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CSE397/497 Intro to Mobile Robotics

Today’s Agenda

* Plagiarism

* Homework 4
» New due date is 10 Nov 0®
» MPEGs required for submission (keep them small < 1 MB)
» Questions

* The plane Jane vanilla Kalman Filter
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Monte Carlo Localization (Homework 5)
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Bayesian Filters (1)

BlA) = P(AIB)P(B)
P(BIA) o(A)

» Bayesian filters do naxplicitly estimate the state

* PFs and Kalman Filters (KF/EKF) are example of BayesBitters

¢ Instead, they propagateasteriorprobability density function for the state
from which it can be inferred

« In the KF, a gaussian distributiéhis propagated at each timestep with mean
w and variance?. The former is used as the state estimate

« In the PF, a (weighted) particle set corresponds to tsenar from which an
estimate for the state can be inferred

© JR Spletzer
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The Particle Filter

» Unlike the KF, which represents thdf parametrically as a gaussian, the PF approximates

it as a sample set

Bel(X) ={x',w} i O [L.m]

» mdenotes the number of particles in the sample set

» Xi corresponds to a hypothetical state estimate

» Wi corresponds to a weight reflecting a “confidence” in how wellpheicle xi

reflects the true state

* ¥ W=1, so that the sample set corresponds to a discrdteljlity density function

« It has been shown that as the number of samples approachigg itfinsample set
converges to the true posterior [Tanf@ls for Statistical Inferencd996]. However,
no proofs for rates of convergence exist

© JR Spletzer
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Predictor-Corrector Example

1) We have a prior of
uniform weighted particle

t=k"
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At this point, we have
m unique samples

2) Particles are weighted
based on the sensor
measurement and
resampled according to
weight to generate our
posterior.
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We still have m
samples, but they are all
equally weighted and
not necessarily unique

3) Particles are passed
through our motion model to
generate a new posterior

t=(k+1)"
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Particles are again unique
and equally weighted
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Predictor-Corrector Example (2)

1) We have a prior of
uniform weighted particle

> [

Actual Robot
Position

© JR Spletzer
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Predictor-Corrector Example (3)
2a) Particles are weighted 2b) Particles are resampled
based on the sensor according to weight to
measurement generate our posterior.
s, =0.323
t=k t=k s, =0677
s, =0.900
w; =04 w; =05 P2, Ps Py
w,=0.1 i
We still have m
samples, but they are all
S W, =0.1 equally weighted and not
$ w05 i i =y i necessarily unique
0 05 06 1.0
© JR Spletzer
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Predictor-Corrector Example (3)

3) Particles are passed
through our motion model to
generate a new posterior

t=k+1

P2

> . > Py
P2, Ps Py
Ps

Particles are again unique
and equally weighted

4) lterate...

© JR Spletzer

The Particle Filter Algorithm

function X.,, = runFilter (X,, z.,u,)
Xk+1 = 0
fori=1:m

generatgandomx’ ~ p(X' |u,, X);
w=p(z | X);
Insert(X,w) 0 X,,,;
end
NormalizeweightfactorsC w; [1 X, ,;;
return X, ,;

generateandomx from X basedn sampleweights;

© JR Spletzer
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The Particle Filter Algorithm (ver. 2.0)

function X ,,; = runFilter (X, z,u,)
Xiss =07 Xigmp = 0; This version will
fori=1:m be better for your
generate random x from X, basedon sample weights; Matlab implementation
Insert X0 X e, on the PF assignment!
end
for all xO X
x =X~ p(X|uy, X);
end
for all X0 X,
w = p(z, | X);
Insert (x,w) O X, ,;
end
Normalize weight factors O w, O X, ,;
return X, .;;

temp

© JR Spletzer
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7
Com (p(APD)é(B)
The MCL Problem Q

« In the MCL problem, our objective is to estimate positand orientation in a
workspace

* We assume the availability of a mayp

« This allows us to condition our belief to not only therent pose, but constrained
to lie within a map. Thus, our belief equation becomes

@

» Thus, we can infer expected measurements from a giventipasigh:

Q) P(% U, %, mBel(x,_,)dx_,

» Ray tracing if we are doing an occupancy grid
» Line intersection if we are representing the map &t afsines

» We can also combine map information with our motion rhtmexploit
constraints in the workspace

© JR Spletzer
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Generating the Sensor Model

» Operation of the particle filter hinges upon associatipgoaability with each
sensor measurement given a state so that a proper warghe associated with
each sample

Bel(%) =/7p(z. | %.m)] P(X, |u, % 1, mBel(% ,)dx

» This is NOT the same as sampling the probability dgfisnction ofz
» For a continuous distribution, the probability of meagya specific value is zero

* Normally, sensors have a resolution which a given oreagent is rounded to
(e.g.a LRF may have a cm level resolution)

» Probabilities can then be determined by integratiegsensopdf over this
resolution range

© JR Spletzer

Generating a MCL Specific Sensor Model

+ MCL is typically performed with range sensors at knowaring angles to the
robot (although cameras have also been used)

» As such, a single scan consists of numerous sensor reeesus €.g.from laser
or sonar pulses)

« If we assume that thesameasurements are independent, the conditional
probability can then be expressed as

oz, |xt,m):|i| p(Z | %.m)

© JR Spletzer




MCL Sensor Model Issues (1)

» A shortcoming of particle filters is that they tewdail if the sensor models are
too accurate

 This can result from a not generating an initial samigigecenough to the true
state estimate

* One potential solution is to inflate the sensor mededr. For example, the
standard deviation for the SICK LRF is modele@=85cm when in reality it is
closer 1cm.

» This violates the basis from which the PF was deribatihas basis in actual
measurements and works well in practice

Predicted Distance

© JR Spletzer

Autonomous Mobile Robots, Chapter 5 56.2

Markov Localization

.. . . i|Dp(l
* The critical challenge is the calculationggfil) »¢|) = %

» The number of possible sensor readings and geometric contextieisely large

» p(ijl) is computed using a model of the robot’s sensor behavior, itsgrolsiand
the local environment metric map around I.

» Assumptions

0 Measurement error can be described by a distribution with a mean
0 Non-zero chance for any measurement

0.5 - 0.8
approximated ——  approximated
77777 measured i __..- measured

expected distance o,

pidjo)

expected distance o, :

y

probability p(d/o,)

2
S

400

» Courtesy of
W. Burgard

300
measured distance d, [cm]

200 300
measured distance d, [cm]

Ultrasound. Laser range-finder.

© R. Siegwart, I. Nourbakhsh
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MCL Sensor Model Issues (2)

» A second issue using the LRF is that for many scan< tié be no sensor data
available

* This typically results from wall features being outside taximum range of the
sensor as above, but can also arise when the laserssabsorbed, multi-path
error, etc.

» To address this, the probability of obtaining such a
reading is explicitly modeled. The weighting of this is
probability is a function of the range and the
environment being explored

© JR Spletzer

MCL Sensor Model Issues (3)

» Recall that the conditional probability for the sans@asurement is expressed as
the product of the individual probabilities.

p(z[|xt,m):|jp(z:|x“m)

» As a consequence, a single “outlier” can cause the prafabiapproach zero

» Such errors can readily be caused by errors in our foraiture, persons/robots
moving throughout the environment, etc.

 This is handled by introducing an exponential
based probability density into the sensor model for-
unmodeled “obstacles”

nnnnnnnnn

© JR Spletzer
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Simple MCL Examples

22
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When can MCL Fail?

* MCL relies upon difference in the environment to indumeesponding
differences in sensor measurements

« Large open areas, long featureless corridors, symnegivioonments, etc. can
cause MCL to be slow to converge or to converge tevtioag pose

* MCL can exploit even minor differences to obtain aecrpose estimate

£

Inconsistent Convergence Consistent Convergence

© JR Spletzer
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MCL Extensions

» MCL provides a method for solving the kidnapped robobj@m — previously a
very difficult problem in mobile robotics

 This is accomplished by adding a small amount of randetitles at each time
step, and resampling to the original number of particles

* MCL has also been extended to solve the SLAM problemmulganeous
Localization and Mapping

 This is accomplished by generating a map on the fly,canditioning your
measurements to the portion of the map currentlyablai

« In structured 2D environments, particle filters (with Slfakers) have effectively
solved the SLAM problem

© JR Spletzer
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The Kalman Filter

© JR Spletzer
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Notation Review

1. Matrices are denoted by a capital letter. In texiy thié be bold
(e.0.A)

2. Vectors are denoted by a lowercase letter. In text, lilebe bold
(e.g.x). In Microsoft Equations, they will have an overscore

e.g. X

Scalars are lowercase letters without emphasis

X, denotes tha priori estimate for the state vectoat time stegk
before the measurement update phase

5. x,denotes the estimate for the state vextartime stefk after the
measurement update phase

© JR Spletzer
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p(B|

A) = P(AIB)p(B)

Bayesian Filters (1) P(A)

* PFs and Kalman Filters (KF/EKF) are example of BayesBitters
» Bayesian filters do naxplicitly estimate the state

¢ Instead, they propagateasteriorprobability density function for the state
from which it can be inferred

« In the KF, a gaussian distributiéhis propagated at each timestep with mean
w and variance?. The former is used as the state estimate

« In the PF, a (weighted) particle set corresponds to tsenar from which an
estimate for the state can be inferred

© JR Spletzer
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First & Second Order Statistics/Moments:
Expected Value & Variance of the State

» Theexpected valutor a random variabl¥ is (i.e.the mean) defined as

u=E(X)=) px for discrete X

i=1

u=E(X)= Ipr (x)dx for continuous X

» Thevarianceof X about the mean is defined as
o?=E[(x-u)*1=) p(x - u)? for discrete X
i=1

o? = E[(x-)*] = [(x=p)* px(X)dx for continuous X

—00

© JR Spletzer
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What is Covariance?

* WhenX is a vector, the variance is expressed in terms of a
covariance matriXxC where

¢; = El(x% — )" (X, = /1))]

* The resulting matrix has the form

2
0, P00, ... pP,0,0,
2
C= P1,0.0, o, o Pon0,0,
2
pln Ulan pZnUZUn cce Un

wherep; corresponds to the degree of correlation between
variablesX; andX|

© JR Spletzer
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The Correlation Coefficient

» Correlation is a means to estimate how two funstsgries are correlated. For a
discrete series, it is defined as

Sl =240~ 4] c -

- \/Z(Ix ~ 1) \/Z(yi Ay ﬁJCTy ) ngy

wherep denotes theorrelation coefficient

» The denominator normalizes the correlation coeffitsuch that

p U[-11]

© JR Spletzer
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The Gaussian Distribution

» A 1-D Gaussian distribution is defined as
1 _(X_ﬂ)z
A .

207

p(X) = W Gaussian p(x)

¢ In 2-D (assuming uncorrelated variables) this bexsom

1 _[(Xi‘ﬂ1)2+(xz‘llzz)z}
2
p()ﬁ() - e 207 205
2mo,o,

 In ndimensions, it generalizes to
The Normal (Gaussian)

1 ,
(%) = 1 e‘g(x‘/‘)TC "x-u) distribution is completely
P - /(2 n.)n | C | parameterized by its first and
second moments.

© JR Spletzer
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What is a Kalman Filter?

« Optimal recursivelata fusion algorithm
* Predictor-Corrector style algorithm

» Processes all available sensor measurementsrimaéistj the value of
parameters of interest using

» Knowledge of system and sensor dynamics

» Statistical models reflecting uncertainty in systesise and sensor
dynamics

» Any information regarding initial conditions

© JR Spletzer
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What is a Kalman Filter (cont'd)?

» Optimalin the sense that for systems which can be descbipea linear model
-e.g.
Xisg = A%, + Buy + W,
z, = HX, +Vv,

and for which the process and measurement nejsasdy, arenormally
distributed the Kalman filter is the provably optimal estintafestimate has
minimum error variance)

* In our case, “process noise” corresponds to unogytad the motion model,
measurement noise is from uncertainty in the sgnmaiodel x denotes the state
being estimated (the robot pose) arilde sensor measurements

© JR Spletzer
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What is a Kalman Filter (cont'd)?

» Recursiven the sense that it is “memory-less”

» Does not require all previous data to be maintaimechemory and
reprocessed at each time step

~ Propagates first and second order statistics oy hean and
variance/covariance)

* The primary assumption for the KF is that noisbath our motion model and
sensor measurements can approximated with unimmetakmean Gaussian
noise

p(w)~N(@O.Q)  p(v)~N(@OR)

 With this assumption - and the linear process/measent models — the
uncertainty in the state estimate will also be radtyrdistributed

© JR Spletzer

Autonomous Mobile Robots, Chapter 5 5.6.3

Kalman Filter Localization

System error
source

Control — System

System state

(desired but
not known)
Observed Optimal estimate of
Measuring measurement system state

devices

Measurement
SITOr sources

©R. Siegwart, I. Nourbakhsh
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5.6.3

Introduction to Kalman Filter (1) {,,,

* Two measurements
¢, = ¢, with variance 0% 5,

_ ith vari 2
4, = ¢, with variance o,

* Weighted least-squares

n
= Y g

........
et

M) =

.......

2
ol
621 20

i=1

* Findina minimum error

3s 3 n &
~ 2 ~
a_E/ - a~'§ wilg—q;)" =2 E wilg—q;) =0
q','zl i=1

* After some calculation and rearrangements

2

O
—12(%_%)
0, "0,

é’ZQ1+

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

Introduction to Kalman Filter (2)

* In Kalman Filter notation

Xpoq1 = X+t Ky (21— )

2
_ % 26 . e
Kk+17 2 2 » 0 =61 5 6; = G
0,1+ 0,

5.6.3

© R. Siegwart, I. Nourbakhsh
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Autonomous Mobile Robots, Chapter 5 5.6.3

Introduction to Kalman Filter (3)

. - )
» Dynamic Predictiofrobot moving)| = o280,
o421 20
dx _ u = velocity | |
dt w=noise | Okl
* Motion 7 - __ > u
Xpp = Xt ull,  —1) Geltiny)
2 2, 2
O, = O, + Gw[tk+ 1 tk]

: : x0)
x(7) Xp(fgiy)

» Combining fusion and dynamic prediction
Xpor = Xp T Ky 121 = Xp)
- [xk T u(t“ 1 fz’c)] t Kk+ I[Zk+ 1 7xk7u(tk+ 1 Ik)]
2 2 2 )
% O+ O, [ 15 — 1]

Kpoq = =
2 > 2 2 3
Op+o, op+to.lt ,—t]+o;

© R. Siegwart, I. Nourbakhsh
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The Predictor-Corrector Approach

* In this example, prediction came from using knowledge of the wehicl
dynamics to estimate its change in position

* The analogy would be integrating information from the elehodometry
or to estimate changed in position

» The correction is accomplished through making exteroceptive
observations and then fusing this with your current eséimat

* This is akin to updating position estimates using landnmddkrnation,
etc.

* In practice, the prediction rate is typically much highantthe correction

© JR Spletzer
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The Discrete Kalman Filter (1)

» The Kalman filter addresses the problem of estirgatie state (1 R"of a
discrete-time controlled process governed by tiesli difference equation

Xy = AX, + BU + W,
and with a measurement] R"that is

Z, = HX, +V,

wherew, andv, represent the process and measurement noise.afidey
assumed independent, white, and with Gaussian PDFs

p(w)~N(@0.Q)  p(v)~N@O,R)

NOTE: The matrices A,B,H,Q & R may be time varying

© JR Spletzer
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The Discrete Kalman Filter (2)

At each time step, the KF propagates batkate estimatg, and an estimate for
theerror covarianceP,. The latter provides an indication of the undetya
associated with the state estimate

» As mentioned previously, the KF is a predictor-eotor algorithm. Prediction
comes in théime updatghase, and correction in theasurement updaphase

The “-” superscript
implies a prediction — Correct
NOT inverse!
Time Update Measurement Update
(Riaa Pa) (Risas Pewa)

In our case, prediction Predict
will be from the robot
kinematics (vX, vY, a)

© JR Spletzer
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The Time Update Phase

1. Predict the state ahead

2. Project the error covariance ahead

P~ = AR A" +Q

k+1

© JR Spletzer
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The Measurement Update Phase

1. Compute the Kalman Gaii,
Ky = P,('HT(HP,('HT +R)™

2. Update the estimate based on the new measurement
X =X + K(z, —HX,)
3. Update the error covariance

P =(1-KMH)R

© JR Spletzer
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The Discrete Kalman Filter (3)

Predict

Time Update

(X%, R)
1. Project the state
forward

X = AX +BU,
2. Project the
covariance forward

P~ =ARA" +Q

k+1

Measurement Update

1. Compute Kalman Gain
K =RH'(HRHT+R)™

2. Update state estimate with
measurement z,

>‘(k =X, +K(z, —HX,)
3. Update error covariance
Pk =(l =K H)R

Correct

© JR Spletzer
CSE397/497 Intro to Mobile Robotics
Predictor-Corrector KF Example (1)
1) We have a covariance 2) We predict the next
matrix P with mean x, . X, is position from our motion
our pose estimate and the P model
is the uncertainty associated Ao _
with that pose estimate. X, = AX + Bl
P_ =ARA" +Q
Actual Robot
Position
© JR Spletzer
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Predictor-Corrector KF Example (2)

3) We take a new ... and use this to estimate
measurement in the MU our new position x, and
phase... covariance Py,

K,=PRH(HR,HT +R)™
X =% +K(z, - Hx)

P =(1-KH)P,

© JR Spletzer
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1-D Example
Estimating a Random Constant

* Suppose we are trying to estimate the value of a 1D curfsban
corrupted sensor measurements. Our process modenis the

X+ = AX, + Bu, +w, =X, +W,

z, = HX +Vv, =X +V,

Variance of our

. measurement device
* The KF equations then are

Variance of our Variance of oul(/| { Und /
i ; easurement Updal
state estimate |jq Update signal level

_ 1
\ X1 = Xy / Kk_F_)k(Pk ]
GO

P = -K)PR

© JR Spletzer

22



11/3/2005

CSE397/497 Intro to Mobile Robotics

m
Update

Simulation Results (1)

o - Ti dats
(%.P)) : ime Update

[1. Compute Kalman Gain

1. Project the state
forward

X, = AX +BU,

2. Project the
covariance forward

P’ = AR AT +Q

K, =RH (HRTHT +R)™

2. Update state estimate with
measurement z,

R =% +K(z - Hx)

3. Update error covariance

 Let us assume that=7.5,0=0.01,R=9

P, =(1 -KH)R~

» With perfect knowledge of the process and sens@r@nce model, we obtain

© JR Spletzer
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m
Update

Simulation Results (2) P

[1. Compute Kalman Gain

» N
1. Project the state
forward
X = A%, + B,

2. Project the
covariance forward

P’ = AR AT +Q

K,=RH'(HRH" +R)™

2. Update state estimate with
measurement z,

R =% +K(z —Hx)

3. Update error covariance

 Let us assume that=7.5,0=0.01,R=9

* ok * * *

P =(1-K,H)R

« Let us further assume that the user believes hieatensor covariané& 0.09

© JR Spletzer
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Simulation Results (3)

m
Update

(%.P) : Time Update

1. Compute Kalman Gain
K, =RH (HRTHT +R)™

1. Project the state

 Let us assume that=7.5,0=0.01,R=9

forwart ) )
%~ = A% + Bi, 2. Update state estimate with
2 measurement z,
2. Project the X =% +K(z —HX)
covariance forward -
P~ = ARA" +Q 3. Update error covariance
P =(1-KH)R’

f

Correct,

« Let us further assume that the user believeshieagtensor covarian&= 900

© JR Spletzer
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Kalman Filters vs. Particle Filters

KF

PF

« Compact representation
* Single state hypothesis

 Explicitly model Gaussian PDF
for state / covariance estimation

 Scales well computationally for
higher dimensional
representations

* Diverge in the kidnapped robot
problem

e Limited to linear system models
* Optimal

* Memory-intensive representation
* n hypotheses (1 for each particle)

* Implicitly Approximates any
PDF for state/covariance

* Limited to ~3 dimensions on
modern computers

 Solves the kidnapped robot
problem

* Works for any system model
» Sub-optimal

© JR Spletzer
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Summary

* The primary limitation of &F is the dimension of the state that can be
represented (~3), as computational complexity scales erpialy
with the dimension

* This often relegateBF to indoor localization problems
» KFscan represent much higher dimensional states in realQ{t000)
* Hybrid filters that integrat®FsandKFs are not uncommon

* The primary limitation of th&F is that it can only be used for linear
models, but for these it the optimal data fusion algorithm

* An Extended Kalman FiltefEKF) that approximates th€F through
linearization techniques has greatly expandEdpplications and is
one of the most widely used algorithms in mobile robotics

© JR Spletzer
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