Architectural geometry: Freeform Surfaces

2009년 2월 16일 발표자: 유중현

Translational Bézier surface

- Input: two Bézier curves (control polygons)
- 4 column polygons
- Quadrilaterals are parallelogram.

Translational Bézier surface

- Input: two Bézier curves (control polygons)
- 3 row polygons
- Quadrilaterals are parallelogram.

Tensor product Bézier surface

- Input: a set of control points (control mesh)
 - Generalization of translational Bézier surface

Voronoi Diagram Research Center

Tensor product surface

The extension of parametric curve

$$S(u,v) = \sum_{i} \sum_{j} BF_{i,j,m,n}(u,v)P_{ij}$$
$$= \sum_{i} \sum_{j} BF_{i,m}(u)BF_{j,n}(v)P_{ij}$$

- BF: basis function
- P : control point
- m : the degree for u-direction
- n : the degree for v-direction

Bézier surface

Basis functions

Figure 3.19. Cubic × quadratic basis functions. (a) $N_{4,3}(u)N_{4,2}(v)$; (b) $N_{4,3}(u)N_{2,2}(v)$; $U = \{0, 0, 0, 0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, 1, 1, 1\}$ and $V = \{0, 0, 0, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, 1, 1, 1\}$.

Figure 1.24. (a) The Bézier tensor product basis function, $B_{0,2}(u)B_{1,3}(v)$; (b) a quadratic × cubic Bézier surface.

B-Spline basis function for 3 X 2 Bernstein basis function for 2 X 3

Properties of Bézier surface

- Each boundary polygon defines a boundary Bézier curve on the Bézier surface
- Corner point interpolation

Convex hull property

Affine invariance

B-Spline/NURBS surfaces

- Bézier surface
 - Local control is not available
 - High degree is required as the size of control mesh increases.

-

B-Spline/NURBS surfaces

Voronoi Diagram Research Center

Mesh

- A set of polygons
 - Mesh topology (connectivity)
 - Mesh geometry (vertex coordinates)
- To render curves
 - To make piecewise line segments from sample points on curves

Mesh refinement

Two-step procedure

- Change the connectivity: the number of vertices and the way they are connected
- Change the geometry: position of vertices

Triangle/quad mesh

- Edge midpoint insertion
- Barycenter insertion
- Planar/Nonplanar mesh

Mesh refinement

Triangle mesh

triangle mesh -> insert edge midpoints -> refined triangle mesh

Mesh refinement

Quad mesh

voronoi Diagram Research Center

Mesh decimation

- The reverse process of mesh refinement
- Data reduction process

Acceleration of downstream applications:

- Simulations
- Fast rendering

Mesh quality

- Visual appearance
 - Too many irregular vertices might not look good
- Simulation based FEM (Finite Element Method)
 - Thin triangles should be avoided
 - Holes in meshes should be removed

Subdivision surface

For modeling surfaces with a more general topology

- Mesh + Subdivision rule
- Quad mesh
 - Doo-Sabin subdivision
 - Catmull-Clark subdivision
- Triangle mesh
 - Loop subdivision

Doo-Sabin subdivision

Voronoi Diagram Research Center

Doo-Sabin subdivision

Voronoi $a_1 = (9/16)a + (3/16)b + (3/16)d + (1/16)c$

Multi-resolution modeling

- Editing operations can be performed to any level of meshes
 - Initial mesh
 - Editing
 - Subivision
 - Editing
 - Subdivision
 - ...
- A change made at a coarse level has a broader influence than a chagne at a fine level

changes made

at fine levels

