
Chapter 3

SIMPLEX METHOD

In this chapter, we put the theory developed in the last to practice. We develop the simplex method
algorithm for LP problems given in feasible canonical form and standard form. We also discuss two
methods, the M -Method and the Two-Phase Method, that deal with the situation that we have an
infeasible starting basic solution.

3.1 Simplex Method for Problems in Feasible Canonical Form
The Simplex method is a method that proceeds from one BFS or extreme point of the feasible region
of an LP problem expressed in tableau form to another BFS, in such a way as to continually increase
(or decrease) the value of the objective function until optimality is reached. The simplex method
moves from one extreme point to one of its neighboring extreme point. Consider the following LP
in feasible canonical form, i.e. its right hand side vector b ≥ 000:

max x0 = cT x

subject to

{
Ax ≤ b,

x ≥ 000.

Its initial tableau is

x1 x2 · · · xs · · · xn xn+1 · · · xn+r · · · xn+m b

xn+1 a11 a12 · · · a1s · · · a1n 1 · · · 0 · · · 0 b1

xn+2 a21 a22 · · · a2s · · · a2n 0 · · · 0 · · · 0 b2

...
...

...
. . .

...
. . .

...
...

. . .
...

. . .
...

...

xn+r ar1 ar2 · · · ars · · · arn 0 · · · 1 · · · 0 br

...
...

...
. . .

...
. . .

...
...

. . .
...

. . .
...

...

xn+m am1 am2 · · · ams · · · amn 0 · · · 0 · · · 1 br

x0 −c1 −c2 · · · −cs · · · −cn 0 · · · 0 · · · 0 0

Here xn+i, i = 1 · · · ,m are the slack variables. The original variables xi, i = 1, · · · , n are called the
structural or decision variables. Since all bi ≥ 0, we can read off directly from the tableau a starting
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2 Chapter 3. SIMPLEX METHOD

BFS given by [0, 0, · · · , 0, b1, b2, · · · , bm]T , i.e. all structural variables xj are set to zero. Note that
this corresponds to the origin of the n-dimensional subspace Rn of Rn+m.

In matrix form, the original constraint Ax ≤ b has be augmented to

[A I]
[
x
xs

]
= Ax + Ixs = b. (3.1)

Here xs is the vector of slack variables. Since the columns of the augmented matrix [A
... I] that

correspond to the slack variables {xn+i}m
i=1 is an identity matrix which is clearly invertible, the slack

variables {xn+i}m
i=1 are basic. We denote by B the set of current basic variables, i.e. B = {xn+i}m

i=1.
The set of non-basic variables, i.e. {xi}n

i=1 will be denoted by N .
Consider now the process of replacing an xr ∈ B by an xs ∈ N . We say that xr is to leave

the basis and xs is to enter the basis. Consequently after this operation, xr becomes non-basic,
i.e. xr ∈ N and xs becomes basic, i.e. xs ∈ B. This of course amounts to a different (selection of
columns of matrix A to give a different) basis B. We shall achieve this change of basis by a pivot
operation (or simply called a pivot). This pivot operation is designed to maintain an identity matrix
as the basis in the tableau at all time.

3.1.1 Pivot Operation with Respect to the Element ars.

Once we have decided to replace xr ∈ B by xs ∈ N , the ars in the tableau will be called the pivot
element. We will see later that the feasibility condition implies that ars > 0. The r-th row and the
s-th column of the tableau are called the pivot row and the pivot column respectively. The rules to
update the tableau are:

(a) In pivot row, arj ← arj/ars for j = 1, · · ·n + m.

(b) In pivot column, ars ← 1, ais ← 0 for i = 0, · · ·m, i 6= r.

(c) For all other elements, aij ← aij − arj ∗ ais/ars.

Graphically, we have

j s

i aij ais

r arj a∗rs

becomes

j s

i aij − arjais/ars 0

r arj/ars 1

Or, simply,

a b

c d∗
becomes

a− bc
d 0

c
d 1

Notice that this pivot operation is simply the Gaussian elimination such that variable xs is eliminated
from all m + 1 but the r-th equation, and in the r-th equation, the coefficient of xs is equal to 1. In
fact, Rule (a) above amounts to normalization of the pivot row such that the pivot element becomes
1. Rule (b) above amounts to eliminations of all the entries in the pivot column except the pivot
element. Rule (c) is to compute the Schur’s complement for the remaining entries in the tableau.
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Example 3.1. Consider 



x1 + x2 − x3 + x4 = 5
2x1 − 3x2 + x3 + x5 = 3
−x1 + 2x2 − x3 + x6 = 1

The initial tableau is given by
Tableau 1:

x1 x2 x3 x4 x5 x6 b

x4 1∗ 1 −1 1 0 0 5

x5 2 −3 1 0 1 0 3

x6 −1 2 −1 0 0 1 1

B1


1 0 0

0 1 0

0 0 1




The current basic solution is [0, 0, 0, 5, 3, 1]T which is clearly feasible. Suppose we choose a1,1 as our
pivot element. Then after one pivot operation, we have
Tableau 2:

x1 x2 x3 x4 x5 x6 b

x1 1 1 −1 1 0 0 5

x5 0 −5∗ 3 −2 1 0 −7

x6 0 3 −2 1 0 1 6

B2


1 0 0

2 1 0

−1 0 1




We note that the current basic solution is [5, 0, 0, 0,−7, 6]T which is infeasible. Using the new (2, 2)
entry as pivot, we have
Tableau 3:

x1 x2 x3 x4 x5 x6 b

x1 1 0 − 2
5

3
5

1
5 0 18

5

x2 0 1 − 3
5

2
5 − 1

5 0 7
5

x6 0 0 − 1
5

∗ − 1
5

3
5 1 9

5

B3


1 1 0

2 −3 0

−1 2 1




The current basic solution is [18/5, 7/5, 0, 0, 0, 9/5]T and is feasible. Finally, let us eliminate the last
slack variable x6 by replacing it by x3.
Tableau 4:

x1 x2 x3 x4 x5 x6 b

x1 1 0 0 1 −1 −2 0

x2 0 1 0 1 −2 −3 −4

x3 0 0 1 1 −2 −5 −9

B4


1 1 −1

2 −3 1

−1 2 −1




The current basic solution is [0,−4,−9, 0, 0, 0]T which is infeasible and degenerate. Thus we see that
one cannot choose the pivot arbitrarily. It has to be chosen according to some feasibility criterion.

There are three important observations that we should note here. First the pivot operations
which amounts to elementary row operations on the tableaus, are being recorded in the tableaus at
the columns that correspond to the slack variables. In the example above, one can easily check that
Tableau i is obtained from Tableau 1 by pre-multiplying Tableau 1 by the matrix formed by the
columns of x4, x5 and x6 in Tableau i. In the tableaus, the inverse of these matrices are computed
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and are denoted by Bi. Let the columns in Tableau 1 be denoted as usual by aj and the columns in
Tableau i be denoted by yj , then since

[a1,a2, · · · ,am+n] = [A
... I] = Bi[B−1

i A
... B−1

i ] = Bi[y1,y2, · · · ,ym+n],

it is clear that Biyj = aj . Comparing this with equation (2.20), we see that Bi are the change of
basis matrices from Tableau i to Tableau 1.

Our second observation is the following one. Since the last column in Tableau 1 is given by b,
the last column in Tableau i, which we denote by y0 = (y10, · · · , ym0)T , will be given by Biy0 = b.
Since Bi is invertible, y0 gives the basic variables of the current basic solution, i.e. the basic solution
xi

B corresponding to Bi is given by

xi
B = y0 = B−1

i b. (3.2)

For this reason, the last column of the tableau, i.e. y0, is called the solution column.
The third observation is that the columns of Bi are the columns of the initial tableau. For

example, the columns of B3 are the first, second and the sixth columns of Tableau 1. In fact,
Tableau 3 is obtained by moving (via elementary row operations) the identity matrix in Tableau 1
to the first, second and the sixth columns in Tableau 3. It indicates that in each iteration of the
simplex method, we are just choosing different selection of columns of the augmented matrix to give
a different basic matrix B. In particular, the solution obtained in each tableau is indeed the basic
solution to our original augmented matrix system (3.1). In fact, Tableau 3 means that

[A
... I]




18/5
7/5
0
0
0

9/5




= B3




18/5
7/5
9/5


 =




5
3
1


 = b,

i.e. the current solution is given by [18/5, 7/5, 0, 0, 0, 9/5]T . For Tableau 4, since B4 = A, we have

[I
... A−1]

[
A−1b

000

]
= A−1b,

which is equivalent to

A · (A−1b) + I · 000 = b,

i.e. the current solution in Tableau 4 is given by [A−1b,000]T .
In the following, we consider the criteria that guarantee the feasibility and optimality of the

solutions.

3.1.2 Feasibility Condition.

Suppose that the entering variable xs has been chosen according to some optimality conditions, i.e.
the pivot column is the s-th column. Then the leaving basic variable xr must be selected as the
basic variable corresponding to the smallest positive ratio of the values of the current right hand
side to the current positive constraint coefficients of the entering non-basic variable xs.
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To determine row r xs y Ratio

yr0
yrs

= mini{yi0
yis

| yis > 0}

y1s y10
y10
y1s

y2s y20
y20
y2s

...
...

...

yis yi0
yi0
yis

...
...

...

yms ym0
ym0
yms

This follows directly from equation (2.24) and the fact that the current basic solution xB defined in
(2.24) is given by the solution column y0 here, see (3.2) above.

3.1.3 Optimality Condition.

For simplicity, we consider a maximization problem. We first denote the entries in the row that
correspond to x0 by y0j . The (m + 1,m + n + 1)-th entry in the tableau is denoted by y00. We will
show in the next section that

y0j = −(cj − zj), j = 1, · · · , n + m, (3.3)

the negation of the reduced cost coefficients that appeared in Theorem 2.6. Here zj is defined in
(2.25). Moreover, we will show also that

y00 = cT
BxB , (3.4)

i.e. y00 is the current objective function value associated with the current BFS in the tableau. Thus
according to Theorem 2.6, the entering variable xs ∈ N can be selected as a non-basic variable xs

having a negative coefficient. Usual choices are the first negative y0s or the most negative y0s. If all
coefficients y0j are non-negative, then by Theorem 2.7, an optimal solution has been reached.

3.1.4 Summary of Computation Procedure.

Once the initial tableau has been constructed, the simplex procedure calls for the successive iteration
of the following steps.

1. Testing of the coefficients of the objective function row to determine whether an optimal
solution has been reached, i.e., whether the optimality condition that all coefficients are non-
negative in that row is satisfied.

2. If not, select a currently non-basic variable xs to enter the basis. For example, the first negative
coefficient or the most negative one.

3. Then determine the currently basic variable xr to leave the basis using the feasibility condition,
i.e. select xr where yr0/yrs = min

i
{yi0/yis | yis > 0}.

4. Perform a pivot operation with pivot row corresponding to xr and pivot column corresponding
to xs. Return to 1.
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Example 3.2. Consider the LP problem:

Max x0 = 3x1 + x2 + 3x3

Subject to





2x1 + x2 + x3 ≤ 2
x1 + 2x2 + 3x3 ≤ 5

2x1 + 2x2 + x3 ≤ 6
x1, x2, x3 ≥ 0

By adding slack variables x4, x5 and x6, we have the following initial tableau.
Tableau 1: Initial tableau, current BFS is x = [0, 0, 0, 2, 5, 6]T and x0 = 0.

x1 x2 x3 x4 x5 x6 b Ratio

x4 2 1∗ 1 1 0 0 2 2
1 = 2∗

x5 1 2 3 0 1 0 5 5
2 = 2.5

x6 2 2 1 0 0 1 6 6
2 = 3

x0 −3 −2 −3 0 0 0 0

We choose x2 as the entering variable to illustrate that any nonbasic variable with negative coefficient
can be chosen as entering variable. The smallest ratio is given by x4 row. Thus x4 is the leaving
variable.
Tableau 2: Current BFS is x = [0, 2, 0, 0, 1, 2]T and x0 = 2.

x1 x2 x3 x4 x5 x6 b Ratio

x2 2 1 1 1 0 0 2 2
1 = 2

x5 −3 0 1∗ −2 1 0 1 1
1 = 1∗

x6 −2 0 −1 −2 0 1 2 –

x0 −1 0 −2 1 0 0 2

Tableau 3: Current BFS is x = [0, 1, 1, 0, 0, 3]T and x0 = 4.

x1 x2 x3 x4 x5 x6 b Ratio

x2 5∗ 1 0 3 −1 0 1 1
5

x3 −3 0 1 −2 1 0 1 –

x6 −5 0 0 −4 1 1 3 –

x0 −7 0 0 −3 2 0 4

Tableau 4: Optimal tableau, optimal BFS x∗ = [1/5, 0, 8/5, 0, 0, 4]T , x∗0 = 27/5.

x1 x2 x3 x4 x5 x6 b

x1 1 1
5 0 3

5 − 1
5 0 1

5

x3 0 3
5 1 − 1

5
2
5 0 8

5

x6 0 1 0 −1 0 1 4

x0 0 7
5 0 6

5
3
5 0 27

5
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We note that the extreme point sequence that the simplex method passes through are {x4, x5, x6} →
{x2, x5, x6} → {x2, x3, x6} → {x1, x3, x6}.

3.2 Simplex Methods for Problems in Standard Form
Our previous method is based upon the existence of an initial BFS to the problem. It is desirable
to have an identity matrix as the initial basic matrix. For LP in feasible canonical form, the initial
basic matrix is the matrix associated with the slack variables, and is an identity matrix. Consider
an LP in standard form:

max x0 = cT x

subject to

{
Ax = b,

x ≥ 000.

where we assume that b ≥ 000. There is no obvious initial starting basis B such that B = Im. For
notational simplicity, assume that we pick B as the last m (linearly independent) columns of A, i.e.

A is of the form A = [N
... B]. We then have for the augmented system:

{
NxN + BxB = b

x0 − cT
NxN − cT

BxB = 000

Multiplying by B−1 to the first equation yields,

B−1NxN + xB = B−1b

or
xB = B−1b−B−1NxN .

Hence the x0 equation becomes

x0 − cT
NxN − cT

B(B−1b−B−1NxN ) = 0.

Thus we have {
B−1NxN + xB = B−1b

x0 − (cT
N − cT

BB−1N)xN = cT
BB−1b

Denoting zT
N = cT

BB−1N (an (n−m) row vector) gives
{

B−1NxN + xB = B−1b

x0 − (cT
N − zT

N )xN = cT
BB−1b

which is called the general representation of an LP in standard form with respect to the basis B. Its
initial simplex tableau is then

xN xB b

xB B−1N I B−1b

x0 −(cT
N − zT

N ) 0 cT
BB−1b
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We note that the j-th entry of zN is given by

cT
BB−1N·j = cT

BB−1aj = cT
Byj = zj

where zj is defined as in (2.21). Thus in the table, we see that the entries in the x0 row are given
by −(cj − zj) for xj ∈ N and zero for xj ∈ B. Thus they are the negation of the reduced cost
coefficients. This verifies equation (3.3) that we have assumed earlier. Moreover, by (3.2), we see
that

y00 = cT
BB−1b = cT

BxB ,

which is the same as (3.4).
We remark that x0 is now expressed in terms of the non-basic variables,

x0 = cT
BB−1b +

∑

xj∈N
(cj − zj)xj . (3.5)

Hence it is easy to see that for maximization problem, the current BFS is optimal when cj − zj ≤ 0
for all j. For minimization problem, the current BFS will be optimal when cj − zj ≥ 0 for all j.
Example 3.3. Consider the following LP.

max x0 = x1 + x2

subject to
2x1 + x2 ≥ 4
x1 + 2x2 = 6

x1, x2 ≥ 0

Putting into standard form by adding the surplus variable x3, the augmented system is:




2 x1 + x2 − x3 = 4
x1 + 2x2 = 6

x0 − x1 − x2 = 0

The simplex tableau for the problem is:
Tableau 0:

x1 x2 x3 b

2 1 −1 4

1 2 0 6

x0 −1 −1 0 0

Here we do not have a starting identity matrix. Suppose we let x1 and x2 to be our starting basic
variables, then

B =
[
2 1
1 2

]
, N =

[−1
0

]
and cB =

[
1
1

]
.

In this case

B−1 =
1
3

[
2 −1
−1 2

]
,

x3 = B−1N =
1
3

[
2 −1
−1 2

] [−1
0

]
=

[− 2
3

1
3

]
,

b = B−1b =
1
3

[
2 −1
−1 2

] [
4
6

]
=

[
2
3
8
3

]
.
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It is also easily check that

z3 = cT B−1aj = [−1,−1]
1
3

[
2 −1
−1 2

] [−1
0

]
=

1
3

and the current value of the objective function is given by

cT
BB−1b = [−1,−1]

1
3

[
2 −1
−1 2

] [
4
6

]
= 10/3.

Hence the starting tableau is:
Tableau 1:

x1 x2 x3 b

x1 1 0 − 2
3

2
3

x2 0 1 1
3

∗ 8
3

x0 0 0 − 1
3

10
3

Thus x = [2/3, 8/3, 0]T is an initial BFS. We can now apply the simplex method as discussed in §1
to find the optimal solution. The next iteration gives:
Tableau 2:

x1 x2 x3 b

x1 1 2 0 6

x3 0 3 1 8

x0 0 1 0 6

Thus the optimal solution is x∗ = [6, 0, 8]T with x∗0 = 6.
We note that if we choose x1 and x3 as our starting basis variables, then we get Tableau 2

immediately and no iteration is required. However, if x2 and x3 are chosen as starting variables,
then we have
Tableau 1’:

x1 x2 x3 b

x1
1
2 1 0 3

x3 − 3
2 0 1 −1

x0 − 1
2 0 0 3

Hence the starting basic solution is not feasible and we cannot use the simplex method to find our
optimal solution.
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3.3 The M-Method
Example 3.3 illustrates that the starting basic solution may sometimes be infeasible. The M -
method and the Two-phase method discussed in this and the next sections are methods that can
find a starting basic feasible solution whenever it exists. Consider again an LPP where there is no
desirable starting identity matrix.

max x0 = cT x

subject to

{
Ax = b,

x ≥ 000.

where b ≥ 000. We may add suitable number of artificial variables xa1 , xa2 , · · · , xam to it to get a
starting identity matrix. The corresponding prices for the artificial variables are −M for maximiza-
tion problem, where M is sufficiently large. The effect of the constant M is to penalize any artificial
variables that will occur with positive values in the final optimal solutions. Using the idea, the LPP
becomes

max z = cT x−M · 111T xa

subject to

{
Ax + Imxa = b

x ≥ 000,

where xa = (xa1 , xa2 , · · · , xam)T and 111 is the vector of all ones. We observe that x = 000 and xa = b
is a feasible starting BFS. Moreover, any solution to Ax + Imxa = b which is also a solution to
Ax = b must have xa = 000. Thus, we have to drive xa = 0 if possible.

Example 3.4. Consider the LP in Example 3.3 again.

max x0 = x1 + x2

subject to





2x1 + x2 ≥ 4
x1 + 2x2 = 6

x1, x2 ≥ 0

Introducing surplus variable x3 and artificial variables x4 and x5 yields,




2 x1+ x2 − x3 + x4 = 4
x1 + 2x2 + x5 = 6

x0 − x1 − x2 + Mx4 + Mx5 = 0

Now the columns corresponding to x4 and x5 form an identity matrix. In tableau form, we have

x1 x2 x3 x4 x5 b

x4 2 1 −1 1 0 4

x5 1 2 0 0 1 6

x0 −1 −1 0 M M 0

Notice that in the x0 row, the reduced cost coefficients that correspond to the basic variables x4

and x5 are not zero. These nonzero entries are to be eliminated first before we have our starting
tableau. After eliminations of those M , we have the initial tableau:
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x1 x2 x3 x4 x5 b

x4 2∗ 1 −1 1 0 4

x5 1 2 0 0 1 6

x0 −(1 + 3M) −(1 + 3M) M 0 0 −10M

We note that once an artificial variable becomes non-basic, it can be dropped from consideration in
subsequent calculations.

x1 x2 x3 x5 b

x1 1 1
2 − 1

2 0 2

x5 0 3
2

∗ 1
2 1 4

x0 0 − 1+3M
2 − 1+M

2 0 2− 4M

After we eliminate all the artificial variables we have

x1 x2 x3 b

x1 1 0 − 2
3

2
3

x2 0 1 1
3

∗ 8
3

x0 0 0 − 1
3

10
3

At this point all artificial variables are dropped from the problem, and x = [2/3, 8/3, 0]T is an initial
BFS. Notice that this is the same as Tableau 1 in Example 3.3. After one iteration, we get the final
optimal tableau.

x1 x2 x3 b

x1 1 2 0 6

x3 0 3 1 8

x0 0 1 0 6

Thus the optimal solution is x∗ = (6, 0, 8)T with x∗0 = 6.

3.4 The Two-Phase Method
The M -method is sensitive to round-off error when being implemented on computers. The two-phase
method is used to circumvent this difficulty.
Phase I: (Search for a Starting BFS)

Instead of considering the actual objective function in the M -Method

z =
n∑

i=1

cixi −M

m∑

i=1

xai ,
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we maximize the function

z∗ = −
m∑

i=1

xai
.

Since b ≥ 000, the initial BFS satisfies xa ≥ 000. Notice that z∗ ≤ 0 and the possible maximum value
of z∗ is zero. Moreover, z∗ will be zero only if each artificial variable is zero. If the maximum of z∗

is zero, we have driven all artificial variables to zero. If the maximum of z∗ is not zero, then the
artificial variables cannot be driven to zero and the original problem has no feasible solution. In
Phase I, we stop as soon as z∗ becomes zero, because we know that this is the maximum value of
z∗. We need not continue until the optimality criterion is satisfied if z∗ becomes zero before this
happens. During Phase I, the sequence of vectors to enter and leave the basis is the same as the
M -method except when the vectors are tied. In fact, the reduced cost coefficients of both methods
are given by

M -method: zj − cj = −M
∑

r

yrj + β

Phase I: zj − cj = −
∑

r

yrj

where β is a small quantity compared with M . At the end of Phase I, i.e. when the optimality
condition is satisfied or z∗ = 0, we have one of the following three possibilities:

(i) max z∗ < 0, in this case, no feasible solution exists for our original problem, see §4.1.

(ii) max z∗ = 0 and no artificial variable appears in the basis, i.e. we have found a BFS to the
original problem.

(iii) max z∗ = 0 and one or more artificial variables appear in the basis at zero level. In this case,
we have also found a basic degenerate “feasible solution” to the original problem. Degenerate
solutions are discussed in §4.5.

Phase II: (Conclude with an Optimal BFS)
When Phase I ends in (ii) or (iii), we go to Phase II to find an optimal solution. In Phase II,

we assign the actual price cj to each structural variable and a price of zero to any artificial variables
which still appear in the basis at zero level. Thus the objective function to be optimized in Phase

II is the actual objective function z =
n∑

i=1

cixi.

When Phase I ends in (ii), we are back to the situation discussed in §2, and there should be
no problem. When Phase I ends in (iii), we must give special attentions to the artificial variables
which appear in the basis at zero level. We must make sure that the artificial variables never become
positive again in Phase II. We will return to this case in §4.6.

Example 3.5. Consider the following LP.

min x0 = −2x1 + 4x2 + 7x3 + x4 + 5x5

subject to





−x1 + x2 + 2x3 + x4 + 2x5 = 7
−x1 + 2x2 + 3x3 + x4 + x5 = 6
−x1 + x2 + x3 + 2x4 + x5 = 4

x1 free , x2, x3, x4, x5 ≥ 0 .

Since x1 is free, it can be eliminated by solving for x1 in terms of the other variables from the first
equation and substituting everywhere else. This can be done nicely using our pivot operation on
the following simplex tableau:
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x1 x2 x3 x4 x5 b

−1∗ 1 2 1 2 7

−1 2 3 1 1 6

−1 1 1 2 1 4

2 −4 −7 −2 −5 0

Initial tableau

We select any non-zero element in the first column as our pivot element – this will eliminate x1 from
all other rows:-

x1 x2 x3 x4 x5 b

1 −1 −2 −1 −2 −7 ← (∗)
0 1 1 0 −1 −1

0 0 −1 1 −1 −3

0 −2 −3 1 −1 14

Equivalent Problem

Saving the first row (∗) for future reference only, we carry on only the sub-tableau with the first row
and the first column deleted. There is no obvious basic feasible solution, so we use the two-phase
method: After making b ≥ 000, we introduce artificial variables y1 ≥ 0 and y2 ≥ 0 to give the artificial
problem:-

x2 x3 x4 x5 y1 y2 b

−1 −1 0 1 1 0 1

0 1 −1 1 0 1 3

0 0 0 0 −1 −1 0

cB =


1

1




Initial Tableau for Phase I

The cost coefficients of the artificial variables are +1 because we are dealing with a minimization
problem. Transforming (by adding the first two rows to the last row) the last row to give a tableau
in canonical form, we get

x2 x3 x4 x5 y1 y2 b

y1 −1 −1 0 1 1 0 1

y2 0 1 −1 1 0 1 3

x0 −1 0 −1 2 0 0 4

First tableau for Phase I
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which is in canonical form. Recall that this is a minimization problem, entering variable is chosen
with positive entry (rather than negative) in the x0-row. We carry out the pivot operations with
the indicated pivot elements:-

x2 x3 x4 x5 y1 y2 b

x5 −1 −1 0 1 1 0 1

y2 1∗ 2 −1 0 −1 1 2

x0 1 2 −1 0 −2 0 2

Second tableau for Phase I

x2 x3 x4 x5 y1 y2 b

x5 0 1 −1 1 0 1 3

x1 1 2 −1 0 −1 1 2

x0 0 0 0 0 −1 −1 0

Final tableau for Phase I

At the end of Phase I, we go back to the equivalent reduced problem (i.e. discarding the artificial
variables y1, y2):-

x2 x3 x4 x5 b

x5 0 1 −1 1 3

x1 1 2 −1 0 2

x0 −2 −3 1 −1 14

cB =


1

2




Initial problem for Phase II

This is transform into

x2 x3 x4 x5 b

x5 0 1 −1 1 3

x1 1 2∗ −1 0 2

x0 0 2 −2 0 21

cB =


1

2




Initial tableau for Phase II

Pivoting as shown gives

x2 x3 x4 x5 b

x5 − 1
2 0 − 1

2 1 2

x3
1
2 1 − 1

2 0 1

x0 −1 0 −1 0 19

Final tableau for Phase II
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The solution x3 = 1, x5 = 2 can be inserted in the expression (∗) for x1 giving

x1 = −7 + 2(1) + 2(2) = −1 .

Thus the final solution is x∗ = [−1, 0, 1, 0, 2]T with x∗0 = 19.


