

Learning ActionScript 3.0

A Beginner's Guide

Rich Shupe with Zevan Rosser

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Learning ActionScript 3.0
A Beginner's Guide

by Rich Shupe, with Zevan Rosser

Copyright © 2008 Rich Shupe. All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor:  Robyn Thomas

Production Editor:  Michele Filshie

Copy Editor: Jill Steinberg

Technical Reviewer: Matthew Roberts

Proofreader: Linda Seifert

Interior Designer:  Ron Bilodeau

Cover Designer:  Mark Paglietti

Indexer: Joy Dean Lee

Print History:

December 2007:	 First edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. This book's trade dress is a trademark of O’Reilly
Media, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibil-
ity for errors or omissions, or for damages resulting from the use of the information contained herein.

This book uses RepKoverTM, a durable and flexible lay-flat binding.

ISBN-10: 0-596-52787-X
ISBN-13: 978-0-596-52787-7
[F]	

Adobe Developer Library, a copublishing partnership between O’Reilly Media Inc.
and Adobe Systems, Inc., is the authoritative resource for developers using Adobe
technologies. These comprehensive resources offer learning solutions to help devel-
opers create cutting-edge interactive web applications that can reach virtually any-
one on any platform.

With top-quality books and innovative online resources covering the latest tools for
rich-Internet application development, the Adobe Developer Library delivers expert
training, straight from the source. Topics include ActionScript, Adobe Flex®, Adobe
Flash®, and Adobe Acrobat® software.

Get the latest news about books, online resources, and more at adobedeveloper-
library.com.

www.iskopaj.net

http://www.iskopaj.net

�

Preface. xi

Part I Getting Started	 1

Chapter 1
ActionScript Overview.. 3

What Is ActionScript 3.0?. 4
The Flash Platform.. 7
Procedural Versus Object-Oriented Programming.. 8
The Document Class.. 9
Legacy Code Compatibility.. 11

Chapter 2
Core Language Fundamentals.. 13

Miscellaneous Basics.. 15
Variables and Data Types. 16
Conditionals. 17
Loops.. 20
Arrays.. 23
Functions.. 24
Custom Objects.. 26
this.. 27
Absolute versus Relative Addresses.. 27

Contents

Contentsvi

Part II Graphics and Interaction	 29

Chapter 3
Properties, Methods, and Events.. 31

Inherited Attributes.. 32
Properties.. 32
Events.. 34
Methods.. 39
Event Propagation.. 41
Frame and Timer Events.. 43
Removing Event Listeners.. 46

Chapter 4
The Display List. 49

The Sum of Its Parts.. 50
Adding and Removing Children.. 58
Managing Object Names, Positions, and Data Types. 63
Changing the Display List Hierarchy.. 65
A Dynamic Navigation Bar.. 68

Chapter 5
Timeline Control. 71

Playhead Movement.. 71
Frame Labels.. 74
Frame Rate.. 81
A Simple Site or Application Structure.. 82

Chapter 6
OOP.. 87

Classes.. 89
Inheritance.. 93
Composition.. 99
Encapsulation.. 103
Polymorphism.. 106
Navigation Bar Revisited.. 111

Contents vii

Chapter 7
Motion.. 115

Basic Movement.. 116
Geometry and Trigonometry.. 119
Physics.. 125
Programmatic Tweening.. 130
Timeline Animation Recreations.. 131
Particle Systems.. 137

Chapter 8
Drawing with Vectors. 141

The Graphics Class.. 142
The Geometry Package . 149
The Motion Package.. 158
9-Slice Scaling .. 159
Applied Examples.. 161

Chapter 9
Drawing with Pixels. 167

Bitmap Caching.. 168
The BitmapData Class.. 170
Blend Modes.. 177
Bitmap Filters. 180
Color Effects. 188
Image Encoding and Saving.. 192

Contentsviii

Part III Text	 195

Chapter 10
Text. 197

Creating Text Fields.. 198
Setting Text Field Characteristics.. 198
Selecting Text.. 200
Formatting Text.. 202
Formatting with HTML and CSS. 206
Triggering ActionScript from HTML Links.. 209
Parsing Text Fields .. 210
Loading HTML and CSS.. 214

Part IV Sound and Video	 219

Chapter 11
Sound. 221

ActionScript Sound Architecture.. 222
Internal and External Sounds.. 223
Playing, Stopping, and Pausing Sounds. 226
Buffering Streaming Sounds.. 228
Changing Sound Volume and Pan.. 229
Reading ID3 Metadata from MP3 Sounds. 231
Visualizing Sound Data. 234
Working with Microphone Sound.. 236
Waveform Visualization.. 239

Chapter 12
Video. 251

Encoding. 252
Components.. 254
Full-screen Video.. 258
Captions.. 260
Coding Your Own Video Playback. 272

Contents ix

Part V Input/Output	 277

Chapter 13
Loading Assets.. 279

Loading Sound and Video.. 280
Loading Text.. 281
Loading Display Objects.. 285
Communicating Across ActionScript Virtual Machines.. 289
Taking a Brief Look at Security.. 291

Chapter 14
XML and E4X. 297

Understanding XML Structure.. 298
Creating an XML Object. 302
Reading XML.. 303
Writing XML.. 310
Deleting XML Elements.. 313
Loading External XML Documents. 314
Communicating with XML Servers. 315
An XML-Based Navigation System.. 319

Part VI Programming Design and Resources	 331

Chapter 15
Programming Design and Resources.. 333

Programming Design Methodologies.. 333
Object-Oriented Design Patterns.. 339
Resources.. 345

Index.. 351

xi

When deciding if the book in your hands will be a good resource for your
library, it might help you to know why we, the authors, wrote this particular
book. We are both developers who use Flash extensively in our everyday
work, but we are also teachers. Collectively, we have taught thousands of stu-
dents at multiple universities, training facilities, and conferences, and yet we
share one significant common experience. We were consistently told that no
feature-rich ActionScript book satisfied this beginner audience.

At first we were surprised at how truly overwhelming this sentiment was,
but then we realized that we didn’t have enough information to form an
opinion. We didn’t use beginner resources in our work and had only our
own curriculum to go on. So, we started to research how we could fill this
void and provide a book to our students that would really help them beyond
the classroom. We talked with a lot of students, user groups, and instructors
and began to sketch out a book that we thought would put what we learned
into practice.

When ActionScript 3.0 was released, the interested audience grew dra-
matically. Reactions ranged from excitement to uncertainty to fear, as the
ActionScript 3.0 learning curve became apparent. Talk of the Flash Platform
splintering into Flex (“developer”) and Flash (“designer”) camps left many
designers and beginner programmers more uncertain than ever about their
futures. When Flash CS3 Professional was released, the need for a guiding
resource didn’t dissipate (and, in many cases, increased), and we knew it was
time to develop the book you hold in your hands.

We hope this book will help Flash users of all kinds—from curious to intimi-
dated, from eager to experienced—embrace the power and performance of
ActionScript 3.0. We hope these pages will ease the transition from whatever
prior version, if any, of ActionScript might have been in use, to the biggest
architectural change to the language since its inception.

Preface

Prefacexii

Who This Book Is For
This book is aimed at Flash designers and developers coming to ActionScript
3.0 for the first time, as well as beginner programmers looking to brush up
on their ActionScript 3.0 knowledge. Although we feel this volume covers
the basics fairly well, both a familiarity with the Flash interface and a small
amount of scripting experience is assumed.

We believe we’ve explained the material herein clearly and concisely enough
for any reader to get started, so even if you are new to programming, we
welcome you! However, if you have a few moments, we recommend that you
skim Chapter 2 to see if you think we’ve provided enough core programming
fundamentals to fill any gaps in your knowledge base. Throughout this book
we cover relevant syntax with extensive comments, but the first two chapters
serve as a foundation upon which the rest of the chapters are built.

Similarly, if you are a relatively experienced ActionScript 2.0 programmer, you
may wish to glance at a few chapters of interest before deciding whether or not
this book is for you. We highlight ActionScript 2.0-to-ActionScript 3.0 migration
issues, but want you to be happy with the tone and straightforward approach
we’ve adopted before you decide to rely on this book. We endeavor to teach the
basic principles behind each chapter topic in a form, chapter number, and page
count that is easily digested. In any case, take a moment to read through the
next two sections to make sure this is the right book for you.

How This Book Is Organized
Unlike any other book on ActionScript 3.0 that we’ve seen, this book does
not rely extensively on object-oriented programming (OOP) principles. If you
are unfamiliar with this term, don’t worry. You have the correct book in your
hands, and you’ll learn more with each successive chapter.

We demonstrate key chapter concepts using focused syntax that is executable
within the timeline, and gradually introduce OOP concepts along the way.
The first five chapters—including coverage of the new ActionScript 3.0 event
model and means of displaying content (the display list)—do not introduce
more than a modicum of content that is class- or OOP-related. Starting in
Chapter 6, we provide increased object-oriented coverage, beginning with
an OOP primer, and continuing for the remaining nine chapters with select
class- or OOP-based applied examples.

If you’re interested in immersing yourself in OOP examples from the outset,
all of the main chapter examples are also available in class form in the down-
loadable source code. This not only provides a jumpstart for those with some
OOP experience, but it also serves as a self-guided learning opportunity if
you find yourself a bit ahead of the learning curve. Best of all, Flash CS3
Professional’s new Document Class feature allows you to start using classes
more quickly than ever before, allowing a class to serve as a kind of stand-in

Preface xiii

for the main timeline of any .fla file. All you have to do to use it is enter the
name of the class in the Flash Property Inspector. (If you can’t wait to learn
more, jump to the section “The Document Class” in Chapter 1.)

Finally, we’ve designed an expanded project to go hand in hand with this book.
Beginning with Chapter 7, the first chapter following our OOP primer, the
downloadable source code features a class package for every chapter. The class-
es include handy utility methods and properties that will be used in the supple-
mental project. When you feel comfortable with the syntax of ActionScript 3.0,
and the basic principles of object-oriented programming, you can reinforce
what you’ve learned by building the project. The files are available from the
book’s companion web site, which we’ll talk about in just a moment.

What Is—and Isn’t—In This Book
We’ve tried to design a book that covers as many ActionScript essentials as we
could include, given its size and scope.

What’s In
Part I: Getting Started

Part I begins with Chapter 1, discussing ActionScript 1.0, 2.0, and 3.0,
and how the different versions are used in the Flash CS3 Professional
application and Flash Player. It concludes with Chapter 2 looking
at the building blocks that are ActionScript’s language-neutral core
fundamentals.

Part II: Graphics and Interaction

Chapter 3 leads off Part II, the largest section of the book, with explanations
of the basic vocabulary of ActionScript: properties, methods, and events
(including ActionScript 3.0’s significantly different event model). Chapter 4
focuses on displaying content dynamically, Chapter 5 covers timeline con-
trol, and Chapter 6 introduces OOP. Chapter 7 discusses animating objects
using ActionScript, and Chapters 8 and 9 explain drawing with code.

Part III: Text

Chapter 10 is the only chapter in Part III and focuses on text formatting,
HTML support, and the use of cascading style sheets.

Part IV: Sound and Video

Chapter 11 opens Part IV with a discussion about sound. In addition to
manipulating internal and external sounds, it touches on parsing of ID3
metadata and culminates with a sound visualization exercise, drawing a
sound’s waveform during live playback. Chapter 12 wraps up Part IV by
demonstrating how to play video both with and without components,
as well as how to subtitle your videos for accessibility and multilingual
support.

Prefacexiv

Part V: Input/Output

Part V focuses on loading assets into Flash and sending data out to a
server or another client. Chapter 13 covers loading SWF files, images, and
URL-encoded data, as well as communicating between ActionScript 3.0
and ActionScript 1.0/2.0 loaded SWFs, and a brief discussion of security
issues. Chapter 14 covers XML and the new standard for working with
XML that makes the task as easy as working with other ActionScript
objects, methods, and properties.

Part VI: Programming Design and Resources

We wrap up the book with Part VI. Chapter 15 takes a short look at pro-
gramming methodologies, object-oriented design patterns, and resources
for further learning.

What’s Not
This book focuses on ActionScript 3.0, which applies to most segments of the
Flash platform, but it is presented within a Flash CS3 Professional context. As
such, it does not include coverage of Flex, AIR, Flash Media Server, or other
evolving Flash platform technologies.

Further, while it does include coverage of object-oriented programming
techniques, it does not address this material in great depth. For more infor-
mation about this point, please see the previous section, “How This Book Is
Organized.”

As an entry-level text, this book has understandable constraints that limit
the extent of coverage we can offer. Browsing through the Table of Contents
should give you a pretty good idea of the topics we’ll be featuring and, in
some cases, the depth in which we will cover the material. However, there
are a few notable areas of ActionScript that are not discussed at all due to
their intermediate or advanced nature. These include database connectivity,
regular expressions, programming for mobile devices, Web services, remoting,
and creating your own components.

We don’t claim that this is a reference book. If you’re an experienced
ActionScript programmer looking for a quick start with version 3.0 of the
language, we recommend that you read the ActionScript 3.0 Cookbook, by
Joey Lott, Keith Peters, and Darron Schall (O’Reilly). If you are looking for a
comprehensive reference book, we recommend trying Essential ActionScript
3.0 by Colin Moock (O’Reilly). Our book may serve as a useful companion
to one of these titles, particularly if you are not an advanced user, but it is not
a substitute for either.

Preface xv

Companion Web Site
All the exercises included in this book are available for download from
the book’s companion web site, http://www.LearningActionScript3.com.
Supplemental materials are also available, including additional exercises,
self quizzes, extended examples, ongoing learning suggestions, an expanded
resource list, reader comments, errata, and more. Various community
resources will be added to the site, such as a forum in which we will partici-
pate. Both authors can be reached directly through this web site.

Typographical Conventions
Used In This Book
The following typographical conventions are used in this book:

Plain Text

Indicates menu titles, menu options, menu buttons, and keyboard modi-
fiers (such as Alt and Command).

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions,
pathnames, and directories.

Constant width

Indicates ActionScript code, text output from executing scripts, XML tags,
HTML tags, and the contents of files.

Constant width bold

Shows commands or other text that should be typed literally.

Constant width italic

Shows text that should be replaced with user-supplied values.

NOTE

A note gives additional information, such
as resources or a more detailed explana-
tion.

WARNING

This box indicates a warning or caution.

Prefacexvi

Using Code Examples
This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant por-
tion of the code. For example, writing a program that uses several chunks of
code from this book does not require permission. Selling or distributing a
CD-ROM of examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code does
not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: Learning ActionScript 3.0
by Rich Shupe and Zevan Rosser. Copyright 2008 O’Reilly Media, Inc.,
978-0596527877.

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)

(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at:

http://www.oreilly.com/catalog/9780596527877

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and
the O’Reilly Network, see our web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/9780596527877
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Preface xvii

Acknowledgments
Rich and Zevan would like to give special thanks to their peerless
O’Reilly team: Robyn Thomas, Steve Weiss, Michele Filshie, Matthew
Roberts, Jill Steinberg, Joy Dean Lee, Ron Bilodeau, Phil Dangler, Linda
Seifert, Mark Paglietti, Karen Montgomery, and Laurie Petrycki. This
team of wonderful people bent over so far backwards for this book,
we heard spines cracking all over the country. We couldn’t have been
in better hands. Extra special thanks go to Robyn for endless patience
and support.

Zevan would like to thank: Rich Shupe, The School of Visual Arts, Jesse
Reznick and the creative team at SOM, Ann Oren, all of his students, and his
family.

Rich would like to thank: Zevan Rosser, Jodi Rotondo, Sally Shupe, Steven
Mattson Hayhurst, Thomas Yeh, Aaron Crouch, Anita Ramroop, and his fam-
ily for helping make this book possible.

Rich would also like to show his appreciation for:

Bruce Wands, Joe Dellinger, Russet Lederman, Mike Barron, Jaryd
Lowder, Diane Field, The School of Visual Arts, and all his students.

Lynda Weinmann, Bruce Heavin, Toby Malina, Christoph Weise, Kevin
Skoglund, and everyone at FlashForward.

Terry O’Donnell, Russell Jones, and DevX.com; Karen Schneider; Paul
Kent, Kristen Margulis, and IDG; John Davey and Flash on the Beach;
Dave Schroeder and Flashbelt; Susan Horowitz, William Morrison, and
University of Hawaii’s Outreach program.

Mike Downey, Mike Chambers, Richard Galvan, Nivesh Rajbhandari,
Mally Gardiner, Jeff Kamerer, Michael Ninness, John Nack, Pete Falco,
and Adobe.

Aral Balkan, Pete Barr-Watson, Brendan Dawes, Chris Georgenes, Mario
Klingemann, Seb Lee-Delisle, André Michelle, Erik Natzke, Keith Peters,
Tim Saguinsin, Grant Skinner, Craig Swann, Jared Tarbell, Carlos Ulloa,
and no doubt others that I’m forgetting for support and/or inspiration.

Welcome Mina! This book is for Sally and ?....

•

•

•

•

•

•

Prefacexviii

About the Authors
Rich Shupe is the founder and president of FMA—a full-service multimedia
development company and training facility in New York City. Rich teaches
a variety of digital technologies in academic and commercial environments,
and has frequently lectured on these topics at FlashForward, Flash on the
Beach, Macworld, and other national and international events. He is currently
on the faculty of New York’s School of Visual Arts in the MFA Computer Art
department. As a technical writer, Rich is a regular columnist at DevX.com
and the author of multiple books, including Flash 8: Projects for Learning
Animation and Interativity (O’Reilly), Flash CS3 Professional Video Training
Book (Lynda.com/Peachpit), and the CS3 Web and Design Workflow Guides
(Adobe). He also presents video training for Lynda.com.

Zevan Rosser is a freelance designer/programmer/consultant and com-
puter artist. He teaches ActionScript and Flash animation at New York’s
School of Visual Arts in the Undergraduate and Continuing Education
programs, and has acted as thesis advisor for a handful of masters stu-
dents. He also teaches ActionScript and Flash at FMA in New York. When
he’s not working on commercial projects, he works on his personal site,
http//www.shapevent.com.

Colophon
Our look is the result of reader comments, our own experimentation, and
feedback from distribution channels. Distinctive covers complement our
distinctive approach to technical topics, breathing personality and life into
potentially dry subjects. The text font is Linotype Birka; the heading font is
Adobe Myriad Pro.

�

In this part

Chapter 1
ActionScript Overview

Chapter 2
Core Language
Fundamentals

Getting Started Part I

Part I starts this book off with a collection of basic overviews, spanning
Chapters 1 and 2. It begins with a survey of ActionScript, providing a list of
new feature highlights, a brief explanation of procedural versus object-orient-
ed programming, and an important note about how this book is organized.

It concludes with a review of core language fundamentals, most of which
remain consistent across all versions of ActionScript. The material at the out-
set of the book serves as an introduction to ActionScript for those new to the
language, or as a refresher for those already familiar with it, and allows you
to focus later on ActionScript 3.0-specific syntax.

�

In This Chapter

What Is ActionScript 3.0?

The Flash Platform

Procedural Versus Object-
oriented Programming

The Document Class

Legacy Code Compatibility

What’s Next?

While you likely know what ActionScript is and are eager to begin working
with the new version, a brief overview of its development will give you some
insight into its use—particularly related to Flash Player and how it handles
different versions of ActionScript. This brief introductory chapter will give
you a quick look at where ActionScript 3.0 fits into your workflow, and will
cover:

What Is ActionScript 3.0? It’s to be expected that a new version of
ActionScript will bring with it new features. However, this version has
been written anew from the ground up and is even handled separately
from previous versions of ActionScript at runtime. This intentional splin-
tering of Flash Player affords significant performance increases, but also
brings with it limitations as to how multiple versions of ActionScript
interact.

The Flash Platform. At the time of this writing, ActionScript 3.0 is the
internal programming language of Flex and AIR (the Adobe Integrated
Runtime application). Differences in compiling and environment-specific
attributes prevent every file written in ActionScript 3.0 from working in
every aspect of the Flash Platform, but the fundamentals—indeed the
bulk—of the language is the same throughout.

Procedural Versus Object-Oriented Programming. A great deal of
attention has been focused on the object-oriented programming (OOP)
capabilities of ActionScript 3.0, and the power and robustness of the lan-
guage really shine in this area. However, you’ll be happy to learn that a
move to ActionScript 3.0 doesn’t mean that you must become an expert
at OOP. It is still possible to use a structured collection of functions,
which characterize procedural programming, to author ActionScript 3.0
projects. In addition, using Flash CS3, it is still possible to code in the
timeline, rather than coding exclusively with external classes. If you prefer
object-oriented programming, enhancements to ActionScript 3.0’s OOP
infrastructure make it more robust and bring it more in line with the fea-
tures of other important, OOP-based languages (such as Java) and make
moving between such languages a bit easier.

•

•

•

ActionScript
Overview

Chapter 1

Part I, Getting Started�

What Is ActionScript 3.0?

The Document Class. Object-oriented programming is not for everyone,
but for those starting on this journey, Flash CS3 offers a simpler entrance
to an OOP application by way of the Document class. An attribute of the
Properties Inspector, you need only specify which external class is your
starting point, and no timeline script is required.

Legacy Code Compatibility. Because ActionScript 3.0 cannot co-mingle
with previous versions of the language in the same file, developing proj-
ects that support older code is a chllenge. We’ll briefly introduce the
issues involved, and discuss them in greater depth in a later chapter.

What Is ActionScript 3.0?
Although the new version of Flash’s internal scripting language contains
much that will be familiar to users of prior versions, it’s probably best to think
of ActionScript 3.0 as entirely new, for a few simple reasons. First, a few things
are quite different, such as the event model and the way assets are displayed.
Second, subtle changes run throughout the language and require some atten-
tion until they become second nature. These are usually small concerns, such
as a slight change in the name of a property.

Most importantly, however, ActionScript 3.0 has been rewritten from the
ground up and uses a different code base than prior versions of the language.
This optimization provides relatively dramatic performance increases, but it
means that ActionScript 3.0 code cannot be mixed with prior versions of the
language in the same file.

The newness of this version, however, shouldn’t intimidate you. It’s true
that the learning curve for ActionScript 3.0 is steeper than for prior versions,
but that is usually a function of its robustness more than one of difficulty.
Typically, there is an adjustment period during which users must occasion-
ally adapt to a slightly new way of doing things.

To help you get over any possible trepidation, here’s a look at some of the
highlights of the new features of ActionScript 3.0. Keeping these benefits
in mind may help make it easier to accept change, particularly when that
change may initially seem tedious or overly complicated. Select new features
include:

More detailed error reporting

ActionScript 3.0 requires strict data typing of variables, arguments, func-
tion returns, and so on. This data typing is discussed in Chapter 2, but
boils down to telling the compiler what kind of data you expect to be
working with at any specific time. Data type checking was introduced in
ActionScript 2.0 but was previously optional. The heightened data typing
enforcement improves error checking and provides more information while
coding to allow you to correct the problem. Further, ActionScript 3.0 now

•

•

What Is ActionScript 3.0?

Chapter 1, ActionScript Overview �

enforces static data typing at runtime. This improves data type reliability
at runtime, and also improves performance and reduces memory usage
because the data types are stored in machine code rather than having to be
dynamically addressed at runtime.

Syntax improvements

Syntax issues have been unified and cleaned up throughout the language.
For example, property names have been clarified in some cases, and have
been made consistent by removing the occasional leading underscores, as
you’ll see in Chapter 3. Also, multiple, subtly different ways of approach-
ing the same or similar tasks have been made consistent, such as when
loading external assets (discussed in Chapter 13) or linking to a URL (as
seen throughout the book).

New display architecture

The many previous methods to dynamically add something to the display
environment are now consolidated. The new display list simplifies this
process significantly and also makes it easier to change the visual stack-
ing order, as well as parent, child, and sibling hierarchical relationships,
of display objects. As a major change introduced by ActionScript 3.0, we
discuss this at length in Chapter 4.

New event architecture

Still another example of improved consistency, all events are now fielded
by event listeners—essentially listening for a specific event to occur, and
then reacting accordingly. The new event model is also more powerful,
allowing mouse and keyboard events to propagate through multiple
objects in the display list. The event model is discussed in Chapter 3.

Improved XML handling

A formerly cumbersome process, working with complex XML documents
is now a pleasure with ActionScript 3.0. Adopting the standard commonly
referred to as E4X, ActionScript now treats XML objects in a much more
intelligent and familiar manner. The new approach allows you to use the
same dot syntax to string related objects together.

More text scripting options

New text-processing methods now allow for much finer control over text
manipulation. You can now find the text of a particular line in a text field,
the number of characters in that line, and the character at a specified
point (such as under the mouse). You can also find the index in the text
field of the first character in a paragraph, and even get the minimum-
bounding rectangle surrounding any specific character. All these options
not only make working with a text field easier, but also allow a tighter
integration with the lines and characters in a field and their surrounding
stage elements. Text is discussed in Chapter 10.

Part I, Getting Started�

What Is ActionScript 3.0?

New regular expressions

Another boon to text handling is the new native support for regular
expressions. Regular expressions are like text manipulation on steroids.
Instead of manipulating only specific, known strings of characters, you
can now manipulate text using wild cards, character types (numeric,
alpha, punctuation, and so on), white space (spaces, tabs, returns), repeat-
ing characters, and more. A simple example of regular expression use can
be found in Chapter 10.

More sound management options

ActionScript 3.0’s new sound capabilities are among the most eye-catch-
ing changes to the language. On a practical level, they improve access to
both individual sounds and to all sounds playing. Sounds are now placed
into separate channels, making it easier to work with multiple individual
sounds, but also funnel all sounds through a sound mixer for collective
control. You can also now get the amplitude and frequency spectrum data
from sounds during playback. Sound is discussed in Chapter 11.

New access to raw data

For more advanced needs, you can now access raw binary data at runtime.
Individual bytes of data can be read during download, during sound
playback, or during bitmap data manipulation, to name a few examples.
These bytes can be stored in a large list and still be accessed quickly and
efficiently. We’ll show one example of this technique in Chapter 11 when
discussing sound visualization.

New automatic scope management

In a programming language, the word scope is sometimes used to define
the realm in which an object lives. A Flash asset, such as a movie clip,
might be in one part of the Flash movie but not another. For example,
a child movie clip might be nested inside one of two movie clips found
in the main timeline. That nested movie clip exists within one clip but
not the other. Its scope, therefore, is restricted to its parent. Programming
structures have limited scope, as well, and the challenge is making sure
you work within the correct scope when addressing those structures.
ActionScript 3.0 greatly simplifies this by automatically tracking scope as
you program.

Improved object-oriented programming

Object-oriented programming structures have also been improved in
ActionScript 3.0 with the inclusion of sealed classes and new namespaces,
among other things. We’ll discuss aspects of OOP in this chapter, as well
as in Chapter 6, and provide class-based examples throughout the book.
New in ActionScript 3.0, all classes are sealed by default, allowing only
those properties and methods defined at author time to exist in the class

The Flash Platform

Chapter 1, ActionScript Overview �

at runtime. If you do find the need to change classes at runtime—by add-
ing properties, for example—you can still do so by making the classes
dynamic. Additionally, namespaces, including the ability to define custom
namespaces, allow finer control over classes and XML manipulation.

The Flash Platform
It’s important to note that this book focuses primarily on developing
ActionScript 3.0 applications using the Flash CS3 Professional integrated
development environment (IDE). However, ActionScript 3.0 is the program-
ming language for other Flash Platform applications, as well—notably Flex
and AIR (the Adobe Integrated Runtime desktop delivery application).

This means that the scripting skills you develop in Flash CS3 will be largely
applicable in other areas of the Flash Platform, extending your reach as a
programmer. There are, however, some important differences to understand
when examining the big picture of cross-application scripting. We’ll give you
just a few brief examples here to consider.

To start with, Flash and Flex have different compilers so there is no guarantee
that your project will compile correctly in both applications. You can use Flex
Builder (the Flex compiler) to compile code-only ActionScript SWFs without
the Flex framework, and load them into Flash CS3-generated projects. You
can also load Flash CS3-compiled SWFs into a Flex project. However, as soon
as you depart from core language needs, things start to get sticky.

For example, Flex does not have the resources of the Flash IDE to create
visual assets (such as movie clips) and, by the same token, Flash does not
support the Embed tag used by Flex to include such assets. This means that
the same code cannot always be used seamlessly when such custom visuals
are required. Similarly, the component architecture is different, including a
different format and a component set that do not match.

This issue with visual assets has been a hotly debated issue for a while, and
progress is being made to smooth the waters a bit. Adobe released a patch for
Flex 2, and Flex 3 is in public testing at the time of this writing, improving
the compatibility of components. However, it will probably be a while before
moving code to and from these applications will be a comfortable process,
if it ever happens. At a brisker pace, however, AIR development is becoming
more of a crossover affair. Adobe is continuing to work on AIR authoring
workflows that originate in Flash CS3.

The thing to keep in mind is that the ActionScript 3.0 language skills you
develop will ease your move between applications in the Flash Platform, even
if you must work with different authoring tools or compilers to end up with
a finished product.

Note

AIR projects can also include HTML,
JavaScript, and PDF, but ActionScript
3.0 is a large part of its appeal and
the language most relevant to this
discussion.

Note

AIR projects can also include HTML,
JavaScript, and PDF, but ActionScript
3.0 is a large part of its appeal and
the language most relevant to this
discussion.

Part I, Getting Started�

Procedural Versus Object-Oriented Programming

Procedural Versus Object-Oriented
Programming
Much discussion has been made over the pros and cons of procedural ver-
sus object-oriented programming. To touch briefly on this, here is a little
background concerning the evolution of ActionScript. ActionScript started
as a sequential programming language, meaning that scripting was limited
to a linear sequence of instructions telling Flash what to do in a step-by-step
manner. This approach to scripting was not terribly flexible and did not
promote reuse.

As the language evolved, it became a procedural programming language.
Like sequential programming, procedural programming relied on a step-by-
step set of instructions but introduced a more structured, modular approach
to scripting. Procedures, otherwise known as functions (or, sometimes, sub-
routines), could be executed again and again as needed from different parts
of a project, without copying and pasting copies of the code into the ongoing
sequence of instructions. This modularity promoted reuse, and made the
code easier to edit and more efficient.

Scripters in search of an even greater degree of modularity and reuse gravitat-
ed toward object-oriented programming. OOP languages create programs that
are a collection of objects. Objects are individual instances of classes—collec-
tions of code that are self-contained and do not materially alter or disrupt
each other. Dividing code into small capsules, appropriately known as encap-
sulation, is one of the hallmarks of an OOP language. Another important fea-
ture of OOP is inheritance, or the ability to derive classes from parent classes,
passing on specific characteristics from the parent.

A classic example of OOP structure, and specifically inheritance, defines a set
of transportation vehicles. You might start with a generic Vehicle class that
includes traits common to all vehicles, such as the basic physics of movement.
You might then create three subclasses: GroundVehicle, WaterVehicle, and
AirVehicle. These classes would alter or introduce traits specific to ground,
water, and air travel, respectively, but not yet be complete enough to repre-
sent an actual vehicle. Further derived classes might be Car and Motorcycle
(descending from GroundVehicle), Boat, and Submarine (descending from
WaterVehicle), and Plane and Helicopter (descending from AirVehicle).
Depending on the complexity of your system, you can carry on this process,
creating individual models with individual settings for fuel consumption,
friction, and so on.

As you can probably imagine, this approach to development adds additional
power, flexibility, and prospects for reuse. These benefits, among others,
sometimes position object-oriented programming as the best approach to a
problem. However, there is a tendency among some programmers to believe
that OOP is the best solution to all problems or, effectively, the only solution.
This is a faulty assumption.

The Document Class

Chapter 1, ActionScript Overview �

OOP is often best for very large projects, or for working with a team of pro-
grammers, but it can often be overkill for small projects. Additionally, for the
uninitiated, it can significantly increase the learning curve, and distract from
key topical concepts during your studies. In short, OOP is not always the best
tool for the job. Procedural programming still has its place, and Flash CS3
allows you to explore and employ both programming paradigms.

This book attempts to introduce material using both procedural and OOP
where appropriate. Using object-oriented practices is a fine goal, and one that
we will encourage in this volume. However, we will try first to focus on the
material central to each chapter, highlighting syntax and explaining how and
why each topic should be addressed in code.

In general terms, we will focus on procedural programming prior to Chapter
6; this chapter serves as a transition chapter between procedural and OOP
practices. After Chapter 6, the beginning of each chapter will focus on the
topics being discussed, without intrusion by the surrounding OOP class
structures. When appropriate, however, each chapter will end with an applied
OOP example.

This is our preferred approach to presenting material for all possible users—
in both procedural and OOP formats. It is our hope that, regardless of your
skill and experience, you will home in on the topics at hand, and then work
in the timeline, or in classes, based on your comfort level.

The Document Class
If you decide you would like to start thinking in OOP terms right away, we
will show you how to easily take a step in that direction. Flash CS3 intro-
duced a new feature that simplifies associating a main class, or application
entry point with your FLA. It is called the document class and it does all the
work of instantiating the class for you. This means you don’t need any code
in the timeline at all, and can edit all examples in Flash or the external text
editor or development environment of your choice.

Let’s start with a simulated chapter example that you might use in the time-
line. It does nothing more than use the trace() method to place a word into
the fOutput panel—an authoring-only panel that accepts text output from
your file.

trace("Flash");

To create a document class, you’re going to create a kind of wrapper that
encloses the trace() method in the correct class syntax.

Note

If you don’t plan to start using OOP
until we roll it out in later chapters,
feel free to skip this section as it will be
repeated in Chapter 6. We will provide
minimal explanation here just to get you
going using the document class, and will
explain this material in greater detail in
later chapters throughout the book.

Note

If you don’t plan to start using OOP
until we roll it out in later chapters,
feel free to skip this section as it will be
repeated in Chapter 6. We will provide
minimal explanation here just to get you
going using the document class, and will
explain this material in greater detail in
later chapters throughout the book.

Part I, Getting Started10

The Document Class

Create a new ActionScript file (rather than a new FLA document) and type
the following document class shell:

package {

 import flash.display.MovieClip;

 public class Main extends MovieClip {

 public function Main() {

 }

 }
}

The first line, along with the closing brace in line 12, defines the class’s pack-
age. A package is a mandatory structure that ensures your class is known to
the compiler. Next, you must import any classes that you need to use in your
package.

A document class essentially serves as a shortcut for creating an instance of
a movie clip or sprite (a new Flash object that is nothing more than a one-
frame movie clip) and adding it to the display list so it can be displayed by
Flash Player. (This is true even when there is nothing to display, as in this
case. We will cover manipulating the display list in Chapter 4.)

All document classes must be derived from either the MovieClip or Sprite
class. (Other custom classes that are not document classes do not need to be
extended from MovieClip or Sprite if that is not appropriate.) This example
uses MovieClip so you must import the MovieClip class, as seen in line 3.

Line 5, along with its closing brace on line 11, is the class definition. Its name
is arbitrary but, when naming it, you should follow a few basic rules and
conventions. The name should be one word that does not already exist in
ActionScript, it should start with an alpha character (rather than a number
or other character), and it is typically capitalized. The class must be public,
meaning that other classes can access the constructor, and it must extend
MovieClip or Sprite, as described previously.

Line 7, along with its closing brace on line 9, is the class constructor. This is
the main function that automatically runs when creating an instance of this
class. It, too, must be public and must have the same name as the class. Other
functions (if any) can, and must, have unique names. All that remains is to
add the lone method required in this case. The constructor must trace “Flash”
to the Output panel, so add the following to line 8:

 public function Main() {
 trace("Flash”);
 }

Once finished, you must save the file in the same directory as your FLA file
for now. (Later on, you’ll learn how to place your class files in other locations.)
You must give the file the same name as the class, but add an .as extension.

1�
2�
3�
4�
5�
6�
7�
8�
9�
10�
11�
12�

7�
8�
9�

Legacy Code Compatibility

Chapter 1, ActionScript Overview 11

Therefore, this file should be named Main.as. Now create a new FLA file,
choosing ActionScript 3.0 as its programming language version, and save it
in the same directory as your previously created class file. The name of the
FLA is unimportant.

Finally, open the Properties Inspector and add the name of your document
class, not the name of the document itself, in the Document Class field. In
this case, type Main instead of Main.as, as seen in Figure 1-1.

Figure 1-1. Adding a document class to your FLA

Now preview your file. Doing so will create an instance of the Main class
(which extends MovieClip and, therefore, behaves like a movie clip) and add
it to the display list. The class will trace “Flash” to the output panel, and your
test application will be complete.

Hereafter, you can try any of our timeline code in a document class of your
own. Initially, you probably won’t know which classes to import or how to
make any possible changes to variables or similar structures to conform to
the class syntax. However, all the sample code will come with an accompany-
ing class file for testing. You can use those files whenever you wish until you
get used to the document class format.

Legacy Code Compatibility
I’d like to end this chapter with a small caveat. You cannot mix ActionScript
1.0 or 2.0 code with ActionScript 3.0 code in the same SWF. You are unlikely
to do this if you’re learning from scratch, but you may run into this situation
if you attempt to update legacy projects by adding ActionScript 3.0 code.

If you ever have the need to run a discrete mixture of ActionScript 3.0 and
a prior version of the language, such as showing a legacy file within a new
demo interface shell, you can do so by loading a SWF. An ActionScript 3.0
file can load a SWF created in ActionScript 1.0 or 2.0, but it cannot access the
older SWF’s variables or functions. For all intents and purposes, the same is
not true in reverse. An older SWF cannot load an ActionScript 3.0 SWF.

Part I, Getting Started12

What’s Next?

In Chapter 13, we will discuss how to communicate between these two dis-
crete SWFs using a special process. For now, however, just remind yourself
again that you cannot combine ActionScript 3.0 with older versions of the
language in the same file.

What’s Next?
Now that you know a little more about ActionScript 3.0 and the Flash
Platform, it’s time for a look at some of the fundamentals of the language.
By reviewing version-independent concepts at the outset, we can focus on
new syntax in subsequent chapters. If you have a lot of experience with
ActionScript 1.0 or 2.0, you may wish to skim this material.

In the next chapter, we’ll discuss:

Basic concepts to bring you up to speed quickly, including using the
trace() method as a diagnostic tool to see immediate feedback from your
scripts

Using variables to store data, including arrays and custom objects that
allow you to easily manage more than one value, and data typing those
values to improve error reporting

Logical structures such as conditionals for decision making and loops for
simplifying repetitive tasks

Functions that can isolate code into convenient blocks that will be execut-
ed only when instructed

Ways to address Flash objects with ActionScript, including using absolute
and relative paths, and the shortcut identifier this

•

•

•

•

•

13

In This Chapter

Miscellaneous Basics

Variables and Data Types

Conditionals

Loops

Arrays

Functions

Custom Objects

this

Absolute versus
Relative Addresses

What’s Next?

It’s true that ActionScript 3.0 is a complete rewrite of Flash’s internal script-
ing language, and it’s also true that ActionScript 3.0 doesn’t share the same
runtime code base as prior versions of ActionScript. But that’s all behind the
scenes. The truth is, all versions of ActionScript to date share quite a bit in
common.

This is not hard to understand, since ActionScript was based on a script-
ing language standard (called ECMA-262) that grew from the success of
JavaScript, and that ongoing versions of ActionScript are backward compat-
ible to support legacy projects.

That is not to say that the language isn’t growing. Certainly, each new version
of ActionScript introduces a batch of newly supported features, as is true
with the evolution of most programming languages. And, since the decision
was made to write ActionScript 3.0 from the ground up, the opportunity
presented itself to tidy up a few messy things that lingered from previous
versions—namely, tightening up and requiring best practices that had been
optional, and restructuring the event and display systems.

All of this progress, however, did not steamroll over the standard upon which
ActionScript is based, and most of the language fundamentals remain intact.
With the intention to focus on new ActionScript 3.0 options later on, we
want to cover some of the more important fundamentals up-front. We do
not intend to ignore these ideas throughout the rest of the book. However,
because they are core fundamentals and are, therefore, used often, we hope
to explain them in sufficient detail here and spend less time on them as we
proceed.

If you’re already comfortable with ActionScript and are reading this text for
a head start learning version 3.0, you may want to skip, or at least skim, this
chapter. It is by no means a comprehensive starter course. This book does
not assume that you are well versed in any prior version of ActionScript, but
its size and purpose requires that we assume a very basic understanding of
general scripting concepts. If you haven’t already, please look over the Preface
for a good idea of who this book is for, as well as a few alternative references
if you need more background information.

Core Language
Fundamentals

Chapter 2

Part I, Getting Started14

Core Language Fundamentals

You can use this chapter, however, as a point of reference when an underlying
programming concept needs further explanation. In these pages, we’ll look at
the following topics:

Miscellaneous Basics. To identify some of the items and techniques
used throughout this book that don’t necessarily warrant a section for
each, we’ll start off with a few essentials.

Variables and Data Types. Information must be stored in containers
called variables if it is to be recalled for later use, and declaring which
type of data will be stored in each variable can help Flash check for errors
during development.

Conditionals. Often, when a decision must be made in the course of
a script’s execution, a conditional is used to evaluate the outcome of a
prescribed set of conditions. We’ll look at the if and switch conditional
forms.

Loops. When you must execute an instruction multiple times, it is some-
times handy to do so within a loop structure. We’ll look at the commonly
used for loop structure, but also at alternatives to explicit loops, including
frame and timer events.

Arrays. While a basic variable can contain only a single value, it is fre-
quently efficient, or even necessary, to store more than one value in a vari-
able. Imagine a shopping list, with several items, written on a single piece
of paper. The array is a data structure that allows you to store multiple
values in a single variable.

Functions. Functions are essential to just about any programming lan-
guage, and allow you to execute code only when you are ready to do so,
and reuse that code efficiently.

Custom Objects. A custom object can be considered an advanced kind
of variable that allows you to store lots of information, in a way that is
easy and consistent to retrieve. Objects can also be very useful for simpli-
fying the task of passing multiple optional values to a function.

this. The this keyword is used as a shorthand reference, essentially
meaning the object or scope in a script. This will become clearer in
context, but understanding how the keyword works can save you much
repetitive typing and reduce the need for more complex references in your
scripts.

Absolute versus Relative Addresses. ActionScript can reference
addresses to its objects using absolute paths, such as starting from the
root timeline and including every object between it and your destination,
or relative paths, such as going up to a parent and down to a sibling, no
matter where you are.

•

•

•

•

•

•

•

•

•

Miscellaneous Basics

Chapter 2, Core Language Fundamentals 15

Again, this chapter is not meant to act as the only reference to bring you up
to speed if you have absolutely no experience with ActionScript. It will likely
serve the bulk of your needs but other basics—such as where scripts are
stored in the Flash interface—have been omitted for space reasons.

As described in the Preface, for a starter book on the Flash interface, we rec-
ommend Flash CS3 Professional, The Missing Manual, published by O’Reilly,
the publisher of this book. For a more complete ActionScript 3.0 resource,
we heartily recommend the incomparable Essential ActionScript 3.0 by Colin
Moock, also published by O’Reilly. The latter is decidedly an intermediate to
advanced reference but, at nearly three times the size of this volume, it is also
substantially more comprehensive.

For the most part, this chapter, along with the context and supplemental
explanations presented in subsequent chapters, should provide you with
enough to understand the topics and to get the sample exercises working.

Miscellaneous Basics
Some basic topics probably don’t require a section devoted to their discussion
but should still be mentioned due to their use throughout the book. We’ll
include a few such examples here, just to get us started.

Execution order

In general, ActionScript executes in a top-to-bottom, left-to-right order—
that is, each line executes one after another, working from left to right.
Several things can change this order in subtle ways, but it’s basically a
reliable rule of thumb. For example, subroutines of one type or another
can be called in the middle of a script, causing the execution order of the
original script to pause while the remote routine is executed. When the
subroutine has completed, the execution of the original script continues
where it left off. These steps will be explained in context, in all scripts in
this book.

Use of the semicolon(;)

The official use of the semicolon in ActionScript is to execute more than
one instruction on a single line. This is rare in the average script, and we
will look at this technique when discussing loops. However, the semi-
colon is also used to indicate the end of a line. This is not required, but
it is recommended for clarity and to ease any possible transition into
learning other languages in which the semicolon at the end of a line is
required.

Evaluating an expression

It’s helpful to note that you are usually not solving an equation when you
see an expression with like values on the left and right of an equal sign.
For example if you see something like x = x + 1, it is unlikely that you

Part I, Getting Started16

Variables and Data Types

will be solving for the value of x. Instead, this line is assigning a new value
to x by adding 1 to its previous value.

Use of the trace command

As a means of getting quick feedback in an example, or as a testing and
debugging technique when writing scripts, it is very helpful to use the
trace command. This instruction places any relevant text into the Output
panel of the Flash interface. As such, this is an option that is available only
at author-time, and has no use at runtime.

Variables and Data Types
Variables are best described as containers into which you place information
for later recall. Imagine if you were unable to store any information for later
use. You would not be able to compare values against previously described
information (such as user names or passwords), your scripts would suffer
performance lags due to repeated unnecessary calculations, and you wouldn’t
be able to carry any prior experiences through to the next possible imple-
mentation of a task. In general, you wouldn’t be able to do anything that
required data that your application had to “remember.”

Variables make all this and more possible, and are relatively straightforward.
In basic terms, you need only create a variable with a unique name, so it can
be referenced separately from other variables and the ActionScript language
itself, and then populate it with a value. A simple example is remembering the
number 1 with the following:

myVariable = 1;

There are just a few rules and best practices to consider when naming vari-
ables. They must be one word, can only include alphanumeric characters
along with the dollar sign ($) or underscore (_), should not start with a num-
ber, and should not already be a keyword or reserved word in ActionScript.

To help ensure that you are using variables appropriately, ActionScript will
monitor them and warn you if you are trying to perform an illegal operation
on them, or otherwise use them incorrectly. For example, if you try to perform
a mathematical operation on a passage of text, Flash will issue a warning so
you can correct the problem.

To do this, Flash must be told what you intend to store in each variable. This
is accomplished by declaring the variable by preceding its first use with the
var keyword, and citing the type of data to be stored therein by following the
name of the variable with a colon (:) and data type. For instance, the previous
example of remembering the number 1 should be written this way:

var myVariable:Number = 1;

There are several native data types including, but not limited to, those listed
in Table 2-1:

Conditionals

Chapter 2, Core Language Fundamentals 17

Table 2-1. Variable types

Data type Example Description

Number 4.5 Any number, including floating point values (decimals)

int -5 Any integer or whole number

uint 1 Unsigned integer or any non-negative whole number

String "hello" Text or a string of characters

Boolean true True or false

Array [2, 9, 17] More than one value in a single variable

Object myObject The basic structure of every ActionScript entity, but also a custom form that can
be used to store multiple values as an alternative to Array.

There are also many dozens of additional data types that describe which
class was used to populate the variable. (As discussed in Chapter 1, think of
classes as external scripts that typically return information to your script and
work as members of a larger team to create your application.) For example,
the following line of code uses the MovieClip class (built into Flash) to create
a movie clip at runtime:

var myMC:MovieClip = new MovieClip();

It is impractical to list every possible data type here, but we will reference
data types frequently throughout the book, and it will soon become second
nature to use them.

In previous versions of ActionScript, declaring and typing variables was
optional. However, in ActionScript 3.0, this practice is required. This may
seem cumbersome but, before long, this will become second nature, and you
will come to appreciate the instant error checking and feedback this feature
provides.

As we get further into the book, you’ll learn that variables can apply to
an entire scope (the realm in which the variable lives, such as Flash’s main
timeline, or a particular class) or be local to specific code structures. We will
discuss this in context in the code examples.

Conditionals
You will often have the need to make a decision in your script, choosing to
do one thing under one circumstance, and another thing under a different
circumstance. These situations are usually addressed by conditionals. Put
simply, a test is created, asking whether a condition is met. If the condition
is met, the test evaluates to true, and specific code is executed accordingly. If
the condition is not met, either no further action is taken or an alternate set
of code is executed.

Note

Throughout this book, the code exam-
ples are syntax-colored in the same way
that the Flash interface colors scripts.
This helps identify colored items as
part of the ActionScript lexicon (such as
keywords and identifiers) and makes it
a bit easier to see comments (descriptive
text passages that are not executed) and
strings.

Note

Throughout this book, the code exam-
ples are syntax-colored in the same way
that the Flash interface colors scripts.
This helps identify colored items as
part of the ActionScript lexicon (such as
keywords and identifiers) and makes it
a bit easier to see comments (descriptive
text passages that are not executed) and
strings.

Part I, Getting Started18

Conditionals

if
The most common form of the conditional is the if statement. The state-
ment’s basic structure is the if keyword, followed by parentheses in which
the conditional test resides, and braces in which the code resides that is
executed when the statement evaluates to true. The first three lines in the fol-
lowing example establish a set of facts. The if statement evaluates the given
facts. (This initial set of facts will be used for this and subsequent examples
in this section.)

var a:Number = 1;
var b:String = "hello";
var c:Boolean = false;

if (a == 1) {
 trace("option a");
}

To evaluate the truth of the test inside the parentheses, conditionals often
make use of comparison and logical operators. A comparison operator com-
pares two values, such as equals (==), less than (<), and greater than or equal
to (>=), to name a few.

A logical operator evaluates the logic of an expression. Included in this cat-
egory are AND (&&), OR (||), and NOT (!). These allow you to ask if “this and
that” are true, or if “this or that” are true, or if “this” is not true.

For example, the following would be false, because both conditions are not
true. As a result, nothing would appear in the Output panel.

if (a == 1 && b == "goodbye") {
 trace("options a and b");
}

In this example, the test would evaluate to true, because one of the two condi-
tions (the first) is true. As a result, “option a or b” would be traced.

if (a == 1 || b == "goodbye") {
 trace("option a or b");
}

Finally, the following would also evaluate to true, because the NOT operator
correctly determines that c is not true. (Remember, that every if statement,
at its core, is testing for truth.)

if (!c) {
 trace("not option c");
}

The NOT operator is also used as part of a comparison operator. When com-
bined with a single equal sign, the pair means, “not equal to.” Therefore, the
following will fail because a does equal 1, and nothing will be traced.

if (a != 1) {
 trace("a does not equal 1");
}

Note

The test in this example uses a double
equal sign. This is a comparison opera-
tor that asks, “Is this equal to?” This
distinction is very important because
the accidental use of a single equal sign
will cause unexpected results. A single
equal sign is an assignment operator and
assigns the value in the right side of the
equation to the object in the left side of
the equation. Because this assignment
occurs, the test will always evaluate to
true.

Note

The test in this example uses a double
equal sign. This is a comparison opera-
tor that asks, “Is this equal to?” This
distinction is very important because
the accidental use of a single equal sign
will cause unexpected results. A single
equal sign is an assignment operator and
assigns the value in the right side of the
equation to the object in the left side of
the equation. Because this assignment
occurs, the test will always evaluate to
true.

Conditionals

Chapter 2, Core Language Fundamentals 19

Additional power can be added to the if statement by adding an uncondi-
tional alternative (true no matter what)—that is, an alternative set of code is
executed no matter what the value being tested is, simply because the test did
not pass. With the following new code added to the previous example, the
last trace will occur.

if (a != 1) {
 trace("a does not equal 1");
} else {
 trace("a does equal 1");
}

Finally, the statement can be even more robust by adding a conditional alter-
native (or an additional test), to the structure. In this example, the second
trace will occur.

if (a == 2) {
 trace("a does not equal 1");
} else if (a == 1) {
 trace("a does equal 1");
}

The if statement requires one if, only one optional else can be used, and
any number of optional additional else if tests can be used. In all cases,
however, only one result can come from the structure. Consider the following
example, in which all three results could potentially execute—the first two
because they are true, and the last because it is an unconditional alternative.

if (a == 1) {
 trace("option a");
} else if (b == "hello") {
 trace("option b");
} else {
 trace("option other");
}

In this case, only “option a” would appear in the Output panel because the
first truth would exit the if structure. If you needed more than one execu-
tion to occur, you would need to use two or more conditionals. The following
structure, for example, executes the first trace in each if, by design.

if (a == 1) {
 trace("option a");
}
if (b == "hello") {
 trace("option b");
} else {
 trace("option other");
}

switch
An if statement can be as simple or as complex as needed. However, long
if structures can be difficult to read and can sometimes better be expressed
using the switch statement. In addition, the latter statement has a unique

Part I, Getting Started20

Loops

feature that lets you control which if any instructions are executed—even
when a test evaluates to false.

Imagine an if statement asking if a variable is 1, else if it’s 2, else if it’s 3,
else if it’s 4, and so on. A test like that can become difficult to read quickly.
An alternate structure appears as follows:

switch (a) {
	 case 1 :
		 trace("one");
		 break;
	 case 2 :
		 trace("two");
		 break;
	 case 3 :
		 trace("three");
		 break;
	 default :
		 trace("other");
		 break;
}

In this case, “one” would appear in the Output panel. The switch line con-
tains the object or expression you want to test. Each case line offers a possible
value. Following the colon are the instructions to execute upon a successful
test, and each break line prevents any following instructions from executing.
When not used, the next instructions in line will execute, even if that test is
false.

For example, the following will place both “one” and “two” in the Output
panel, even though a does not equal 2.

switch (a) {
	 case 1 :
		 trace("one");
	 case 2 :
		 trace("two");
		 break;
}

This break feature does not exist with the if statement and, if used with care,
makes switch an efficient alternative to a more complex series of multiple
if statements. Switch statements must have one switch and one case, an
optional unconditional alternative in the form of default, and an optional
break for each case and default. The last break is not needed, but may be
preferred for consistency.

Loops
It is quite common to execute many repetitive instructions in your scripts.
However, including them line by line, one copy after another, is inefficient
and difficult to edit and maintain. Wrapping repetitive tasks in an efficient
structure is the role of loops. A programming loop is probably just what you

Loops

Chapter 2, Core Language Fundamentals 21

think it is: Use it to go through the structure and then loop back to the start
and do it again. There are a few kinds of loops, and the type you choose to use
can help determine how many times your instructions are executed.

for Loop
The first type of loop structure we’ll look at is the for loop. This loop
executes its contents a finite number of times. For example, you may wish to
create a grid of 25 movie clips or check to see which of 5 radio buttons has
been selected. In our first example, we want to trace content to the Output
panel three times.

To loop through a process effectively, you must first start with an initial value,
such as 0, so you know you have not yet traced anything to the Output panel.
The next step is to test to see whether you have exceeded your limit. The first
time through, 0 does not exceed the limit of three times. The next step is to
trace the content once, and the final step is to increment your initial value,
registering that you’ve traced the desired content once. The process then
starts over until, ultimately, you will exceed the limit of the loop. The syntax
for a basic for loop is as follows:

for (var i:Number = 0; i < 3; i++) {
 trace("hello");
}

The first thing you may notice is the declaration and typing of the counter, i.
This is a common technique because the i variable is often used only for count-
ing and, therefore, is created on the spot and not used again. If you have already
declared and typed the counter previously, that step can be omitted here. Next is
the loop test. In this case, the counter variable must have a value that is less than
3. Finally, the double-plus sign (++) is equivalent to i = i + 1, or add 1 to the cur-
rent value of i. The result is three occurrences of the word “hello” in the Output
panel.

It is also possible to count down by reversing the values in steps 1 and 2, and
then decrementing the counter:

for (var i:Number = 3; i > 0; i--) {
 trace("hello");
}

In other words, as long as the value of i is greater than 0, execute the loop, and
subtract one from the counter each time. This is less common, and works in
this case because the loop only traces a string. However, if you need to use the
actual value of i inside the loop, that need may dictate whether you count up
or down. For example, if you created 10 movie clips and called them mc0, mc1,
mc2, and so on, it may be clearer to count up.

Note

Note in each example loop the “official”
use of the semicolon to execute more
than one step in a single line.

Note

Note in each example loop the “official”
use of the semicolon to execute more
than one step in a single line.

Part I, Getting Started22

Loops

while Loop
The other kind of loop that you are likely to use is a while loop. Instead of
executing its contents a finite number of times, it executes as long as some-
thing remains true. As an example, let’s look at a very simple case of choos-
ing a random number. Using the Math class’s random() method, ActionScript
chooses a random number between 0 and 1. So, let’s say you wanted to choose
a random number greater than or equal to .5. With essentially a 50-percent
chance of choosing a desired number each time, you may end up with the
wrong choice several times in a row. To be sure you get a qualifying number,
you can add this to your script:

var num:Number = 0;
while (num < .5) {
 num = Math.random();
}

Starting with a default value of 0, num will be less than .5 the first time into the
loop. A random number is then put into the num variable and, if it’s less than
.5, the loop will execute again. This will go on until a random number that is
greater than .5 is chosen, thus exiting the loop.

A Loop Caveat
It’s very important to understand that, although compact and convenient, loop
structures are not always the best method to use to achieve an outcome. This is
because loops are very processor intensive. Once a loop begins its process, noth-
ing else will execute until the loop has been exited. For this reason, it may be
wise to avoid for and while loops when interim visual updates are required.

In other words, when a loop serves as an initialization for a process that is
updated only once upon its completion, such as creating the aforementioned
grid of 25 movie clips, you are less likely to have a problem. The script enters
the loop, 25 clips are created, the loop is completed, a frame update can then
occur, and you see all 25 clips.

However, if you want each of the 25 clips to appear, one by one, those interim
visual updates of the playhead cannot occur while the processor is consumed
by the loop. In this situation, a loop that is achieved by other means—meth-
ods that do not interfere with the normal playhead updates—is desirable.
Two such loops, frame and timer loops, are commonly used for this purpose.
A frame loop is simply a repeating frame event, executing an instruction each
time the playhead is updated. A timer loop is similar, but is not tied to the
frame tempo. Instead, a timer event is triggered by an independent timer at
a set frequency.

In both cases, the events occur in concert with any other events in the ordi-
nary functioning of the file, so visual updates, as one example, can continue
to occur. Both frame and timer loops will be explained, complete with exam-
ples, in the next chapter.

Warning

Use while loops with caution until you
are comfortable with them. It’s very easy
to accidentally write an infinite loop with
no exit, which will cause your code to
stop in its tracks. Do not try this code
yourself, but here is a significantly sim-
plified example of an infinite loop:

var flag:Boolean = true;
while (flag) {
 trace ("infinite loop");
}

As you can see from this example, the
flag variable remains true and, therefore,
the loop can never fail.

Warning

Use while loops with caution until you
are comfortable with them. It’s very easy
to accidentally write an infinite loop with
no exit, which will cause your code to
stop in its tracks. Do not try this code
yourself, but here is a significantly sim-
plified example of an infinite loop:

var flag:Boolean = true;
while (flag) {
 trace ("infinite loop");
}

As you can see from this example, the
flag variable remains true and, therefore,
the loop can never fail.

Arrays

Chapter 2, Core Language Fundamentals 23

Arrays
Basic variables can contain only one value. If you set a variable to 1 and then
set that same variable to 2 in the following line, the value would be reas-
signed, and the value of the variable would be 2.

However, there are times when you need one variable to contain more than
one value. Think of a hypothetical set of groceries, including 50 items. The
standard variable approach to this problem would be to define 50 variables
and populate each with a grocery item. That is the equivalent of 50 pieces of
paper, each with one grocery item written on its face. This is unwieldy and
can only be created at author time—at which point the process is fixed—and
you’d have to recall and manage all variable names every time you wanted to
access the grocery items.

An array equivalent, however, is very much like how we handle this in real
life. A list of 50 grocery items is written on one piece of paper. You can add
to the list while at the store, cross each item off once it is acquired, and you
only have to manage one piece of paper.

Creating an array is quite easy. You can prepopulate an array by setting a
variable (typed as an Array) to a comma-separated list of items, surrounded
by brackets. You can also create an empty array by using the Array class. Both
techniques are illustrated here:

var myArray:Array = [1, 2, 3]
var yourArray:Array = new Array();

In both cases, you can add to, or remove from, the array at runtime. For
example, you can add a value to an array using the push() method, which
pushes the value into the array at the end. In short, a method is an action
performed by an object—in this case adding something to the array—and
will be discussed in detail in the next chapter. You can remove an item from
the end of an array using the pop() method.

var myArray:Array = new Array();
myArray.push(1);
trace(myArray)
// 1 appears in the Output panel
myArray.push(2);
// the array now has two items: 1, 2
trace(myArray.pop());
// the pop() method removes the last item, displaying its value of 2
trace(myArray)
// the lone remaining item in the array, 1, is displayed

There are a dozen or so other array methods, allowing you to add to or
remove from the front of an array, sort its contents, check for the position of
a found item within the array, compare each value against a control value,
and more.

Note

Both methods are added to the end
of the myArray variable with a dot
separating the two. This is the syntax
used to navigate the Flash document
object model, and is sometimes referred
to as dot syntax. Essentially, this system
strings together a series of items, from
biggest to smallest, and including only
items relevant to the task at hand. In this
case, the largest relevant item is the array
itself and, below that is each method.
Considering another example, where you
may wish to check the width of a movie
clip that is inside another movie clip, the
biggest item will be the parent, or con-
tainer movie clip, then comes the nested
movie clip, and then comes its width:

mc1.mc2.width;

This dot syntax will be used in virtually
every example for the rest of the book,
and it will soon become quite easy to
understand just what is referenced by
each object along the way.

Note

Both methods are added to the end
of the myArray variable with a dot
separating the two. This is the syntax
used to navigate the Flash document
object model, and is sometimes referred
to as dot syntax. Essentially, this system
strings together a series of items, from
biggest to smallest, and including only
items relevant to the task at hand. In this
case, the largest relevant item is the array
itself and, below that is each method.
Considering another example, where you
may wish to check the width of a movie
clip that is inside another movie clip, the
biggest item will be the parent, or con-
tainer movie clip, then comes the nested
movie clip, and then comes its width:

mc1.mc2.width;

This dot syntax will be used in virtually
every example for the rest of the book,
and it will soon become quite easy to
understand just what is referenced by
each object along the way.

Part I, Getting Started24

Functions

You can also add to or retrieve values from locations within the array, by using
brackets and including the index, or position, of the array you need. To do so,
you must understand that ActionScript uses zero-based arrays, which means
that the first value is at position 0, the second is at position 1, the next at posi-
tion 2, and so on. As an example, to retrieve the existing fifth value from an
array, you must request the item at position 4.

var myArray:Array = ["a", "b", "c", "d", "e"]
trace(myArray[4])
//"e" appears in the Output panel

There are other kinds of arrays, such as multidimensional arrays (arrays
within arrays that can resemble database structures) and associative arrays
(which store not only linear values, but also a linear pair of items—the
value and a property name to describe that value), for example. However,
due to space constraints, we’ve focused on the most common array type:
the linear array. Any other uses of array structures will be highlighted in
future chapters.

Functions
Functions are an indispensable part of programming in that they wrap code
into blocks that can be executed only when needed. They also allow code
blocks to be reused and edited efficiently, without having to copy, paste, and
edit repeatedly. Without functions, all code would be executed in a linear pro-
gression from start to finish, and edits would require changes to every single
occurrence of any repeated code.

Creating a basic function requires little more than surrounding the code you
wish to trigger at will with a simple syntax that allows you to give the block
a name. Triggering that function later requires only that you call the func-
tion by name. The following syntax shows a function that traces a string to
the Output panel. The function is defined and then, to illustrate the process,
immediately called. (In a real-world scenario, the function is usually called
at some other time or from some other place, such as when the user clicks a
button with the mouse.) The output is depicted in the comment that follows
the function call.

function showMsg(){
 trace("hello");
}
showMsg();
//hello

If reusing code and executing code only when needed were the only advan-
tage of functions, you’d already have a useful enhancement to linear execu-
tion of ActionScript, because it would allow you to group your code into
subroutines that could be triggered at any time and in any order. However,
you can do much more with functions to gain even greater power.

Functions

Chapter 2, Core Language Fundamentals 25

For example, assume you need to vary the purpose of the previous function
slightly. Let’s say you need to trace ten different messages. To do that without
any new features, you’d have to create ten functions and vary the string that
is sent to the Output panel in each function.

However, this can be more easily accomplished with the use of arguments, or
very local variables that have life only within their own functions. By adding
an argument to the function declaration, in this case the string argument
msg, you can pass a value into that argument when you call the function. By
using the argument in the body of the function, it takes on whatever value
was sent in. In this example, the function no longer traces “hello” every time
it is called. Instead, it traces whatever text is sent into its argument when the
function is called. When using arguments, it is necessary to type the data
coming in so Flash knows how to react and can issue any warnings needed
to notify you of errors.

function showMsg(msg:String) {
 trace(msg);
}
showMsg("goodbye");
//goodbye

It is also possible to return a value from a function, increasing its useful-
ness. Having the ability to return a value to the script from which it was
called means a function can vary its input and its output. Included below
are examples to convert temperature values from Celsius to Fahrenheit and
Fahrenheit to Celsius. In both cases, a value is sent into the function and a
resulting calculation is returned to the script. The first example immediately
traces the result, while the second example stores the value in a variable. This
mimics real-life usage in that you can immediately act upon the returned
value or store and process it at a later time.

function celToFar(cel:Number):Number {
 return (9/5)*cel + 32;
}
trace(celToFar(20));
//68

function farToCel(far:Number):Number {
 return (5/9)*(far - 32);
}
var celDeg:Number = farToCel(68));
trace(celDeg);
//20

Note that, when returning a value from a function, you should also declare
the data type of the return value. This is achieved the same way as when
applying other data types—with a colon followed by the type specific to that
function—and this form is placed between the argument close parenthesis
and the opening function brace. Once you get used to this practice, it is best
to specify void as a return type when your function does not return a value.

Part I, Getting Started26

Custom Objects

Custom Objects
After just a short while working with ActionScript, you will realize that you
are immersed neck-deep in objects. Most discrete entities in ActionScript are
descendents of the Object class and tend to behave in a consistent reliable
manner. Central to this behavior is the ability for an object to have proper-
ties (which are essentially descriptive elements that contribute to the object’s
general characteristics, like width, location, rotation, and so on), methods
(which are actions the object can perform), and even events (custom events
that, like a mouse click or a key press, can trigger other processes in the course
of working with a script).

You can also create custom objects and define your own properties, methods,
and events. To demonstrate this, we’ll create a custom object called plane,
and give it properties for pitch, roll, and yaw. These properties are terms that
describe rotation in 3D space. If you think of yourself seated in a plane, pitch
is the angle of rotation that would cause the nose of the plane to go down or
up. Roll is the angle of rotation that would cause the plane to spin along the
length of the plane, keeping the nose facing forward as you spiral through
flight. Finally, yaw is the angle of rotation that comes up perpendicularly
through your seat on the plane, causing the plane to spin in a flat spin where
the nose would no longer remain facing forward.

None of these terms—plane, pitch, roll, or yaw—are part of the ActionScript
library. However, by creating a custom object, we will temporarily make
them available to our scripts as if they were always there. The first step in
this process is to create the object. Once created, we can add and populate
properties:

var plane:Object = new Object();
plane.pitch = 0;
plane.roll = 5;
plane.yaw = 5;

These values would send the plane in a slow right-hand turn. They can be
called up at any time, by querying the properties the same way they were
created.

trace(plane.pitch);
//0

Creating a custom object to contain properties is a highly effective way of
sending multiple optional parameters into a function. ActionScript 3.0 does
not like having a variable number of arguments or values for those argu-
ments. If you specify five arguments, it expects five parameters and will balk
if you choose to omit any. If you plan your code ahead and plan to allow a
series of optional parameters, it is easy to transmit an unknown number of
parameter values through a fixed single argument that contains an object.
You can then parse the values from this object inside the function, initializ-
ing the starting value of any specific properties that were omitted. Here is an
example, using the previously created plane object:

Absolute versus Relative Addresses

Chapter 2, Core Language Fundamentals 27

function showPlaneStatus(obj:Object):void {
 trace(obj.pitch);
 trace(obj.roll);
 trace(obj.yaw);
};
showPlaneStatus(plane);
//0
//5
//5

this
Although a bit nebulous for some just starting with ActionScript, this can be
your friend. It is essentially shorthand for “whichever object or scope you’re
working with now.” Scope is the realm or space within which an object lives.
For example, think of a movie clip inside Flash’s main timeline. Each of these
objects has a unique scope, so a variable or function defined inside the movie
clip will not exist in the main timeline, and vice versa.

It is easiest to understand the usage of this in context, but here are a couple
of examples to get you started. If you wanted to refer to the width of a nested
movie clip called mc from within the main timeline, you might say:

this.mc.width;

If you wanted to refer to the main timeline from the nested movie clip, you
might write:

this.parent.mc.width;

In both cases, this is a reference point from which you start your path. It is
fairly common to drop the keyword when going down from the current scope
(as in the first example), but it is required when going up to a higher scope
(as in the second example). This is because Flash must understand what the
parent is actually a parent of in order to start traversing through the hierarchy.
Imagine a family reunion in which several extended family members, includ-
ing cousins and multiple generations, are present, and you are looking for
your mother, father, or grandparent. If you just said “parent,” any number of
parents might answer. If you, instead, said “my parent” or “my mother’s par-
ent,” that would be specific enough to get you headed in the right direction.

Absolute versus Relative Addresses
Much like a computer operating system’s directory, or the file structure of
a web site, ActionScript refers to the address of its objects in a hierarchical
fashion. You can reference an object address using an absolute or relative
path. Absolute paths can be easy because you most likely know the exact
path to any object starting from the main timeline. However, they are quite
rigid and will break if you change the nested relationship of any of the refer-
enced objects. Relative paths can be a bit harder to call to mind at any given

Part I, Getting Started28

What’s Next?

moment, but they are quite flexible. Working from a movie clip and going
up one level to its parent and down one level to a sibling will work from
anywhere—be that in the root timeline, another movie clip, or nested even
deeper—because the various stages aren’t named.

Table 2-2 and Table 2-3 draw parallels to the operating system and web site
analogies:

Table 2-2. Absolute (from main timeline to nested movie clip)

ActionScript Windows OS Mac OS Web Site

root.mc1.mc2 c:\folder1\folder2 Macintosh/folder1/folder2 http://www.domain.com/
dir/dir

Table 2-3. Relative (from a third movie clip, up to the root, and down to the child of a sibling)

ActionScript Windows OS Mac OS Web Site

this.parent.mc1.mc2 ..\folder1\folder2 ../folder1/folder2 ../dir/dir

What’s Next?
Ideally, we’ve provided just enough background (or review) of key ActionScript
fundamentals to now focus in on topical syntax. Although we won’t entirely
ignore basic elements within the scripts of future chapters, we will spend
more time describing the collective goal of a script, and highlighting new
issues introduced or updated by ActionScript 3.0.

Next, we start off the ActionScript 3.0-specific material with a look at the
three essential building blocks of most ActionScript objects: properties,
methods, and events—the latter being one of the most significantly changed
elements of ActionScript, with the introduction of version 3.0.

In the next chapter, we’ll discuss:

The descriptive properties (such as width, height, location, alpha (opac-
ity), rotation, and more) of each object that define its major characteris-
tics

The actions you may exert on objects, or that objects may take on other
objects, in the form of methods

The events issued by the user, or aspects of your program or environment,
and, perhaps more directly, the reactions to those events

•

•

•

29

In this part

Chapter 3
Properties, Methods,

and Events

Chapter 4
The Display List

Chapter 5
Timeline Control

Chapter 6
OOP

Chapter 7
Motion

Chapter 8
Drawing with Vectors

Chapter 9
Drawing with Pixels

Graphics and
Interaction Part II

Part II represents the largest section of the book, spanning Chapter 3 through
Chapter 9. This part covers many significant features that distinguish
ActionScript 3.0 from prior versions. It focuses on graphics and interactions
and includes the new event model and display list.

Chapter 3 is a discussion of properties, events, and methods—the items
responsible for manipulating just about anything in Flash. Of particular
importance is a section that describes a novel approach to handling events in
ActionScript. Chapter 4 goes on to explain the display list, a great new way to
display visual assets in Flash. Chapter 5 discusses timeline control, including
various navigation techniques.

Chapter 6 marks an important transition in the book, as the remaining
chapters in this part begin to focus more on object-oriented programming.
Chapter 7 takes a look at various ways to animate graphics with ActionScript.
Chapter 8 and 9 round out the presentation of graphics and interactivity with
tutorials covering drawing with vectors and pixels. Included are demonstra-
tions for creating vectors with ActionScript and manipulating a variety of
bitmap properties in your projects.

31

In This Chapter

Inherited Attributes

Properties

Events

Methods

Event Propagation

Frame and Timer Events

Removing Event Listeners

What’s Next?

In addition to the core language fundamentals reviewed in the previous chap-
ter, you will find that the majority of your scripts are written using properties,
methods, and events. These are the basic building blocks of most scripted
tasks and allow you to get and set characteristics of, issue instructions to, and
react to input from, many Flash elements.

Properties. Properties are somewhat akin to adjectives in that they
describe the object being modified or queried. For example, you can
check or set the width of a button. Most properties are read-write, in
that you can both get and set their values. Some properties, however, are
read-only, which means you can ask for, but not change, their values.

Methods. Methods are a bit like verbs. They are used to tell objects to
do something, such as play and stop. In some cases, methods can be used
to simplify the setting of properties. You might use a method called set-
Size(), for example, to simultaneously set the width and height of some-
thing. Other methods are more unique, such as navigateToURL(), which
instructs a browser to display a web page.

Events. Events are the catalysts that trigger the actions you write, set-
ting properties and calling methods. For instance, a user might click the
mouse button, which would then result in a mouse event. That event
then causes a function to execute, performing the desired actions. Event
handlers are the ActionScript middlemen that trap the events and actually
call the functions. ActionScript 3.0 has unified event handling into a con-
sistent system of what are called event listeners, which are set up to listen
for the occurrence of a specific event and react accordingly.

In this chapter, you will build a utility that will demonstrate each of these
ActionScript structures. By creating mouse and keyboard events, you will
manipulate several common properties, as well as execute a few methods.
The vast majority of ActionScript entities have properties, methods, and
events. For clarity, we will focus primarily on the movie clip. Using the
movie clip to centralize our discussion will make it easier for you to consult
the Flash help system, online resources, and supplemental texts for addi-
tional information, as you look for other attributes to manipulate.

•

•

•

Properties, Methods,
and Events

Chapter 3

Part II, Graphics and Interaction32

Inherited Attributes

Inherited Attributes
One of the most important things to understand when consulting attributes
is that ActionScript entities often share attributes in common with other
entities. One reason for this is that they may be related in some way, such
as being descendents from a common parent. In this case, the child inherits
attributes from its parent. We introduced this concept a bit in Chapter 1
when we talked about classes. Consider the idea that a daughter, by vir-
tue of being a different sex than her father, has several characteristics, or
properties, that are distinct from her father. However, they also may share
several characteristics in common, such as eye and hair color.

We will look at the sharing of attributes in greater depth throughout this
book but, for now, all you need to know is that ActionScript reference mate-
rials are often organized by classes, and it would be redundant and cumber-
some to list the same properties for every related class. Considering the movie
clip, for example, every Flash element that can be displayed on stage—the
movie clip among them—can have an x and a y coordinate, or location, on
the stage. Listing these properties for every such item would eat up a lot of
space and make the resource a bit harder to wade through.

To simplify things, the x and y properties are typically listed as inherited
properties, as is true in the Flash help system. To view inherited properties,
for example, in the Flash help system, just click the Show Inherited Public
Properties link found immediately under the Public Properties header.

Properties
If you think of properties as ways of describing an object, they become sec-
ond nature. Asking where a movie clip is, for example, or setting its width
are both descriptive steps that both use properties.

In Chapter 2, we briefly discussed the object model and dot syntax that
brings order and structure to ActionScript as well as many other script-
ing and programming languages. Referencing a property begins with an
instance—let’s call our square movie clip “box”—because you must decide
which element you wish to query or change. If we consider a test file with
only one movie clip in it, instantiated as “box,” all that remains is referenc-
ing the property and either getting or setting its value.

To begin, we’ll show you the syntax for making five changes to movie clip
properties in the following table. Then, when we demonstrate how to handle
events in the next section, we’ll change these properties interactively. The fol-
lowing examples assume a movie clip of a square is on the stage, and has an
instance name of “box.” Figure 3-1 demonstrates the visual change made by
each property. The light colored square is the original state when the movie

Properties

Chapter 3, Properties, Methods, and Events 33

clip is moved. (The alpha property shows only the final state.) The dashed
stroke for the visible property is only to show that the box is not visible.

Table 3-1 represents six movie clip properties with sample syntax and notes
regarding each property’s unit of measure and possible sample range of val-
ues.

Table 3-1. Movie clip properties

Description Property Syntax for Setting Value Units and/or Range

Location x, y box.x = 100;
box.y = 100;

pixels

Scale (1) scaleX, scaleY box.scaleX = .5;
box.scaleY = .5;

percent / 0-1

Scale (2) width, height box.width = 72;
box.height = 72;

pixels

Rotation rotation box.rotation = 45; degrees / 0-360

Transparency alpha box.alpha = .5; percent / 0-1

Visibility visible box.visible = false; Boolean

If you have experience with prior versions of ActionScript, you may notice a
few changes in the property syntax. First, the properties do not begin with an
underscore. This is a beneficial consistency introduced with ActionScript 3.0.
Rather than varying property syntax, some with and some without leading
underscores, no properties begin with the underscore character.

Second, some value ranges that used to be 0–100 are now 0–1. Examples
include scaleX, scaleY, and alpha. Instead of using 50 to set a 50% value,
specify .5.

Finally, the first scaling method uses properties scaleX and scaleY, rather
than _xscale and _yscale, which are their AS1/AS2 equivalents. Typically,
AS3 properties will cite the x and y version of a property as a suffix, to make
referencing the property easier.

Table 3-1 shows syntax for setting a property. Querying the value of a prop-
erty, also known as getting the property, is just as easy. For example, if you
wanted to trace the box’s alpha value, or store it in a variable, you could
write either of the following:

trace(box.alpha);
var bAlpha:Number = box.alpha;

You can also use compound assignment operators to easily update the
values. The following code will add 20 degrees to the current value of the
box’s rotation.

box.rotation += 20;

box.x += 10;
box.y += 10;

box.scaleX = 50;
box.scaleY = 50;

box.rotation = 20;

box.alpha = 50;

box.visible = false;

Figure 3-1. Changes to five movie clip
properties

box.x += 10;
box.y += 10;

box.scaleX = 50;
box.scaleY = 50;

box.rotation = 20;

box.alpha = 50;

box.visible = false;

Figure 3-1. Changes to five movie clip
properties

Part II, Graphics and Interaction34

Events

Events
Events make the Flash world go 'round. They are responsible for setting your
scripts in motion, causing them to execute. A button can be triggered by a
mouse event, text fields react to keyboard events—even calling your own
custom functions is a means of issuing a custom event.

Events come in many varieties. In addition to the obvious events like mouse
and keyboard input, most ActionScript classes have their own events. For
example, events are fired when watching a video, working with text, and resiz-
ing the stage. To take advantage of these events to drive your application, you
need to be able to detect their occurrences.

In previous versions of ActionScript, there were a variety of ways to trap
events. You could apply a script directly to a button, for example, and
use the on(Release) approach. As the language matured, you could cre-
ate event handlers and apply them remotely using instance names, using
myButton.onRelease for example. Finally, you could use event listeners, pri-
marily with components or custom objects.

In ActionScript 3.0, trapping events is simplified by relying on one approach
for all event handling, which is to use event listeners regardless of the type of
event or how it is used. The EventDispatcher class that “oversees” event listen-
ers is not new, but it has been improved and is now responsible for handling
the majority of events in AS3.

The EventDispatcher class allows you to listen for the occurrence of events
by putting event listeners into service, clean up your code by removing
unneeded listeners from service, and manually dispatching events when you
need an event to occur at a specific time. You can also check to see whether
an object has a listener already set up for a specific event, which we’ll look at
later when we talk about event propagation.

Using Event Listeners
The concept of event listeners is pretty simple. Imagine that you are in a lec-
ture hall that holds 100 people. Only one person in the audience has been
given instructions about how to respond when the lecturer asks a specific
question. In this case, one person has been told to listen for a specific event,
and to act on the instructions provided when this event occurs.

Now imagine that many more responses need to be planned. For example,
when the lecturer takes the stage, the lights must be dimmed. When the
lecturer clicks a hand-held beeping device, an audio/visual technician must
advance to the next video in the presentation. When each video ends, the lec-
turer must react by introducing the next exhibit in the lecture. Finally, when
an audience member raises a hand, an usher must bring a microphone to
assist the audience member in asking his or her question.

Events

Chapter 3, Properties, Methods, and Events 35

These are all reactions to specific events that are occurring throughout
the lecture. Some are planned and directed to a specific recipient—such as
the beeping that triggers the technician to advance to the next video in the
series. Others are unplanned, such as when, or even if, an audience member
has a question. Yet each appropriate party in the mix has been told which
event to listen for and how to react when that event occurs.

Creating an event listener, in its most basic form, is fairly straightforward.
The nuances that make the process anything more than simple add power
to the system and can be used to your advantage. The first main step is to
identify the host of the listener—that is, who should be told to listen for a
specific event. One easy-to-understand example is that a button should be
told to listen for mouse events that might trigger its scripted behavior.

Once you have identified an element that should listen for an event, the next
major step is choosing an event appropriate for that element. For example, it
makes sense for a button to listen for a mouse event, but it makes less sense
for the same button to listen for the end of a video or the resizing of the stage.
It would be more appropriate for the video player to listen for the end of the
video, and the stage to listen for any resize event. Each respective element
could then act, or instruct others to act, when that event occurs—which is
the third main step in setting up a listener.

To identify the instructions that must be executed when an event occurs, you
simply need to write a function and tell the event listener to call that function
when the event fires. That function uses an argument to receive information
about the event that called it, allowing the function to use key bits of data
during its execution.

To tie it all together, the addEventListener() method is used to identify the
event, and assign the function to be executed to the object that is supposed
to be doing the listening. Let’s go back to the button example, in which
the button should listen for a mouse up event. Let’s say the button is called
rotate_right_btn, and the function it should execute is onRotateRight(). The
code would look something like this:

rotate_right_btn.addEventListener(MouseEvent.MOUSE_UP,
	onRotateRight);
function onRotateRight(evt:MouseEvent):void {
 box.rotation += 20;
}

In line 1, you start with the button instance name and then add the
addEventListener() method. The method requires two mandatory param-
eters. The first is the event for which you want to listen. Each event you are
trying to trap, be it a built-in event or a custom event of your own making,
originates in a class that defines that event. Built-in events are typically
found in classes dedicated specifically to events, and the event itself is usually
defined as a constant in that class. For example, the MouseEvent class con-
tains constants that refer to mouse events like mouse up and mouse down. This

1�

2�
3�
4�

Part II, Graphics and Interaction36

Events

example uses the MOUSE_UP constant to reference the mouse up event. Other
examples include the ENTER_FRAME constant in the Event class, for simulat-
ing playhead updates, and the KEY_UP event in the KeyboardEvent class, for
trapping user keyboard input. We’ll look at both of these events later on in
this chapter.

The second parameter is the function that should be called when the event
is received. In this example, a reference to the onRotateRight() function,
defined in lines 2 through 4, is specified. You will probably be familiar
with the structure of the function from the discussion about functions in
Chapter 2. To review, the function contents are defined by the braces. In this
case, line 3 adds 20 degrees to the current rotation value of the movie clip
“box.” Also explained in Chapter 2, the void that follows the function name
and parentheses indicates that no value is returned by the function.

What hasn’t been fully explained is the argument of the function that receives
that event. Unlike custom functions, the argument in listener functions
is required. In the following code example, it is arbitrarily named evt and
receives information about the element that triggered the event. If helpful,
you can parse information from this argument for use in the function, which
you’ll see below. The argument must be typed to the expected data. This will
help you find errors if an incorrect event type is received. In this case, because
we’re listening for a MouseEvent, that is the data type used for the argument.

To illustrate this, let’s look at another mouse event example. This time, how-
ever, we’ll view multiple events, and parse information from the argument to
show some of the benefits of this structure.

myMovieClip.addEventListener(MouseEvent.MOUSE_DOWN, onStartDrag);
myMovieClip.addEventListener(MouseEvent.MOUSE_UP, onStopDrag);
function onStartDrag(evt:MouseEvent):void {
 evt.target.startDrag();
}
function onStopDrag(evt:MouseEvent):void {
 evt.target.stopDrag();
}

In this example, two event listeners are assigned to a movie clip. One listens
for a mouse down event, another listens for mouse up. They each invoke differ-
ent functions. In both functions, however, the target property of the event,
which is sought from the function argument, is used to identify which ele-
ment received the mouse event. This allows the function in line 3 to start
dragging the movie clip that was clicked, and also allows the function in line
6 to stop dragging the movie clip that was clicked, both without specifying
the movie clip by its instance name. This generic approach is very useful
because it makes the function much more flexible. The function can act upon
any appropriate item that is clicked and passed into its argument. In other
words, the same function could start and stop dragging any movie clip to
which the same listener was added.

1�
2�
3�
4�
5�
6�
7�
8�

Events

Chapter 3, Properties, Methods, and Events 37

In the accompanying source files, the start_stop_drag.fla file shows this by
adding the following lines to the previous example:

myMovieClip2.addEventListener(MouseEvent.MOUSE_DOWN, onStartDrag);
myMovieClip2.addEventListener(MouseEvent.MOUSE_UP, onStopDrag);

Simply by adding another movie clip to the exercise, and specifying the same
listeners, you can drag and drop each movie clip.

Using Mouse Events to Control Properties
Now we can combine the syntax we’ve covered in the “Properties” and
“Events” sections, to set up interactive control over properties. In the chap-
ter03 directory of the accompanying source code for this book, you’ll find
a file called props_events.fla. It contains nothing more than the example
movie clip “box,” and two buttons in the library that will be used repeat-
edly to change the five properties discussed earlier. The movie clip contains
numbers to show which of its frames is visible at any time, and the instance
names of each button will reflect its purpose. Included are move_up_btn,
scale_down_btn, rotate_right_btn, fade_up_btn, and toggle_visibility_btn,
among others. The start of the main chapter project consists of several but-
tons that will modify properties of the center movie clip. Figure 3-2 shows
the layout of the file.

Figure 3-2. Layout of the props_events.fla file

9�
10�

Part II, Graphics and Interaction38

Events

Starting with movement, we need to define one or more functions to update
the location of the movie clip. There are two common approaches to this task.
The first is to create one function for all movement that uses a conditional
to decide how to react to each event. We’ll demonstrate that when we discuss
keyboard events. For now, we’ll use the simpler direct approach of defining a
separate basic function for each type of movement as shown in Example 3-1.

Example 3-1. props_events.fla

function onMoveLeft(evt:MouseEvent):void {
 box.x -= 20;
};
function onMoveRight(evt:MouseEvent):void {
 box.x += 20;
};
function onMoveUp(evt:MouseEvent):void {
 box.y -= 20;
};
function onMoveDown(evt:MouseEvent):void {
 box.y += 20;
};

Once the functions are defined, all you have to do is add the listeners to the
appropriate buttons.

move_left_btn.addEventListener(MouseEvent.MOUSE_UP, onMoveLeft);
move_right_btn.addEventListener(MouseEvent.MOUSE_UP, onMoveRight);
move_up_btn.addEventListener(MouseEvent.MOUSE_UP, onMoveUp);
move_down_btn.addEventListener(MouseEvent.MOUSE_UP, onMoveDown);

This simple process is then repeated for each of the buttons on stage. The
remaining script collects the aforementioned properties and event listeners
to complete the demo pictured in Figure 3-2.

scale_up_btn.addEventListener(MouseEvent.MOUSE_UP, onScaleUp);
scale_down_btn.addEventListener(MouseEvent.MOUSE_UP, onScaleDown);

rotate_left_btn.addEventListener(MouseEvent.MOUSE_UP, onRotateLeft);
rotate_right_btn.addEventListener(MouseEvent.MOUSE_UP,
onRotateRight);

fade_in_btn.addEventListener(MouseEvent.MOUSE_UP, onFadeIn);
fade_out_btn.addEventListener(MouseEvent.MOUSE_UP, onFadeOut);

toggle_visible_btn.addEventListener(MouseEvent.MOUSE_UP,
onToggleVisible);

function onScaleUp(evt:MouseEvent):void {
 box.scaleX += 0.2;
 box.scaleY += 0.2;
};
function onScaleDown(evt:MouseEvent):void {
 box.scaleX -= 0.2;
 box.scaleY -= 0.2;
};

function onRotateLeft(evt:MouseEvent):void {
 box.rotation -= 20;

1�
2�
3�
4�
5�
6�
7�
8�
9�
10�
11�
12�

13�
14�
15�
16�

17�
18�
19�
20�
21�

22�
23�
24�
26�
27�

28�
29�
30�
31�
32�
33�
34�
35�
36�
37�
38�
39�
40�

Methods

Chapter 3, Properties, Methods, and Events 39

};
function onRotateRight(evt:MouseEvent):void {
 box.rotation += 20;
};

function onFadeIn(evt:MouseEvent):void {
 box.alpha += 0.2;
};
function onFadeOut(evt:MouseEvent):void {
 box.alpha -= 0.2;
};

function onToggleVisible(evt:MouseEvent):void {
 box.visible = !box.visible;
};

Methods
Methods, the verbs of the ActionScript language, instruct their respective
objects to take action. For example, you can tell a movie clip to stop playing
by using its stop() method. Like properties, methods appear consistently in
the dot syntax that is the foundation of ActionScript, following the object
calling the method. For example, if the movie clip “box” in the main timeline
issues the stop() method, the syntax would appear like this:

box.stop();

Also like properties, most ActionScript classes have specific methods, and
many inherit methods from ancestor classes. In addition, like properties, you
can further define your own methods by writing functions in your own cus-
tom classes. For the following demonstration, we’ll again focus on the movie
clip from the prior example. This time, however, we’ll introduce another event
class and show you how to control your movie clips with the keyboard.

Using Keyboard Events to Call Methods
Trapping keyboard events is very similar to trapping mouse events, with one
significant exception: The target of the event listener is not frequently the
object you wish to manipulate. When working with text, the text field being
manipulated may, indeed, serve well as the target of the keyboard events.
When controlling movie clips, however, the stage itself is often a useful, cen-
tralized recipient of the keyboard events.

Adding an event listener to the stage means that you can process all key
events with a single listener, and then isolate only the desired key events with
a conditional, issuing instructions accordingly. To simplify the syntax of this
last segment of our demonstration script, we’ll use the switch form of condi-
tional statements. The switch statement, reviewed in Chapter 2, is simply a
more easily readable if/else-if conditional structure.

We’ll start by adding the listener to the stage. In this case, we’ll be looking for
the key down event, which is specified using a constant like most predefined

41�
42�
43�
44�
45�
46�
47�
48�
49�
50�
51�
52�
53�
54�
55�

Part II, Graphics and Interaction40

Methods

events, but this time it is part of the KeyboardEvent class. When the event is
heard, our listener will call the onKeyPressed() function.

stage.addEventListener(KeyboardEvent.KEY_DOWN, onKeyPressed);

Next, we define the onKeyPressed() function, being sure to type the incoming
argument value as KeyboardEvent. Finally, we parse the keyCode property from
the incoming event information now stored in the evt argument. The keyCode
is a unique number assigned to each key and allows you to determine which
key was pressed.

One keyCode value is assigned to each key, so this value can’t be used directly
for case-sensitive key checking—that is, uppercase “S” has the same keyCode
as lowercase “s.” If you need to analyze case sensitivity, use charCode, which
does have unique values for each case.

To specify each key, we’ll use constants defined in the Keyboard class, rather
than having to remember each numeric keyCode value. This makes it easier
to reference the Enter/Return key as Keyboard.ENTER, the left arrow key as
Keyboard.LEFT, and so on.

We’ll use five keys to call five methods. When each desired key is pressed, it
will execute the appropriate method, and then break out of the switch state-
ment. We’ll also add a default state that will trace the keyCode of any other
key pressed. The final script segment looks like this:

function onKeyPressed(evt:KeyboardEvent):void {
 switch (evt.keyCode) {
 case Keyboard.ENTER:
 box.play();
 break;
 case Keyboard.BACKSPACE:
 box.stop();
 break;
 case Keyboard.LEFT:
 box.prevFrame();
 break;
 case Keyboard.RIGHT:
 box.nextFrame();
 break;
 case Keyboard.SPACE:
 box.gotoAndStop(3);
 break;
 default:
 trace(“keyCode:”, evt.keyCode);
 }
};

The first four methods are basic movie clip navigation options, playing, stop-
ping, or sending the movie clip to the previous or next frame in its timeline.
The last method sends the movie clip to its third frame and then stops its
playback. We’ll look at these and other navigation options in greater detail in
Chapter 5 when we discuss timeline control.

1�

2�
3�
4�
5�
6�
7�
8�
9�
10�
11�
12�
13�
14�
15�
16�
17�
18�
19�
20�
21�
22�

Warning

Depending on your setup, many key
events will not function properly in
Flash when using the Control>Test
Movie command. This is probably not
an error but, instead, a result of Flash
Player using keyboard shortcuts just
like the Flash application does. To
test your key events, simply use the
Control>Disable Keyboard Shortcuts
menu command to disable keyboard
shortcuts in the Player (that is, after
invoking Test Movie). Be sure to reen-
able the shortcuts, or you won’t be
able to use cmd+W (Mac) or Ctrl+W
(Windows) to close the window, or use
other familiar shortcuts. Alternatively,
you can test the movie in a browser.

Warning

Depending on your setup, many key
events will not function properly in
Flash when using the Control>Test
Movie command. This is probably not
an error but, instead, a result of Flash
Player using keyboard shortcuts just
like the Flash application does. To
test your key events, simply use the
Control>Disable Keyboard Shortcuts
menu command to disable keyboard
shortcuts in the Player (that is, after
invoking Test Movie). Be sure to reen-
able the shortcuts, or you won’t be
able to use cmd+W (Mac) or Ctrl+W
(Windows) to close the window, or use
other familiar shortcuts. Alternatively,
you can test the movie in a browser.

Event Propagation

Chapter 3, Properties, Methods, and Events 41

This code can be seen in the methods_events.fla file in the accompanying
source code, as well as the combined file, props_methods_events.fla, which
includes both the properties and methods examples in this chapter.

Event Propagation
So far in this chapter, we’ve been working with objects in the display list.
We’ll explain the display list in greater detail in the next chapter but, in
essence, the display list contains all visual objects in your file. It includes
the stage, any loaded SWFs, and any shapes, buttons, movie clips, and so
on, down to the most deeply nested clip.

Objects in the display list are part of a special event flow often referred to
as event propagation. When the target of certain events, including mouse
and key events, is in the display list, the event is not dispatched directly to
the event target. Instead, it is dispatched to the display list, and the event
propagates from the top of the list down to the event target, and then bubbles
(works its way) back up through the display list again.

Consider two movie clips (mc2 and mc3) within a movie clip (mc1) that is on
the stage. Next, imagine that the target of the event is the nested movie clip,
mc2. When the desired event occurs, it is not dispatched directly to mc2, but
rather to the display list. First, the stage receives the event, then any relevant
loaded SWFs (including the root timeline, in this example), then the par-
ent movie clip, mc1, and then the target of the event, mc2. After the event is
received by the target, it then propagates back up through the display list to
mc2, root, and stage. Figure 3-3 depicts the process, showing a mouse event
dispatched to the top of the display list, the stage, making it’s way through
the root timeline and parent movie clip until it reaches the event target, and
then bubbling back up through the display list again.

Stage

Root

mc1

mc2 mc3

target

Figure 3-3. Event propagation process

Part II, Graphics and Interaction42

Event Propagation

Event propagation can be used to great advantage with just a little bit of plan-
ning. For example, let’s say both nested movie clips were designed to react to
mouse over and mouse out events. Whenever the user rolled the mouse over
one of the clips, it would change it alpha value to indicate interaction. In
this case, you would normally have to attach a listener for each event to each
movie clip. The code for such an example follows, and Figure 3-4 depicts the
result, where each movie clip is represented by a folder: folder0 and folder1.
Example 3-2 shows the code in the sample file.

Example 3-2. event_propagational1.fla

folder0.addEventListener(MouseEvent.MOUSE_OVER, onFolderOver);
folder0.addEventListener(MouseEvent.MOUSE_OUT, onFolderOut);
folder1.addEventListener(MouseEvent.MOUSE_OVER, onFolderOver);
folder1.addEventListener(MouseEvent.MOUSE_OUT, onFolderOut);

function onFolderOver(evt:MouseEvent):void {
 evt.target.alpha = 0.5;
}

function onFolderOut(evt:MouseEvent):void {
 evt.target.alpha = 1;
}

Figure 3-4 represents the standard listener approach, in which listeners for
mouse over and mouse out events are attached to both folders. As the mouse
moves over a folder, the alpha value changes.

Now imagine having to use the same approach for many folders, as seen in
Figure 3-5. The code could get quite extensive with all those listeners for each
folder. However, with event propagation, it is possible to attach the listener to
the parent movie clip, folder_group (indicated by the dashed line). The event
will cascade through the display list, and the common listener functions will
simply parse the object that is the intended target. The code that follows is
significantly simplified thanks to event propagation.

folder_group.addEventListener(MouseEvent.MOUSE_OVER, onFolderOver);
folder_group.addEventListener(MouseEvent.MOUSE_OUT, onFolderOut);

function onFolderOver(evt:MouseEvent):void {
 evt.target.alpha = 0.5;
}

function onFolderOut(evt:MouseEvent):void {
 evt.target.alpha = 1;
}

Looking at Figure 3-5 again, the folders are numbered left to right, top to
bottom, starting with 0. Imagine moving your mouse over folder0. The target
of the event dispatched to the display list will be folder0, it will propagate
through the list until it reaches folder0, and then it will bubble back up.
Similarly, if you mouse over folder5 or folder10, the listener function will
know which folder was the target by parsing the target property of the event,
and the alpha value of the appropriate folder will be changed. This can be

1�
2�
3�
4�
5�
6�
7�
8�
9�
10�
11�
12�

1�
2�
3�
4�
5�
6�
7�
8�
9�
10�

Figure 3-4. The effect of the changing
alpha values using t mouse over and
mouse out events

Figure 3-4. The effect of the changing
alpha values using t mouse over and
mouse out events

Frame and Timer Events

Chapter 3, Properties, Methods, and Events 43

seen in the source file event_propagation2.fla. Figure 3-5 simulates listeners
attached not to each folder, but rather to the parent movie clip (represented
by the dashed line) within which each folder resides. Due to event propaga-
tion, the mouse over and mouse out events automatically dispatched to the
display list are thereafter received by every child of the target movie clip.

Figure 3-5. Using the parent movie clip to propagate events

Frame and Timer Events
We have been using mouse and keyboard events because you are almost cer-
tainly familiar with them to some degree, and they are ideally suited to this
tutorial context. However, there are many, many events in the ActionScript
language. While it’s not possible to cover every one, we would like to round
out the chapter with two significant other event types: frame and timer.

Frame Events
Frame events are not triggered by user input, the way mouse and keyboard
events are. Instead, they occur naturally as the Flash file plays. Each time the
playhead enters a frame, a frame script is executed. This means that frame
scripts execute only once for the life of the frame, making them an excellent

Warning

It is important to note that not all events
propagate through the display list. Frame
events, for example, which we’ll dis-
cuss in the next section, are dispatched
directly to the event target. Before relying
on event propagation, check the docu-
mentation to see how the event behaves.
In particular, the bubbles property is
a Boolean that indicates whether or
not the event bubbles back up through
the display list after reaching its target.
For more information, see the compan-
ion web site, which includes discussions
about event phases, priority of execution,
stopping event propagation, and more.

Warning

It is important to note that not all events
propagate through the display list. Frame
events, for example, which we’ll dis-
cuss in the next section, are dispatched
directly to the event target. Before relying
on event propagation, check the docu-
mentation to see how the event behaves.
In particular, the bubbles property is
a Boolean that indicates whether or
not the event bubbles back up through
the display list after reaching its target.
For more information, see the compan-
ion web site, which includes discussions
about event phases, priority of execution,
stopping event propagation, and more.

Note

Consult Essential ActionScript 3.0,
Chapters 12 and 21, for more advanced
discussions on event propagation.

Note

Consult Essential ActionScript 3.0,
Chapters 12 and 21, for more advanced
discussions on event propagation.

Part II, Graphics and Interaction44

Frame and Timer Events

location for seldom-executed tasks, such as initializations. In other words, for
a frame script to execute more than once, the playhead must leave the frame
and return—either because of an ActionScript navigation instruction, or a
playback loop that returns the playhead to frame 1 when it reaches the end
of the timeline.

However, using an event listener, you can listen for a recurring enter frame
event that some display objects have, including the main timeline and the
movie clips. An enter frame event is fired at the same pace as the document
frame rate. For example, the default frame rate is 12 frames per second, so the
default enter frame frequency is 12 times per second. Using the enter frame
event allows your file to update frequently—a particularly handy thing for
visual assets.

The enter_frame.fla file in the accompanying source code demonstrates this
event by updating the position of a unicycle every enter frame. It places the
unicycle at the location of the mouse and, to further review your work with
properties, rotates the child movie clip in which the wheel resides. Figure 3-6
visualizes the effect. As you move your mouse to the right on the stage, the
unicycle will move to the right, and the wheel will rotate clockwise.

The code for this example follows. The first line adds an enter frame event
listener to the main timeline, specifying the event using the ENTER_FRAME
constant of the Event class. The function sets the unicycle’s x coordinate and
rotation to the x coordinate of the mouse. This code can be found in the
source file frame_events.fla.

stage.addEventListener(Event.ENTER_FRAME,onFrameLoop);

function onFrameLoop(evt:Event):void {
 cycle.x = mouseX;
 cycle.wheel.rotation = mouseX;
}

Timer Events
An alternative to using enter frame events to trigger actions on a recurring
basis is to use time-based events. Although it’s among the most straightfor-
ward options, using the enter frame event exclusively for this purpose has
disadvantages. For example, Flash Player can only reliably achieve moderate
frame rates—somewhere between the default 12 frames per second, and
perhaps 18 to 25 fps on the high end. Your mileage may vary, but that’s fairly
accurate when averaging the CPU population at large. More importantly, the
rate at which the enter frame fires is not always consistent.

1�
2�
3�
4�
5�
6�

Figure 3-6. Visual depiction of the unicycle
movements
Figure 3-6. Visual depiction of the unicycle
movements

Note

This example also demonstrates a script-
ing shortcut aided by ActionScript.
When specifying a rotation high-
er than 360 degrees, ActionScript
will understand and use the correct
value—that is, 360 degrees is one full
rotation around a circle, bringing you
back to degree 0 (720 degrees is twice
around the circle and also equates to
0). Similarly, 370 degrees is equivalent
to 10 degrees, as it is 10 degrees past
degree 0, and so on. This allows you
to set the rotation of the wheel movie
clip to the x coordinate of the mouse,
without worrying about moving past
the 360-pixel point on the stage.

Note

This example also demonstrates a script-
ing shortcut aided by ActionScript.
When specifying a rotation high-
er than 360 degrees, ActionScript
will understand and use the correct
value—that is, 360 degrees is one full
rotation around a circle, bringing you
back to degree 0 (720 degrees is twice
around the circle and also equates to
0). Similarly, 370 degrees is equivalent
to 10 degrees, as it is 10 degrees past
degree 0, and so on. This allows you
to set the rotation of the wheel movie
clip to the x coordinate of the mouse,
without worrying about moving past
the 360-pixel point on the stage.

Frame and Timer Events

Chapter 3, Properties, Methods, and Events 45

On the other hand, time-based events are measured in milliseconds and,
therefore, can fire more quickly. Further, time-based events don’t vary from
scenario to scenario, so they are more reliable and consistent.

Previous versions of ActionScript used the setInterval() method for ongo-
ing recurring events, and the setTimeout() method for finitely recurring
events. ActionScript 3.0 wraps up these approaches neatly behind the scenes
of the new Timer class, simplifying the process of using timers.

The first step in using the Timer class is to create an instance of the class, as
seen here:

var timer:Timer = new Timer(delay:Number, repeatCount:int);

The class constructor takes two arguments, the first is mandatory, and
specifies the delay, in milliseconds, before the timer event is fired. The second
parameter is optional and is the number of times the event fires. Omitting
the second parameter will cause the event to fire infinitely, each time after the
specified delay, similar to prior setInterval() implementations. Using a posi-
tive value, such as 1, will cause the event to fire that many times (again, after
the specified delay), similar to prior setTimeout() implementations.

In the sample timer_events.fla in the accompanying source code, the timer
event (specified as the constant TIMER in the TimerEvent class), occurs every
second (1,000 milliseconds) and calls a function that adds rotation to a hand
nested inside a watch movie clip. The code is quite simple, as shown in the
following example:

var timer:Timer = new Timer(1000);
timer.addEventListener(TimerEvent.TIMER, onTimer);
timer.start();

function onTimer(evt:TimerEvent):void {
 watch.hand.rotation +=5;
}

One important thing to note is line 3. The timer you instantiate does not
start automatically the way prior intervals or timeouts started. This gives
you greater flexibility and control over your timer events. You can also stop
the timer using the stop() method, and reset the timer using the reset()
method. The latter stops the timer and also resets the repeat count to zero.
For example, if you specified that the timer call a function five times, but reset
it after the third call, the timer would begin counting again from zero rather
than picking up from three at the point when it was reset. Figure 3-7 depicts
the code in the previous code sample. The hand on the stopwatch advances 5
degrees of rotation every second when a timer event calls a function.

1�
2�
3�
4�
5�
6�
7�

Note

As described in Chapter 2, frame and
timer loops, such as those seen in the
previous examples, are often an attrac-
tive alternative to for..loops because
they allow additional updates to occur
throughout the file. A code loop, such as
a for..loop, is one of the most proces-
sor-intensive structures and will execute
only the code inside the loop until the
loop is finished. This means that other
animation, sound or video updates, pro-
cess progress reports, and so on, will all
be halted while the loop is working.

Note

As described in Chapter 2, frame and
timer loops, such as those seen in the
previous examples, are often an attrac-
tive alternative to for..loops because
they allow additional updates to occur
throughout the file. A code loop, such as
a for..loop, is one of the most proces-
sor-intensive structures and will execute
only the code inside the loop until the
loop is finished. This means that other
animation, sound or video updates, pro-
cess progress reports, and so on, will all
be halted while the loop is working.

Figure 3-7. Use of the timer event in a
stopwatch
Figure 3-7. Use of the timer event in a
stopwatch

Part II, Graphics and Interaction46

Removing Event Listeners

Removing Event Listeners
While event listeners make most event handling easy to add and maintain,
leaving them in place when unneeded can wreak havoc. From a logic stand-
point, consider what could happen if you kept an unwanted listener in opera-
tion. Imagine a weeklong promotion for radio station 101 FM, which rewards
customer number 101 who enters a store each day of that week. The manager
of the store is set up to listen for “customer enter” events and, when customer
101 enters the store, oodles of prizes and cash are bestowed upon the lucky
winner. Now imagine if you left that listener in place after the promo week
was over. Oodles of prizes and cash would continue to be awarded at great,
unexpected expense.

Unwanted events are not the only problem, however. Every listener cre-
ated occupies a small amount of memory. Injudiciously creating many event
listeners, without cleaning up after yourself, can result in a memory leak.
Therefore, it’s a good idea to remove listeners when you know they will no
longer be needed.

To do so, you simply need to use the removeEventListener() method. By
specifying the owner of the relevant event and the listener function that is trig-
gered, you can remove that listener so it no longer reacts to future events. The
removeEventListener() method requires two parameters: the event and function
specified when the listener was created. Specifying the event and function is
important because you may have multiple listeners set up for the same event.

Let’s add to the previous example and remove the timer event listener when
the rotation of the watch hand meets or exceeds 25 degrees of rotation. The
new code is in bold.

var timer:Timer = new Timer(1000);
timer.addEventListener(TimerEvent.TIMER, onTimer);
timer.start();

function onTimer(evt:TimerEvent):void {
 watch.hand.rotation +=5;
 if (watch.hand.rotation >= 25) {
		 timer.removeEventListener(TimerEvent.
TIMER, onTimer);
 }
}

As discussed earlier, this can be accomplished using a repeat count in the
timer, like this:

var timer:Timer = new Timer(1000, 5);

However, the point of the example is to show you how to remove the listener
from your logic flow and, equally important, from memory, when it is no
longer needed. We briefly discuss an additional scenario for removing listen-
ers in the “Garbage Collection” sidebar but, in all cases, it’s good practice to
remove any listeners that you know you’ll no longer need. This is demon-
strated in the source file removing_listeners.fla.

1�
2�
3�
4�
5�
6�
7�
8�

9�
10�

Removing Event Listeners

Chapter 3, Properties, Methods, and Events 47

Garbage collection is the method by which Flash Player purges
from memory objects that you no longer need. Garbage
collection and memory management typically are not topics
you need to concern yourself with when just getting started
with ActionScript 3.0. However, there are some intermediate
coding practices that you can adopt relatively painlessly—even
at the outset of your learning—that may prove useful habits in
the long run. Garbage collection is such a practice.

We just want to scratch the surface of this subject, laying
the groundwork for conventions that we’ll use throughout
the remainder of this book, and then refer you to additional
resources for more information.

There are three optional parameters that you can add to the
end of the addEventListener() method. Here is the syntax
of the method, with which you are probably already partly
familiar if you’ve read this chapter. The optional parameters we’ll
discuss are in bold.

eventTarget.addEventListener(EventType.EVENT_NAME,
eventResponse, useCapture:Boolean, priority:
int, weakReference:Boolean);

The first two optional parameters control when the listener
function executes. You probably won’t need to adjust these
values, but here’s a quick snapshot of their functionality, so you
can decide whether you want to explore them further.

The first optional parameter, useCapture, allows you to handle
the listener event before it reaches its target (if set to true)
or once the event has reached its target (if set to false) or is
bubbling back up through the display list. The default (false) is
to react to all events captured at or after the event reaches the
target, and this is the configuration you will likely use most of
the time.

The second optional parameter, priority, allows you to order
the execution of multiple listeners set to respond to the same
event in the same phase. This, too, is unlikely to be an issue,
and the default parameter of 0 will serve you well in the vast
majority of circumstances.

The third optional parameter, weakReference, is the option we
want you to understand and start using. In a nutshell, this helps
with memory management, in the event that you’re not careful
about removing unneeded listeners.

Briefly, in ActionScript 3.0, memory management that you
do not explicitly control is handled behind the scenes by the

garbage collector. When you are no longer referencing an
object in your application, it is marked for cleanup, and the
garbage collector periodically sweeps through your application
discarding unneeded items, freeing up memory along the
way. However, if a reference to an object remains, the garbage
collector can’t know that the object should be purged from
memory.

Try as we might to be good, it’s not uncommon for developers
to forget to remove event listeners in their code (see the section
“Removing Event Listeners” in this chapter). However, a distant
next-best thing is a weakly referenced listener. Simply put,
weakly referenced listeners aren’t supervised by the garbage
collector and, therefore, don’t have to be manually marked for
removal. If only weak references to an object remain after you
have finished using it, then the object is eligible for collection.

Using this option is very simple. All you need to do is change
the weakReference setting of the addEventListener()
method from its default value of false, to true. Because it’s
the third optional parameter, values for the first and second
parameters must be included so Flash knows which parameter
you are trying to set. You will rarely need to change those
values, so you can use their aforementioned defaults (false for
useCapture and 0 for priority).

So, our preference, and the convention we will use hereafter in
this book, is to use the addEventListener() method with
this syntax:

eventTarget.addEventListener(EventType.EVENT_NAME,
eventResponse, false, 0, true);

If you get in the habit of using this syntax, you will be far less
likely to run into memory management problems due to lax
code maintenance. Remember, this is not a substitute for
removing your unneeded listeners explicitly. However, it’s a
backup plan, and a best practice that is easy to adopt.

Additional discussion of the event flow—including event
phases, setting listener priority, stopping propagation along
the way, manually dispatching events, and more—is featured
on the companion web site. Flash developer Grant Skinner also
wrote a helpful series of articles on resource management on
his blog (http://www.gskinner.com/blog) that got us thinking
about this in the first place. Finally, event flow is discussed in
depth in Chapters 12 and 21 of our resource book of choice,
Essential ActionScript 3.0.

A R e c o m m e n d e d O p t i o n a l Para m e t e r f o r E v e n t L i s t e n e r s

Garbage Collection

Part II, Graphics and Interaction48

What’s Next?

What’s Next?
This chapter has demonstrated several ways to manipulate Flash objects
but in the case of our example movie clip, has assumed that the movie clip
already existed on the stage. This is an acceptable assumption for projects
authored primarily using the timeline, but it is a limiting assumption. If all
files are to be constrained by using only elements manually added to the
stage at author time, and used only in the manner and order in which they
were originally added, the files cannot be as dynamic as the ActionScript
language allows.

Coming up, we’ll talk more about the display list—an excellent means
of managing visual assets. Understanding the basics of the display list is
instrumental not only in dynamically adding elements at runtime, but also
manipulating existing stage-bound objects to their fullest potential.

In the next chapter, we’ll discuss:

Adding new children to the display list

Removing existing display list children

Swapping depths of objects in the display list to change their visual stack-
ing order dynamically

Managing the hierarchical relationship of display list objects, and how to
change that relationship through reparenting

•

•

•

•

49

In This Chapter

The Sum of Its Parts

Adding and Removing
Children

Managing Object Names,
Positions, and Data Types

Changing the Display List
Hierarchy

A Dynamic Navigation Bar

What’s Next?

One of the most dramatic changes introduced by ActionScript 3.0, particularly
for designers accustomed to prior versions of ActionScript, is the way in which
visual elements are added to an application at runtime. In prior versions of
ActionScript, a separate approach was used to add most kinds of visual assets
at runtime, requiring varied syntax. Management of those assets—particu-
larly depth management—and creating and destroying objects, were also fairly
restrictive and could be relatively involved depending on what you were trying
to accomplish.

ActionScript 3.0 brings with it an entirely new way of handling visual assets. It’s
called the display list. It’s a hierarchical list of all visual elements in your file. It
includes common objects such as movie clips, but also objects such as shapes and
sprites that either didn’t previously exist or could not be created programmatically.

In this chapter, we’ll look at the following topics:

The Sum of Its Parts. Understanding the display list means understand-
ing its parts. In addition to knowing the kinds of objects that can be
part of the display list, it’s also important to grasp the simple difference
between display objects and display object containers.

Adding and Removing Children. The best part of the display list is how
easy and consistent it is to add objects to, and remove objects from, the list.

Managing Object Names, Positions, and Data Types. In addition to
adding and removing display objects, you will need to manipulate exist-
ing members of the display list. You will likely need to find an object,
either by name or position in the list, or even identify an object’s data type
as a particular display object class.

Changing the Hierarchy. It’s also much easier than ever before to
manage asset depths (z-order, or the visual stacking order controlled by
ActionScript, rather than timeline layers), and to change the familial rela-
tionship of assets. Moving a child from one parent to another is a breeze.

•

•

•

•

The Display List

Chapter 4

Part II, Graphics and Interaction50

The Sum of Its Parts

A Dynamic Navigation Bar. As a quick demonstration of using the
display list, we’ll show you how to dynamically generate a very simple
navigation bar.

The Sum of Its Parts
If you start thinking about the display list by thinking about what you see
in any given application, you’re half-way home. In addition to contributing to
the structure of the new event model, discussed in Chapter 3, the display list
is responsible for maintaining the visual and spatial assets in your file. You
will use the display list to create and destroy visual assets, to manage their
coexistence, and manage how they interrelate.

Let’s take a look at the contents of the display list of a sample file. Figure 4-1
shows that this file has a shape, a text element, and a movie clip, and inside
the movie clip is a bitmap. Figure 4-2 shows the display list of the same file.

Stage
(Display Object Container)

Shape
(Display Object)

Text
(Display Object)

Main Timeline
(Display Object Container)

MovieClip
(Display Object Container)

Bitmap
(Display Object)

Figure 4-2. The display list of the sample file

At the top of the list is the stage. Although you can access the stage from
many objects in the display list, it’s easiest to think of the stage as the foun-
dation on which everything is built. It also helps to think of the stage as the
ultimate container within which all your visual assets reside at runtime. The
container analogy will soon become central to this discussion. The stage
contains everything.

•

TEXT
movie

clip

text
element

shape

bitmap

Figure 4-1. The visual layout of the sample
file

TEXT
movie

clip

text
element

shape

bitmap

Figure 4-1. The visual layout of the sample
file

The Sum of Its Parts

Chapter 4, The Display List 51

Next is the main timeline, which is also referenced using the root display
object instance variable. (See the sidebar, “_root versus root” for more
information.) Like the stage, a Flash file requires one timeline within which
all other assets are contained. Because of event propagation, it is common
to use the main timeline as a location to add event listeners when writing
scripts in the timeline. In that context, the main timeline is typically refer-
enced using the this identifier, as in “this object being currently referenced
within the context of the script.” (For more information about event listeners
and event propagation, see Chapter 3. For more information about this, see
Chapter 2.)

Below the main timeline are all the visual assets in the file. Included are the
aforementioned shape, text, and movie clip assets, and inside the movie clip
is the bitmap.

You may notice that everything is subtitled as a display object or display
object container. This is key to understanding and working with the display
list effectively. It probably follows that everything in the display list is a dis-
play object. However, some display objects can contain other elements and
therefore also display object containers.

For example, a shape is a display objects, as are bitmaps and videos. However,
none of these items can have children, so the display list lineage ends there.
A movie clip can have children, such as other movie clips therein. Therefore,
although a movie clip is a display object, it is also a display object container.
This concept of display objects also possibly being containers is useful when
traversing the display list, determining whether a display object has children,
moving a child from one parent to another, and so on.

Display List Classes
In just a moment, we’ll walk through a typical ActionScript display list that
demonstrates the distinction between display objects and display object con-
tainers. First, however, take a look at the individual classes that contribute to
the display list, as shown in Figure 4-3.

_root versus root
You may have heard you
should avoid using the global
_root variable in prior versions of
ActionScript. That's because the
value of the variable was subject
to change. Before ActionScript 3.0,
the _root variable referred to the
timeline of the original host SWF no
matter how many SWFs got loaded.

_root was the equivalent of an
absolute address, like referring to an
image in a web site as http://www.
yourdomain.com/image, or a file on
your computer as C:\directory\file,
instead of a more flexible relative
address such as “image” (or “../image,”
for example, if you needed to
traverse directories first).

Because _root was an absolute
address, if the file in which you
used the global variable was loaded
into another file, the variable was
redefined to become the timeline
doing the loading, rather than your
original file. This was often not
initially intended and would break
many object path references that
originated with _root.

In ActionScript 3.0, the display
list changed that prevailing logic.
root is now an instance variable
of the display object, and doesn't
always refer to the main timeline.
It’s relevant to the context in which
it's used so it behaves more like
a relative address and no longer
changes just because your SWF is
loaded into another SWF. The root
of a movie clip in SWF A, is the same
if it stands alone or is loaded into
SWF B. The same goes for the root in
SWF B, whether it stands alone or is
loaded into SWF C, and so on.

_root versus root
You may have heard you
should avoid using the global
_root variable in prior versions of
ActionScript. That's because the
value of the variable was subject
to change. Before ActionScript 3.0,
the _root variable referred to the
timeline of the original host SWF no
matter how many SWFs got loaded.

_root was the equivalent of an
absolute address, like referring to an
image in a web site as http://www.
yourdomain.com/image, or a file on
your computer as C:\directory\file,
instead of a more flexible relative
address such as “image” (or “../image,”
for example, if you needed to
traverse directories first).

Because _root was an absolute
address, if the file in which you
used the global variable was loaded
into another file, the variable was
redefined to become the timeline
doing the loading, rather than your
original file. This was often not
initially intended and would break
many object path references that
originated with _root.

In ActionScript 3.0, the display
list changed that prevailing logic.
root is now an instance variable
of the display object, and doesn't
always refer to the main timeline.
It’s relevant to the context in which
it's used so it behaves more like
a relative address and no longer
changes just because your SWF is
loaded into another SWF. The root
of a movie clip in SWF A, is the same
if it stands alone or is loaded into
SWF B. The same goes for the root in
SWF B, whether it stands alone or is
loaded into SWF C, and so on.

