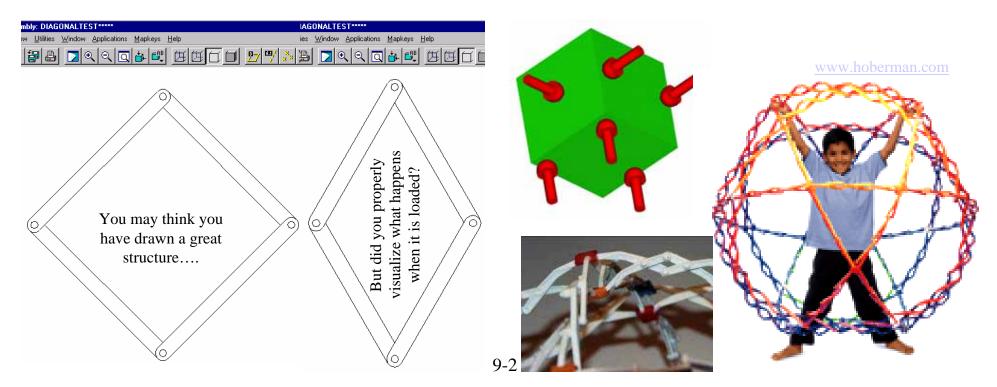
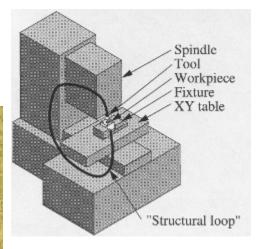

FUNdaMENTALS of Design Topic 9 Structural Connections & Interfaces



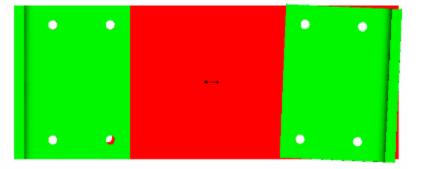
Connections: Visualization

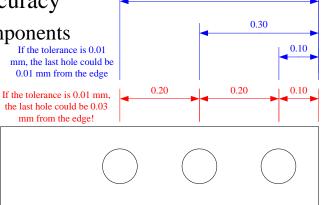
- As a visualization tool for a joint of which are unsure:
 - Make a cardboard model of the joint

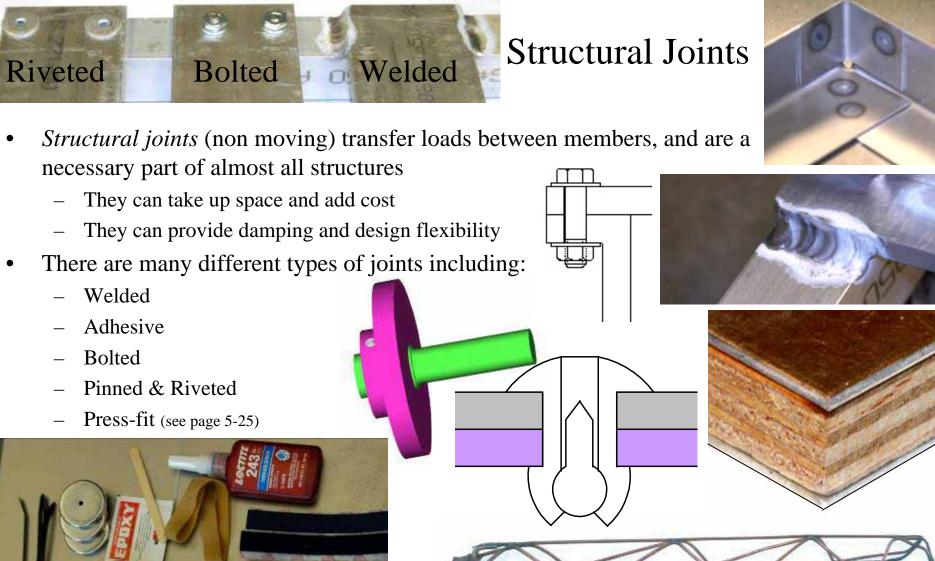


- If the model is stable, there is a good chance that the real parts will also be stable!
- What happens to the performance of your structure if you assume the joints are just pinned?

Connections: Accuracy

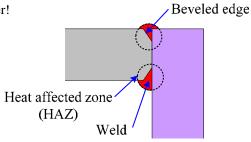


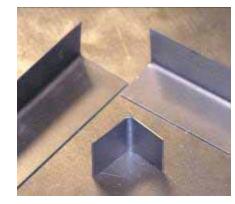

0.50

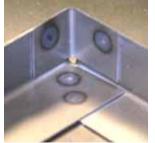

- Interfaces must enable parts to fit together with the desired accuracy
 - You cannot create two sets of exactly matching holes in two components
 - You can oversize the holes
 - The clearance between the bolts and holes means that the components do not have a unique assembly position
- "Error budgets" keep track of interferences & misalignments
 - These methods often assume "worst case tolerance"
 - For complex assemblies, advanced statistical methods are required
 - Deterministic designs are created using *financial*, *time*, and *error* budgets

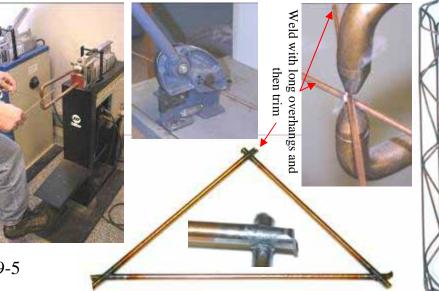
9-3

9-4


Structural Joints: Welded


- A good weld is as strong as the base metal
 - Surface preparation is VERY IMPORTANT ____
 - Cleanliness
 - On thicker parts, bevel edges to be welded
- Shop personnel will help you with your welding needs
 - Consult with them during the **concept** stage about options ____
 - Spot welding is used for sheet metal and thin rods ____
 - Arc welding is typically used for heavier sections ____
 - TIG (Tungsten Inert Gas) is used for welding aluminum, or for very precise welds on steels and special alloys


Steve Haberek, master welder!



9-5

Butt Joint: OK

Lap Joint: Good

Tapered Lap Joint: Very Good

Stepped Lap Joint: Very Good

Double Strap Joint: Very Good

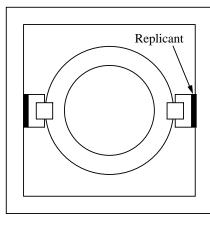
Structural Joints: Adhesive

- Adhesives are often used to bond large surface areas
 - Epoxy are often used for making laminates

"Double Bubble" two-part epoxy. Make sure to

squeeze out all the material from BOTH packets

- Adhesive joints are usually not meant to be moment connections
- Thread locking agents are used to keep screw threads from coming undone


- <u>CLEANLINESS IS OF UTMOST IMPORTANCE</u>

- Check out binding reccomendations: <u>http://www.thistothat.com/</u>
- Strengths vary greatly with the type of adhesive, but the lap shear strength is typically are on the order of 15 MPa at 80 °F

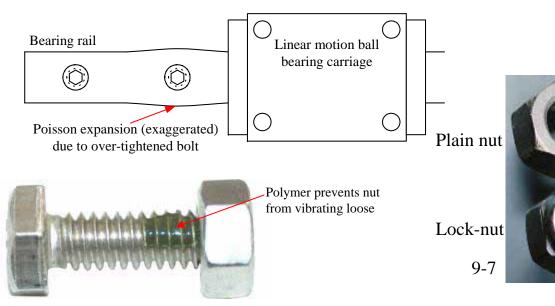
K. Lewis, "Bonds That Take a Beating", Machine Design, Aug. 8, 2002 pp 69-72

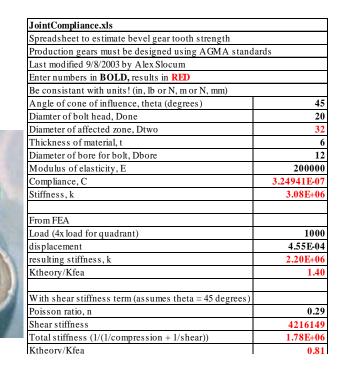
Tapered Double Strap Joint: Excellent

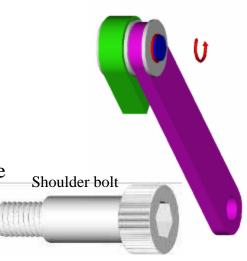
Scarf Joint: Excellent

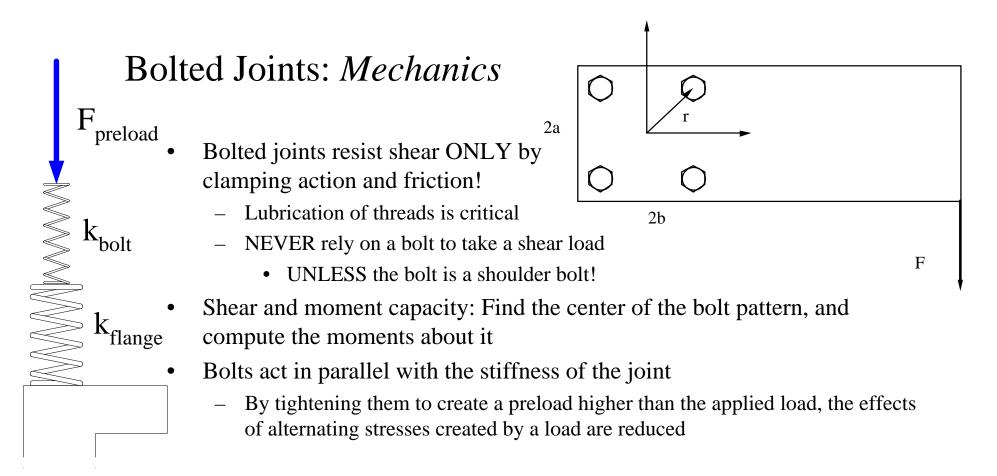
Improper surface preparation (rubber should be clean and rough), and the rubber should have been scarf joined

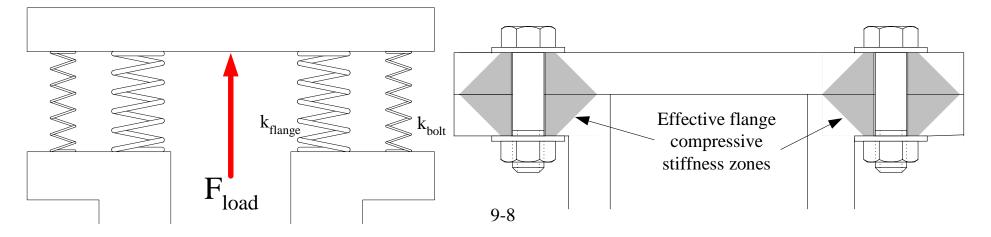
Aluminum epoxied to both sides of plywood which acts as a core

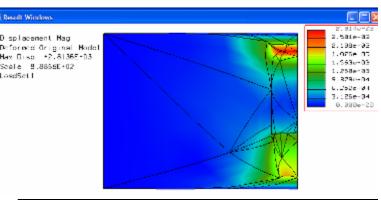


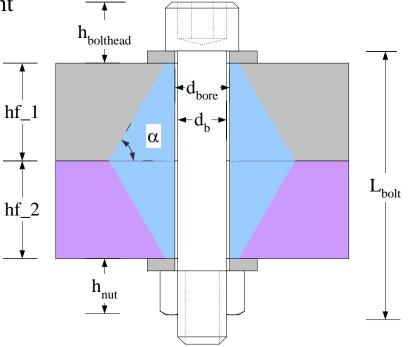

Aluminum epoxied to one side of plywood

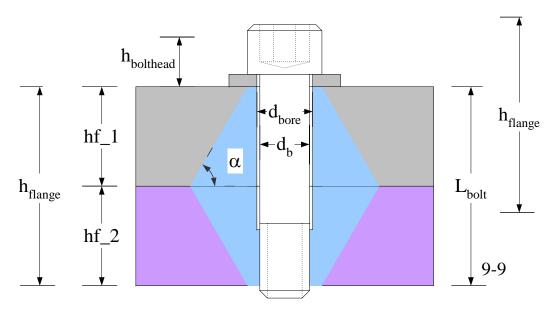



Structural Joints: Bolted


- Bolts and screws ONLY clamp one element to another!
 - Friction and the clamping force are what hold the joint together
 - Washers are used to keep hex-nut edges from chewing up the surface
- Bolts and screws DO NOT themselves take shear loads
 - Unless you use a shoulder bolt
- A shoulder bolt can act as a shaft or element of a linkage (pin):
 - When a bolt is to be used to support a bearing, or act as an axle (pin) in a linkage:
 - One end of the bolt must be firmly anchored so it is preloaded and rigid
 - The cantilevered end ideally has a precision ground shoulder that acts as an axle





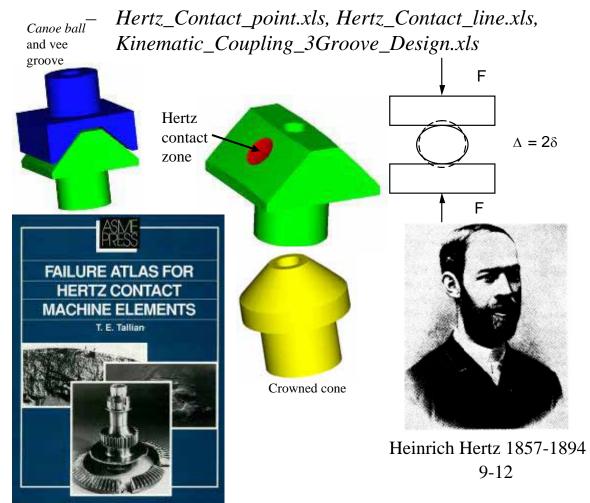

Bolted Joints: Stiffness

- As bolts are tightened (preloaded), their stiffness acts in series with the flange stiffness
- As external loads are applied to the joint, bolts' stiffness acts in parallel with flange stiffness
- Preloading bolts allows large loads to be applied to a joint while minimally affecting the bolt stress
- A joint can be designed so it "leaks" before a bolt breaks
 - Make the stress cones overlap!
- *Bolt_preload.xls* lets you experiment with different dimensions!

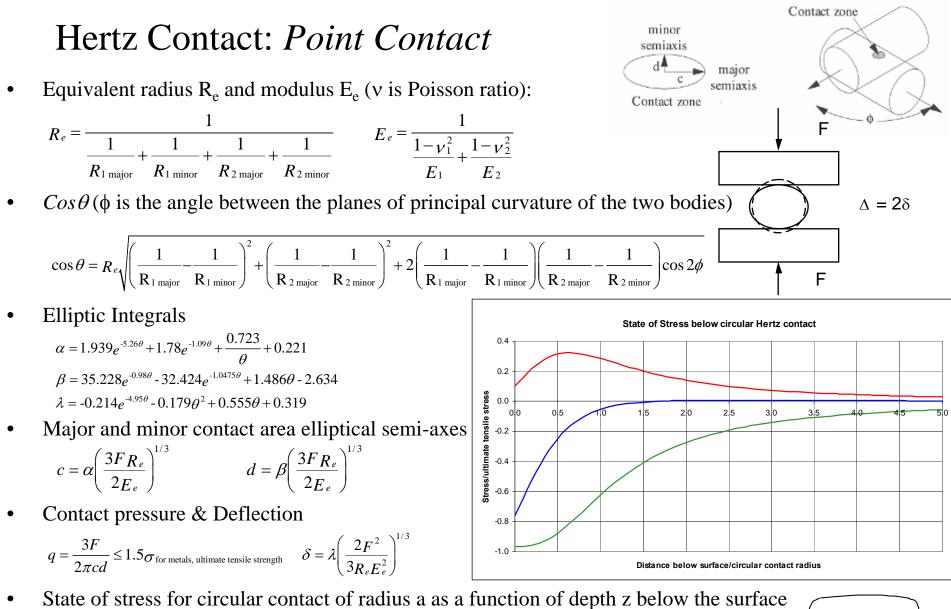
FEA results compared to analysis (60° stress cones)			
Applied load (N)	4000		
deflection under bolt head (mm)	0.002810		
deflection from threaded region (mm)	0.002100		
Total deflection (mm)	0.004910		
Stiffness (N/mm)	814664		
FEA/Analytical	0.86		

Structural Joints: Pinned & Riveted

- Pinned joints use pins pressed into holes to transmit forces (or torque) (see page 5-25)
- Pinning parts together can help during alignment during manufacturing or assembly
 - Line-bore holes for shafts and bearings by pinning plates together and drilling all the holes at once!
- A riveted joint uses expanded members to transmit shear forces and resist peeling forces
 - The expanding nature of the rivet allows many holes to be drilled in parts to be fastened together

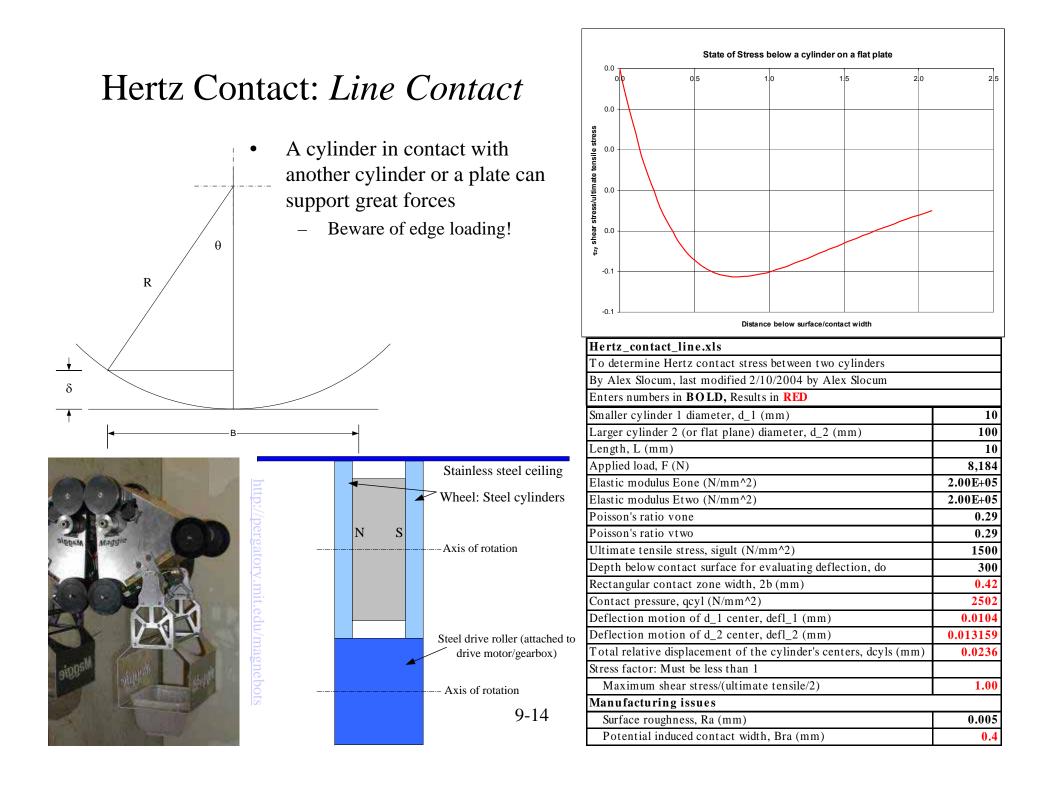


Structural Interfaces

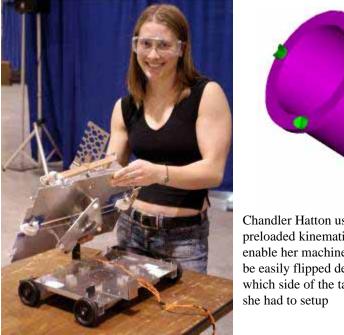

Hertz Contact

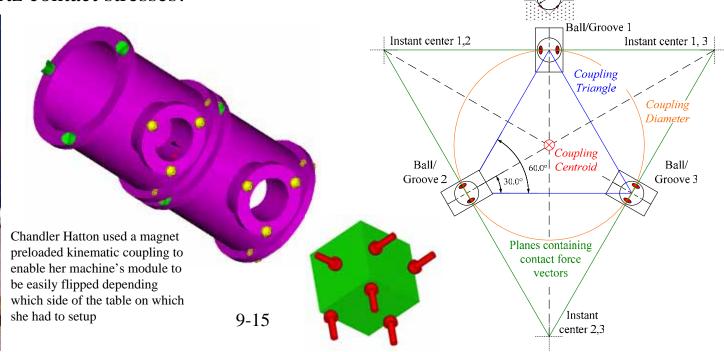
- A most important aspect of interface design are the stresses at the contact points
- In the 1800's, railroad *wheels* were damaging tracks, and rolling element bearing designs were very limited
 - Heinrich Hertz, the mathematician famous for his work in the frequency domain, created the first analytical solution for determining the stress between two bodies in point contact

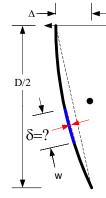
HertzContact.xls	
To determine Hertz contact stress between	bodies
By Alex Slocum, Last modified 1/17/2004 b	y Alex Slocum
Last modified 12/28/03 by Alex Slocum	
Enters numbers in BOLD , Results in RED	
Be consistent with units!!	
Ronemaj	1.00E+06
Ronemin	1.00E+06
Rtwomaj	0.500
Rtwomin	0.500
Applied load F	4,358
Phi (degrees)	0
Ultimate tensile stress	3.45E+08
Elastic modulus Eone	1.93E+11
Elastic modulus Etwo	1.93E+11
Poisson's ratio vone	0.29
Poisson's ratio vtwo	0.29
Equivelent modulus Ee	1.05E+11
Equivelent radius Re	0.2500
ellipse c	2.50E-03
ellipse d	2.50E-03
Contact pressure, q	3.33E+08
Stress ratio (must be less than 1)	0.97
Deflection at the one contact interface	
Deflection (µunits)	12.4
Stiffness (load/µunits)	350.8
for circular contact $a = c$, a	2.50E-03
Depth at maximum shear stress/a	0.634
Max shear stress/ultimate tensile	0.324



$$\sigma_{z}(z) = q \left(-1 + \frac{z^{3}}{\left(a^{2} + z^{2}\right)^{1.5}}\right) \qquad \sigma_{r}(z) = \sigma_{\theta}(z) = \frac{q}{2} \left(-(1 + 2\nu) + \frac{2(1 + \nu)z}{\sqrt{a^{2} + z^{2}}} - \frac{z^{3}}{\left(a^{2} + z^{2}\right)^{1.5}}\right) \quad \tau(z) = \frac{\sigma_{\theta}(z) - \sigma_{z}(z)}{2}$$


$$9-13$$




Kinematic Couplings

- When a component is constrained by a number of points equal to the number of degrees of freedom, it is said to be *exactly constrained*
 - Kinematics is the study of motion, assuming bodies are rigid, so when a design is "kinematic" it means it is exactly constrained, and geometric equations can be written to describe its motion
- Kinematic Couplings are couplings that exactly constrain components
 - They are not stable unless ALL six contact points are engaged
 - There are no intermediate stability configurations like those in 3-2-1 couplings
 - They can provide repeatability on the order of parts' surface finish
 - ¼ micron repeatability is common
- Managing the Hertz contact stresses!

Ø Equivalent ball diameter (Dbeq)

Kinematic Couplings: 2D

How to fixture a 2D object, such as a silicon MEMS chip, so several could be stacked upon each other for bonding?

ρ

- 3 DOF (translation, pitch & roll) are defined by the plane on which the object rests
- 3 DOF (2 translations and yaw) must be established
 - 3 contact points are needed
 - Gravity provides preload
 - Align the gravity vector wrt the instant centers of support

Wooden bench level experiment

B

g

IC_{ab}

3

Α

9-16

g

IC_{ac} g IC_{ab} Instant centers of rotation IC_{ac} IC_{ab}

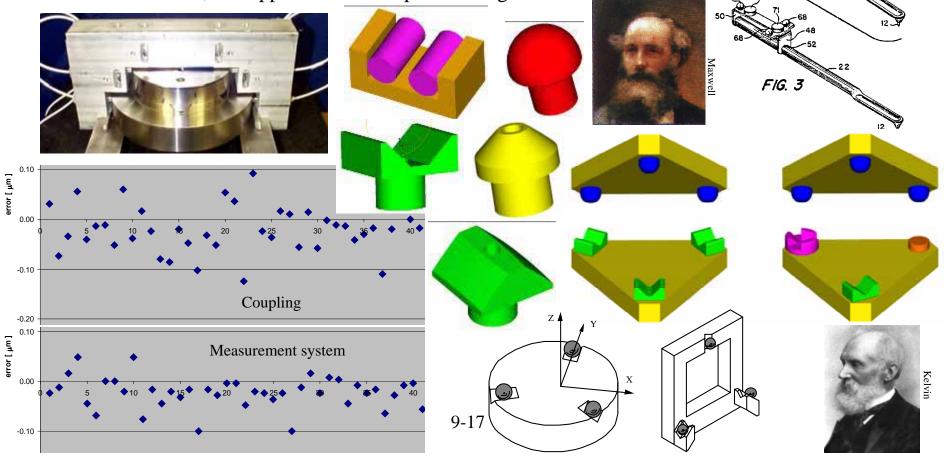
С

2

1

IC \

g

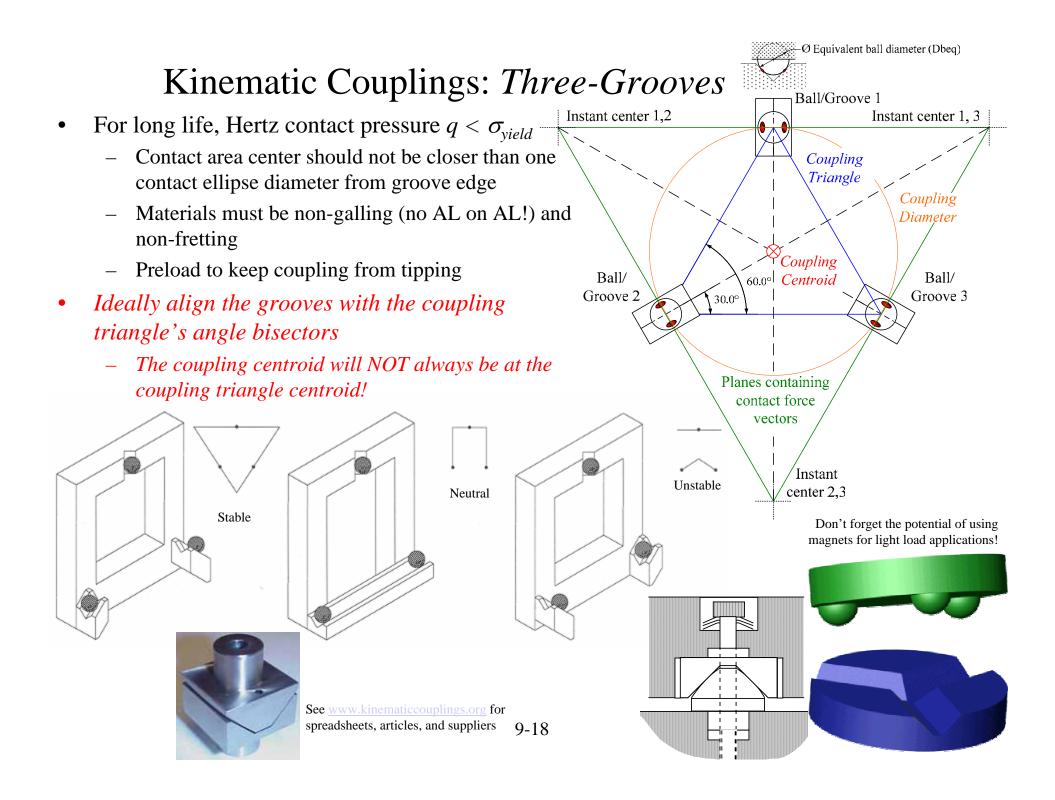

В

Die-sawn (rough!)

Through-etched (smooooth & accurate)

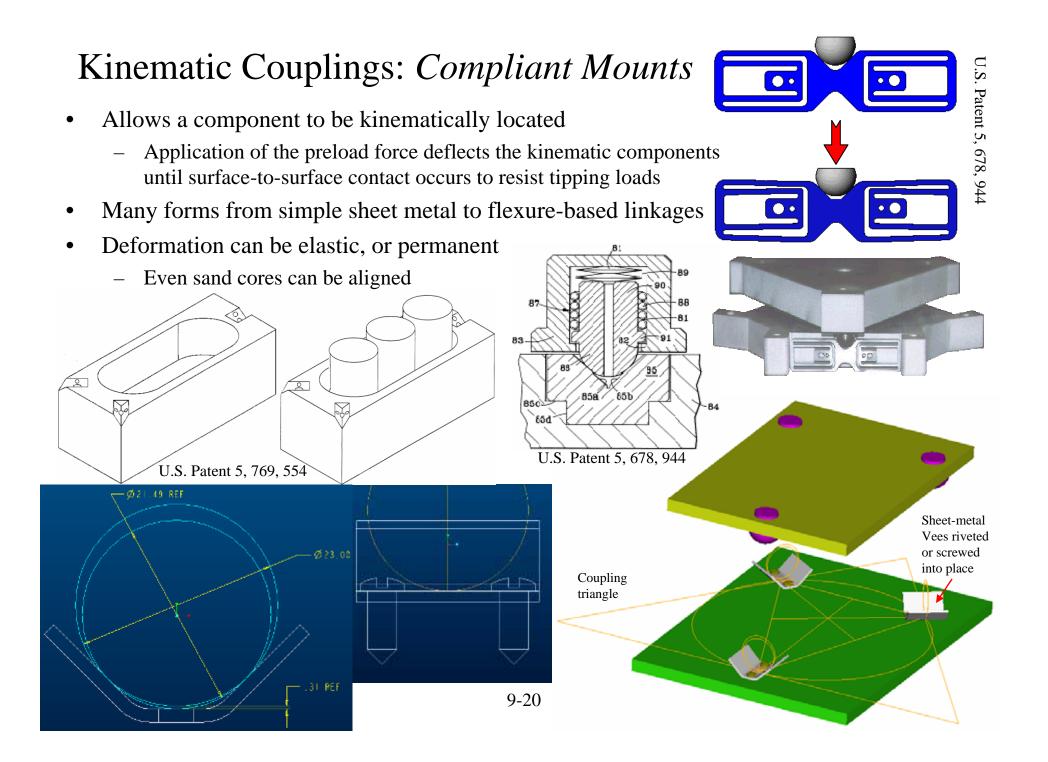
Kinematic Couplings: 3D

- James Clerk Maxwell (1831-1879) liked the three-grooves
 - Symmetry good for manufacture, dynamic stability
 - Easy to obtain very high load capacity
- William Thomson (later Lord Kelvin) (1824 1907) liked the ball-groove-tetrahedron
 - More intuitive, and applicable to non-planar designs



See US patent 4,574,625. NOTE magnet preload needs to be applied gently else the sudden THWAP (impact) of contacts drawn together can cause subsurface failure or

FIG. 2


surface indentation (*Brinelling*); hence if a LOT of preload is needed, use a flux-shunting lever (like on a magnetic base) to reduce the flux during mating, and then it can be flipped to increase the magnetic force

AFTER the coupling has been mated!

Kinematic Couplings: *Three-Grooves*

Kinematic_Coupling_3Groov	e Design.xls					
To design three groove kinem						
Written by Alex Slocum. Last		004 by Alex Slocum				
Metric units only! Enters numbers in BOLD, Results in RED				Material prope	rties	
Standard 120 degree equal size groove coupling? (contact forces are inclined at			t 45 to the XY		User defined material	aluminum
plane. For non standard desig	· ·	0		TRUE	Yield stress	
System geometry (XY plane is					plastic	3.45E+07
Dbeq (mm) =	5	Equivalent diameter ball to cont	act the groove at	t the same points	RC 62 Steel	1.72E+09
Rbminor (mm) =	2.5	"Ball" minor radius			CARBIDE	2.76E+09
Rbmajor (mm) =	2.5	"Ball" major radius			user defined	2.76E+08
Rgroove (mm) =	1.00E+06	Groove radius (negative for a tr	ough)		Elastic modulus	
Costheta =	TRUE	Is ball major radius along groov	e axis?		plastic	2.07E+09
Dcoupling (mm) =	150	Coupling diameter			RC 62 Steel	2.04E+11
Fpreload (N) =	-100	Preload force over each ball			CARBIDE	3.10E+11
Xerr (mm) =	0.0	X location of error reporting			user defined	6.80E+10
Yerr (mm) =	0.0	Y location of error reporting		Poisson ratio		
Zerr (mm) =	0.0	Z location of error reporting			plastic	0.20
Auto select material values (enter <i>other_4</i> to the right)		he right)			RC 62 Steel	0.29
Matlabball =	1	Enter 1 for plastic, 2 for steel, 3 for carbide, 4 for user defined, 5		CARBIDE	0.30	
Matlabgroove =	4	where each ball and groove is defined individually		user defined	0.29	
Min. yield strength (Pa, psi)		3.45E+07	5,000			
Largest contact ellipse major d	liameter (mm)	0.831				
Largest contact ellipse major diameter (mm)		0.829				
Largest contact stress ratio		3.826	Max Hertz shea	ar stress/Material's	max shear stress (tensile y	rield/2)
RMS applied force F (N)	17.32					
RMS deflection at F (micron)	2.238					
RMS stiffness (N/micron)	7.74					
Applied force's Z,Y,Z values and coordinates				Coupling centroi	dlocation	
FLx(N) =	10.00	XL (mm) =	0	xc (mm)	0.000	
FLy (N) =	10.00	YL (mm) =	0	yc (mm)	0.000	
FLz(N) =	10.00	ZL (mm) =	100	zc (mm)	0.000	

Kinematic Couplings: Three-Tooth

Hale

- A semi-kinematic effect can be achieved by having three teeth each on two coupling halves mate at six points
 - 3-5 micron repeatability can be obtained with this simple design
- Layton Hale at LLNL put crowns on one set of the teeth to create a nearly true kinematic three tooth coupling:
 - 1 micron repeatability can be obtained with this simple design

[54] THREE TOOTH KINEMATIC COUPLING [75] Inventor: Layton C. Hale. Livermore. Calif. [73] Assignee: The Regents of the University of California. Oakland. Calif. Under 35 U.S.C. 154(b), the term of this [*] Notice: patent shall be extended for 634 days. [21] Appl. No.: 08/511,980 [22] Filed: Aug. 7, 1995 [51] Int. Cl.⁷ F16D 1/00 [52] U.S. Cl. 403/364; 403/190; 403/340; 403/381; 464/157; 192/69.83 [58] Field of Search . 403/190, 291, 403/364, 311, 340, 381; 192/114 T, 69.81, [57] 69.82, 69.83; 464/149, 157 [56] **References** Cited U.S. PATENT DOCUMENTS 1.241,118 9/1917 Hoskins ... 464/157

United States Patent 1191

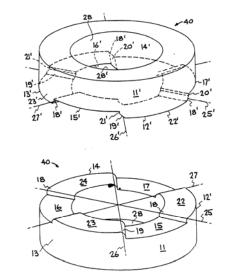
1.260.690	3/1918	Liady 403/364 X
1.739.756	12/1929	Granville 464/149
2.094.416	9/1937	Sheffield 403/364 X
2.384.583	9/1945	Wildhaber 192/69.83
2.388,456	11/1945	Wildhaber 464/157 X
2.398.570	4/1946	Wildhaber 403/364 X
2.551,735	5/1951	Goff 464/149
2.654,456	10/1953	Wildhaber 192/69.83 X
4,074,946	2/1978	Swearingen 403/364
4.307,795	12/1981	Roy 192/69.82
5.730.657	3/1998	Olgren 464/157

[11]	Patent Number:	6,065,898
[45]	Date of Patent:	*May 23, 2000

FOREIGN PATENT DOCUMENTS

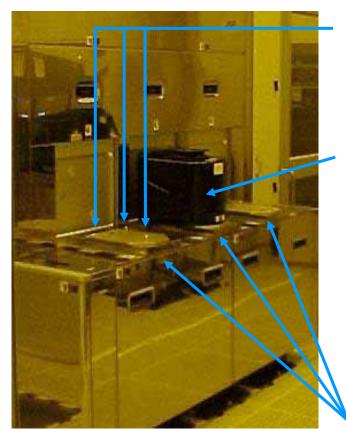
850296 14963 578287	7/1969	France Japan United Kingdom	464/157
	OTHER	R PUBLICATIONS	

 A. Slocum. Precision Machine Design, Prentice Hall, 1992, pp. 401–402.
 D.L. Blanding, Principles of Exact Constraint Mechanical Design, Eastman Kodak Co., 1992, pp. 28–29.
 Machinery handbook, 24th Edition, Couplings and Clutches.


Machinery nanobook, 24th Edition, Couplings and Clutches, Industrial Press, 1992, pp. 2237–2239. Primary Examiner—Daniel P. Stodola

Assistant Examiner—Bruce A. Lev Attorney, Agent, or Firm—Alan H. Thompson: L. E. Carnahan

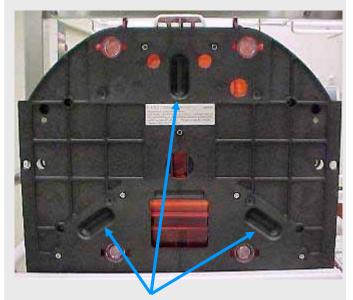
ABSTRACT


A three tooth kinematic coupling based on having three theoretical line contacts formed by mating teeth rather than six theoretical point contacts. The geometry requires one coupling half to have curved teeth and the other coupling half to have flat teeth. Each coupling half has a relieved center portion which does not effect the kinematics, but in the limit as the face width approaches zero, three line contacts become six point contacts. As a result of having line contact, a three tooth coupling has greater load capacity and stiffness. The kinematic coupling has application for use in precision fixturing for tools or workpieces, and as a registration device for a work or tool changer or for optics in various products.

15 Claims, 2 Drawing Sheets

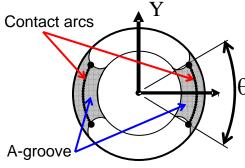
Kinematic Couplings: 300mm Wafer Transport

- How to precisely locate a plastic wafer carrying structure (FOUP) on a tool, so a robot can precisely load/unload wafers?
 - Exactly constrain it of course with an interface that contacts the FOUP at 6 unique points!
 - BUT success requires careful management of contact stresses, and development of standards upon which manufacturers can agree

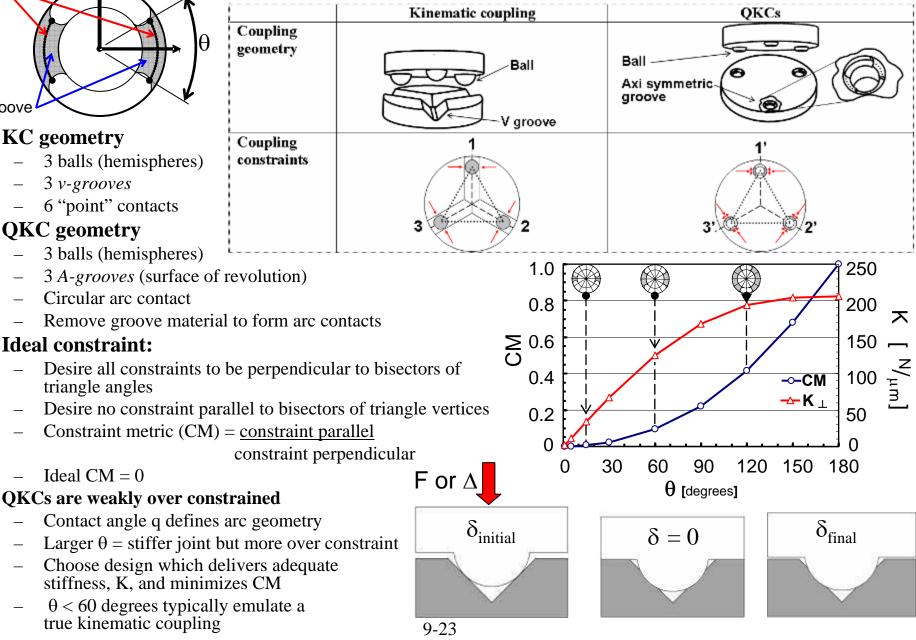


Kinematic coupling pins on loadport based on SEMI E57 standard

300mm Wafer carrier (FOUP) precisely positioned on kinematic coupling pins on loadport


Production equipment loadports based on SEMI E15.1 standard

Base of the FOUP


Mating kinematic coupling grooves on the FOUP, permitting precise alignment on load ports, so robots can precisely access 300 mm wafers

> Thanks to Devadas Pillai at Intel for preparing this slide

KC geometry

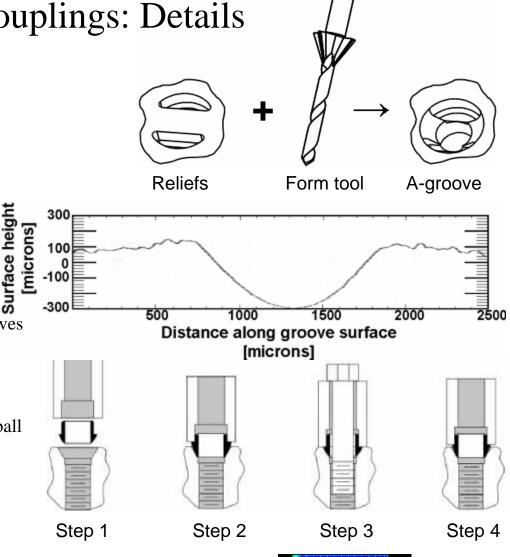
Quasi-Kinematic Couplings

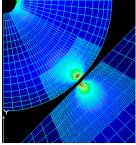
Quasi-Kinematic Couplings: Details

• Fabricating QKC geometry

- Pre-cast or machine reliefs
- Form tool machines axisymmetric A-grooves
- Balls can be ball bearings or may be ground

• QKC mating cycle

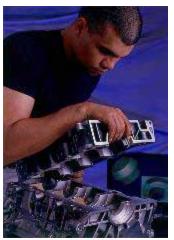

- Step 1: Balls are assembled into top part
- Step 2: Balls mate A-grooves; finite gap between components
- Step 3: Balls are preloaded into A-grooves
 - Gap is closed allowing interface to seal
- Step 4: When preload is released, balls and grooves elastically recover


• Ball and groove deformation

- During Step 3, grooves plastically deform
- Plastic deformation reduces mismatch between ball and groove patterns
- Balls and grooves elastically recover in Step 4
- Recovery restores gap between parts

• Surface finish

- Repeatability of coupling scales as 1/3 RA
- Rough finish = poor repeatability
- Grinding and/or polishing are expensive
- Press hard, fine-surfaced ball surface into rough groove surface



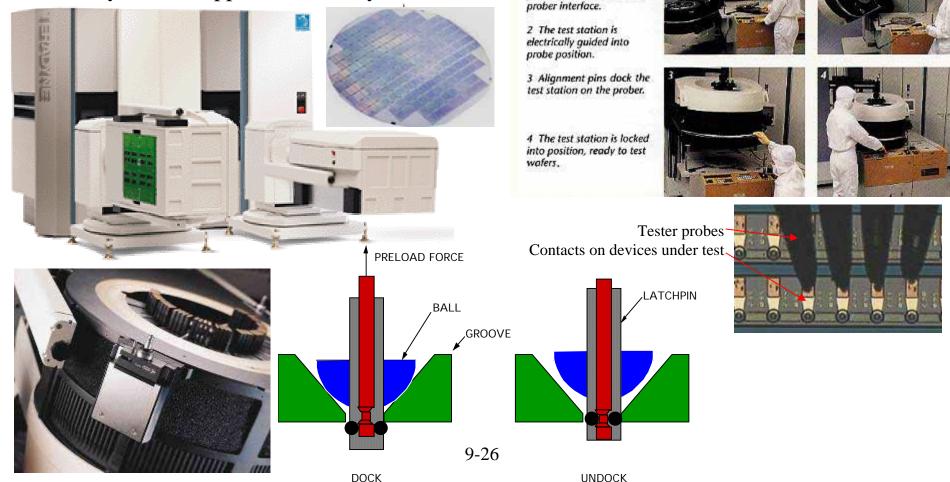
Quasi-Kinematic Couplings: Automotive Example

- Original alignment design
 - Components were aligned with 8 pin-hole joints
 - This design is very over constrained
 - Pin-hole patterns requires tight tolerances
 - 8 precision ground dowels required
 - 16 precision holes are bored

- QKC design
 - 8 pins => 3 balls
 - 16 holes =>
 - 3 holes
 - 3 A-grooves

Prof. Martin Culpepper with his h.D. thesis, the QKC

1 st 2 nd A: Engine assemb		Balls in 1 st		C: A-groove	s in 2 ^{na} component	Ph.D. thesis, the QK
Engine QKC	8 dowels	QKC				
Precision pieces	8	3	Block ()	0 1→0	 2→0 3→0 	
Precision features	16	6	δ	<u>→</u>		
Tolerance [microns]	40	80		5→ 0	 (6)→ (0) (7)→ (0) 	8-0-
Repeatability [microns]	5	1.5	Bedplate 🖒			
Cost reduction/engine	N/A	\$1	9-25 🗆		°	\frown

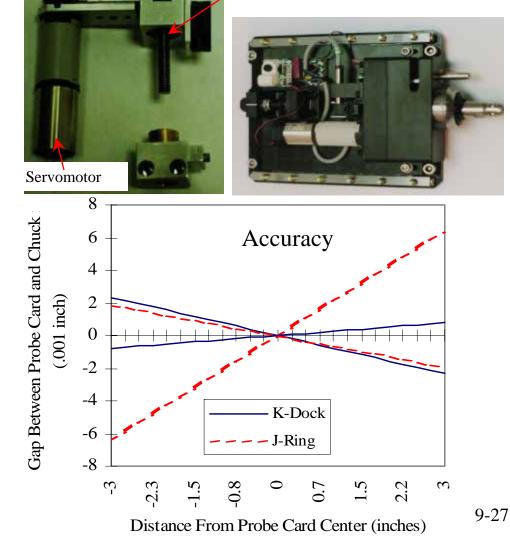

Kinematic Couplings: Servo-Controlled

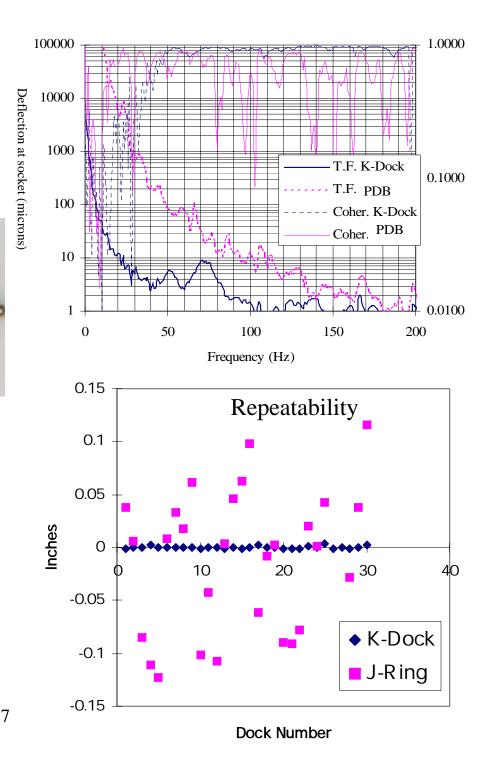
- Automatic Test Equipment (ATE) is used to test computer chips during their manufacture
 - Testing wafers requires a very high precision interface between the tester and wafer
- Sevro-controlled kinematic couplings automatically level ATE test heads to wafer plane

1 The operator inserts a

probe card into the (971's

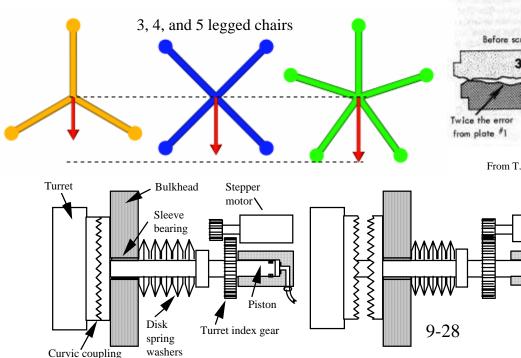
- Michael Chiu's Doctoral Thesis (US Patent #5,821,764, Oct. 1998)
- Teradyne has shipped over 500 systems

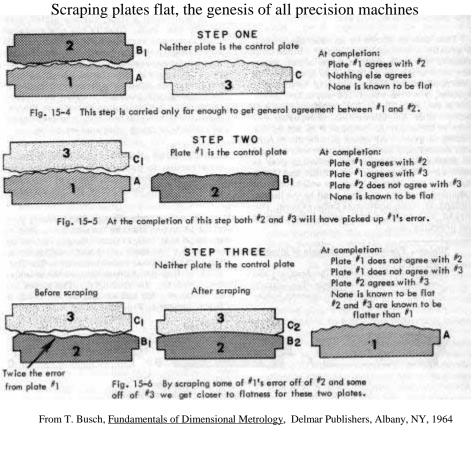



SCKC: Details

leadscrew

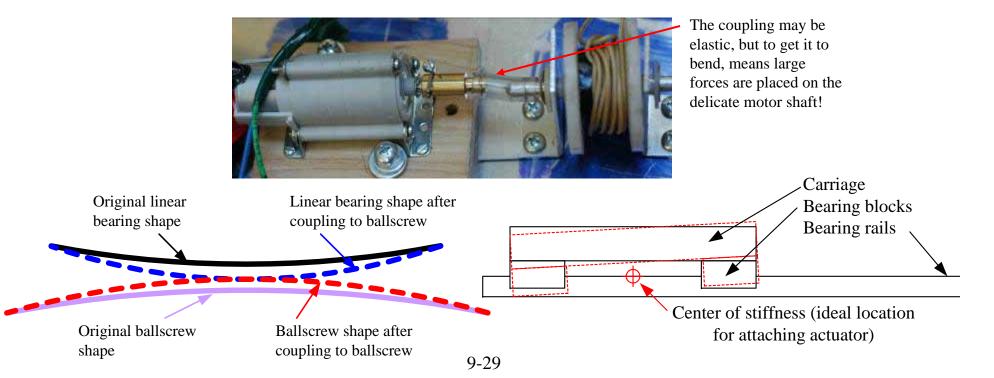
Timing chain driven


• Improved repeatability, accuracy, dynamic stiffness



Elastic Averaging

- Any one error can be averaged out by having many similar features
 - As in gathering data with random errors, the accuracy of the reading is proportional to the square root of the number of samples taken
- Local errors are accommodated by elastically deforming the members
 - Overall high stiffness is obtained by the sum of many compliant members



Curvic coupling mechanism for indexing precision machine tools

Elastic Averaging: Overconstraint?

- Over-constraint is NOT Elastic Averaging
 - Example: One component (a carriage) wants to move along one path and another (ballscrew nut) along another, but they are attached to each other
 - They will resist each other, and high forces can result which accelerates wear
 - Either more accurate components and assembly are required, or compliance, or clearance (pin in oversized hole) must be provided between the parts
 - Designers should always be thinking of not just an instant along motion path, but along the entire motion path

