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I
t is important that a power-assist exoskeleton robot
automatically assists the user’s motion according to
that motion intention in real time. Electromyographic

(EMG) signals — which are generated when muscles are
activated — are one of the most important biological 
signals to determine the user’s motion. The amount of
the EMG signal indicates the muscle activity level (i.e.,
the amount of generating force) and it can be easily
measured using simple electrodes.

If the amount of generating force by certain 
muscles is estimated, the amount of user’s joint torque
can also be estimated (see Figure 1). Therefore, it can be
used to activate the power-assist exoskeleton robot 
automatically, since it directly reflects the intention of
the user. Consequently, human motion can be estimated
if the amount of muscle force of certain muscles is 
estimated. If the user’s motion is estimated in real-time,
the motion can be easily assisted by the exoskeleton.
The EMG-based control is not very easy to be realized,
however, because of several reasons.

In this article, EMG-based control methods for
power-assist exoskeleton robots will be introduced. Soft
computing technologies such as fuzzy reasoning, neural
networks, or genetic algorithms are powerful tools to
make the robot system intelligent. They can be applied
to develop an effective EMG-based controller for power-
assist exoskeleton robots. We will discuss, two kinds of
EMG-based control methods in which soft computing
technologies are introduced and applied.

The Geometry of Power-Assist

Because the power-assist exoskeleton robot is 
supposed to be directly attached to the user’s body, the
design condition of the robot architecture is restricted in
comparison with that of ordinal robots. The actuators,
sensors, links, and frames of the exoskeleton must all be
located outside of the user’s body and not disturb the
user’s motion under any configuration. Moreover, the
weight of the exoskeleton should not be directly 
supported by the user’s body.

Therefore, the hardware design is harder to come
up with than that of ordinary robots. Development of
small-size, light-weight, and high-power actuators such
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as artificial muscles are required to be
practically wearable for daily living.

Upper-limb motion is involved in
many important activities in daily living,
so assistance here is important for
physically weak persons. Figure 2
shows an example of 4 DOF (degrees
of freedom) upper-limb motion (i.e.,
shoulder vertical flexion/extension,
shoulder horizontal flexion/extension,
elbow flexion/extension, and forearm
pronation/supination) [1].

In this case, the exoskeleton robot is
attached to the mobile wheelchair.
Therefore, the user does not carry any of
the weight at all. The exoskeleton main-
ly consists of a shoulder motion support
part, an elbow motion support part, and
a forearm motion support part.

The shoulder motion support part
is composed of an upper arm link, driv-
er and driven pulleys (one for shoulder
horizontal flexion/extension motion,
another one for shoulder vertical flex-
ion/extension motion), two DC motors,
two potentiometers, an arm holder, and
the mechanism for the center of 
rotation (CR) of the shoulder joint. The
1 DOF elbow motion part consists of a
forearm link, pulleys, a DC motor, and a
potentiometer. The forearm motion sup-
port consists of a wrist frame, an inner
and outer wrist holder, a wrist cover, a
wrist force sensor, and potentiometers.

Usually, the movable range of the
human shoulder is 180° in flexion, 60° in
extension, 180° in abduction, 75° in
adduction, 100-110° in internal rotation,
and 80-90° in external rotation. The lim-
itation of the movable range of the fore-
arm motion is 50-80° in pronation and
80-90° in supination, and elbow motion
is 145° in flexion and -5° in extension.

Considering the minimal amount of
motion required in everyday life and the
safety of the user, shoulder motion of the
4 DOF exoskeleton is limited to 0° in
extension and adduction, 90° in flexion,
and 90° in abduction. Limitation of the
forearm motion is 50° in pronation and
80° in supination, and 120° in flexion and
0° in extension for the elbow motion.

In order to activate the exoskele-
ton in accordance with the user’s
intended motion, the EMG-based con-
trol can be applied as explained next.

In order to control the 4 DOF upper-
limb motion, 12 kinds of EMG signals
should be used, as shown in Figure 3.

Control with Biological
Signals

In order to assist the motion of the
user, the exoskeleton robot must deter-
mine the generating motion in realtime.
The user’s motion can be estimated in
real time by monitoring the EMG signals
of the certain muscles. Since the

amount of EMG signal indicates the
activity level of the muscles, the amount
of generating force by the user can be
estimated by monitoring these signals.

However, this EMG-based con-
troller is not very easy to be realized,
because: 1) obtaining the same EMG
signal for the same motion is difficult
even with the same person since the
signal is biologically generated; 2) the
activity level of each muscle and the
way they’re used for certain motion is
different among individuals; 3) activity
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FIGURE 2. 4DOF power-
assist exoskeleton.

FIGURE 3. Location of electrodes.
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of antagonist muscles affects the joint
torque (see Figure 1); 4) many muscles
are involved in a joint motion; 5) a 
muscle is used for more than one kind
of motion; 6) the role of each muscle
for a certain motion varies with joint
angles; and 7) the activity level of some
muscles (such as bi-articular) are affect-
ed by the movement of the other joints.

There are basically two kinds of
methods to carry out power-assistance

based on the user’s EMG signals. One
way is a fuzzy-neuro control method
(the combination of flexible fuzzy 
control and an adaptive neural 
network) [1]-[4] and the other is a 
muscle-model based control method.

In the first method, the user’s motion
is estimated based on the EMG activation
patterns of the related muscles, and then
the power-assist is performed to accom-
plish the estimated motion. The fuzzy 
IF-THEN rules are designed based on the
relationship between the human motion
and the EMG activation patterns of the
related muscles. The designed fuzzy 
IF-THEN rules are transferred into the
form of neural networks so they can
adapt to an arbitrary user. As the 
number of assisting DOF is increased, the
required fuzzy IF-THEN rules become
more complicated to cope with this.

In the second EMG-based method,
the user’s motion is estimated on the
amount of EMG activity levels of the 
related muscles. A muscle-model (i.e., a
matrix) that relates human joint torque
and the amount of EMG activity levels is
based on the knowledge of human anato-
my. However, each component of the
matrix must be modified according to the
posture of the user, since the relationship

between the human joint torque and the
amount of EMG activity levels varies.

A fuzzy-neural network can be
applied to modify the muscle-model in
real time according to the posture of
the arbitrary user. The control system
for the power-assist exoskeleton robot
for 5 DOF upper-limb motion 
(i.e., shoulder flexion/extension, shoul-
der adduction/abduction, shoulder
internal/external rotation, elbow 
flexion/extension, and forearm prona-
tion/supination) is shown in Figure 4.

The relationship between the EMG
signals and the generated joint torques
are written as the following equation if
the posture of the user’s upper-limb
does not change.

EQUATION 1:

where τsv is torque for shoulder flex-
ion/extension motion, τsh is torque for
shoulder adduction/abduction motion,
τsr is torque for shoulder rotational
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FIGURE 4. Architecture
of proposed EMG-based

controller.
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Abduction — Moving a limb away from
the midline. Think B for bird (aBduction)
– raising your arms like a bird preparing
for flight.

Adduction — Moving a limb toward 
midline. Think D for down (aDduction) 
— pushing your arms down in a resting
position.

Pronation — Rotating the forearm and
hand so that the palm is down. Think P
for pouring water out of an imaginary
bowl in the palm of your hand.

Supination — Rotating the forearm and
hand so that the palm is up. Think S for
holding a bowl of soup in the palm of
your hand.

Anatomy Lesson
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motion, τe denotes torque for elbow
motion, and τf is torque for forearm
motion. Chn is the EMG signal meas-
ured in channel n, wsvn is the weight for
nth EMG to estimate the torque for
shoulder flexion/extension motion,
wshn is the weight for nth EMG to 
estimate the torque for shoulder
adduction/abduction motion, wsrn is
the weight for nth EMG to estimate the
torque for shoulder rotational motion,
wen is the weight for nth EMG to esti-
mate the torque for elbow motion, and
wfn is the weight for nth EMG to esti-
mate the torque for forearm motion.

Five joint angles (shoulder flex-
ion/extension angle, shoulder adduc-
tion/abduction angle, shoulder inter-
nal/external rotational angle, elbow
flexion/extension angle, and forearm
pronation/supination angle) are used
as inputs for the fuzzy-neural network.
Each joint angle is divided into three
regions (i.e., FL: flexed region; IM:
intermediate region; and EX: extended
region for shoulder flexion/extension,
adduction/abduction angles, and
elbow flexion/extension angle; and IN:
internal region; CE: center region; 
and EX: external region for shoulder
internal/external rotational angle and
forearm pronation/supination angle).

The output from the fuzzy-neural
network is the coefficient for each
weight in Equation 1. Consequently,
the muscle-model (the weight matrix) in
Equation 1 is adjusted by the fuzzy-
neural network at every sampling time
during the control as shown in Figure 4.

The fuzzy-neural network is 
trained to minimize the difference
between the estimated torque and 
the measured generated torque during
the training period using the error
back-propagation learning algorithm
(i.e., one of the most typical learning

algorithms for neural networks).

Evaluation

In order to evaluate the effective-
ness of the motion estimation methods
for the power-assistance explained here,
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FIGURE 5. Location of
markers in the experiment.

FIGURE 6. Generated joint
torque (Subject A).
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experiments have been carried out to
determine the relationship between the
human 5 DOF upper-limb motion 
(3 DOF shoulder joint motion, elbow
joint motion, and forearm pronation/
supination motion) and the EMG signals
of the related muscles (deltoid-anterior
part, deltoid-middle part, deltoid-
posterior part, pectoralis major-c
lavicular part, pectoralis major-lateral
part, biceps-medial part, biceps-lateral
part, triceps-medial part, triceps-lateral
part, teres major, teres minor, infraspina-
tus, pronator teres, flexor carpi radialis,
anconeus, and supinator). The effective-
ness of the fuzzy-neuro method has
been proven in many papers [1]-[4].

In one experiment, random upper-
limb motion is performed by five
healthy, elderly male persons (all of
them are 65 years or older), and the 
estimation error of the generated 
upper-limb motion is evaluated. The
motion of each subject is measured by a
3D motion capture system (Hawk Digital
System and a high-speed camera from

NAC Image Technology, Inc.). In order to
capture the 3D motion, 17 markers are
put on each subject in the experiment as
shown in Figure 5. The motion of the
subject is monitored with eight cameras.
Each joint torque generated by 
each subject during the experiment is
estimated from the motion results 
calculated using human models [5].

The experimental results of the
torque generated by subject A are
shown in Figure 6 as an example. Figure
7 shows the error between the generat-
ed torque by subject A and the estimat-
ed torque with and without the second
EMG-based control method. It can be
seen that the amount of the torque error
becomes almost zero when the weight
matrix is adjusted by the second EMG-
based control method. Similar results
were obtained with the other subjects.

These results show that the user’s
joint torque can be estimated and a
certain percentage of the estimated
torque would be assisted by the
exoskeleton robot in real time. Thus,
the power-assist is realized with the
proposed EMG-based control method.

Ideas for Future Expansion

Recent progress of robotics tech-
nology has brought several exoskeleton
robots onto the market. However, they
are still not ready for daily consumer
use. More advanced soft computing
technologies need to be developed to
make the power-assist robots more
intelligent and flexible.  SV
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FIGURE 7. Estimated joint torque
error (subject A).
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