Architectural geometry: Motions, Sweeping and Shape evolution

2009년 2월 28일 발표자: 유중현

Surfaces via motions

Kinematic geometry

- Geometry of motions)
- Basics for understanding of surface generation via motions
- Design and functionality can not be fully separated
 - Mechanical design
 - Architectural design
- Various surface classes are based on kinematic geometry
 - Surfaces via motion of profile curves
 - Surfaces via motion of profile curves which changes their shapes

- Moving system M and fixed system F under a continuous motion
 - M(t): position of M in F at time t
 - Path (or trajectory)
 - Path tangent/normal
 - Pole p(t) at time t
 - Polehode: a set of poles in a system M or F

-

- Cardan motion
 - Moving line segment with two points being in a constant speed
 - The rolling motion of a circle p_m in a circle p_f

The rolling motion of a circle p_m on a straight line p_f

- Cycloids
- Cusps and loops

- Swept area consists of two parts:
 - Trajectory of a corner of the object M
 - Envelopes of boundary curves of M
 - Application
 - An interference free motion
 - Collision free path
 - Robotics

Motion of Frenet frame along a planar curve c

- Fixed polhode: evolue of c
- Moving polhode: y(t) (curve normal)

Spatial motions

Spatial motions

Voronoi Diagram Research Center

 Path c, source q
Degree of freedom: rotation about the tangent of c

Sweeping

Rotation minimizing frame

Voronoi Diagram Research Center

Sweeping

Sweeping with several sources and paths

Skinning

- Wrap a surface (skin) over a given network of curves
- A lot of degree of freedom
 - Depends on a specific modeling system and options (algorithm)

Curve evolution

- The design of changing curves
 - Useful for modeling surfaces with a profile curve
- Evolutions of curves (curve flows)
- v(p, t): normal component of c(t)

Curve evolution

- Curvature flow
 - v(p, t): curvature of c(t)

Evolution of c(t) will shrink c(t) to a point

Curve evolution

- Simple polygon evolution
 - Affinely regular polygon
 - Ellipse

Metaballs and modeling with implicit of surfaces

Implicit representation

- Curve : f(x, y) = 0
- Surface : f(x, y, z) = 0
- Level set

$$- f(x, y) = k$$

- f(x, y, z) = k

Metaballs and modeling with implicit of surfaces

- Distance-based functions (Df)
- Meta-balls
 - Blobs or soft objects

$$f(x, y, z) = \sum_{i} Df_{i}(x, y, z), \ f(x, y, z) = k$$

