draws a single quad,
calculating next time step in simulation

Physical Simulation
• Problem: 8 bit precision was not

enough, causing drifting, stability
problems

• Float precision of new fragment
programs allows GPU physics to
match CPU accuracy

• New fragment programming model
(longer programs, flexible dependent
texture reads) allows much more
interesting simulations

Example: Cloth Simulation
• Uses Verlet integration

– see: Jakobsen, GDC 2001

• Avoids storing explicit velocity
– new_x = x + (x – old_x)*damping + a*dt*dt

• Not always accurate, but stable!
• Store current and previous position of each

particle in 2 RGB float textures
• Fragment program calculates new position,

writes result to float buffer / texture
• Then swap current and previous textures

Cloth Simulation Algorithm
• 4 passes
• Each passes renders a single quad

with a fragment program:
– 1. Perform integration (move particles)
– 2. Apply constraints:

• Distance constraints between particles
• Floor collision constraint
• Sphere collision constraint

– 3. Calculate normals from positions using
partial differences

– 4. Render mesh

Integration Pass Code
// Verlet integration step
void Integrate(inout float3 x, float3 oldx, float3 a, float timestep2, float damping)
{
x = x + damping*(x - oldx) + a*timestep2;

}

fragout_float main(vf30 In,
uniform samplerRECT x_tex,
uniform samplerRECT ox_tex
uniform float timestep = 0.01,
uniform float damping = 0.99,
uniform float3 gravity = float3(0.0, -1.0, 0.0)
)

{
fragout_float Out;

float2 s = In.TEX0.xy;

// get current and previous position
float3 x = f3texRECT(x_tex, s);
float3 oldx = f3texRECT(ox_tex, s);

// move the particle
Integrate(x, oldx, gravity, timestep*timestep, damping);

Out.col.xyz = x;
return Out;

}

Constraint Code
// constrain a particle to be a fixed distance from another particle
float3 DistanceConstraint(float3 x, float3 x2, float restlength, float stiffness)
{
float3 delta = x2 - x;
float deltalength = length(delta);
float diff = (deltalength - restlength) / deltalength;
return delta*stiffness*diff;

}

// constrain particle to be outside volume of a sphere
void SphereConstraint(inout float3 x, float3 center, float r)
{
float3 delta = x - center;
float dist = length(delta);
if (dist < r) {
x = center + delta*(r / dist);

}
}

// constrain particle to be above floor
void FloorConstraint(inout float3 x, float level)
{
if (x.y < level) {
x.y = level;

}
}

Constraint Pass Code
fragout_float main(vf30 In,

uniform texobjRECT x_tex,
uniform texobjRECT ox_tex,
uniform float meshSize = 32.0,
uniform float constraintDist = 1.0,
uniform float4 spherePosRad = float3(0.0, 0.0, 0.0, 1.0),
uniform float stiffness = 0.2;
)

{
fragout_float Out;
// get current position
float3 x = f3texRECT(x_tex, In.TEX0.xy);
// satisfy constraints
FloorConstraint(x, 0.0f);
SphereConstraint(x, spherePosRad.xyz, spherePosRad.z);
// get positions of neighbouring particles
float3 x1 = f3texRECT(x_tex, In.TEX0.xy + float2(1.0, 0.0));
float3 x2 = f3texRECT(x_tex, In.TEX0.xy + float2(-1.0, 0.0));
float3 x3 = f3texRECT(x_tex, In.TEX0.xy + float2(0.0, 1.0));
float3 x4 = f3texRECT(x_tex, In.TEX0.xy + float2(0.0, -1.0));
// apply distance constraints
float3 dx = 0;
if (s.x < meshSize) dx = DistanceConstraint(x, x1, constraintDist, stiffness);
if (s.x > 0.5) dx = dx + DistanceConstraint(x, x2, constraintDist, stiffness);
if (s.y < meshSize) dx = dx + DistanceConstraint(x, x3, constraintDist, stiffness);
if (s.y > 0.5) dx = dx + DistanceConstraint(x, x4, constraintDist, stiffness);
Out.col.xyz = x + dx;
return Out;

}

Screenshot

Textures

Position texture Normal texture

Render to Vertex Array
• Enables interpretation of floating point

textures as geometry
• Possible on NVIDIA hardware using the

“NV_pixel_data_range” (PDR) extension
– Allocate vertex array in video memory (VAR)
– Setup PDR to point to same video memory
– Do glReadPixels from float buffer to PDR memory
– Render vertex array
– Happens entirely on card, no CPU intervention

• Future ARB extensions may offer same
functionality

Future Work
• Use additional textures to encode

particle weights, arbitrary
connections between particles
(springy objects)

• Collision detection with height fields
(encoded in texture)

References
• Advanced Character Physics, Thomas

Jakobsen, GDC 2001
• A Two-and-a-Half-D Motion-Blur

Algorithm, Max and Lerner, Siggraph
1985

• Modeling Motion Blur in Computer-
Generated Images, Potmesil, Siggraph
1983

