1

Swarm Intelligence and IDS

Sohn Jong-Soo

Intelligent Information System lab. Department of Computer Science Korea University

Contents

Introduction to swarm intelligence

- Concepts
- Principal
- Ant colony optimization
- Particle swarm optimization

Related papers

- Collective intelligence and priority routing in networks
- A swarm intelligence based intrusion detection technique
- ANTIDS : Self organized ant-based clustering model for intrusion detection system

Conclusion

Swarm intelligence

- Relatively new interdisciplinary field of research
- Draw inspiration from the collective intelligence emerging from the behavior of a group of social insects
 - Likes bees, ants, wasps etc.
 - Cooperatively perform many complex tasks necessary for their survival
 - Problems
 - finding and storing foods
 - selecting and picking up materials
 - Problems are solved by insect colonies without any kind of supervisor or controller

- Collective and social behavior of living creatures motivated researchers
- Beny and Wang, 1989
 - Context of cellular robotics
- Collective behavior (Couzin et al., 2002)
 - Homogeneity
 - Every bird in flock has the same behavioral model
 - Locality
 - Nearest flock-mates only influence the motion of each bird
 - Collision Avoidance
 - Velocity Matching
 - Flock Centering

Collective dynamical behaviors (Couzin, 2002)

- Swarm
- Torus
- Dynamic parallel group
- Highly parallel group
- Swarm can be viewed as a group of agents cooperating to achieve some purposeful behavior and achieve some goal

⁽a) Swarm

(b) Torus

Basic principle of collective intelligence

Fact : Xk

a : correct fact (knowledge)

nk : noise

$$x_{\rm CI} = \sum_{k=1}^{K} x_k = Ka + \sum_{k=1}^{K} n_k$$

Using many facts

$$x_{\rm CI}[i] = \sum_{k=1}^{K} \begin{cases} x_k[i_k] & i_k = i \\ 0 & i_k \neq i \end{cases} = K_i a[i] + \sqrt{K_i} n$$

$$X_{k}[i_{k}] = a[i_{k}] + n_{k}$$

i-th knowledge of user K

Ant Colony Optimization (ACO)

- Dorigo et al., 1996
- Focuses on discrete optimization problems
- Applied successfully to a large number of NP hard discrete optimization problems
 - Traveling salesman
 - Scheduling, vehicle
 - Routing in telecommunication networks

Particle Swarm Optimization (PSO)

- Kennedy and Everhart, 1995
- One of the very popular swarm intelligence Algo.
- Global optimization over continuous search spaces

The ant colony systems (ACO)

Ants behavior

- Ants move in a straight line
- An obstacle is inserted between the nest and the food
- To avoid the obstacle
 - Each ant chooses to turn left or right at random
- Pheromone accumulates faster in the shorter path around the obstacle
 - Shorter path : more pheromone
 - Longer path : less pheromone

The ant colony systems (ACO)

Finding the optimal tour in the TSP

- Set of n cities
- R(Cx, Cy) be a measure of cost for traversal from city Cx to Cy
- The total cost of traversing n cities indexed by i1. ... in

$$Cost(i_1, i_2, \dots, i_n) = \sum_{j=1}^{n-1} r(Ci_j, Ci_{j+1}) + r(Ci_n, Ci_1)$$

The probability that ant k in city *i* visits city *j* is given by:

Pheromone is updated on all the ages as,

$$\tau(i,j) = (1-\rho).\tau(i,j) + \sum_{k=1}^{m} \Delta \tau_k(i,j)$$

The ant colony systems (ACO)

Algorithm for ant colony system

Algorithm 1: Procedure ACO

- 1: Initialize pheromone trails;
- 2: repeat {at this stage each loop is called an iteration}
- 3: Each ant is positioned on a starting node
- 4: repeat {at this level each loop is called a step}
- 5: Each ant applies a *state transition rule like rule* (2) to incrementally build a solution and a *local pheromone-updating rule like rule* (4);
- 6: **until** all ants have built a complete solution
- 7: global pheromone-updating rule like rule (5) is applied.
- 8: until terminating condition is reached

11

The particle swarm optimization (PSO)

Kennedy et al., 2001

- Only use primitive mathematical operators
 - Do not use gradient information

PSO

- Population of conceptual "Particles" is initialized with
 - random positions Xi
 - velocities Vi
 - function f
- N-dimensional search space
 - $X_i = (X_{i1}, X_{i2} \dots X_{in}), V_i = (V_{i1}, V_{i2}, \dots V_{in})$
- The basic update equations for the d-th dimension of the i-th particle in PSO may be given as

The particle swarm optimization (PSO)

PSO Algorithm

Algorithm 2: The PSO Algorithm

Input: Randomly initialized position and velocity of the particles: $\mathbf{X}_{i}(0)$ and $\mathbf{V}_{i}(0)$

Output: Position of the approximate global optima \mathbf{X}^*

- 1: while terminating condition is not reached do
- 2: for i = 1 to number of particles do
- 3: Evaluate the fitness: $=f(\mathbf{X}_i(t));$

4: Update $\mathbf{P}(t)$ and $\mathbf{g}(t)$;

- 5: Adapt velocity of the particle using Equation 3;
- 6: Update the position of the particle;
- 7: end for
- 8: end while

Related paper

- Collective intelligence and priority routing in networks
 - Tony White, 2002
- A swarm intelligence based intrusion detection technique
 - Zhou Lianying, 2006
- ANTIDS : Self organized ant-based clustering model for intrusion detection system
 - Vitorino, 2007

Collective Intelligence and Priority Routing in Networks

To solve complex routing problems

- Incorporating prioritized information flow
- By biologically-inspired agents
- The collection of agents (swarm system)
 - Deals only with local knowledge and exhibit a form of distributed control with agent communication

Swarm routing

- Communication network
 - Weighted graph where the vertices correspond to switching nodes and edges represent the physical links
- Connection creation monitoring agent
 - When a connection request is made
 - CCMA are decide when a path has emerged
- Point to point, Point to multi point, Cycle

Collective Intelligence and Priority Routing in Networks

Evaluation

- 18% more traffic
 - Sending CCMA
 - Communications Between CCMA
- Much more quickly
 - Typically 30% lower discovering time
 - Nice adaptability about new situation
 - Quickly re-routing for traffic jam

Fig. 3. Priority Routing

A swarm intelligence based intrusion detection technique

Inspirations as following

- 1. In order to decentralize burden, the entity intrusion detection system should be separated into numbers of intrusion units that are independent, flexible and self-adaptive
- 2. In order to improve real-time characteristic of detection, each detection unit should be lightweight—adopting simple algorithms and processing less data
- 3. The most important thing is that a detection unit can't work alone, it should not only make the best of information but also leave information to others, which means IDS should also gather "swarm intelligence".

ANTIDS vs SVM vs DT vs Linear genetic programming

Distributed and collaborative clustering

- The swarm intelligence Algo. fully uses agents
 - Stochastically move around the classification "habitat"
 - Following pheromone concentrations
 - Ant's food : intrusion data

Picking and dropping data objects

- Behavior of ants
 - Dropping and picking up objects
- Use of combinations of different response thresholds

Pheromone weight function

$$W(\sigma) = \left(1 + \frac{\sigma}{1 + \delta\sigma}\right)^{\beta}$$

- Pheromone density : σ(r)
- **1**/ δ : sensory capacity

Transition probabilities

$$P_{ik} = \frac{W(\sigma_i)w(\Delta_i)}{\sum_{j \neq k} W(\sigma_j)w(\Delta_j)}$$

- $\Delta \theta$: the change in direction at each time step
- $w(\Delta \theta)$: weighting factor

- Picking and dropping data objects
 - Behavoir of ants associated to different tasks
 - As dropping and picking up objects
 - Use of combinations of different response thresholds
 - Two major factor
 - The number of objects in his neighborhood
 - And their similarity
 - Every indivisual has a response of the task-associated stimulti s, exceeds their thresholds
 - In this papar, proposes
 - Intensity of a stimulus associated with a particular task

ANTIDS : Self organized ant-based clustering model for intrusion detection system

- Picking and dropping data objects
 - Number of object in one neighborhood

$$T_{\theta}(s) = \frac{s}{s^n + \theta^n}$$

Response threshold

$$\chi = \frac{n^2}{n^2 + 5^2}$$

Dropping object

$$\delta = \left(\frac{k_1}{k_1 + d}\right)$$
Pickking up
$$\varepsilon = \left(\frac{d}{k_2 + d}\right)$$

Test function

$$P_p = (1-\chi).\varepsilon$$
 $P_d = \chi.\delta$

- Attribute deduction, experiment setup and results
 - Attack types
 - DoS
 - R2L : Unauthorized access from a remote machine
 - U2R : Unauthorized access to local super user
 - Probing
 - Conventional methods
 - DT (ID3), SVM, and LGP
 - Labeled feature
 - A, B, C, D ... AA, AB, ... AO
 - ▶ 41 feature are labeled
 - And class label : AP
 - Reduced the 12 variable data set
 - C E, F, L, W, X, Y, AB, AE, AF, AG and AI

Experiments	Attack type	Classification accuracy on test data set (%)					
		ANTIDS-a	ANTIDS-b	DT	SVM	LGP	
	Normal	70.52	99.64	99.64	99.64	99.73	
	Probe	71.73	98.29	99.86	98.57	99.89	
	DOS	83.39	99.97	96.83	99.92	99.95	
	U2R	0.00	64.00	68.00	40.00	64.00	
	R2L	10.47	99.47	84.19	33.92	99.47	

Table 1. Performance comparison using full data set

Attack type	Classification accuracy on test data set (%)							
	ANTIDS-a	ANTIDS-b	DT	SVM	LGP			
Normal	69.40	99.73	100.00	99.75	99.97			
Probe	60.07	99.86	97.71	98.20	99.93			
DOS	84.31	99.97	85.34	98.89	99.96			
U2R	47.62	68.00	64.00	59.00	68.26			
R2L	87.63	99.47	95.56	56.00	99.98			

Table 2. Performance comparison using reduced data set

Conclusion

Swarm intelligence

- Weak point
 - Hard to understanding computing model
 - Biological terms + statistical knowledge + linear algebra + various clustering algorithm + etc
 - Hard to establish computing model for problem solving
 - Unexplored field
- Strong point
 - Unexplored field
 - Distributed computing environment
 - Useful for agent
 - Routing
 - Knowledge processing, datamining
 - computing cost is very cheap!

Thank you