
Developing Applications

file:///C|/android-sdk-windows-1.0_r1/docs/devel/index.html[09/10/2008 20:39:34]

Android

Copyright 2007 Google Inc. Build 110632-110632 - 22 Sep 2008 13:34

You can develop Android applications with the same high-quality tools you use to develop Java applications. The Android core
libraries provide the functionality needed to build some amazingly rich mobile applications, and the Android development tools
make running, debugging, and testing your applications a snap.

This section explains the ins and outs of developing Android applications. It outlines the philosophy behind the system and
then describes each of the key subsystems in detail. After reading this section, you'll have the knowledge and confidence to
begin writing that real-world Android app you have in mind.

Before reading this section you should read the Getting Started Guide, which helps you get up and running with the Android
SDK and shows you how to build a basic app. This section builds on the information in the Getting Started section.

Here's the content you'll find in this section:

Implementing a UI
Explains how to construct and interact with user interfaces for Android applications. After reading this page you'll have a
solid understanding of how Android layouts are built, how they operate at runtime, and how you can make them pretty.

Building Blocks
Detailed descriptions of Android components. Covers the ins and outs of the components summarized in Anatomy of an
Android App, plus more. This section goes into detail on each of the key Android components (Intents, Activities, Views,
and events.)

Storing and Retrieving Data
How to read and write data to the various storage mechanisms provided by Android, and to network services. There are
several different ways to read and write data from an Android application, each aimed at different needs. This page
describes them all and explains how to pick the right one for your needs.

Security Model
Gaining access to secure system resources and features, and declaring permissions to control access to your own secure
features. Permissions control whether a given application is able to access piece of functionality provided by another
application (for example, which applications can dial the phone). This page describes how permissions work and how to
request permissions as well as define your own.

Resources and i18n
Detailed descriptions of Android's application-resource management system, including how it's used for internationalization
and localization. "Resources" are application assets (such as images, localized strings, and XML layouts) that need to be
resolved at runtime. This page describes how Android resolves which resource to load from a selection of them, as well
as how to create and use resources.

Developing Android Applications

http://labs.google.com/
http://code.google.com/android/
file:///C|/android-sdk-windows-1.0_r1/docs/intro/index.html

Implementing a User Interface

file:///C|/android-sdk-windows-1.0_r1/docs/devel/implementing-ui.html[09/10/2008 20:39:37]

Android

Copyright 2007 Google Inc. Build 110632-110632 - 22 Sep 2008 13:34

This section describes the basics of how to implement the user interface of an Android screen. It covers the basic elements
that make up a screen, how to define a screen in XML and load it in your code, and various other tasks you'll need to handle
for your user interface.

Hierarchy of Screen Elements
Common Layout Objects
Working with AdapterViews (Binding to Data)
Designing Your Screen in XML
Hooking into a Screen Element
Listening for UI Notifications
Applying a Theme to Your Application
UI Elements and Concepts Glossary

Implementing a User Interface

Topics

http://labs.google.com/
http://code.google.com/android/

Building Blocks

file:///C|/android-sdk-windows-1.0_r1/docs/devel/building-blocks.html[09/10/2008 20:39:39]

Android

You can think of an Android application as a collection of components, of various kinds. These components are for the most
part quite loosely coupled, to the degree where you can accurately describe them as a federation of components rather than a
single cohesive application.

Generally, these components all run in the same system process. It's possible (and quite common) to create multiple threads
within that process, and it's also possible to create completely separate child processes if you need to. Such cases are pretty
uncommon though, because Android tries very hard to make processes transparent to your code.

These are the most important parts of the Android APIs:

AndroidManifest.xml
The AndroidManifest.xml file is the control file that tells the system what to do with all the top-level components
(specifically activities, services, intent receivers, and content providers described below) you've created. For instance, this
is the "glue" that actually specifies which Intents your Activities receive.

Activities
An Activity is, fundamentally, an object that has a life cycle. An Activity is a chunk of code that does some work; if
necessary, that work can include displaying a UI to the user. It doesn't have to, though - some Activities never display
UIs. Typically, you'll designate one of your application's Activities as the entry point to your application.

Views
A View is an object that knows how to draw itself to the screen. Android user interfaces are comprised of trees of Views.
If you want to perform some custom graphical technique (as you might if you're writing a game, or building some unusual
new user interface widget) then you'd create a View.

Intents
An Intent is a simple message object that represents an "intention" to do something. For example, if your application
wants to display a web page, it expresses its "Intent" to view the URI by creating an Intent instance and handing it off to
the system. The system locates some other piece of code (in this case, the Browser) that knows how to handle that
Intent, and runs it. Intents can also be used to broadcast interesting events (such as a notification) system-wide.

Services
A Service is a body of code that runs in the background. It can run in its own process, or in the context of another
application's process, depending on its needs. Other components "bind" to a Service and invoke methods on it via remote
procedure calls. An example of a Service is a media player; even when the user quits the media-selection UI, she
probably still intends for her music to keep playing. A Service keeps the music going even when the UI has completed.

Notifications
A Notification is a small icon that appears in the status bar. Users can interact with this icon to receive information. The
most well-known notifications are SMS messages, call history, and voicemail, but applications can create their own.
Notifications are the strongly-preferred mechanism for alerting the user of something that needs their attention.

ContentProviders
A ContentProvider is a data storehouse that provides access to data on the device; the classic example is the
ContentProvider that's used to access the user's list of contacts. Your application can access data that other applications
have exposed via a ContentProvider, and you can also define your own ContentProviders to expose data of your own.

Android Building Blocks

http://code.google.com/android/
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/app/Activity.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/view/View.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Intent.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/app/Service.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/app/NotificationManager.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/ContentProvider.html

Building Blocks

file:///C|/android-sdk-windows-1.0_r1/docs/devel/building-blocks.html[09/10/2008 20:39:39]

Copyright 2007 Google Inc. Build 110632-110632 - 22 Sep 2008 13:34

http://labs.google.com/

Storing, Retrieving, and Exposing Data

file:///C|/android-sdk-windows-1.0_r1/docs/devel/data.html[09/10/2008 20:39:41]

Android

Copyright 2007 Google Inc. Build 110632-110632 - 22 Sep 2008 13:34

A typical desktop operating system provides a common file system that any application can use to store and read files that
can be read by other applications (perhaps with some access control settings). Android uses a different system: on Android,
all application data (including files) are private to that application. However, Android also provides a standard way for an
application to expose its private data to other applications. This section describes the many ways that an application can store
and retrieve data, expose its data to other applications, and also how you can request data from other applications that expose
their data.

Android provides the following mechanisms for storing and retrieving data:

Preferences
A lightweight mechanism to store and retrieve key/value pairs of primitive data types. This is typically used to store
application preferences.

Files
You can store your files on the device or on a removable storage medium. By default, other applications cannot access
these files.

Databases
The Android APIs contain support for SQLite. Your application can create and use a private SQLite database. Each
database is private to the package that creates it.

Content Providers
A content provider is a optional component of an application that exposes read/write access to an application's private
data, subject to whatever restrictions it wants to impose. Content providers implement a standard request syntax for data,
and a standard access mechanism for the returned data. Android supplies a number of content providers for standard
data types, such as personal contacts.

Network
Don't forget that you can also use the network to store and retrieve data.

Storing, Retrieving and Exposing Data

http://labs.google.com/
http://code.google.com/android/

Security and Permissions

file:///C|/android-sdk-windows-1.0_r1/docs/devel/security.html[09/10/2008 20:39:42]

Android

Android is a multi-process system, where each application (and parts of the system) runs in its own process. Most security
between applications and the system is enforced at the process level through standard Linux facilities, such as user and
group IDs that are assigned to applications. Additional finer-grained security features are provided through a "permission"
mechanism that enforces restrictions on the specific operations that a particular process can perform, and per-URI
permissions for granting ad-hoc access to specific pieces of data.

Security Architecture

Application Signing

User IDs and File Access

Using Permissions

Declaring and Enforcing Permissions
Enforcing Permissions in AndroidManifest.xml
Enforcing Permissions when Sending Broadcasts
Other Permission Enforcement

URI Permissions

A central design point of the Android security architecture is that no application, by default, has permission to perform any
operations that would adversely impact other applications, the operating system, or the user. This includes reading or writing
the user's private data (such as contacts or e-mails), reading or writing another application's files, performing network access,
keeping the device awake, etc.

An application's process is a secure sandbox. It can't disrupt other applications, except by explicitly declaring the permissions
it needs for additional capabilities not provided by the basic sandbox. These permissions it requests can be handled by the
operating in various ways, typically by automatically allowing or disallowing based on certificates or by prompting the user. The
permissions required by an application are declared statically in that application, so they can be known up-front at install time
and will not change after that.

All Android applications (.apk files) must be signed with a certificate whose private key is held by their developer. This
certificate identifies the author of the application. The certificate does not need to be signed by a certificate authority: it is
perfectly allowable, and typical, for Android applications to use self-signed certificates. The certificate is used only to establish
trust relationships between applications, not for wholesale control over whether an application can be installed. The most
significant ways that signatures impact security is by determining who can access signature-based permissions and who can
share user IDs.

Each Android package (.apk) file installed on the device is given its own unique Linux user ID, creating a sandbox for it and

Security and Permissions in Android

Contents

Security Architecture

Application Signing

User IDs and File Access

http://code.google.com/android/

Security and Permissions

file:///C|/android-sdk-windows-1.0_r1/docs/devel/security.html[09/10/2008 20:39:42]

preventing it from touching other applications (or other applications from touching it). This user ID is assigned to it when the
application is installed on the device, and remains constant for the duration of its life on that device.

Because security enforcement happens at the process level, the code of any two packages can not normally run in the same
process, since they need to run as different Linux users. You can use the sharedUserId attribute in the AndroidManifest.xml's
manifest tag of each package to have them assigned the same user ID. By doing this, for purposes of security the two
packages are then treated as being the same application, with the same user ID and file permissions. Note that in order to
retain security, only two applications signed with the same signature (and requesting the same sharedUserId) will be given the
same user ID.

Any files created by an application will be assigned that application's user ID, and not normally accessible to other packages.
When creating a new file with getSharedPreferences(String, int), openFileOutput(String, int), or openOrCreateDatabase(String,
int, SQLiteDatabase.CursorFactory), you can use the MODE_WORLD_READABLE and/or MODE_WORLD_WRITEABLE flags
to allow any other package to read/write the file. When setting these flags, the file is still owned by your application, but its
global read and/or write permissions have been set appropriately so any other application can see it.

A basic Android application has no permissions associated with it, meaning it can not do anything that would adversely impact
the user experience or any data on the device. To make use of protected features of the device, you must include in your
AndroidManifest.xml one or more <uses-permission> tags declaring the permissions that your application needs.

For example, an application that needs to monitor incoming SMS messages would specify:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.android.app.myapp" >

 <uses-permission android:name="android.permission.RECEIVE_SMS" />

</manifest>

At application install time, permissions requested by the application are granted to it by the package installer, based on
checks against the signatures of the applications declaring those permissions and/or interaction with the user. No checks with
the user are done while an application is running: it either was granted a particular permission when installed, and can use
that feature as desired, or the permission was not granted and any attempt to use the feature will fail without prompting the
user.

Often times a permission failure will result in a SecurityException being thrown back to the application. However, this is not
guaranteed to occur everywhere. For example, the sendBroadcast(Intent) method checks permissions as data is being
delivered to each receiver, after the method call has returned, so you will not receive an exception if there are permission
failures. In almost all cases, however, a permission failure will be printed to the system log.

The permissions provided by the Android system can be found at Manifest.permission. Any application may also define and
enforce its own permissions, so this is not a comprehensive list of all possible permissions.

A particular permission may be enforced at a number of places during your program's operation:
At the time of a call into the system, to prevent an application from executing certain functions.
When starting an activity, to prevent applications from launching activities of other applications.
Both sending and receiving broadcasts, to control who can receive your broadcast or who can send a broadcast to you.
When accessing and operating on a content provider.
Binding or starting a service.

To enforce your own permissions, you must first declare them in your AndroidManifest.xml using one or more <permission>
tags.

For example, an application that wants to control who can start one of its activities could declare a permission for this
operation as follows:

Using Permissions

Declaring and Enforcing Permissions

file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.attr.html#sharedUserId
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifest
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#getSharedPreferences(java.lang.String, int)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#openFileOutput(java.lang.String, int)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#openOrCreateDatabase(java.lang.String, int, android.database.sqlite.SQLiteDatabase.CursorFactory)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#openOrCreateDatabase(java.lang.String, int, android.database.sqlite.SQLiteDatabase.CursorFactory)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#MODE_WORLD_READABLE
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#MODE_WORLD_WRITEABLE
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestUsesPermission
file:///C|/android-sdk-windows-1.0_r1/docs/reference/java/lang/SecurityException.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#sendBroadcast(android.content.Intent)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/Manifest.permission.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestPermission

Security and Permissions

file:///C|/android-sdk-windows-1.0_r1/docs/devel/security.html[09/10/2008 20:39:42]

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.me.app.myapp" >

 <permission android:name="com.me.app.myapp.permission.DEADLY_ACTIVITY"
 android:label="@string/permlab_deadlyActivity"
 android:description="@string/permdesc_deadlyActivity"
 android:permissionGroup="android.permission-group.COST_MONEY"
 android:protectionLevel="dangerous" />

</manifest>

The <protectionLevel> attribute is required, telling the system how the user is to be informed of applications requiring the
permission, or who is allowed to hold that permission, as described in the linked documentation.

The <permissionGroup> attribute is optional, and only used to help the system display permissions to the user. You will
usually want to set this to either a standard system group (listed in android.Manifest.permission_group) or in more rare cases
to one defined by yourself. It is preferred to use an existing group, as this simplifies the permission UI shown to the user.

Note that both a label and description should be supplied for the permission. These are string resources that can be displayed
to the user when they are viewing a list of permissions (android:label) or details on a single permission (
android:description). The label should be short, a few words describing the key piece of functionality the permission is
protecting. The description should be a couple sentences describing what the permission allows a holder to do. Our
convention for the description is two sentences, the first describing the permission, the second warning the user of what bad
things can happen if an application is granted the permission.

Here is an example of a label and description for the CALL_PHONE permission:

 <string name="permlab_callPhone">directly call phone numbers</string>
 <string name="permdesc_callPhone">Allows the application to call
 phone numbers without your intervention. Malicious applications may
 cause unexpected calls on your phone bill. Note that this does not
 allow the application to call emergency numbers.</string>

You can look at the permissions currently defined in the system with the shell command adb shell pm list permissions. In
particular, the '-s' option displays the permissions in a form roughly similar to how the user will see them:

$ adb shell pm list permissions -s
All Permissions:

Network communication: view Wi-Fi state, create Bluetooth connections, full
Internet access, view network state

Your location: access extra location provider commands, fine (GPS) location,
mock location sources for testing, coarse (network-based) location

Services that cost you money: send SMS messages, directly call phone numbers

...

High-level permissions restricting access to entire components of the system or application can be applied through your
AndroidManifest.xml. All that this requires is including an android:permission attribute on the desired component, naming the
permission that will be used to control access to it.

Activity permissions (applied to the <activity> tag) restrict who can start the associated activity. The permission is checked
during Context.startActivity() and Activity.startActivityForResult(); if the caller does not have the required permission then
SecurityException is thrown from the call.

Service permissions (applied to the <service> tag) restrict who can start or bind to the associated service. The permission is
checked during Context.startService(), Context.stopService() and Context.bindService(); if the caller does not have the
required permission then SecurityException is thrown from the call.

BroadcastReceiver permissions (applied to the <receiver> tag) restrict who can send broadcasts to the associated receiver.
The permission is checked after Context.sendBroadcast() returns, as the system tries to deliver the submitted broadcast to the

Enforcing Permissions in AndroidManifest.xml

file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestPermission_protectionLevel
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestPermission_permissionGroup
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/Manifest.permission_group.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestPermission_label
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestPermission_description
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.attr.html#permission
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/app/Activity.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestActivity
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#startActivity(android.content.Intent)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/app/Activity.html#startActivityForResult(android.content.Intent, int)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/java/lang/SecurityException.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/app/Service.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestService
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#startService(android.content.Intent)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#stopService(android.content.Intent)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#bindService(android.content.Intent, android.content.ServiceConnection, int)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/java/lang/SecurityException.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/BroadcastReceiver.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestReceiver
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#sendBroadcast(android.content.Intent)

Security and Permissions

file:///C|/android-sdk-windows-1.0_r1/docs/devel/security.html[09/10/2008 20:39:42]

given receiver. As a result, a permission failure will not result in an exception being thrown back to the caller; it will just not
deliver the intent. In the same way, a permission can be supplied to Context.registerReceiver() to control who can broadcast to
a programmatically registered receiver. Going the other way, a permission can be supplied when calling
Context.sendBroadcast() to restrict which BroadcastReceiver objects are allowed to receive the broadcast (see below).

ContentProvider permissions (applied to the <provider> tag) restrict who can access the data in a ContentProvider. (Content
providers have an important additional security facility available to them called URI permissions which is described later.)
Unlike the other components, there are two separate permission attributes you can set: android:readPermission restricts who
can read from the provider, and android:writePermission restricts who can write to it. Note that if a provider is protected with
both a read and write permission, holding only the write permission does not mean you can read from a provider. The
permissions are checked when you first retrieve a provider (if you don't have either permission, a SecurityException will be
thrown), and as you perform operations on the provider. Using ContentResolver.query() requires holding the read permission;
using ContentResolver.insert(), ContentResolver.update(), ContentResolver.delete() requires the write permission. In all of
these cases, not holding the required permission results in a SecurityException being thrown from the call.

In addition to the permission enforcing who can send Intents to a registered BroadcastReceiver (as described above), you can
also specify a required permission when sending a broadcast. By calling Context.sendBroadcast() with a permission string,
you require that a receiver's application must hold that permission in order to receive your broadcast.

Note that both a receiver and a broadcaster can require a permission. When this happens, both permission checks must pass
for the Intent to be delivered to the associated target.

Arbitrarily fine-grained permissions can be enforced at any call into a service. This is accomplished with the
Context.checkCallingPermission() method. Call with a desired permission string and it will return an integer indicating whether
that permission has been granted to the current calling process. Note that this can only be used when you are executing a call
coming in from another process, usually through an IDL interface published from a service or in some other way given to
another process.

There are a number of other useful ways to check permissions. If you have the pid of another process, you can use the
Context method Context.checkPermission(String, int, int) to check a permission against that pid. If you have the package
name of another application, you can use the direct PackageManager method PackageManager.checkPermission(String,
String) to find out whether that particular package has been granted a specific permission.

The standard permission system described so far is often not sufficient when used with content providers. A content provider
may want to protect itself with read and write permissions, while its direct clients also need to hand specific URIs to other
applications for them to operate on. A typical example is attachments in a mail application. Access to the mail should be
protected by permissions, since this is sensitive user data. However, if a URI to an image attachment is given to an image
viewer, that image viewer will not have permission to open the attachment since it has no reason to hold a permission to
access all e-mail.

The solution to this problem is per-URI permissions: when starting an activity or returning a result to an activity, the caller can
set Intent.FLAG_GRANT_READ_URI_PERMISSION and/or Intent.FLAG_GRANT_WRITE_URI_PERMISSION. This grants the
receiving activity permission access the specific data URI in the Intent, regardless of whether it has any permission to access
data in the content provider corresponding to the Intent.

This mechanism allows a common capability-style model where user interaction (opening an attachment, selecting a contact
from a list, etc) drives ad-hoc granting of fine-grained permission. This can be a key facility for reducing the permissions
needed by applications to only those directly related to their behavior.

The granting of fine-grained URI permissions does, however, require some cooperation with the content provider holding those
URIs. It is strongly recommended that content providers implement this facility, and declare that they support it through the
android:grantUriPermissions attribute or <grant-uri-permissions> tag.

More information can be found in the Context.grantUriPermission(), Context.revokeUriPermission(), and
Context.checkUriPermission() methods.

Enforcing Permissions when Sending Broadcasts

Other Permission Enforcement

URI Permissions

file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#registerReceiver(android.content.BroadcastReceiver, android.content.IntentFilter, java.lang.String, android.os.Handler)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#sendBroadcast(android.content.Intent, java.lang.String)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/ContentProvider.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestProvider
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/ContentProvider.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.attr.html#readPermission
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.attr.html#writePermission
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/ContentResolver.html#query(android.net.Uri, java.lang.String[], java.lang.String, java.lang.String[], java.lang.String)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/ContentResolver.html#insert(android.net.Uri, android.content.ContentValues)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/ContentResolver.html#update(android.net.Uri, android.content.ContentValues, java.lang.String, java.lang.String[])
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/ContentResolver.html#delete(android.net.Uri, java.lang.String, java.lang.String[])
file:///C|/android-sdk-windows-1.0_r1/docs/reference/java/lang/SecurityException.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/BroadcastReceiver.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#sendBroadcast(android.content.Intent, java.lang.String)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#checkCallingPermission(java.lang.String)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#checkPermission(java.lang.String, int, int)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/pm/PackageManager.html#checkPermission(java.lang.String, java.lang.String)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/pm/PackageManager.html#checkPermission(java.lang.String, java.lang.String)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Intent.html#FLAG_GRANT_READ_URI_PERMISSION
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Intent.html#FLAG_GRANT_WRITE_URI_PERMISSION
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestProvider_grantUriPermissions
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestGrantUriPermission
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#grantUriPermission(java.lang.String, android.net.Uri, int)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#revokeUriPermission(android.net.Uri, int)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#checkUriPermission(android.net.Uri, int, int, int)

Security and Permissions

file:///C|/android-sdk-windows-1.0_r1/docs/devel/security.html[09/10/2008 20:39:42]

Copyright 2007 Google Inc. Build 110632-110632 - 22 Sep 2008 13:34

http://labs.google.com/

Resources and i18n

file:///C|/android-sdk-windows-1.0_r1/docs/devel/resources-i18n.html[09/10/2008 20:39:45]

Android

Resources are external files (that is, non-code files) that are used by your code and compiled into your application at build
time. Android supports a number of different kinds of resource files, including XML, PNG, and JPEG files. The XML files have
very different formats depending on what they describe. This document describes what kinds of files are supported, and the
syntax or format of each.

Resources are externalized from source code, and XML files are compiled into a binary, fast loading format for efficiency
reasons. Strings, likewise are compressed into a more efficient storage form. It is for these reasons that we have these
different resource types in the Android platform.

This document contains the following sections:
Resources

Creating Resources
Using Resources

Using Resources in Code
References to Resources
References to Theme Attributes
Using System Resources

Alternate Resources
Resource Reference
Terminology

Internationalization (I18N)

This is a fairly technically dense document, and together with the Resource Reference document, they cover a lot of
information about resources. It is not necessary to know this document by heart to use Android, but rather to know that the
information is here when you need it.

This topic includes a terminology list associated with resources, and a series of examples of using resources in code. For a
complete guide to the supported Android resource types, see Resources.

The Android resource system keeps track of all non-code assets associated with an application. You use the Resources class
to access your application's resources; the Resources instance associated with your application can generally be found
through Context.getResources().

An application's resources are compiled into the application binary at build time for you by the build system. To use a
resource, you must install it correctly in the source tree and build your application. As part of the build process, symbols for
each of the resources are generated that you can use in your source code -- this allows the compiler to verify that your
application code matches up with the resources you defined.

The rest of this section is organized as a tutorial on how to use resources in an application.

Android supports string, bitmap, and many other types of resource. The syntax and format of each, and where they're stored,
depends upon the type of object. In general, though, you create resources from three types of files: XML files (everything but
bitmaps and raw), bitmap files(for images) and Raw files (anything else, for example sound files, etc.). In fact, there are two
different types of XML file as well, those that get compiled as-is into the package, and those that are used to generate
resources by aapt. Here is a list of each resource type, the format of the file, a description of the file, and details of any XML
files.

Resources and Internationalization

Resources

Creating Resources

http://code.google.com/android/
file:///C|/android-sdk-windows-1.0_r1/docs/reference/available-resources.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/available-resources.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/available-resources.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/res/Resources.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#getResources()

Resources and i18n

file:///C|/android-sdk-windows-1.0_r1/docs/devel/resources-i18n.html[09/10/2008 20:39:45]

You will create and store your resource files under the appropriate subdirectory under the res/ directory in your project.
Android has a resource compiler (aapt) that compiles resources according to which subfolder they are in, and the format of the
file. Here is a list of the file types for each resource. See the resource reference for descriptions of each type of object, the
syntax, and the format or syntax of the containing file.

Directory Resource Types

res/anim/ XML files that are compiled into frame by frame animation or tweened animation objects

res/drawable/
.png, .9.png, .jpg files that are compiled into the following Drawable resource subtypes:

To get a resource of this type, use Resource.getDrawable(id)
bitmap files
9-patches (resizable bitmaps)

res/layout/ XML files that are compiled into screen layouts (or part of a screen). See layouts

res/values/
XML files that can be compiled into many kinds of resource.

Note: unlike the other res/ folders, this one can hold any number of files that hold descriptions of
resources to create rather than the resources themselves. The XML element types control where
these resources are placed under the R class.

While the files can be named anything, these are the typical files in this folder (the convention is to
name the file after the type of elements defined within):

arrays.xml to define arrays
colors.xml to define color drawables and color string values. Use Resources.getDrawable() and
Resources.getColor(), respectively, to get these resources.
dimens.xml to define dimension value. Use Resources.getDimension() to get these resources.
strings.xml to define string values (use either Resources.getString or preferably
Resources.getText() to get these resources. getText() will retain any rich text styling which is
usually desirable for UI strings.
styles.xml to define style objects.

res/xml/ Arbitrary XML files that are compiled and can be read at run time by calling Resources.getXML().

res/raw/ Arbitrary files to copy directly to the device. They are added uncompiled to the compressed file that
your application build produces. To use these resources in your application, call
Resources.openRawResource() with the resource ID, which is R.raw.somefilename.

Resources are compiled into the final APK file. Android creates a wrapper class, called R, that you can use to refer to these
resources in your code. R contains subclasses named according to the path and file name of the source file

Several resources allow you to define colors. Android accepts color values written in various web-style formats -- a
hexadecimal constant in any of the following forms: #RGB, #ARGB, #RRGGBB, #AARRGGBB.
All color values support setting an alpha channel value, where the first two hexadecimal numbers specify the
transparency. Zero in the alpha channel means transparent. The default value is opaque.

This section describes how to use the resources you've created. It includes the following topics:
Using resources in code - How to call resources in your code to instantiate them.

Global Resource Notes

Using Resources

file:///C|/android-sdk-windows-1.0_r1/docs/reference/available-resources.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/available-resources.html#animationdrawable
file:///C|/android-sdk-windows-1.0_r1/docs/reference/available-resources.html#tweenedanimation
file:///C|/android-sdk-windows-1.0_r1/docs/reference/available-resources.html#imagefileresources
file:///C|/android-sdk-windows-1.0_r1/docs/reference/available-resources.html#ninepatch
file:///C|/android-sdk-windows-1.0_r1/docs/reference/available-resources.html#colordrawableresources
file:///C|/android-sdk-windows-1.0_r1/docs/reference/available-resources.html#dimension
file:///C|/android-sdk-windows-1.0_r1/docs/reference/available-resources.html#stringresources
file:///C|/android-sdk-windows-1.0_r1/docs/reference/available-resources.html#stylesandthemes
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/res/Resources.html#getXml(int)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/res/Resources.html#openRawResource(int)

Resources and i18n

file:///C|/android-sdk-windows-1.0_r1/docs/devel/resources-i18n.html[09/10/2008 20:39:45]

Referring to resources from other resources - You can reference resources from other resources. This lets you reuse
common resource values inside resources.
Supporting Alternate Resources for Alternate Configurations - You can specify different resources to load, depending on
the language or display configuration of the host hardware.

At compile time, Android generates a class named R that contains resource identifiers to all the resources in your program.
This class contains several subclasses, one for each type of resource supported by Android, and for which you provided a
resource file. Each class contains one or more identifiers for the compiled resources, that you use in your code to load the
resource. Here is a small resource file that contains string, layout (screens or parts of screens), and image resources.

Note: the R class is an auto-generated file and is not designed to be edited by hand. It will be automatically re-created as
needed when the resources are updated.

package com.android.samples;
public final class R {
 public static final class string {
 public static final int greeting=0x0204000e;
 public static final int start_button_text=0x02040001;
 public static final int submit_button_text=0x02040008;
 public static final int main_screen_title=0x0204000a;
 };
 public static final class layout {
 public static final int start_screen=0x02070000;
 public static final int new_user_pane=0x02070001;
 public static final int select_user_list=0x02070002;

 };
 public static final class drawable {
 public static final int company_logo=0x02020005;
 public static final int smiling_cat=0x02020006;
 public static final int yellow_fade_background=0x02020007;
 public static final int stretch_button_1=0x02020008;

 };
};

Using resources in code is just a matter of knowing the full resource ID and what type of object your resource has been
compiled into. Here is the syntax for referring to a resource:

R.resource_type.resource_name

or

android.R.resource_type.resource_name

Where resource_type is the R subclass that holds a specific type of resource. resource_name is the name attribute for
resources defined in XML files, or the file name (without the extension) for resources defined by other file types. Each type of
resource will be added to a specific R subclass, depending on the type of resource it is; to learn which R subclass hosts your
compiled resource type, consult the resource reference document. Resources compiled by your own application can be
referred to without a package name (simply as R.resource_type.resource_name). Android contains a number of standard
resources, such as screen styles and button backgrounds. To refer to these in code, you must qualify them with android, as
in android.R.drawable.button_background.

Here are some good and bad examples of using compiled resources in code:

// Load a background for the current screen from a drawable resource.
this.getWindow().setBackgroundDrawableResource(R.drawable.my_background_image);

// WRONG Sending a string resource reference into a
// method that expects a string.
this.getWindow().setTitle(R.string.main_title);

// RIGHT Need to get the title from the Resources wrapper.
this.getWindow().setTitle(Resources.getText(R.string.main_title));

Using Resources in Code

file:///C|/android-sdk-windows-1.0_r1/docs/reference/available-resources.html

Resources and i18n

file:///C|/android-sdk-windows-1.0_r1/docs/devel/resources-i18n.html[09/10/2008 20:39:45]

// Load a custom layout for the current screen.
setContentView(R.layout.main_screen);

// Set a slide in animation for a ViewFlipper object.
mFlipper.setInAnimation(AnimationUtils.loadAnimation(this,
 R.anim.hyperspace_in));

// Set the text on a TextView object.
TextView msgTextView = (TextView)findViewByID(R.id.msg);
msgTextView.setText(R.string.hello_message);

A value supplied in an attribute (or resource) can also be a reference to a resource. This is often used in layout files to supply
strings (so they can be localized) and images (which exist in another file), though a reference can be any resource type
including colors and integers.

For example, if we have color resources, we can write a layout file that sets the text color size to be the value contained in
one of those resources:

<?xml version="1.0" encoding="utf-8"?>
<EditText id="text"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent" android:layout_height="fill_parent"
 android:textColor="@color/opaque_red"
 android:text="Hello, World!" />

Note here the use of the '@' prefix to introduce a resource reference -- the text following that is the name of a resource in the
form of @[package:]type/name. In this case we didn't need to specify the package because we are referencing a resource in
our own package. To reference a system resource, you would need to write:

<?xml version="1.0" encoding="utf-8"?>
<EditText id="text"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent" android:layout_height="fill_parent"
 android:textColor="@android:color/opaque_red"
 android:text="Hello, World!" />

As another example, you should always use resource references when supplying strings in a layout file so that they can be
localized:

<?xml version="1.0" encoding="utf-8"?>
<EditText id="text"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent" android:layout_height="fill_parent"
 android:textColor="@android:color/opaque_red"
 android:text="@string/hello_world" />

This facility can also be used to create references between resources. For example, we can create new drawable resources
that are aliases for existing images:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <drawable id="my_background">@android:drawable/theme2_background</drawable>
</resources>

Another kind of resource value allows you to reference the value of an attribute in the current theme. This attribute reference
can only be used in style resources and XML attributes; it allows you to customize the look of UI elements by changing them
to standard variations supplied by the current theme, instead of supplying more concrete values.

References to Resources

References to Theme Attributes

file:///C|/android-sdk-windows-1.0_r1/docs/reference/available-resources.html#colordrawableresources

Resources and i18n

file:///C|/android-sdk-windows-1.0_r1/docs/devel/resources-i18n.html[09/10/2008 20:39:45]

As an example, we can use this in our layout to set the text color to one of the standard colors defined in the base system
theme:

<?xml version="1.0" encoding="utf-8"?>
<EditText id="text"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent" android:layout_height="fill_parent"
 android:textColor="?android:textDisabledColor"
 android:text="@string/hello_world" />

Note that this is very similar to a resource reference, except we are using an '?' prefix instead of '@'. When you use this
markup, you are supplying the name of an attribute resource that will be looked up in the theme -- because the resource tool
knows that an attribute resource is expected, you do not need to explicitly state the type (which would be ?
android:attr/android:textDisabledColor).

Other than using this resource identifier to find the value in the theme instead of raw resources, the name syntax is identical
to the '@' format: ?[namespace:]type/name with the type here being optional.

Many resources included with the system are available to applications. All such resources are defined under the class
"android.R". For example, you can display the standard application icon in a screen with the following code:

public class MyActivity extends Activity
{
 public void onStart()
 {
 requestScreenFeatures(FEATURE_BADGE_IMAGE);

 super.onStart();

 setBadgeResource(android.R.drawable.sym_def_app_icon);
 }
}

In a similar way, this code will apply to your screen the standard "green background" visual treatment defined by the system:

public class MyActivity extends Activity
{
 public void onStart()
 {
 super.onStart();

 setTheme(android.R.style.Theme_Black);
 }
}

You can supply different resources for your product according to the UI language or hardware configuration on the device.
Note that although you can include different string, layout, and other resources, the SDK does not expose methods to let you
specify which alternate resource set to load. Android detects the proper set for the hardware and location, and loads them as
appropriate. Users can select alternate language settings using the settings panel on the device.

To include alternate resources, create parallel resource folders with qualifiers appended to the folder names, indicating the
configuration it applies to (language, screen orientation, and so on). For example, here is a project that holds one string
resource file for English, and another for French:

MyApp/
 res/
 values-en/
 strings.xml

Using System Resources

Supporting Alternate Resources for Alternate Languages and Configurations

Resources and i18n

file:///C|/android-sdk-windows-1.0_r1/docs/devel/resources-i18n.html[09/10/2008 20:39:45]

 values-fr/
 strings.xml

Android supports several types of qualifiers, with various values for each. Append these to the end of the resource folder
name, separated by dashes. You can add multiple qualifiers to each folder name, but they must appear in the order they are
listed here. For example, a folder containing drawable resources for a fully specified configuration would look like:

MyApp/
 res/
 drawable-en-rUS-port-160dpi-finger-keysexposed-qwerty-dpad-480x320/

More typically, you will only specify a few specific configuration options that a resource is defined for. You may drop any of the
values from the complete list, as long as the remaining values are still in the same order:

MyApp/
 res/
 drawable-en-rUS-finger/
 drawable-port/
 drawable-port-160dpi/
 drawable-qwerty/

Qualifier Values

Language The two letter ISO 639-1 language code in lowercase. For example: en, fr, es

Region The two letter ISO 3166-1-alpha-2 language code in uppercase preceded by a
lowercase "r". For example: rUS, rFR, rES

Screen orientation port, land, square

Screen pixel density 92dpi, 108dpi, etc.

Touchscreen type notouch, stylus, finger

Whether the keyboard is
available to the user

keysexposed, keyshidden

Primary text input method nokeys, qwerty, 12key

Primary non-touchscreen
navigation method

notouch, dpad, trackball, wheel

Screen dimensions 320x240, 640x480, etc. The larger dimension must be specified first.

This list does not include device-specific parameters such as carrier, branding, device/hardware, or manufacturer. Everything
that an application needs to know about the device that it is running on is encoded via the resource qualifiers in the table
above.

Here are some general guidelines on qualified resource directory names:
Values are separated by a dash (as well as a dash after the base directory name)
Values are case-sensitive (even though they must be unique across all folder names in a case-insensitive way)
For example,

A portrait-specific drawable directory must be named drawable-port, not drawable-PORT.
You may not have two directories named drawable-port and drawable-PORT, even if you had intended "port" and
"PORT" to refer to different parameter values.

Only one value for each qualifier type is supported (that is, you cannot specify drawable-rEN-rFR/)
You can specify multiple parameters to define specific configurations, but they must always be in the order listed above.
For example, drawable-en-rUS-land will apply to landscape view, US-English devices.

http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html

Resources and i18n

file:///C|/android-sdk-windows-1.0_r1/docs/devel/resources-i18n.html[09/10/2008 20:39:45]

Android will try to find the most specific matching directory for the current configuration, as described below
The order of parameters listed in this table is used to break a tie in case of multiple qualified directories (see the
example given below)
All directories, both qualified and unqualified, live under the res/ folder. Qualified directories cannot be nested (you
cannot have res/drawable/drawable-en)
All resources will be referenced in code or resource reference syntax by their simple, undecorated name. So if a
resource is named this:
 MyApp/res/drawable-port-92dp/myimage.png
It would be referenced as this:
 R.drawable.myimage (code)
 @drawable/myimage (XML)

Android will pick which of the various underlying resource files should be used at runtime, depending on the current
configuration. The selection process is as follows:

1. Eliminate any resources whose configuration does not match the current device configuration. For example, if the
screen pixel density is 108dpi, this would eliminate only MyApp/res/drawable-port-92dpi/.

MyApp/res/drawable/myimage.png
MyApp/res/drawable-en/myimage.png
MyApp/res/drawable-port/myimage.png
MyApp/res/drawable-port-92dpi/myimage.png

2. Pick the resources with the highest number of matching configurations. For example, if our locale is en-GB and
orientation is port, then we have two candidates with one matching configuration each: MyApp/res/drawable-en/ and
MyApp/res/drawable-port/. The directory MyApp/res/drawable/ is eliminated because it has zero matching
configurations, while the others have one matching configuration.

MyApp/res/drawable/myimage.png
MyApp/res/drawable-en/myimage.png
MyApp/res/drawable-port/myimage.png

3. Pick the final matching file based on configuration precedence, which is the order of parameters listed in the table
above. That is, it is more important to match the language than the orientation, so we break the tie by picking the
language-specific file, MyApp/res/drawable-en/.

MyApp/res/drawable-en/myimage.png
MyApp/res/drawable-port/myimage.png

The resource system brings a number of different pieces together to form the final complete resource functionality. To help
understand the overall system, here are some brief definitions of the core concepts and components you will encounter in
using it:

Asset: A single blob of data associated with an application. This includes object files compiled from the Java source code,
graphics (such as PNG images), XML files, etc. These files are organized in a directory hierarchy that, during final packaging
of the application, is bundled together into a single ZIP file.

aapt: Android Asset Packaging Tool. The tool that generates the final ZIP file of application assets. In addition to collecting
raw assets together, it also parses resource definitions into binary asset data.

Resource Table: A special asset that aapt generates for you, describing all of the resources contained in an
application/package. This file is accessed for you by the Resources class; it is not touched directly by applications.

Resource: An entry in the Resource Table describing a single named value. Broadly, there are two types of resources:
primitives and bags.

How Android finds the best matching directory

Terminology

Resources and i18n

file:///C|/android-sdk-windows-1.0_r1/docs/devel/resources-i18n.html[09/10/2008 20:39:45]

Resource Identifier: In the Resource Table all resources are identified by a unique integer number. In source code (resource
descriptions, XML files, Java source code) you can use symbolic names that stand as constants for the actual resource
identifier integer.

Primitive Resource: All primitive resources can be written as a simple string, using formatting to describe a variety of
primitive types included in the resource system: integers, colors, strings, references to other resources, etc. Complex
resources, such as bitmaps and XML describes, are stored as a primitive string resource whose value is the path of the
underlying Asset holding its actual data.

Bag Resource: A special kind of resource entry that, instead of a simple string, holds an arbitrary list of name/value pairs.
Each name is itself a resource identifier, and each value can hold the same kinds of string formatted data as a normal
resource. Bags also support inheritance: a bag can inherit the values from another bag, selectively replacing or extending
them to generate its own contents.

Kind: The resource kind is a way to organize resource identifiers for various purposes. For example, drawable resources are
used to instantiate Drawable objects, so their data is a primitive resource containing either a color constant or string path to a
bitmap or XML asset. Other common resource kinds are string (localized string primitives), color (color primitives), layout (a
string path to an XML asset describing a view layout), and style (a bag resource describing user interface attributes). There is
also a standard "attr" resource kind, which defines the resource identifiers to be used for naming bag items and XML
attributes

Style: The name of the resource kind containing bags that are used to supply a set of user interface attributes. For example,
a TextView class may be given a style resource that defines its text size, color, and alignment. In a layout XML file, you
associate a style with a bag using the "style" attribute, whose value is the name of the style resource.

Style Class: Specifies a related set of attribute resources. This data is not placed in the resource table itself, but used to
generate constants in the source code that make it easier for you to retrieve values out of a style resource and/or XML tag's
attributes. For example, the Android platform defines a "View" style class that contains all of the standard view attributes:
padding, visibility, background, etc.; when View is inflated it uses this style class to retrieve those values from the XML file (at
which point style and theme information is applied as approriate) and load them into its instance.

Configuration: For any particular resource identifier, there may be multiple different available values depending on the current
configuration. The configuration includes the locale (language and country), screen orientation, screen density, etc. The
current configuration is used to select which resource values are in effect when the resource table is loaded.

Theme: A standard style resource that supplies global attribute values for a particular context. For example, when writing an
Activity the application developer can select a standard theme to use, such as the Theme.White or Theme.Black styles; this
style supplies information such as the screen background image/color, default text color, button style, text editor style, text
size, etc. When inflating a layout resource, most values for widgets (the text color, selector, background) if not explicitly set
will come from the current theme; style and attribute values supplied in the layout can also assign their value from explicitly
named values in the theme attributes if desired.

Overlay: A resource table that does not define a new set of resources, but instead replaces the values of resources that are
in another resource table. Like a configuration, this is applied at load time to the resource data; it can add new configuration
values (for example strings in a new locale), replace existing values (for example change the standard white background
image to a "Hello Kitty" background image), and modify resource bags (for example change the font size of the Theme.White
style to have an 18 pt font size). This is the facility that allows the user to select between different global appearances of their
device, or download files with new appearances.

The Resource Reference document provides a detailed list of the various types of resource and how to use them from within
the Java source code, or from other references.

Coming Soon: Internationalization and Localization are critical, but are also not quite ready yet in the current SDK. As the
SDK matures, this section will contain information on the Internationalization and Localization features of the Android
platform. In the meantime, it is a good idea to start by externalizing all strings, and practicing good structure in creating and
using resources.

Resource Reference

Internationalization and Localization

file:///C|/android-sdk-windows-1.0_r1/docs/reference/available-resources.html

Resources and i18n

file:///C|/android-sdk-windows-1.0_r1/docs/devel/resources-i18n.html[09/10/2008 20:39:45]

Copyright 2007 Google Inc. Build 110632-110632 - 22 Sep 2008 13:34

http://labs.google.com/

Hierarchy of Screen Elements

file:///C|/android-sdk-windows-1.0_r1/docs/devel/ui/hierarchy.html[09/10/2008 20:39:47]

Android

The basic functional unit of an Android application is the activity--an object of the class android.app.Activity. An activity can do
many things, but by itself it does not have a presence on the screen. To give your activity a screen presence and design its
UI, you work with views and viewgroups -- basic units of user interface expression on the Android platform.

A view is an object of base class android.view.View. It's a data structure whose properties store the layout and content for a
specific rectangular area of the screen. A View object handles measuring and layout, drawing, focus change, scrolling, and
key/gestures for the screen area it represents.

The View class serves as a base class for widgets -- a set of fully implemented subclasses that draw interactive screen
elements. Widgets handle their own measuring and drawing, so you can use them to build your UI more quickly. The list of
widgets available includes Text, EditText, InputMethod, MovementMethod, Button, RadioButton, Checkbox, and ScrollView.

A viewgroup is an object of class android.view.Viewgroup. As its name indicates, a viewgroup is a special type of view object
whose function is to contain and manage a subordinate set of views and other viewgroups, Viewgroups let you add structure to
your UI and build up complex screen elements that can be addressed as a single entity.

The Viewgroup class serves as a base class for layouts -- a set of fully implemented subclasses that provide common types
of screen layout. The layouts give you a way to build a structure for a set of views.

On the Android platform, you define an Activity's UI using a tree of view and viewgroup nodes, as shown in the diagram
below. The tree can be as simple or complex as you need to make it, and you can build it up using Android's set of predefined
widgets and layouts or custom view types that you create yourself.

To attach the tree to the screen for rendering, your Activity calls its setContentView() method and passes a reference to the
root node object. Once the Android system has the reference to the root node object, it can work directly with the node to
invalidate, measure, and draw the tree. When your Activity becomes active and receives focus, the system notifies your
activity and requests the root node to measure and draw the tree. The root node then requests that its child nodes draw
themselves -- in turn, each viewgroup node in the tree is responsible for drawing its direct children.

As mentioned previously, each view group has the responsibility of measuring its available space, laying out its children, and

Hierarchy of Screen Elements

Views

Viewgroups

A Tree-Structured UI

http://code.google.com/android/
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/app/Activity.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/view/View.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/view/ViewGroup.html

Hierarchy of Screen Elements

file:///C|/android-sdk-windows-1.0_r1/docs/devel/ui/hierarchy.html[09/10/2008 20:39:47]

Copyright 2007 Google Inc. Build 110632-110632 - 22 Sep 2008 13:34

calling Draw() on each child to let it render itself. The children may request a size and location in the parent, but the parent
object has the final decision on where how big each child can be.

Every viewgroup class uses a nested class that extends ViewGroup.LayoutParams. This subclass contains property types that
define a child's size and position, in properties appropriate for that view group class.

Note that every LayoutParams subclass has its own syntax for setting values. Each child element must define LayoutParams
that are appropriate for its parent, although it may define different LayoutParams for its children.

All viewgroups include width and height. Many also include margins and borders. You can specify width and height exactly,
though you probably won't want to do this often. More often you will tell your view to size itself either to the dimensions of its
content, or to become as big as its containing object will allow.

LayoutParams: How a Child Specifies Its Position and Size

http://labs.google.com/
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/view/ViewGroup.LayoutParams.html

Common Layout Objects

file:///C|/android-sdk-windows-1.0_r1/docs/devel/ui/layout.html[09/10/2008 20:39:49]

Android

The following are the most common view groups you'll use in your applications. This gives some basic information about each
type; for in-depth detail, see the linked reference page topic for each.

FrameLayout is the simplest layout object. It is intended as a blank reserved space on your screen that you can later fill with
a single object — for example, a picture that you'll swap out. All child elements are pinned to the top left corner of the screen;
you cannot specify a location for a child of a FrameLayout. Later children will simply be drawn over earlier objects, partially or
totally obscuring them (unless the newer object is transparent).

A LinearLayout aligns all children in a single direction — vertically or horizontally, depending on what property you set on the
LinearLayout. All children are stacked one after the other, so a vertical list will only have one child per row, no matter how
wide they are, and a horizontal list will only be one row high (the height of the tallest child, plus padding). LinearLayout
respects margins between children, and also gravity (right, center, or left alignment of a child).

LinearLayout also supports assigning a weight to individual children. This value allows children to expand to fill any remaining
space on a screen. This prevents a list of small objects from being bunched to one end of a large screen, allowing them to
expand to fill the space. Children specify a weight value, and any remaining space is assigned to children in the proportion of
their declared weight. Default weight is zero. So, for example, if there are three text boxes, and two of them declare a weight
of 1, two of them will expand equally to fill the remaining space, and the third will not grow any additional amount.

The following two forms represent a LinearLayout with a set of
elements: a button, some labels, some text boxes. Both have padding
values to adjust the padding nicely. The text boxes have their width set
to FILL_PARENT; other elements are set to WRAP_CONTENT. The gravity, by
default, is left. The form on the left has weight values unset (0 by
default); the form on the right has the comments text box weight set to
1. If the Name textbox had also been set to 1, the Name and
Comments text boxes would be the same height.

Common Layout Objects

FrameLayout

LinearLayout

Tip: To create a proportionate size layout on
the screen, create a container object that is
fill_parent, assign the children heights or widths
of zero, and then assign relative weight values
to each child, depending on what proportion of
the screen each should take.

http://code.google.com/android/
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/FrameLayout.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/FrameLayout.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/LinearLayout.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/LinearLayout.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/LinearLayout.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/LinearLayout.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/LinearLayout.html

Common Layout Objects

file:///C|/android-sdk-windows-1.0_r1/docs/devel/ui/layout.html[09/10/2008 20:39:49]

Within a horizontal LinearLayout, items are aligned by the position of their text base line (the first line of the first list element
— topmost or leftmost — is considered the reference line). This is so that people scanning elements in a form shouldn't have
to jump up and down to read element text in neighboring elements. This can be turned off by setting
android:baselineAligned="false" in the layout XML.

TableLayout positions its children into rows and columns. A TableLayout consists of a number of TableRow objects, each
defining a row (actually, you can have other children, which will be explained below). TableLayout containers do not display
border lines for their rows, columns, or cells. Each row has zero or more cells; each cell can hold one View object. The table
has as many columns as the row with the most cells. A table can leave cells empty. Cells cannot span columns, as they can
in HTML. The following image shows a table layout, with the invisible cell borders displayed as dotted lines.

Columns can be hidden, can be marked to stretch to fill available screen space, or can be marked as shrinkable to force the
column to shrink until the table fits the screen. See the reference documentation for this class for more details.

TableLayout

file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/LinearLayout.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/TableLayout.html

Common Layout Objects

file:///C|/android-sdk-windows-1.0_r1/docs/devel/ui/layout.html[09/10/2008 20:39:49]

AbsoluteLayout enables children to specify exact x/y coordinates to display on the screen, where (0,0) is the upper left corner,
and values increase as you move down or to the right. Margins are not supported, and overlapping elements are allowed
(although not recommended). We generally recommend against using AbsoluteLayout unless you have good reasons to use it,
because it is fairly rigid and does not work well with different device displays.

RelativeLayout lets children specify their position relative to each other (specified by ID), or to the parent. So you can align two
elements by right border, or make one below another, or centered in the screen. Elements are rendered in the order given, so
if the first element is centered in the screen, other elements aligning themselves to that element will be aligned relative to
screen center. If using XML to specify this layout (as described later), a referenced element must be listed before you refer to
it.

Here is an example relative layout with the visible and invisible elements outlined. The root screen layout object is a
RelativeLayout object.

This diagram shows the class names of the screen elements, followed by a list of the properties of each. Some of these
properties are supported directly by the element, and some are supported by its LayoutParams member (subclass
RelativeLayout for all the elements in this screen, because all elements are children of a RelativeLayout parent object). The
RelativeLayout parameters are width, height, below, alignTop, toLeft, padding, and marginLeft. Note that some of these
parameters support values relative to other children — hence the name RelativeLayout. These include the toLeft, alignTop,
and below properties, which indicate the object to the left, top, and below respectively.

These objects all hold child UI elements. Some provide visible UI, and others only handle child layout.

AbsoluteLayout

RelativeLayout

Summary of Important View Groups

file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/AbsoluteLayout.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/RelativeLayout.html

Common Layout Objects

file:///C|/android-sdk-windows-1.0_r1/docs/devel/ui/layout.html[09/10/2008 20:39:49]

Copyright 2007 Google Inc. Build 110632-110632 - 22 Sep 2008 13:34

Class Description

AbsoluteLayout Enables you to specify the location of child objects relative to the parent in exact measurements (for
example, pixels).

FrameLayout Layout that acts as a view frame to display a single object.

Gallery A horizontal scrolling display of images, from a bound list.

GridView Displays a scrolling grid of m columns and n rows.

LinearLayout A layout that organizes its children into a single horizontal or vertical row. It creates a scrollbar if the
length of the window exceeds the length of the screen.

ListView Displays a scrolling single column list.

RelativeLayout Enables you to specify the location of child objects relative to each other (child A to the left of child B)
or to the parent (aligned to the top of the parent).

ScrollView A vertically scrolling column of elements.

Spinner Displays a single item at a time from a bound list, inside a one-row textbox. Rather like a one-row
listbox that can scroll either horizontally or vertically.

SurfaceView Provides direct access to a dedicated drawing surface. It can hold child views layered on top of the
surface, but is intended for applications that need to draw pixels, rather than using widgets.

TabHost Provides a tab selection list that monitors clicks and enables the application to change the screen
whenever a tab is clicked.

TableLayout A tabular layout with an arbitrary number of rows and columns, each cell holding the widget of your
choice. The rows resize to fit the largest column. The cell borders are not visible.

ViewFlipper A list that displays one item at a time, inside a one-row textbox. It can be set to swap items at timed
intervals, like a slide show.

ViewSwitcher Same as ViewFlipper.

http://labs.google.com/
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/AbsoluteLayout.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/FrameLayout.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/Gallery.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/GridView.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/LinearLayout.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/ListView.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/RelativeLayout.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/ScrollView.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/Spinner.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/view/SurfaceView.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/TabHost.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/TableLayout.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/ViewFlipper.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/ViewSwitcher.html

Working with AdapterViews (Binding to Data)

file:///C|/android-sdk-windows-1.0_r1/docs/devel/ui/binding.html[09/10/2008 20:39:51]

Android

As we mentioned, some view groups have UI. These objects typically subclass AdapterView. Examples include such as
Gallery (an image selection widget) and ListView (a list of views). These objects have two jobs in common:

Filling the layout with data
Handling user selections

This is typically done by binding the class to an Adapter that gets its data from somewhere — either a list that the code
supplies, or query results from the device's database.

// Get a Spinner and bind it to an ArrayAdapter that
// references a String array.
Spinner s1 = (Spinner) findViewById(R.id.spinner1);
ArrayAdapter adapter = ArrayAdapter.createFromResource(
 this, R.array.colors, android.R.layout.simple_spinner_item);
adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
s1.setAdapter(adapter);

// Load a Spinner and bind it to a data query.
private static String[] PROJECTION = new String[] {
 People._ID, People.NAME
 };

Spinner s2 = (Spinner) findViewById(R.id.spinner2);
Cursor cur = managedQuery(People.CONTENT_URI, PROJECTION, null, null);

SimpleCursorAdapter adapter2 = new SimpleCursorAdapter(this,
 android.R.layout.simple_spinner_item, // Use a template
 // that displays a
 // text view
 cur, // Give the cursor to the list adatper
 new String[] {People.NAME}, // Map the NAME column in the
 // people database to...
 new int[] {android.R.id.text1}); // The "text1" view defined in
 // the XML template

adapter2.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
s2.setAdapter(adapter2);

Note that it is necessary to have the People._ID column in projection used with CursorAdapter or else you will get an
exception.

This is done by setting the class's AdapterView.OnItemClickListener member to a listener and catching the selection changes.

// Create a message handling object as an anonymous class.
private OnItemClickListener mMessageClickedHandler = new OnItemClickListener() {
 public void onItemClick(AdapterView parent, View v, int position, long id)
 {
 // Display a messagebox.
 Toast.makeText(mContext,"You've got an event",Toast.LENGTH_SHORT).show();
 }
};

// Now hook into our object and set its onItemClickListener member

Working with AdapterViews (Binding to Data)

Filling the layout with data

Handling user selections

http://code.google.com/android/
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/Adapter.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/AdapterView.OnItemClickListener.html

Working with AdapterViews (Binding to Data)

file:///C|/android-sdk-windows-1.0_r1/docs/devel/ui/binding.html[09/10/2008 20:39:51]

Copyright 2007 Google Inc. Build 110632-110632 - 22 Sep 2008 13:34

// to our class handler object.
mHistoryView = (ListView)findViewById(R.id.history);
mHistoryView.setOnItemClickListener(mMessageClickedHandler);

http://labs.google.com/

Designing Your Screen in XML

file:///C|/android-sdk-windows-1.0_r1/docs/devel/ui/xml.html[09/10/2008 20:39:53]

Android

Because designing a screen in code can be cumbersome, Android supports an XML syntax to design screens. Android defines a
large number of custom elements, each representing a specific Android View subclass. You can design a screen the same way
you create HTML files, as a series of nested tags, saved in an XML file inside the application's res/layout/ directory. To learn
what elements are exposed, and the format of the XML file, see Layout Resources. Each file describes a single android.view.View
element, but this element can be either a simple visual element, or a layout element that contains a collection of child objects (a
screen or a portion of a screen). When Android compiles your application, it compiles each file into an android.view.View resource
that you can load in code by calling setContentView(R.layout.layout_file_name) in your Activity.onCreate() implementation.

Each XML file is made of tags that correspond to Android GUI classes. These tags have attributes that roughly correspond to
methods in that class (for example, EditText has a text attribute that corresponds to EditText.setText).

Note that there is not an exact correspondence between class and method names, and element and attribute names — they're
close, but not always 1:1.

Also note that Android tends to draw elements in the order in which they appear in the XML. Therefore, if elements overlap, the
last one in the XML file will probably be drawn on top of any previously listed elements in that same space.

Each XML file is compiled into a tree rooted by single View or ViewGroup object, and so must contain a single root tag. In the
following example, it evaluates to the outermost LinearLayout object.

Attributes named layout_something apply to that object's LayoutParams member. Layout Resources also describes how to learn
the syntax for specifying LayoutParams properties.

The following values are supported for dimensions (described in TypedValue):
px (pixels)
dip (device independent pixels)
sp (scaled pixels — best for text size)
pt (points)
in (inches)
mm (millimeters)

Example: android:layout_width="25px"

For more information about these dimensions, see Dimension Values.

The following XML file creates the screen shown. Note that the text on the top of the screen was set by calling Activity.setTitle.
Note that the attributes that refer to relative elements (i.e., layout_toLeft) refer to the ID using the syntax of a relative resource
(@id/id_number).

<?xml version="1.0" encoding="utf-8"?>
<!-- Demonstrates using a relative layout to create a
form -->
<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:background="@drawable/blue"
 android:padding="10px">

 <TextView id="@+id/label"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Type here:"/>

 <EditText id="@+id/entry"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"

Designing Your Screen in XML

http://code.google.com/android/
file:///C|/android-sdk-windows-1.0_r1/docs/reference/available-resources.html#layoutresources
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/view/View.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/app/Activity.html#onCreate(android.os.Bundle)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/available-resources.html#layoutresources
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/util/TypedValue.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/available-resources.html#dimension
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/app/Activity.html#setTitle(java.lang.CharSequence)

Designing Your Screen in XML

file:///C|/android-sdk-windows-1.0_r1/docs/devel/ui/xml.html[09/10/2008 20:39:53]

Copyright 2007 Google Inc. Build 110632-110632 - 22 Sep 2008 13:34

android:background="@android:drawable/editbox_background"
 android:layout_below="@id/label"/>

 <Button id="@+id/ok"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/entry"
 android:layout_alignParentRight="true"
 android:layout_marginLeft="10px"
 android:text="OK" />

 <Button android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_toLeftOf="@id/ok"
 android:layout_alignTop="@id/ok"
 android:text="Cancel" />
</RelativeLayout>

Loading the compiled layout resource is very easy, and done with a single call in the application's onCreate() method, as shown
here:

protected void onCreate(Bundle savedValues)
{
 // Be sure to call the super class.
 super.onCreate(savedValues);

 // Load the compiled layout resource into the window's
 // default ViewGroup.
 // The source file is res/layout/hello_activity.xml
 setContentView(R.layout.hello_activity);

 // Retrieve any important stored values.
 restoreValues(savedValues);
}

Loading the XML Resource

http://labs.google.com/

Hooking into a Screen Element

file:///C|/android-sdk-windows-1.0_r1/docs/devel/ui/hooking.html[09/10/2008 20:39:55]

Android

Copyright 2007 Google Inc. Build 110632-110632 - 22 Sep 2008 13:34

You can get a handle to a screen element by calling Activity.findViewById. You can use this handle to set or retrieve any
values exposed by the object.

TextView msgTextView = (TextView)findViewById(R.id.msg);
msgTextView.setText(R.string.push_me);

Hooking into a Screen Element

http://labs.google.com/
http://code.google.com/android/
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/app/Activity.html#findViewById(int)

Listening for UI Notifications

file:///C|/android-sdk-windows-1.0_r1/docs/devel/ui/notifications.html[09/10/2008 20:39:57]

Android

Copyright 2007 Google Inc. Build 110632-110632 - 22 Sep 2008 13:34

Some UI notifications are automatically exposed and called by Android. For instance, Activity exposes overrideable methods
onKeyDown and onKeyUp, and Widget exposes onFocusChanged(boolean, int, Rect). However, some important callbacks,
such as button clicks, are not exposed natively, and must be registered for manually, as shown here.

public class SendResult extends Activity
{
 /**
 * Initialization of the Screen after it is first created. Must at least
 * call setContentView() to
 * describe what is to be displayed in the screen.
 */
 protected void onCreate(Bundle savedValues)
 {
 ...

 // Listen for button clicks.
 Button button = (Button)findViewById(R.id.corky);
 button.setOnClickListener(mCorkyListener);
 }

 // Create an anonymous class to act as a button click listener.
 private OnClickListener mCorkyListener = new OnClickListener()
 {
 public void onClick(View v)
 {
 // To send a result, simply call setResult() before your
 // activity is finished, building an Intent with the data
 // you wish to send.
 Intent data = new Intent();
 data.setAction("Corky!");
 setResult(RESULT_OK, data);
 finish();
 }
 };

Listening for UI Notifications

http://labs.google.com/
http://code.google.com/android/
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/TextView.html#onFocusChanged(boolean, int, android.graphics.Rect)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/app/Activity.html#setContentView(int)

Applying a Theme to your Application

file:///C|/android-sdk-windows-1.0_r1/docs/devel/ui/applying-themes.html[09/10/2008 20:39:58]

Android

Copyright 2007 Google Inc. Build 110632-110632 - 22 Sep 2008 13:34

If you do not explicitly specify a theme for your UI, Android will use the default theme defined by android.R.style.Theme. Many
times you will want to use a different system theme (such as Theme.Light) or create your own theme (as described in Style
and Theme Resources).

To set your theme in XML, simply specify the desired theme in your AndroidManifest.xml file with the theme attribute. This can
be used with the <application> tag (shown here) to specify a default theme for all of your activities, and/or with the
<activity> to control the theme of a particular activity.

<!-- AndroidManifest.xml-->
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.android.home">
 <application android:theme="@android:style/Theme.Dark" >
 <activity class=".Home"
 ...
 </activity>
 </application>
</manifest>

You can also set the theme programmatically, if needed. When doing so, be sure to set the theme before creating any views
so that the correct theme is used for all of your user-interface elements. Note that this approach should typically be avoided,
especially from the main activities of your application, because the theme you set here may not be used for any animations
the system uses to show the activity (which is done before your application starts).

 protected void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 ...
 setTheme(android.R.style.Theme_Light);
 setContentView(R.layout.linear_layout_3);
}

Applying a Theme to your Application

http://labs.google.com/
http://code.google.com/android/
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.style.html#Theme_Light
file:///C|/android-sdk-windows-1.0_r1/docs/reference/available-resources.html#stylesandthemes
file:///C|/android-sdk-windows-1.0_r1/docs/reference/available-resources.html#stylesandthemes
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.attr.html#theme
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestApplication
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestActivity

UI Elements and Concepts Glossary

file:///C|/android-sdk-windows-1.0_r1/docs/devel/ui/glossary.html[09/10/2008 20:40:00]

Android

Here is a list of common UI elements and concepts that you will see here and elsewhere in the SDK.

Activity
The standard screen in an Android application. Activity is a class that Android can start when a matching Intent is thrown
by this or another application. Most commonly, it is visibly represented by a full screen window that can receive and
handle UI events and perform complex tasks, because of the Window it uses to render its window. Though an Activity is
typically full screen, it can also be floating or transparent.

View
A rectangular area on the screen that can be drawn to, handles click, keystroke, and other interaction events. A View is a
base class for most components of an Activity or Dialog screen (text boxes, windows, and so on). It receives calls from its
container object to draw itself, and informs its parent object about where and how big it would like to be (which may or
may not be respected by the parent). It is represented by the base class View.

View Group
A container that holds multiple child View objects, deciding where they will be and how large they can be, and calling on
them to draw themselves when appropriate. Some are invisible and for layout only, while others have a UI themselves (for
instance, scrolling list boxes). View groups are all in the widget package, but extend ViewGroup.

Widget
A form element, such as a text box or popup menu. They have the ability to draw themselves and handle UI events.
Widgets are all in the widget package.

Drawable
A visual element that is loaded into another UI element, typically as a background image. It does not receive events, but
does assign various other properties such as "state" and scheduling to enable subclasses such as animation objects or
image libraries. Many drawable objects are loaded from resource files — xml or bitmap files that describe the image. The
base class is Drawable. See Resources.

Panel
A panel is a concept not backed by a specific class. It is a View of some sort that is tied in closely to a parent window,
but can handle clicks and perform simple functions related to its parent. A panel floats in front of its parent, and is
positioned relative to it. A common example of a panel (implemented by Android) is the options menu available to every
screen. At present, there are no specific classes or methods for creating a panel — it's more of a general idea.

Dialog
A dialog is a floating window that can have buttons, and acts as a lightweight form that is intended to, at most, perform a
simple action (such as click a button) and perhaps return a value. It is not intended to persist in the history stack, contain
complex layout, or perform complex actions. Android provides a default simple dialog for you with optional buttons, though
you can define a dialog layout yourself. The base class is Dialog.

Window
An abstract class that specifies the elements of a generic window, such as the look and feel (title bar text, location and
content of menus, and so on). Dialog and Activity use an implementation of this class to render a window. You should not
need to implement this class.

Surface
A block of memory that gets composited to the screen. A Surface holds a Canvas object for drawing, and provides
various helper methods to draw layers and resize the surface. You should not use this class directly; use SurfaceView
instead.

SurfaceView
A View object that wraps a Surface for drawing, and exposes methods to specify its size and format dynamically. The

UI Elements and Concepts Glossary

http://code.google.com/android/
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/app/Activity.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/view/View.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/view/View.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/view/ViewGroup.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/package-summary.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/view/ViewGroup.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/widget/package-summary.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/graphics/drawable/Drawable.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/graphics/drawable/Drawable.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/app/Dialog.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/app/Dialog.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/view/Window.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/view/Surface.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/view/SurfaceView.html

UI Elements and Concepts Glossary

file:///C|/android-sdk-windows-1.0_r1/docs/devel/ui/glossary.html[09/10/2008 20:40:00]

Copyright 2007 Google Inc. Build 110632-110632 - 22 Sep 2008 13:34

camera app uses SurfaceView for its preview screen. A SurfaceView provides a way to draw independently of the UI
thread for resource-intense operations (such as games or camera previews), but it uses extra memory as a result.
SurfaceView supports both Canvas and OpenGL ES graphics.

Canvas
A drawing surface where the actual bits are composited. It has methods for standard computer drawing of bitmaps, lines,
circles, rectangles, text, and so on. It is bound to a Bitmap or Surface. Canvas is the simplest, easiest way to draw 2D
objects on the screen. However, it does not support hardware acceleration, as OpenGL ES does.

OpenGL ES
Android provides OpenGL ES libraries that you can use for fast, complex 3D images. It is harder to use than a Canvas
object, but better for 3D objects. The opengl and javax.microedition.khronos.opengles packages expose OpenGL ES
functionality.

http://labs.google.com/
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/graphics/Canvas.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/opengl/package-summary.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/javax/microedition/khronos/opengles/package-summary.html

The AndroidManifest.xml File

file:///C|/android-sdk-windows-1.0_r1/docs/devel/bblocks-manifest.html[09/10/2008 20:40:02]

Android

AndroidManifest.xml is a required file for every application. It sits in the root folder for an application, and describes global
values for your package, including the application components (activities, services, etc) that the package exposes and the
implementation classes for each component, what kind of data each can handle, and where they can be launched.

An important aspect of this file are the intent filters that it includes. These filters describe where and when that activity can be
started. When an activity (or the operating system) wants to perform an action such as open a Web page or open a contact
picker screen, it creates an Intent object. This object can hold several descriptors describing what you want to do, what data
you want to do it to, the type of data, and other bits of information. Android compares the information in an Intent object with
the intent filter exposed by every application and finds the activity most appropriate to handle the data or action specified by
the caller. More details on intents is given in the Intent reference page.

Besides declaring your application's Activities, Content Providers, Services, and Intent Receivers, you can also specify
permissions and instrumentation (security control and testing) in AndroidManifest.xml. For a reference of the tags and their
attributes, please see AndroidManifest.

A simple AndroidManifest.xml looks like this:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.my_domain.app.helloactivity">

 <application android:label="@string/app_name">

 <activity android:name=".HelloActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>

 </application>

</manifest>

Some general items to note:

Almost every AndroidManifest.xml (as well as many other Android XML files) will include the namespace declaration
xmlns:android="http://schemas.android.com/apk/res/android" in its first element. This makes a variety of standard
Android attributes available in the file, which will be used to supply most of the data for elements in that file.

Most manifests include a single <application> element, which defines all of the application-level components and
properties that are available in the package.

Any package that will be presented to the user as a top-level application available from the program launcher will need
to include at least one Activity component that supports the MAIN action and LAUNCHER category as shown here.

Here is a detailed outline of the structure of an AndroidManifest.xml file, describing all tags that are available.

<manifest>
The root node of the file, describing the complete contents of the package. Under it you can place:

<uses-permission>
Requests a security permission that your package must be granted in order for it to operate correctly. See the
Security Model document for more information on permissions. A manifest can contain zero or more of these
elements.

The AndroidManifest.xml File

http://code.google.com/android/
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Intent.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Intent.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifest
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/app/Activity.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Intent.html#ACTION_MAIN
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Intent.html#CATEGORY_LAUNCHER
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifest
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestUsesPermission

The AndroidManifest.xml File

file:///C|/android-sdk-windows-1.0_r1/docs/devel/bblocks-manifest.html[09/10/2008 20:40:02]

<permission>
Declares a security permission that can be used to restrict which applications can access components or features in
your (or another) package. See the Security Model document for more information on permissions. A manifest can
contain zero or more of these elements.

<instrumentation>
Declares the code of an instrumentation component that is available to test the functionality of this or another
package. See Instrumentation for more details. A manifest can contain zero or more of these elements.

<application>
Root element containing declarations of the application-level components contained in the package. This element can
also include global and/or default attributes for the application, such as a label, icon, theme, required permission, etc.
A manifest can contain zero or one of these elements (more than one application tag is not allowed). Under it you
can place zero or more of each of the following component declarations:

<activity>
An Activity is the primary facility for an application to interact with the user. The initial screen the user sees
when launching an application is an activity, and most other screens they use will be implemented as separate
activities declared with additional activity tags.
Note: Every Activity must have an <activity> tag in the manifest whether it is exposed to the world or intended
for use only within its own package. If an Activity has no matching tag in the manifest, you won't be able to
launch it.

Optionally, to support late runtime lookup of your activity, you can include one or more <intent-filter> elements to
describe the actions the activity supports.

<intent-filter>
Declares a specific set of Intent values that a component supports, in the form of an IntentFilter. In addition
to the various kinds of values that can be specified under this element, attributes can be given here to
supply a unique label, icon, and other information for the action being described.

<action>
An Intent action that the component supports.

<category>
An Intent category that the component supports.

<data>
An Intent data MIME type, Intent data URI scheme, Intent data URI authority, or Intent data URI path
that the component supports.

You can also optionally associate one or more pieces of meta-data with your activity that other clients can
retrieve to find additional arbitrary information about it:

<meta-data>
Adds a new piece of meta data to the activity, which clients can retrieve through ComponentInfo.metaData.

<receiver>
An BroadcastReceiver allows an application to be told about changes to data or actions that happen, even if it is
not currently running. As with the activity tag, you can optionally include one or more <intent-filter> elements that
the receiver supports or <meta-data> values; see the activity's <intent-filter> and <meta-data> descriptions for
more information.

<service>
A Service is a component that can run in the background for an arbitrary amount of time. As with the activity tag,
you can optionally include one or more <intent-filter> elements that the service supports or <meta-data> values;
see the activity's <intent-filter> and <meta-data> descriptions for more information.

<provider>
A ContentProvider is a component that manages persistent data and publishes it for access by other
applications. You can also optionally attach one or more <meta-data> values, as described in the activity's

file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestPermission
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestInstrumentation
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/app/Instrumentation.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestApplication
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestActivity
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/app/Activity.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestIntentFilter
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Intent.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/IntentFilter.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestAction
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/IntentFilter.html#addAction(java.lang.String)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestCategory
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/IntentFilter.html#addCategory(java.lang.String)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestData
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/IntentFilter.html#addDataType(java.lang.String)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/IntentFilter.html#addDataScheme(java.lang.String)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/IntentFilter.html#addDataAuthority(java.lang.String, java.lang.String)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/IntentFilter.html#addDataPath(java.lang.String, int)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestMetaData
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/pm/PackageItemInfo.html#metaData
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestReceiver
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/BroadcastReceiver.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestService
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/app/Service.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/R.styleable.html#AndroidManifestProvider
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/ContentProvider.html

The AndroidManifest.xml File

file:///C|/android-sdk-windows-1.0_r1/docs/devel/bblocks-manifest.html[09/10/2008 20:40:02]

Copyright 2007 Google Inc. Build 110632-110632 - 22 Sep 2008 13:34

<meta-data> description.

http://labs.google.com/

Using Application Preferences

file:///C|/android-sdk-windows-1.0_r1/docs/devel/data/preferences.html[09/10/2008 20:40:04]

Android

Copyright 2007 Google Inc. Build 110632-110632 - 22 Sep 2008 13:34

You can store application preferences such as a default greeting or text font to be loaded whenever this application is started.
Call Context.getSharedPreferences() to read and write values. Assign a name to your set of preferences if you want to
share them with other components in the same package, or use Activity.getPreferences() with no name to keep them
private to the calling activity. You cannot share preferences across packages. Here is an example of setting user preferences
for silent keypress mode for a calculator.

public class Calc extends Activity {
public static final String PREFS_NAME = "MyPrefsFile";
 ...

 @Override
 protected void onCreate(Bundle state){
 super.onCreate(state);

 ...

 // Restore preferences
 SharedPreferences settings = getSharedPreferences(PREFS_NAME, 0);
 boolean silent = settings.getBoolean("silentMode", false);
 setSilent(silent);
 }

 @Override
 protected void onStop(){
 super.onStop();

 // Save user preferences. We need an Editor object to
 // make changes. All objects are from android.context.Context
 SharedPreferences settings = getSharedPreferences(PREFS_NAME, 0);
 SharedPreferences.Editor editor = settings.edit();
 editor.putBoolean("silentMode", mSilentMode);

 // Don't forget to commit your edits!!!
 editor.commit();
 }
}

Using Application Preferences

http://labs.google.com/
http://code.google.com/android/
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#getSharedPreferences(java.lang.String, int)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/app/Activity.html#getPreferences(int)

Using Files

file:///C|/android-sdk-windows-1.0_r1/docs/devel/data/files.html[09/10/2008 20:40:05]

Android

Copyright 2007 Google Inc. Build 110632-110632 - 22 Sep 2008 13:34

Android provides access to read or write streams to files local to an application. Call Context.openFileOutput() and
Context.openFileInput() with a local name and path to read and write files. Calling these methods with the same name and
path strings from another application will not work; you can only access local files.

If you have static files to package with your application at compile time, you can save your file in your project in
res/raw/<mydatafile>, and then get it with Resources.openRawResource (R.raw.mydatafile).

Using Files

http://labs.google.com/
http://code.google.com/android/
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#openFileOutput(java.lang.String, int)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/Context.html#openFileInput(java.lang.String)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/res/Resources.html#openRawResource(int)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/res/Resources.html#openRawResource(int)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/res/Resources.html#openRawResource(int)

Using SQLite Databases

file:///C|/android-sdk-windows-1.0_r1/docs/devel/data/databases.html[09/10/2008 20:40:07]

Android

Copyright 2007 Google Inc. Build 110632-110632 - 22 Sep 2008 13:34

Android supports a SQLite database system and exposes database management functions that let you store complex
collections of data wrapped into useful objects. For example, Android defines a Contact data type that consists of many fields
including string first and last names, string address and phone numbers, a bitmap image, and much other information
describing the person. To create a database, use SQLiteOpenHelper and read and write this data as appropriate. (Note that
file data such as a bitmap is typically stored as a string file path value in the database, with the location of the local file.)

Android ships with the sqlite3 database tool, which enables you to browse table contents, run SQL commands, and perform
other useful functions on SQLite databases. See Examine databases (sqlite3) to learn how to run this program.

All databases, SQLite and others, are stored on the device in /data/data/<package_name>/databases

Discussion of how many tables to create, what fields they contain, and how they are linked, is beyond the scope of this
document, but Android does not impose any limitations beyond the standard SQLite concepts. We do recommend including an
autoincrement value key field that can be used as a unique ID to quickly find a record. This is not required for private data,
but if you implement a content provider, you must include such a unique ID field. See the sample class NotePadProvider.java
in the NotePad sample project for an example of creating and populating a new database. Any databases you create will be
accessible by name to any other class in the application, but not outside the application.

Using SQLite Databases

http://labs.google.com/
http://code.google.com/android/
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/database/sqlite/SQLiteOpenHelper.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/adb.html#sqlite

Accessing Content Providers

file:///C|/android-sdk-windows-1.0_r1/docs/devel/data/contentproviders.html[09/10/2008 20:40:09]

Android

If you want to make your data public, you can create (or call) a content provider. This is an object that can store and retrieve
data accessible by all applications. This is the only way to share data across packages; there is no common storage area that
all packages can share. Android ships with a number of content providers for common data types (audio, video, images,
personal contact information, and so on). You can see some of Android's native content providers in the provider package.

How a content provider actually stores its data under the covers is up to the implementation of the content provider, but all
content providers must implement a common convention to query for data, and a common convention to return results.
However, a content provider can implement custom helper functions to make data storage/retrieval simpler for the specific
data that it exposes.

This document covers two topics related to Content Providers:
Using a Content Provider
Creating a Content Provider

This section describes how to store and retrieve data using a content provider implemented by you or anyone else. Android
exposes a number of content providers for a wide range of data types, from music and image files to phone numbers. You
can see a list of content providers exposed through the convenience classes in the android.provider package.

Android's content providers are loosely linked to their clients. Each content provider exposes a unique string (a URI) identifying
the type of data that it will handle, and the client must use that string to store or retrieve data of that type. We'll explain this
more in Querying for Data.

This section describes the following activities:
Querying for Data

Making the query
What the query returns
Querying for files
Reading retrieved data

Modifying Data
Adding a Record
Deleting a Record

Each contact provider exposes a unique public URI (wrapped by Uri) that is used by a client to query/add/update/delete data
on that content provider. This URI has two forms: one to indicate all values of that type (e.g., all personal contacts), and one
form to indicate a specific record of that type (e.g., Joe Smith's contact information).

content://contacts/people/ is the URI that would return a list of all contact names on the device.
content://contacts/people/23 is the URI string that would return a single result row, the contact with ID = 23. .

An application sends a query to the device that specifies a general type of item (all phone numbers), or a specific item (Bob's
phone number), to retrieve. Android then returns a Cursor over a recordset of results, with a specific set of columns. Let's
look at a hypothetical query string and a result set (the results have been trimmed a bit for clarity):

query = content://contacts/people/

Results:

_ID _COUNT NUMBER NUMBER_KEY LABEL NAME TYPE

Accessing Content Providers

Using a Content Provider to Store and Retrieve Data

Querying for Data

http://code.google.com/android/
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/provider/package-summary.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/provider/package-summary.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/net/Uri.html

Accessing Content Providers

file:///C|/android-sdk-windows-1.0_r1/docs/devel/data/contentproviders.html[09/10/2008 20:40:09]

13 4 (425) 555 6677 425 555 6677 California office Bully Pulpit Work

44 4 (212) 555-1234 212 555 1234 NY apartment Alan Vain Home

45 4 (212) 555-6657 212 555 6657 Downtown office Alan Vain Work

53 4 201.555.4433 201 555 4433 Love Nest Rex Cars Home

Note that the query string isn't a standard SQL query string, but instead a URI string that describes the type of data to return.
This URI consists of three parts: the string "content://"; a segment that describes what kind of data to retrieve; and finally an
optional ID of a specific item of the specified content type. Here are a few more example query strings:

content://media/internal/images is the URI string that would return a list of all the internal images on the device.
content://media/external/images is the URI string that would return a list of all the images on the "primary" external
storage (e.g., the SD card).
content://contacts/people/ is the URI that would return a list of all contact names on the device.
content://contacts/people/23 is the URI string that would return a single result row, the contact with ID = 23.

Although there is a general form, these query URIs are somewhat arbitrary and confusing. Therefore, Android provides a list of
helper classes in the android.provider package that define these query strings so you should not need to know the actual URI
value for different data types. These helper classes define a string (actually, a Uri object) called CONTENT_URI for a specific
data type.

Typically you will use the defined CONTENT_URI object to make a query, instead of writing the full URI yourself. So, each of
the example query strings listed above (except for the last one that specifies the record ID) can be acquired with the following
Uri references:

MediaStore.Images.Media.INTERNAL_CONTENT_URI
MediaStore.Images.Media.EXTERNAL_CONTENT_URI
Contacts.People.CONTENT_URI

To query a specific record ID (e.g., content://contacts/people/23), you'll use the same CONTENT_URI, but must append the
specific ID value that you want. This is one of the few times you should need to examine or modify the URI string. So, for
example, if you were looking for record 23 in the people contacts, you might run a query as shown here:

// Get the base URI for contact with _ID=23.
// This is same as Uri.parse("content://contacts/people/23");
Uri myPerson = ContentUris.withAppendedId(People.CONTENT_URI, 23);
// Query for this record.
Cursor cur = managedQuery(myPerson, null, null, null);

Tip: You can also append a string to a Uri, using withAppendedPath(Uri, String).

This query returns a cursor over a database query result set. What columns are returned, what they're called, and what they
are named are discussed next. For now, though, know that you can specify that only certain columns be returned, the sort
order, and a SQL WHERE clause.

You should use the Activity.managedQuery() method to retrieve a managed cursor. A managed cursor handles all the niceties
such as unloading itself when the application pauses, and requerying itself when the application restarts. You can ask Android
to manage an unmanaged cursor for you by calling Activity.startManagingCursor().

Let's look at an example query to retrieve a list of contact names and their primary phone numbers.

// An array specifying which columns to return.
string[] projection = new string[] {
 People._ID,
 People.NAME,
 People.NUMBER,
};

// Get the base URI for People table in Contacts content provider.
// ie. content://contacts/people/
Uri mContacts = People.CONTENT_URI;

file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/provider/package-summary.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/net/Uri.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/provider/MediaStore.Images.Media.html#INTERNAL_CONTENT_URI
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/provider/MediaStore.Images.Media.html#EXTERNAL_CONTENT_URI
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/provider/Contacts.People.html#CONTENT_URI
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/net/Uri.html#withAppendedPath(android.net.Uri, java.lang.String)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/app/Activity.html#managedQuery(android.net.Uri, java.lang.String[], java.lang.String, java.lang.String[], java.lang.String)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/app/Activity.html#startManagingCursor(android.database.Cursor)

Accessing Content Providers

file:///C|/android-sdk-windows-1.0_r1/docs/devel/data/contentproviders.html[09/10/2008 20:40:09]

// Best way to retrieve a query; returns a managed query.
Cursor managedCursor = managedQuery(mContacts,
 projection, //Which columns to return.
 null, // WHERE clause--we won't specify.
 People.NAME + " ASC"); // Order-by clause.

This query will retrieve data from the people table of the Contacts content provider. It will retrieve the name, primary phone
number, and unique record ID for each contact.

What the query returns

A query returns a set of zero or more database records. The column names, order, and type are specific to the content
provider, but every query includes a column called _id, which is the ID of the item in that row. If a query can return binary
data, such as a bitmap or audio file, it will have a column with any name that holds a content:// URI that you can use to get
this data (more information on how to get the file will be given later). Here is a tiresome example result set for the previous
query:

_id name number

44 Alan Vain 212 555 1234

13 Bully Pulpit 425 555 6677

53 Rex Cars 201 555 4433

This result set demonstrates what is returned when we specified a subset of columns to return. The optional subset list is
passed in the projection parameter of the query. A content manager should list which columns it supports either by
implementing a set of interfaces describing each column (see Contacts.People.Phones, which extends BaseColumns,
PhonesColumns, and PeopleColumns), or by listing the column names as constants. Note that you need to know the data
type of a column exposed by a content provider in order to be able to read it; the field reading method is specific to the data
type, and a column's data type is not exposed programmatically.

The retrieved data is exposed by a Cursor object that can be used to iterate backward or forward through the result set. You
can use this cursor to read, modify, or delete rows. Adding new rows requires a different object described later.

Note that by convention, every recordset includes a field named _id, which is the ID of a specific record, and a _count field,
which is a count of records in the current result set. These field names are defined by BaseColumns.

Querying for Files

The previous query result demonstrates how a file is returned in a data set. The file field is typically (but not required to be) a
string path to the file. However, the caller should never try to read and open the file directly (permissions problems for one
thing can make this fail). Instead, you should call ContentResolver.openInputStream() / ContentResolver.openOutputStream(),
or one of the helper functions from a content provider.

Reading Retrieved Data

The Cursor object retrieved by the query provides access to a recordset of results. If you have queried for a specific record by
ID, this set will contain only one value; otherwise, it can contain multiple values. You can read data from specific fields in the
record, but you must know the data type of the field, because reading data requires a specialized method for each type of
data. (If you call the string reading method on most types of columns, Android will give you the String representation of the
data.) The Cursor lets you request the column name from the index, or the index number from the column name.

If you are reading binary data, such as an image file, you should call ContentResolver.openOutputStream() on the string
content:// URI stored in a column name.

The following snippet demonstrates reading the name and phone number from our phone number query:

private void getColumnData(Cursor cur){
 if (cur.moveToFirst()) {

 String name;
 String phoneNumber;
 int nameColumn = cur.getColumnIndex(People.NAME);
 int phoneColumn = cur.getColumnIndex(People.NUMBER);

file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/provider/Contacts.People.Phones.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/provider/BaseColumns.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/provider/Contacts.PhonesColumns.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/provider/Contacts.PeopleColumns.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/database/Cursor.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/provider/BaseColumns.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/ContentResolver.html#openInputStream(android.net.Uri)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/ContentResolver.html#openOutputStream(android.net.Uri)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/ContentResolver.html#openOutputStream(android.net.Uri)

Accessing Content Providers

file:///C|/android-sdk-windows-1.0_r1/docs/devel/data/contentproviders.html[09/10/2008 20:40:09]

 String imagePath;

 do {
 // Get the field values
 name = cur.getString(nameColumn);
 phoneNumber = cur.getString(phoneColumn);

 // Do something with the values.
 ...

 } while (cur.moveToNext());

 }
}

To batch update a group of records (for example, to change "NY" to "New York" in all contact fields), call the
ContentResolver.update() method with the columns and values to change.

To add a new record, call ContentResolver.insert() with the URI of the type of item to add, and a Map of any values you want
to set immediately on the new record. This will return the full URI of the new record, including record number, which you can
then use to query and get a Cursor over the new record.

ContentValues values = new ContentValues();
Uri phoneUri = null;
Uri emailUri = null;

values.put(Contacts.People.NAME, "New Contact");
//1 = the new contact is added to favorites
//0 = the new contact is not added to favorites
values.put(Contacts.People.STARRED,1);

//Add Phone Numbers
Uri uri = getContentResolver().insert(Contacts.People.CONTENT_URI, values);

//The best way to add Contacts data like Phone, email, IM is to
//get the CONTENT_URI of the contact just inserted from People's table,
//and use withAppendedPath to construct the new Uri to insert into.
phoneUri = Uri.withAppendedPath(uri, Contacts.People.Phones.CONTENT_DIRECTORY);

values.clear();
values.put(Contacts.Phones.TYPE, Phones.TYPE_MOBILE);
values.put(Contacts.Phones.NUMBER, "1233214567");
getContentResolver().insert(phoneUri, values);

//Add Email
emailUri = Uri.withAppendedPath(uri, ContactMethods.CONTENT_DIRECTORY);

values.clear();
//ContactMethods.KIND is used to distinguish different kinds of
//contact data like email, im, etc.
values.put(ContactMethods.KIND, Contacts.KIND_EMAIL);
values.put(ContactMethods.DATA, "test@example.com");
values.put(ContactMethods.TYPE, ContactMethods.TYPE_HOME);
getContentResolver().insert(emailUri, values);

To save a file, you can call ContentResolver().openOutputStream() with the URI as shown in the following snippet:

// Save the name and description in a map. Key is the content provider's
// column name, value is the value to save in that record field.
ContentValues values = new ContentValues(3);
values.put(MediaStore.Images.Media.DISPLAY_NAME, "road_trip_1");
values.put(MediaStore.Images.Media.DESCRIPTION, "Day 1, trip to Los Angeles");
values.put(MediaStore.Images.Media.MIME_TYPE, "image/jpeg");

Modifying Data

Adding a New Record

file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/ContentResolver.html#update(android.net.Uri, android.content.ContentValues, java.lang.String, java.lang.String[])

Accessing Content Providers

file:///C|/android-sdk-windows-1.0_r1/docs/devel/data/contentproviders.html[09/10/2008 20:40:09]

// Add a new record without the bitmap, but with the values.
// It returns the URI of the new record.
Uri uri = getContentResolver().insert(MediaStore.Images.Media.EXTERNAL_CONTENT_URI, values);

try {
 // Now get a handle to the file for that record, and save the data into it.
 // sourceBitmap is a Bitmap object representing the file to save to the database.
 OutputStream outStream = getContentResolver().openOutputStream(uri);
 sourceBitmap.compress(Bitmap.CompressFormat.JPEG, 50, outStream);
 outStream.close();
} catch (Exception e) {
 Log.e(TAG, "exception while writing image", e);
}

To delete a single record, call ContentResolver.delete() with the URI of a specific row.

To delete multiple rows, call ContentResolver.delete() with the URI of the type of record to delete (for example,
android.provider.Contacts.People.CONTENT_URI) and a SQL WHERE clause defining which rows to delete (Warning: be
sure to include a valid WHERE clause if deleting a general type using ContentResolver.delete(), or else you risk deleting more
records than you intended!).

Here is how to create your own content provider to act as a public source for reading and writing a new data type:
1. Extend ContentProvider.
2. Define a public static final Uri named CONTENT_URI. This is the string that represents the full "content://" URI

that your content provider handles. You must define a unique string for this value; the best solution is to use the fully-
qualified class name of your content provider (lowercase). So, for example:
public static final Uri CONTENT_URI = Uri.parse("content://com.google.codelab.rssprovider");

3. Create your system for storing data. Most content providers store their data using Android's file storage methods or
SQLite databases, but you can store your data any way you want, so long as you follow the calling and return value
conventions.

4. Define the column names that you will return to your clients. If you are using an underlying database, these column
names are typically identical to the SQL database column names they represent. In any case, you should include an
integer column named _id to define a specific record number. If using the SQLite database, this should be type INTEGER
PRIMARY KEY AUTOINCREMENT. The AUTOINCREMENT descriptor is optional, but by default, SQLite autoincrements an ID
counter field to the next number above the largest existing number in the table. If you delete the last row, the next row
added will have the same ID as the deleted row. To avoid this by having SQLite increment to the next largest value
whether deleted or not, then assign your ID column the following type: INTEGER PRIMARY KEY AUTOINCREMENT.
(Note You should have a unique _id field whether or not you have another field (such as a URL) that is also unique
among all records.) Android provides the SQLiteOpenHelper class to help you create and manage versions of your
database.

5. If you are exposing byte data, such as a bitmap file, the field that stores this data should actually be a string field with a
content:// URI for that specific file. This is the field that clients will call to retrieve this data. The content provider for that
content type (it can be the same content provider or another content provider — for example, if you're storing a photo
you would use the media content provider) should implement a field named _data for that record. The _data field lists
the exact file path on the device for that file. This field is not intended to be read by the client, but by the
ContentResolver. The client will call ContentResolver.openOutputStream() on the user-facing field holding the URI for
the item (for example, the column named photo might have a value content://media/images/4453). The ContentResolver
will request the _data field for that record, and because it has higher permissions than a client, it should be able to
access that file directly and return a read wrapper for that file to the client.

6. Declare public static Strings that clients can use to specify which columns to return, or to specify field values from the
cursor. Carefully document the data type of each field. Remember that file fields, such as audio or bitmap fields, are
typically returned as string path values

7. Return a Cursor object over a recordset in reply to a query. This means implementing the query(), update(), insert(),
and delete() methods. As a courtesy, you might want to call ContentResolver.notifyChange() to notify listeners about
updated information.

8. Add a <provider> tag to AndroidManifest.xml, and use its authorities attribute to define the authority part of the content

Deleting a Record

Creating a Content Provider

file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/ContentResolver.html#delete(android.net.Uri, java.lang.String, java.lang.String[])
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/ContentProvider.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/net/Uri.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/database/sqlite/SQLiteOpenHelper.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/ContentResolver.html#openOutputStream(android.net.Uri)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/database/Cursor.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/ContentResolver.html#notifyChange(android.net.Uri, android.database.ContentObserver)

Accessing Content Providers

file:///C|/android-sdk-windows-1.0_r1/docs/devel/data/contentproviders.html[09/10/2008 20:40:09]

Copyright 2007 Google Inc. Build 110632-110632 - 22 Sep 2008 13:34

type it should handle. For example, if your content type is content://com.example.autos/auto to request a list of all autos,
then authorities would be com.example.autos. Set the multiprocess attribute to true if data does not need to be
synchronized between multiple running versions of the content provider.

9. If you are handling a new data type, you must define a new MIME type to return for your implementation of
android.ContentProvider.getType(url). This type corresponds to the content:// URI submitted to getType(), which will be
one of the content types handled by the provider. The MIME type for each content type has two forms: one for a
specific record, and one for multiple records. Use the Uri methods to help determine what is being requested. Here is
the general format for each:

vnd.android.cursor.item/vnd.yourcompanyname.contenttype for a single row. For example, a request for train
record 122 using

content://com.example.transportationprovider/trains/122

might return the MIME type vnd.android.cursor.item/vnd.example.rail
vnd.android.cursor.dir/vnd.yourcompanyname.contenttype for multiple rows. For example, a request for all train
records using

content://com.example.transportationprovider/trains

might return the MIME type vnd.android.cursor.dir/vnd.example.rail

For an example of a private content provider implementation, see the NodePadProvider class in the notepad sample
application that ships with the SDK.

Here is a recap of the important parts of a content URI:

A. Standard required prefix. Never modified.
B. Authority part. For third-party applications, this should be a fully-qualified class to ensure uniqueness. This corresponds

to the value in the <provider> element's authorities attribute: <provider class="TransportationProvider"
authorities="com.example.transportationprovider" />

C. The path that the content provider uses to determine what kind of data is being requested. This can be zero or more
segments: if the content provider exposes only one type of data (only trains, for example), this can be absent. If it
provides several types, including subtypes, this can be several elements long: e.g., "land/bus, land/train, sea/ship,
and sea/submarine" to give four possibilities.

D. A specific record being requested, if any. This is the _id value of a specific record being requested. If all records of a
specific type are being requested, omit this and the trailing slash:
content://com.example.transportationprovider/trains

http://labs.google.com/
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/content/ContentProvider.html#getType(android.net.Uri)
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/net/Uri.html

Network Accesses

file:///C|/android-sdk-windows-1.0_r1/docs/devel/data/network.html[09/10/2008 20:40:11]

Android

Copyright 2007 Google Inc. Build 110632-110632 - 22 Sep 2008 13:34

In addition to all the on-device storage options, you can also store and retrieve data from the network (when available). To do
network operations, you'll want to use the following packages:

java.net.*

android.net.*

Network Accesses with Android

http://labs.google.com/
http://code.google.com/android/
file:///C|/android-sdk-windows-1.0_r1/docs/reference/java/net/package-summary.html
file:///C|/android-sdk-windows-1.0_r1/docs/reference/android/net/package-summary.html

	Local Disk
	Developing Applications
	Implementing a User Interface
	Building Blocks
	Storing, Retrieving, and Exposing Data
	Security and Permissions
	Resources and i18n
	Hierarchy of Screen Elements
	Common Layout Objects
	Working with AdapterViews (Binding to Data)
	Designing Your Screen in XML
	Hooking into a Screen Element
	Listening for UI Notifications
	Applying a Theme to your Application
	UI Elements and Concepts Glossary
	The AndroidManifest.xml File
	Using Application Preferences
	Using Files
	Using SQLite Databases
	Accessing Content Providers
	Network Accesses

