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Today’s Agenda

• Plagiarism

• Homework 4

� New due date is 10 Nov 05   �

� MPEGs required for submission (keep them small < 1 MB)

� Questions

• The plane Jane vanilla Kalman Filter

5.2.1
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Monte Carlo Localization (Homework 5)
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Bayesian Filters (1)

• PFs and Kalman Filters (KF/EKF) are example of Bayesian Filters

• Bayesian filters do not explicitlyestimate the state

• Instead, they propagate a posteriorprobability density function for the state 
from which it can be inferred

• In the KF, a gaussian distribution P is propagated at each timestep with mean � and variance σ 2.  The former is used as the state estimate

• In the PF, a (weighted) particle set corresponds to the posterior from which an 
estimate for the state can be inferred
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• Unlike the KF, which represents the pdfparametrically as a gaussian, the PF approximates 
it as a sample set

� m denotes the number of particles in the sample set

� xi  corresponds to a hypothetical state estimate

� wi corresponds to a weight reflecting a “confidence” in how well the particle xi

reflects the true state x

• ∑m wi=1, so that the sample set corresponds to a discrete probability density function

• It has been shown that as the number of samples approaches infinity, the sample set 
converges to the true posterior  [Tanner, Tools for Statistical Inference, 1996].  However, 
no proofs for rates of convergence exist

The Particle Filter
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Predictor-Corrector Example

1) We have a prior of 
uniform weighted particle

2) Particles are weighted 
based on the sensor 
measurement and 
resampled according to 
weight to generate our 
posterior.

At this point, we have   
m unique samples 

Particles are again unique 
and equally weighted  

3) Particles are passed 
through our motion model to 
generate a new posterior

We still have m 
samples, but they are all 
equally weighted and 
not necessarily unique 

−= kt
kt =

−+= )1(kt



11/3/2005 4

CSE397/497 Intro to Mobile Robotics

© JR Spletzer

Predictor-Corrector Example (2)

1) We have a prior of 
uniform weighted particle

−= kt

Actual Robot 
Position 

p1

p2

p3
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Predictor-Corrector Example (3)

2a) Particles are weighted 
based on the sensor 
measurement

kt =

w1 = 0.5 

w2 = 0.1 

w3 = 0.4 

2b) Particles are resampled
according to weight to 
generate our posterior.

kt =

p1 
p2 , p3

We still have m 
samples, but they are all 
equally weighted and not 
necessarily unique 

900.0

677.0

323.0

3

2

1

=
=
=

s

s

s

0                  0.5   0.6          1.0            

S 
w1 = 0.5 

w2 = 0.1 

w3 = 0.4 



11/3/2005 5

CSE397/497 Intro to Mobile Robotics

© JR Spletzer

Predictor-Corrector Example (3)

−+= 1kt

p1 
p2 , p3

3) Particles are passed 
through our motion model to 
generate a new posterior

p1 

p2

p3

Particles are again unique 
and equally weighted  

4) Iterate…
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The Particle Filter Algorithm

; 

;  factors weight Normalize

end
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);|(  

);,|(~ random generate  

 weights;sampleon  based  from  random generate  

m:1ifor 

0

),,(

1

1

1

1

1

+

+

+

+

+

∈∀

∈′
′=

′′

=
/=

=

k

ki

k

k

k

k

kkkk

Xreturn

Xw

X,wx(

xzpw

xuxpx

Xx

X

uzXrunFilterfunction X



11/3/2005 6

CSE397/497 Intro to Mobile Robotics

© JR Spletzer

The Particle Filter Algorithm (ver. 2.0)

;  

;  factors weight Normalize

end

;Insert   

);|(  

 allfor 

end
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 allfor 

end

  Insert   

 weights;sampleon  based  from  random generate  

m:1ifor 
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Xreturn
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X(x,w)

xzpw

Xx
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Xx

Xx

Xx

XX

uzXrunFilterfunction X

This version will 
be better for  your 

Matlab implementation
on the PF assignment!
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• In the MCL problem, our objective is to estimate position and orientation in a 
workspace

• We assume the availability of a map m

• This allows us to condition our belief to not only the current pose, but constrained 
to lie within a map.  Thus, our belief equation becomes

• Thus, we can infer expected measurements from a given pose through:

� Ray tracing if we are doing an occupancy grid

� Line intersection if we are representing the map as a set of lines

• We can also combine map information with our motion model to exploit 
constraints in the workspace

The MCL Problem
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111 )(),,|(),|()( −−−∫= tttttttt dxxBelmxuxpmxzpxBel
vvv η

• Operation of the particle filter hinges upon associating a probability with each 
sensor measurement given a state so that a proper weight can be associated with 
each sample

• This is NOT the same as sampling the probability density function of z

• For a continuous distribution, the probability of measuring a specific value is zero

• Normally, sensors have a resolution which a given measurement is rounded to 
(e.g.a LRF may have a cm level resolution)

• Probabilities can then be determined by integrating the sensor pdf over this 
resolution range

Generating the Sensor Model
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• MCL is typically performed with range sensors at known bearing angles to the 
robot (although cameras have also been used)

• As such, a single scan consists of numerous sensor measurements (e.g.from laser 
or sonar pulses)

• If we assume that these n measurements are independent,  the conditional 
probability can then be expressed as  

Generating a MCL Specific Sensor Model
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• A shortcoming of particle filters is that they tend to fail if the sensor models are 
too accurate

• This can result from a not generating an initial sample close enough to the true 
state estimate

• One potential solution is to inflate the sensor model error.  For example, the 
standard deviation for the SICK LRF is modeled as σ≈25cm when in reality it is 
closer 1cm. 

• This violates the basis from which the PF was derived, but has basis in actual 
measurements and works well in practice

MCL Sensor Model Issues (1)

Autonomous Mobile Robots, Chapter 5

© R. Siegwart, I. Nourbakhsh

Markov Localization

• The critical challenge is the calculation of p(i¦l)
� The number of possible sensor readings and geometric contexts is extremely large

� p(i¦l ) is computed using a model of the robot’s sensor behavior, its position l, and 
the local environment metric map around l. 

� Assumptions
o Measurement error can be described by a distribution with a mean

o Non-zero chance for any measurement

5.6.2

Courtesy of 
W. Burgard
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• A second issue using the LRF is that for many scans, there will be no sensor data 
available

• This typically results from wall features being outside the maximum range of the 
sensor as above, but can also arise when the laser scan is absorbed, multi-path 
error, etc.

• To address this, the probability of obtaining such a 
reading is explicitly modeled.  The weighting of this is 
probability is a function of the range and the 
environment being explored

MCL Sensor Model Issues (2)
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• Recall that the conditional probability for the sensor measurement is expressed as 
the product of the individual probabilities.

• As a consequence, a single “outlier” can cause the probability to approach zero

• Such errors can readily be caused by errors in our map, furniture, persons/robots 
moving throughout the environment, etc.

• This is handled by introducing an exponential 
based probability density into the sensor model for 
unmodeled “obstacles”

∏
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Simple MCL Examples
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• MCL relies upon difference in the environment to induce corresponding 
differences in sensor measurements

• Large open areas, long featureless corridors, symmetric environments, etc. can 
cause MCL to be slow to converge or to converge to the wrong pose

• MCL can exploit even minor differences to obtain a correct pose estimate

When can MCL Fail?

Consistent ConvergenceInconsistent Convergence
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• MCL provides a method for solving the kidnapped robot problem – previously a 
very difficult problem in mobile robotics

• This is accomplished by adding a small amount of random particles at each time 
step, and resampling to the original number of particles

• MCL has also been extended to solve the SLAM problem – Simultaneous 
Localization and Mapping

• This is accomplished by generating a map on the fly, and conditioning your 
measurements to the portion of the map currently available

• In structured 2D environments, particle filters (with SICK lasers) have effectively 
solved the SLAM problem

MCL Extensions 

CSE397/497 Intro to Mobile Robotics
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The Kalman Filter
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Notation Review

1. Matrices are denoted by a capital letter.  In text, they will be bold 
(e.g. A)

2. Vectors are denoted by a lowercase letter.  In text, they will be bold 
(e.g. x).  In Microsoft Equations, they will have an overscore

3. Scalars are lowercase letters without emphasis

4. xk
- denotes the a priori estimate for the state vector x at time step k 

before the measurement update phase

5. xk denotes the estimate for the state vector x at time step k after the 
measurement update phase

ix
r

  e.g.
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Bayesian Filters (1)

• PFs and Kalman Filters (KF/EKF) are example of Bayesian Filters

• Bayesian filters do not explicitlyestimate the state

• Instead, they propagate a posteriorprobability density function for the state 
from which it can be inferred

• In the KF, a gaussian distribution P is propagated at each timestep with mean � and variance σ 2.  The former is used as the state estimate

• In the PF, a (weighted) particle set corresponds to the posterior from which an 
estimate for the state can be inferred
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First & Second Order Statistics/Moments:
Expected Value & Variance of the State

• Theexpected valuefor a random variable X is (i.e. the mean) defined as 

• The variance of X about the mean is defined as
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What is Covariance?

• When X is a vector, the variance is expressed in terms of a 
covariance matrix C where

• The resulting matrix has the form 

whereρ ij corresponds to the degree of correlation between 
variables Xi andXj
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• Correlation is a means to estimate how two functions/series are correlated.  For a 
discrete series, it is defined as 

where ρ denotes the correlation coefficient

• The denominator normalizes the correlation coefficient such that

The Correlation Coefficient
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The Gaussian Distribution

• A 1-D Gaussian distribution is defined as 

• In 2-D (assuming uncorrelated variables) this becomes 

• In n dimensions, it generalizes to
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The Normal (Gaussian) 
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parameterized by its first and 
second moments.
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What is a Kalman Filter?

• Optimal recursivedata fusion algorithm

• Predictor-Corrector style algorithm

• Processes all available sensor measurements in estimating the value of 
parameters of interest using

� Knowledge of system and sensor dynamics

� Statistical models reflecting uncertainty in system noise and sensor 
dynamics

� Any information regarding initial conditions

CSE397/497 Intro to Mobile Robotics
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What is a Kalman Filter (cont’d)?

• Optimal in the sense that for systems which can be described by a linear model 
– e.g.

and for which the process and measurement noises wk andvk are normally 
distributed, the Kalman filter is the provably optimal estimator (estimate has 
minimum error variance) 

• In our case, “process noise” corresponds to uncertainty in the motion model, 
measurement noise is from uncertainty in the sensing model, x denotes the state 
being estimated (the robot pose) and z the sensor measurements 
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What is a Kalman Filter (cont’d)?

• Recursivein the sense that it is “memory-less”

� Does not require all previous data to be maintained in memory and 
reprocessed at each time step

� Propagates first and second order statistics only (i.e. mean and 
variance/covariance)

• The primary assumption for the KF is that noise in both our motion model and 
sensor measurements can approximated with unimodal, zero-mean Gaussian 
noise

• With this assumption - and the linear process/measurement models – the 
uncertainty in the state estimate will also be normally distributed

 ),0(~)(        ),0(~)( RNvpQNwp

Autonomous Mobile Robots, Chapter 5

© R. Siegwart, I. Nourbakhsh

Kalman Filter Localization

5.6.3
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Introduction to Kalman Filter (1)

• Two measurements

• Weighted least-squares

• Finding minimum error

• After some calculation and rearrangements

5.6.3

Autonomous Mobile Robots, Chapter 5

© R. Siegwart, I. Nourbakhsh

Introduction to Kalman Filter (2)

• In Kalman Filter notation

5.6.3
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Introduction to Kalman Filter (3)

• Dynamic Prediction (robot moving)

u = velocity  
w = noise

• Motion

• Combining fusion and dynamic prediction

5.6.3
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• In this example, prediction came from using knowledge of the vehicle 
dynamics to estimate its change in position

• The analogy would be integrating information from the vehicle odometry 
or  to estimate changed in position

• The correction is accomplished through making exteroceptive
observations and then fusing this with your current estimate

• This is akin to updating position estimates using landmark information, 
etc.

• In practice, the prediction rate is typically much higher than the correction

The Predictor-Corrector Approach
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• The Kalman filter addresses the problem of estimating the state x ∈ Rn of a 
discrete-time controlled process governed by the linear difference equation

and with a measurement z ∈ Rmthat is

where wk and vk represent the process and measurement noise.  They are 
assumed independent, white, and with Gaussian PDFs

The Discrete Kalman Filter (1)

kkkk wuBxAx
rrrr ++=+1

kkk vxHz
rrr +=

 ),0(~)(        ),0(~)( RNvpQNwp

NOTE:  The matrices A,B,H,Q & R may be time varying
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Measurement Update

),( 11 ++ kk Px
v

• At each time step, the KF propagates both a state estimatexk and an estimate for 
the error covariancePk.  The latter provides an indication of the uncertainty 
associated with the state estimate  

• As mentioned previously, the KF is a predictor-corrector algorithm.  Prediction 
comes in the time updatephase, and correction in the measurement update phase

The Discrete Kalman Filter (2)

Correct

Predict

Time Update

),( 11
−
+

−
+ kk Px

v

),( 11
−− Px

v

In our case, prediction 
will be from the robot 
kinematics (vX, vY, α )

The “-” superscript 
implies a prediction –
NOT inverse!
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1. Predict the state ahead

2. Project the error covariance ahead  

The Time Update Phase
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1. Compute the Kalman Gain  Kk

2. Update the estimate based on the new measurement   zk

3. Update the error covariance

The Measurement Update Phase
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The Discrete Kalman Filter (3)

Predict

Correct

1.  Project the state 
forward

2.  Project the 
covariance forward

Time Update

kk uBxAx
k

rrr +=−
+1

QAAPP T
kk

+=−
+1

1.  Compute Kalman Gain

2.  Update state estimate with 
measurement zk

3.  Update error covariance

Measurement Update
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k

T
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Predictor-Corrector KF Example (1)

1) We have a covariance 
matrix P with mean xk .  xk is 
our pose estimate and the P
is the uncertainty associated 
with that pose estimate.

Actual Robot 
Position 

xk

2) We predict the next 
position from our motion 
model

x-
k+1

kk uBxAx
k

rrr
+=−

+1
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kk

+=−
+1
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Predictor-Corrector KF Example (2)

3) We take a new 
measurement in the MU 
phase…

x-
k+1

)( −− −+= kkk xHzKxx
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vvvv

−−= kk PHKIP
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1)( −−− += RHHPHPK T
k

T
kk

… and use this to estimate 
our new position xk and 
covariance Pk+1

xk+1
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• Suppose we are trying to estimate the value of a 1D constant from 
corrupted sensor measurements.  Our process model is then 

• The KF equations then are

1-D Example
Estimating a Random Constant
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Time Update

Measurement Update
Variance of our
state estimate

Variance of our
signal level

Variance of our 
measurement device
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• Let us assume that x*=7.5, Q=0.01, R=9

• With perfect knowledge of the process and sensor covariance model, we obtain

Simulation Results (1)

Predict

Correct

1.  Project the state 
forward

2.  Project the 
covariance forward

Time Update
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1.  Compute Kalman Gain

2.  Update state estimate with 
measurement zk

3.  Update error covariance

Measurement Update
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Predict

Correct

1.  Project the state 
forward

2.  Project the 
covariance forward

Time Update
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1.  Project the state 
forward

2.  Project the 
covariance forward

Time Update

kk uBxAx
k
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1.  Compute Kalman Gain

2.  Update state estimate with 
measurement zk

3.  Update error covariance

Measurement Update
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1.  Compute Kalman Gain

2.  Update state estimate with 
measurement zk

3.  Update error covariance

Measurement Update
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• Let us assume that x*=7.5, Q=0.01, R=9

• Let us further assume that the user believes that the sensor covariance R= 0.09

Simulation Results (2)

Predict

Correct

1.  Project the state 
forward

2.  Project the 
covariance forward

Time Update
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1.  Compute Kalman Gain

2.  Update state estimate with 
measurement zk

3.  Update error covariance

Measurement Update
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1.  Project the state 
forward

2.  Project the 
covariance forward

Time Update
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1.  Project the state 
forward

2.  Project the 
covariance forward

Time Update
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1.  Compute Kalman Gain

2.  Update state estimate with 
measurement zk

3.  Update error covariance

Measurement Update
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1.  Compute Kalman Gain

2.  Update state estimate with 
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3.  Update error covariance

Measurement Update
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• Let us assume that x*=7.5, Q=0.01, R=9

• Let us further assume that the user believes that the sensor covariance R= 900

Simulation Results (3)

Predict

Correct

1.  Project the state 
forward

2.  Project the 
covariance forward

Time Update
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1.  Compute Kalman Gain

2.  Update state estimate with 
measurement zk

3.  Update error covariance

Measurement Update
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• Compact representation

• Single state hypothesis

• Explicitly model Gaussian PDF 
for state / covariance estimation

• Scales well computationally for 
higher dimensional 
representations

• Diverge in the kidnapped robot 
problem

• Limited to linear system models

• Optimal

Kalman Filters vs. Particle Filters

• Memory-intensive representation

• n hypotheses (1 for each particle)

• Implicitly Approximates any 
PDF for state/covariance

• Limited to ~3 dimensions on 
modern computers

• Solves the kidnapped robot 
problem

• Works for any system model

• Sub-optimal

KF PF
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Summary

• The primary limitation of a PF is the dimension of the state that can be 
represented (~3), as computational complexity scales exponentially 
with  the dimension

• This often relegates PF to indoor localization problems

• KFs can represent much higher dimensional states in real time O(1000)

• Hybrid filters that integrate PFsand KFs are not uncommon

• The primary limitation of the KF is that it can only be used for linear 
models, but for these it is the optimal data fusion algorithm

• An Extended Kalman Filter(EKF) that approximates the KF through 
linearization techniques has greatly expanded KF applications and is 
one of the most widely used algorithms in mobile robotics


