

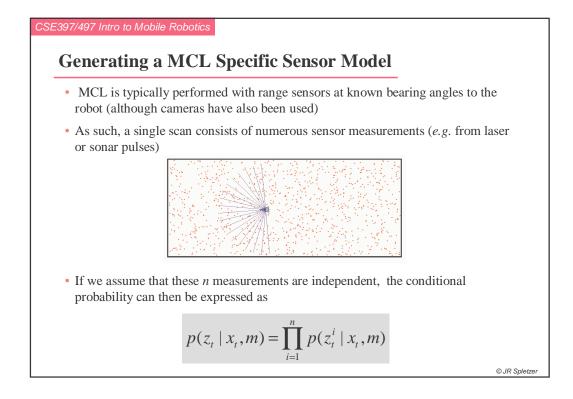
Generating the Sensor Model

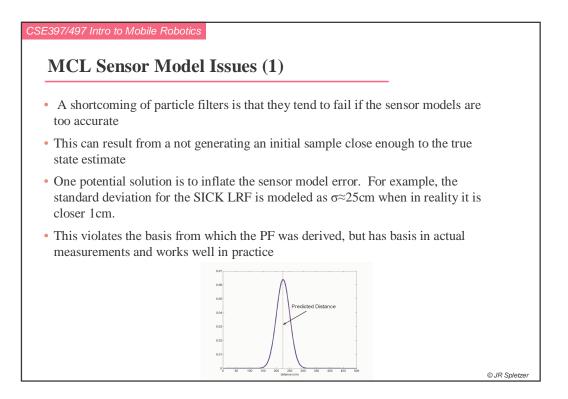
• Operation of the particle filter hinges upon associating a probability with each sensor measurement given a state so that a proper weight can be associated with each sample

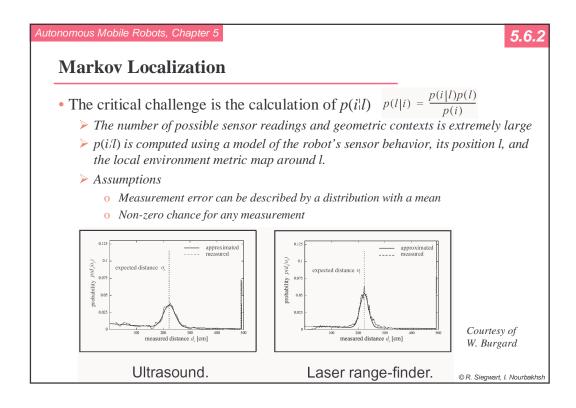
$$Bel(\vec{x}_{t}) = \eta p(z_{t} | x_{t}, m) \int p(\vec{x}_{t} | u_{t}, x_{t-1}, m) Bel(\vec{x}_{t-1}) dx_{t-1}$$

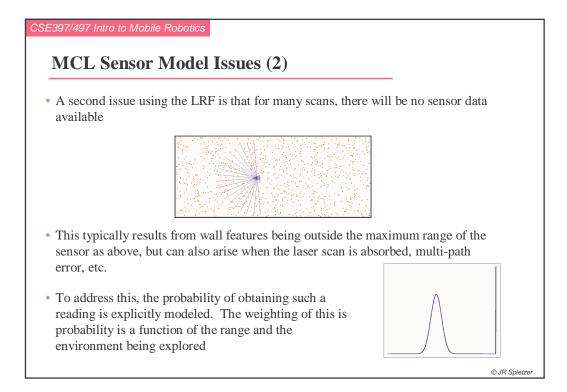
- This is NOT the same as sampling the probability density function of z
- For a continuous distribution, the probability of measuring a specific value is zero
- Normally, sensors have a resolution which a given measurement is rounded to (*e.g.* a LRF may have a cm level resolution)
- Probabilities can then be determined by integrating the sensor *pdf* over this resolution range

© JR Spletzer





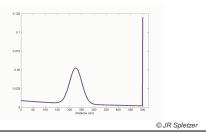


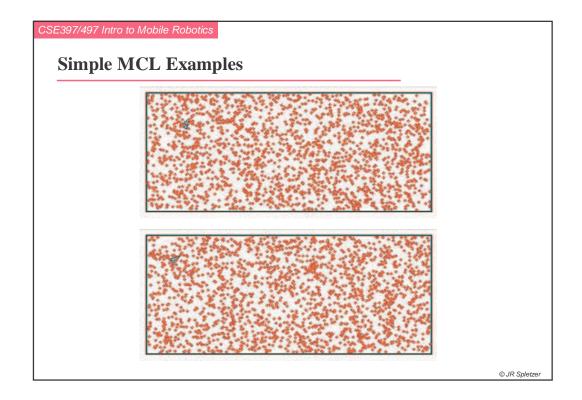


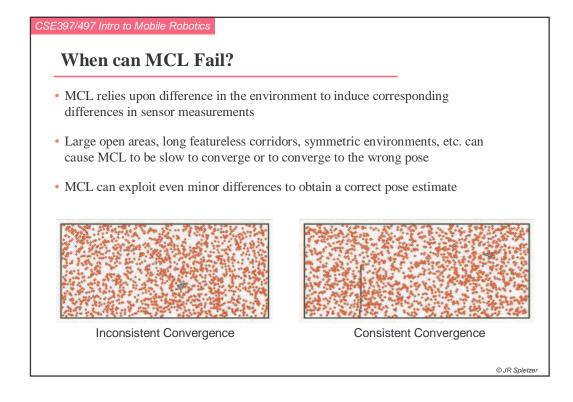
MCL Sensor Model Issues (3) Recall that the conditional probability for the sensor measurement is expressed as the product of the individual probabilities.

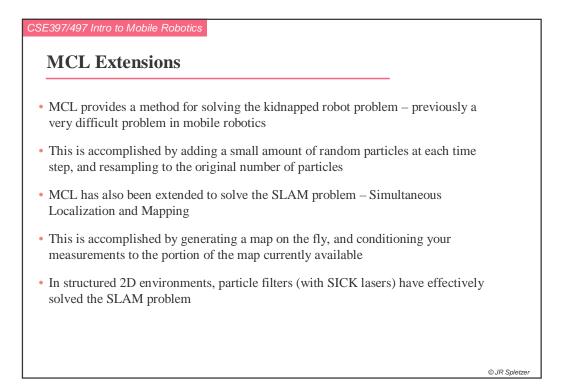
$$p(z_t | x_t, m) = \prod_{i=1}^n p(z_t^i | x_t, m)$$

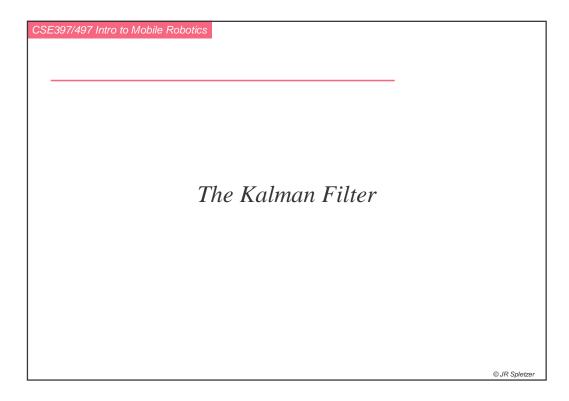
- As a consequence, a single "outlier" can cause the probability to approach zero
- Such errors can readily be caused by errors in our map, furniture, persons/robots moving throughout the environment, etc.
- This is handled by introducing an exponential based probability density into the sensor model for unmodeled "obstacles"

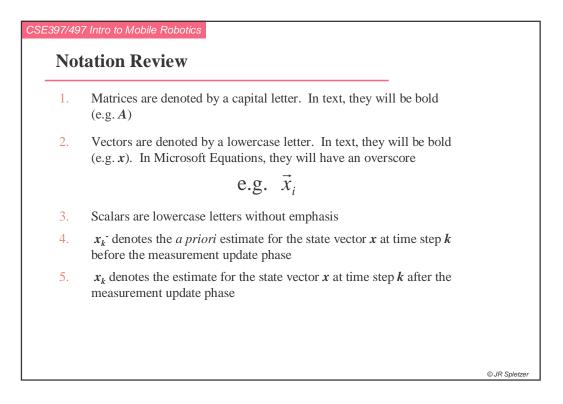












Bayesian Filters (1) $p(B A) = \frac{1}{2}$	$\frac{p(A \mid B) p(B)}{p(A)}$
• PFs and Kalman Filters (KF/EKF) are example of Bayesian Filters	
• Bayesian filters do not <i>explicitly</i> estimate the state	
• Instead, they propagate a <i>posterior</i> probability density function for the sta from which it can be inferred	ite
• In the KF, a gaussian distribution P is propagated at each timestep with m μ and variance σ^2 . The former is used as the state estimate	nean
• In the PF, a (weighted) particle set corresponds to the posterior from which estimate for the state can be inferred	ch an
	© JR Spletz

CSE397/497 Intro to Mobile Robotics

First & Second Order Statistics/Moments: Expected Value & Variance of the State

• The *expected value* for a random variable *X* is (*i.e.* the mean) defined as

$$\mu = E(X) = \sum_{i=1}^{n} p_i x_i \text{ for discrete } X$$
$$\mu = E(X) = \int_{-\infty}^{\infty} x p_X(x) dx \text{ for continuous } X$$

• The *variance* of *X* about the mean is defined as

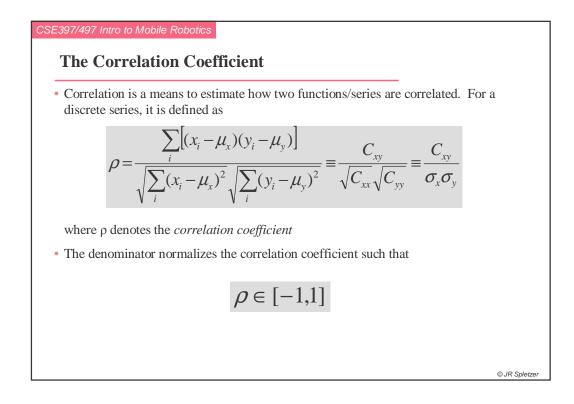
$$\sigma^{2} = E[(x - \mu)^{2}] = \sum_{i=1}^{n} p_{i}(x_{i} - \mu)^{2} \text{ for discrete } X$$

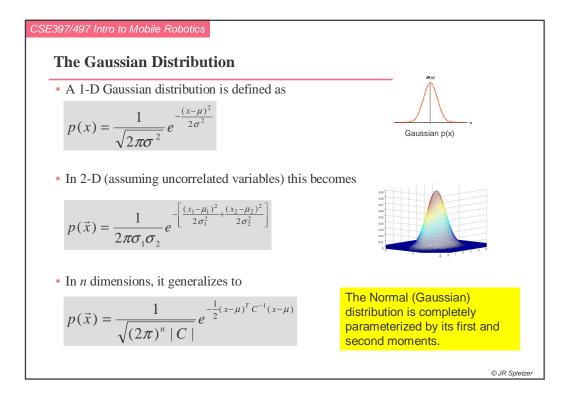
$$\sigma^{2} = E[(x - \mu)^{2}] = \int_{-\infty}^{\infty} (x - \mu)^{2} p_{x}(x) dx \text{ for continuous } X$$

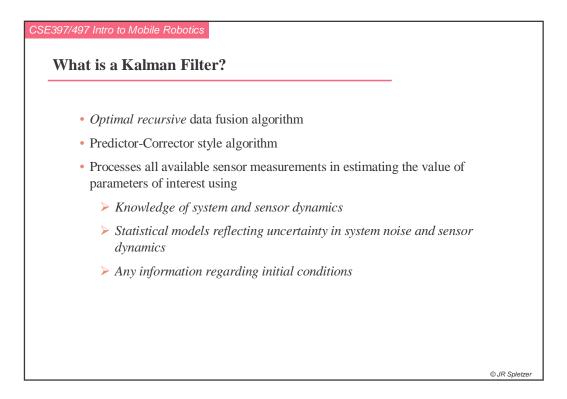
© JR Spletzer

© JR Spletzer

CSE397/497 Intro to Mobile Robotics What is Covariance? • When X is a vector, the variance is expressed in terms of a *covariance matrix* C where $c_{ij} = E[(\vec{x}_i - \vec{\mu}_i)^T (\vec{x}_j - \vec{\mu}_j)]$ • The resulting matrix has the form $C = \begin{bmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 & \dots & \rho_{1n}\sigma_1\sigma_n \\ \rho_{12}\sigma_1\sigma_2 & \sigma_2^2 & \dots & \rho_{2n}\sigma_2\sigma_n \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{1n}\sigma_1\sigma_n & \rho_{2n}\sigma_2\sigma_n & \dots & \sigma_n^2 \end{bmatrix}$ where ρ_{ij} corresponds to the degree of correlation between variables X_i and X_j

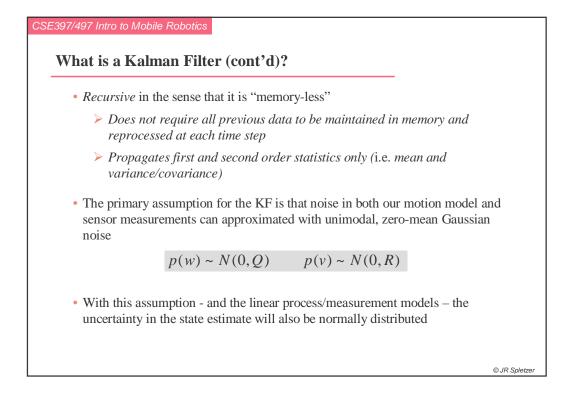


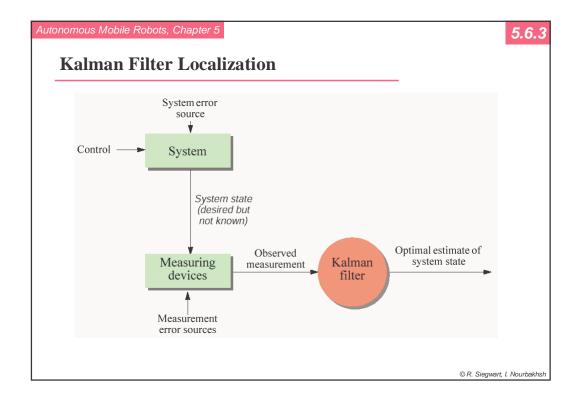


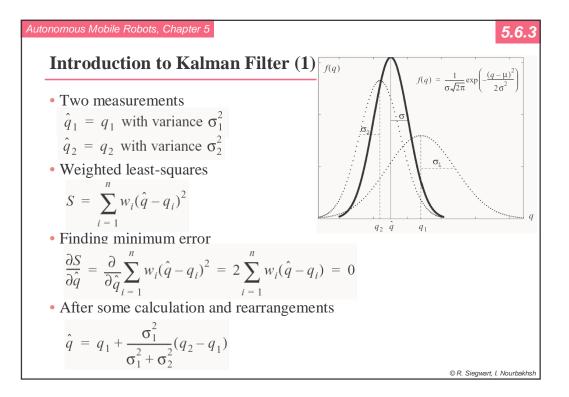


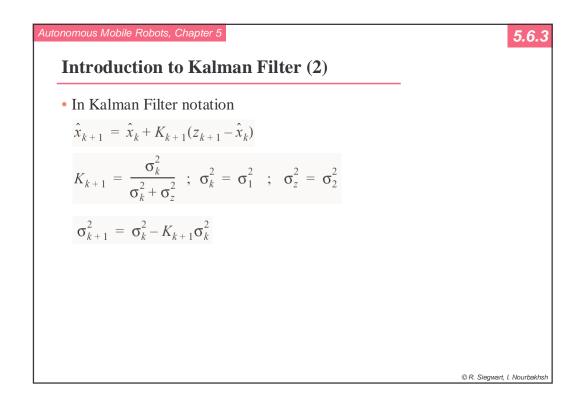
CSE397/497 Intro to Mobile Robotics What is a Kalman Filter (cont'd)? • Optimal in the sense that for systems which can be described by a linear model -e.g. $\vec{x}_{k+1} = Ax_k + Bu_k + w_k$ $z_k = Hx_k + v_k$ and for which the process and measurement noises w_k and v_k are normally distributed, the Kalman filter is the provably optimal estimator (estimate has minimum error variance) • In our case, "process noise" corresponds to uncertainty in the motion model, measurement noise is from uncertainty in the sensing model, x denotes the state being estimated (the robot pose) and z the sensor measurements

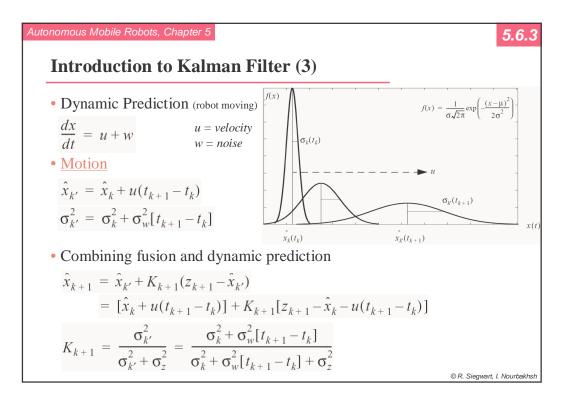
© JR Spletze









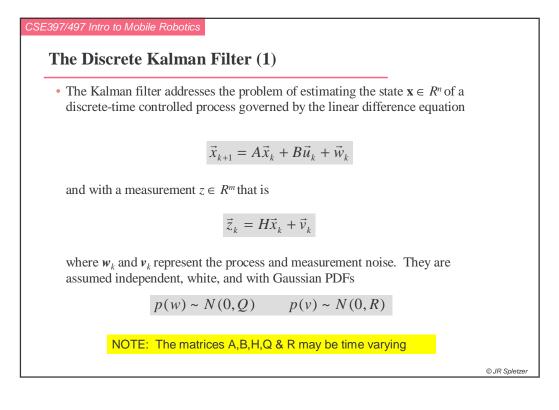


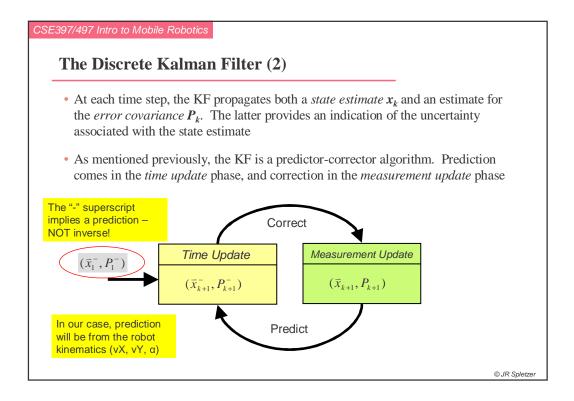
CSE397/497 Intro to Mobile Robotics

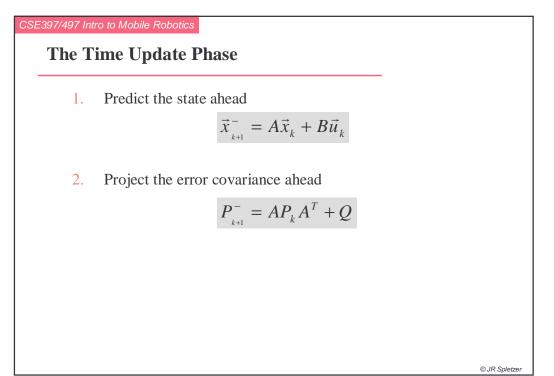
The Predictor-Corrector Approach

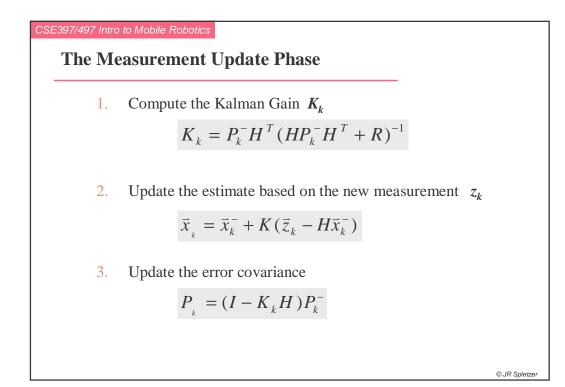
- In this example, prediction came from using knowledge of the vehicle dynamics to estimate its change in position
- The analogy would be integrating information from the vehicle odometry or to estimate changed in position
- The correction is accomplished through making exteroceptive observations and then fusing this with your current estimate
- This is akin to updating position estimates using landmark information, etc.
- In practice, the prediction rate is typically much higher than the correction

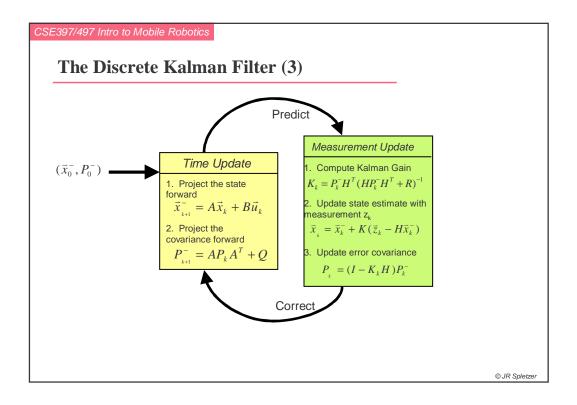
© JR Spletz

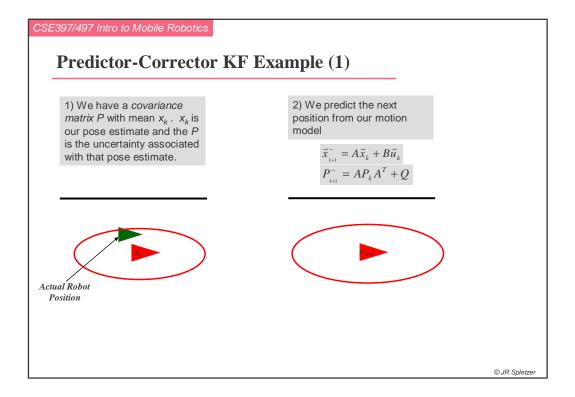


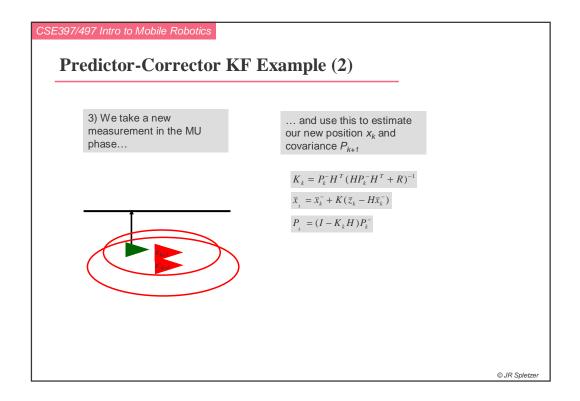


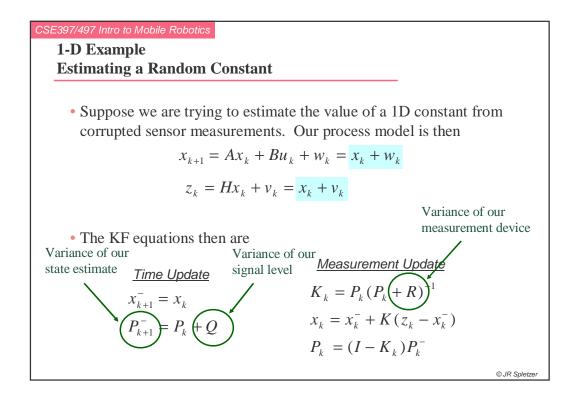


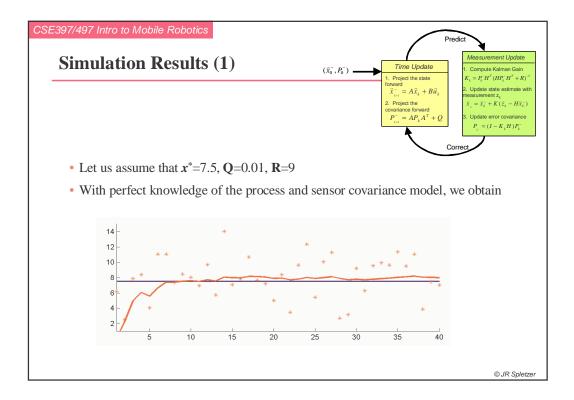


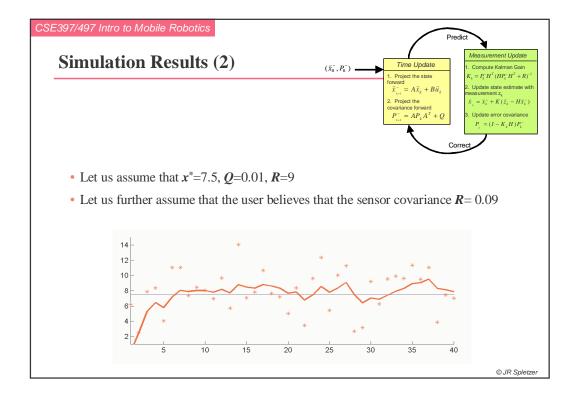


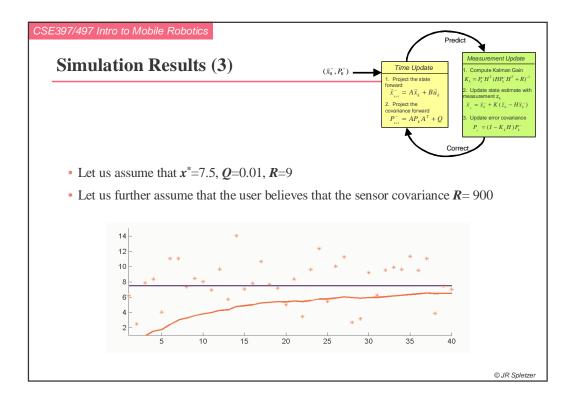












KF	PF
• Compact representation	• Memory-intensive representation
• Single state hypothesis	• n hypotheses (1 for each particle)
• Explicitly model Gaussian PDF for state / covariance estimation	• Implicitly Approximates any PDF for state/covariance
• Scales well computationally for higher dimensional representations	 Limited to ~3 dimensions on modern computers
• Diverge in the kidnapped robot problem	 Solves the kidnapped robot problem
• Limited to linear system models	• Works for any system model
• Optimal	• Sub-optimal

CSE397/497 Intro to Mobile Robotics

Summary

- The primary limitation of a *PF* is the dimension of the state that can be represented (~3), as computational complexity scales exponentially with the dimension
- This often relegates PF to indoor localization problems
- *KFs* can represent much higher dimensional states in real time O(1000)
- Hybrid filters that integrate PFs and KFs are not uncommon
- The primary limitation of the *KF* is that it can only be used for linear models, but for these it is *the optimal data fusion algorithm*
- An *Extended Kalman Filter* (EKF) that approximates the *KF* through linearization techniques has greatly expanded *KF* applications and is one of the most widely used algorithms in mobile robotics

© JR Spletzer