

2009 CWE/SANS Top 25 Most Dangerous
Programming Errors

Document version: 1.0 Date: January 12, 2009
Project Coordinators:

Bob Martin (MITRE)
Mason Brown (SANS)
Alan Paller (SANS)

Document Editor:
Steve Christey (MITRE)

The 2009 CWE/SANS Top 25 Most Dangerous Programming Errors is a list of the most
significant programming errors that can lead to serious software vulnerabilities. They occur
frequently, are often easy to find, and easy to exploit. They are dangerous because they will
frequently allow attackers to completely take over the software, steal data, or prevent the
software from working at all.

The list is the result of collaboration between the SANS Institute, MITRE, and many top
software security experts in the US and Europe. It leverages experiences in the development
of the SANS Top 20 attack vectors (http://www.sans.org/top20/) and MITRE's Common
Weakness Enumeration (CWE) (http://cwe.mitre.org/). MITRE maintains the CWE web site,
with the support of the US Department of Homeland Security's National Cyber Security
Division, presenting detailed descriptions of the top 25 programming errors along with
authoritative guidance for mitigating and avoiding them. The CWE site also contains data on
more than 700 additional programming errors, design errors, and architecture errors that can
lead to exploitable vulnerabilities.

The main goal for the Top 25 list is to stop vulnerabilities at the source by educating
programmers on how to eliminate all-too-common mistakes before software is even shipped.
The list will be a tool for education and awareness that will help programmers to prevent the
kinds of vulnerabilities that plague the software industry. Software consumers could use the
same list to help them to ask for more secure software. Finally, software managers and CIOs
can use the Top 25 list as a measuring stick of progress in their efforts to secure their
software.

● Brief Listing of the Top 25
● Construction and Selection of the Top 25
● Organization of the Top 25
● Insecure Interaction Between Components
● Risky Resource Management
● Porous Defenses
● Appendix A: Selection Criteria and Supporting Fields
● Appendix B: Threat Model for the Skilled, Determined Attacker

Copyright © 2009
The MITRE Corporation
http://cwe.mitre.org/top25

Introduction

Table of Contents

http://cwedev1.mitre.org/index.html

● Appendix C: Other Resources for the Top 25

The Top 25 is organized into three high-level categories that contain multiple CWE entries.

Insecure Interaction Between Components

These weaknesses are related to insecure ways in which data is sent and received between
separate components, modules, programs, processes, threads, or systems.

● CWE-20: Improper Input Validation
● CWE-116: Improper Encoding or Escaping of Output
● CWE-89: Failure to Preserve SQL Query Structure (aka 'SQL Injection')
● CWE-79: Failure to Preserve Web Page Structure (aka 'Cross-site Scripting')
● CWE-78: Failure to Preserve OS Command Structure (aka 'OS Command Injection')
● CWE-319: Cleartext Transmission of Sensitive Information
● CWE-352: Cross-Site Request Forgery (CSRF)
● CWE-362: Race Condition
● CWE-209: Error Message Information Leak

Risky Resource Management

The weaknesses in this category are related to ways in which software does not properly
manage the creation, usage, transfer, or destruction of important system resources.

● CWE-119: Failure to Constrain Operations within the Bounds of a Memory Buffer
● CWE-642: External Control of Critical State Data
● CWE-73: External Control of File Name or Path
● CWE-426: Untrusted Search Path
● CWE-94: Failure to Control Generation of Code (aka 'Code Injection')
● CWE-494: Download of Code Without Integrity Check
● CWE-404: Improper Resource Shutdown or Release
● CWE-665: Improper Initialization
● CWE-682: Incorrect Calculation

Porous Defenses

The weaknesses in this category are related to defensive techniques that are often misused,
abused, or just plain ignored.

● CWE-285: Improper Access Control (Authorization)
● CWE-327: Use of a Broken or Risky Cryptographic Algorithm
● CWE-259: Hard-Coded Password
● CWE-732: Insecure Permission Assignment for Critical Resource
● CWE-330: Use of Insufficiently Random Values
● CWE-250: Execution with Unnecessary Privileges
● CWE-602: Client-Side Enforcement of Server-Side Security

Brief Listing of the Top 25

Construction and Selection of the Top 25

The Top 25 list was developed at the end of 2008. Approximately 40 software security experts
provided feedback, including software developers, scanning tool vendors, security consultants,
government representatives, and university professors. Representation was international.
Several intermediate versions were created and resubmitted to the reviewers before the list
was finalized. More details are provided in the Top 25 Process page

To help characterize and prioritize entries on the Top 25, a threat model was developed that
identifies an attacker who has solid technical skills and is determined enough to invest some
time into attacking an organization. More details are provided in Appendix B.

Weaknesses in the Top 25 were selected using two primary criteria:

● Weakness Prevalence: how often the weakness appears in software that was not
developed with security integrated into the software development life cycle (SDLC).

● Consequences: the typical consequences of exploiting a weakness if it is present, such as
unexpected code execution, data loss, or denial of service.

Prevalence was determined based on estimates from multiple contributors to the Top 25 list,
since appropriate statistics are not readily available.

With these criteria, future versions of the Top 25 will evolve to cover different weaknesses.

See Appendix A for more details on the selection criteria.

For each individual weakness entry, additional information is provided. The primary audience
is intended to be software programmers and designers.

● CWE ID and name
● Supporting data fields: supplementary information about the weakness that may be

useful for decision-makers to further prioritize the entries.
● Discussion: Short, informal discussion of the nature of the weakness and its

consequences.
● Prevention and Mitigations: steps that developers can take to mitigate or eliminate the

weakness. Developers may choose one or more of these mitigations to fit their own
needs. Note that the effectiveness of these techniques vary, and multiple techniques may
be combined for greater defense-in-depth.

● Related CWEs: other CWE entries that are related to the Top 25 weakness. Note: This list
is illustrative, not comprehensive.

● Related Attack Patterns: CAPEC entries for attacks that may be successfully conducted
against the weakness. Note: the list is not necessarily complete.

Other Supporting Data Fields

Each Top 25 entry includes supporting data fields for weakness prevalence and consequences.
Each entry also includes the following data fields.

● Attack Frequency: how often the weakness occurs in vulnerabilities that are exploited by
an attacker.

● Ease of Detection: how easy it is for an attacker to find this weakness.

Organization of the Top 25

http://cwe.mitre.org/top25/process.html
http://cwe.mitre.org/top25/changelog.html
http://cwe.mitre.org/top25/process.html

● Remediation Cost: the amount of effort required to fix the weakness.
● Attacker Awareness: the likelihood that an attacker is going to be aware of this particular

weakness, methods for detection, and methods for exploitation.

See Appendix A for more details.

Insecure Interaction Between Components

CWE-20: Improper Input Validation

Summary

Weakness Prevalence High

Consequences Code execution
Denial of service
Data loss

Remediation Cost Low Ease of Detection Easy to Difficult

Attack Frequency Often Attacker Awareness High

Discussion

It's the number one killer of healthy software, so you're just asking for trouble if you
don't ensure that your input conforms with expectations. For example, an identifier
that you expect to be numeric shouldn't ever contain letters. Nor should the price of
a new car be allowed to be a dollar, not even in today's economy. Applications often
have more complex validation requirements than these simple examples. Incorrect
input validation can lead to vulnerabilities when attackers can modify their inputs in
unexpected ways. Many of today's most common vulnerabilities can be eliminated,
or at least reduced, using proper input validation.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design Use an input validation framework such as Struts or the OWASP
ESAPI Validation API. If you use Struts, be mindful of
weaknesses covered by the CWE-101 category.

Architecture and Design Understand all the potential areas where untrusted inputs can
enter your software: parameters or arguments, cookies,
anything read from the network, environment variables, request
headers as well as content, URL components, e-mail, files,
databases, and any external systems that provide data to the
application. Perform input validation at well-defined interfaces.

http://cwe.mitre.org/data/definitions/20.html
http://cwe.mitre.org/data/definitions/20.html

Architecture and Design Assume all input is malicious. Use a standard input validation
mechanism to validate all input for length, type, syntax, and
business rules before accepting the data to be displayed or
stored. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric
characters, but it is not valid if you are expecting colors such as
"red" or "blue." Use an "accept known good" validation strategy.
Reject any input that does not strictly conform with
specifications, or transform it into something that does.

Architecture and Design Duplicate any client-side checks on the server side in order to
avoid CWE-602. These checks only help reduce the amount of
server processing time for normal users who do not know the
format of required input. It is a very minimal savings in terms of
time. Attackers can bypass these mechanisms easily by
intercepting parameters after the client-side checks and altering
the values before they are submitted to the server. This should
be simple to implement in terms of time and difficulty, and will
greatly reduce the likelihood of insecure parameter values being
used in the application. Client-side checks should not be ignored,
however. First, they can be useful for intrusion detection. If the
server receives input that should have been rejected by the
client, then it may be an indication of an attack. Second, Ajax
frameworks need to perform input validation to prevent DOM-
based XSS and similar problems.

Architecture and Design Do not rely exclusively on blacklist validation to detect malicious
input or to encode output (CWE-184). There are too many ways
to encode the same character, so you're likely to miss some
variants.

Implementation When your application combines data from multiple sources,
perform the validation after the sources have been combined.
The individual data elements may pass the validation step but
violate the intended restrictions after they have been combined.

Implementation Be especially careful to validate your input when you invoke code
that crosses language boundaries, such as from an interpreted
language to native code. This could create an unexpected
interaction between the language boundaries. Ensure that you
are not violating any of the expectations of the language with
which you are interfacing. For example, even though Java may
not be susceptible to buffer overflows, providing a large
argument in a call to native code might trigger an overflow.

Implementation Directly convert your input type into the expected data type,
such as using a conversion function that translates a string into a
number. After converting to the expected data type, ensure that
the input's values fall within the expected range of allowable
values and that multi-field consistencies are maintained.

Implementation Inputs should be decoded and canonicalized to the application's
current internal representation before being validated (CWE-180,
CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such
errors could be used to bypass whitelist schemes by introducing
dangerous inputs after they have been checked. Use libraries
such as the OWASP ESAPI Canonicalization control. Consider
performing repeated canonicalization until your input does not
change any more. This will avoid double-decoding and similar
scenarios, but it might inadvertently modify inputs that are
allowed to contain properly-encoded dangerous content.

Implementation When exchanging data between components, ensure that both
components are using the same character encoding. Explicitly
set the encoding you are using whenever the protocol allows you
to do so.

Related CWEs

CWE-184 Incomplete Blacklist

CWE-74 Injection

CWE-79 Cross-site Scripting (XSS)

CWE-89 SQL injection

CWE-95 Eval Injection

Related Attack Patterns

CAPEC-IDs: [view all]
3, 7, 8, 9, 10, 13, 14, 18, 22, 24, 28, 31, 32, 42, 43, 45, 46, 47, 52, 53, 63, 64, 66,
67, 71, 72, 73, 78, 79, 80, 81, 83, 85, 86, 88, 91, 99, 101

CWE-116: Improper Encoding or Escaping of Output

Summary

Weakness Prevalence High Consequences Code execution
Data loss

Remediation Cost Low Ease of Detection Easy to Moderate

Attack Frequency Often Attacker Awareness High

Discussion

Computers have a strange habit of doing what you say, not what you mean.
Insufficient output encoding is the often-ignored sibling to poor input validation, but
it is at the root of most injection-based attacks, which are all the rage these days.
An attacker can modify the commands that you intend to send to other components,
possibly leading to a complete compromise of your application - not to mention

http://cwe.mitre.org/data/definitions/184.html
http://cwe.mitre.org/data/definitions/74.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/95.html
http://cwe.mitre.org/data/definitions/20.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/3.html
http://capec.mitre.org/data/definitions/7.html
http://capec.mitre.org/data/definitions/8.html
http://capec.mitre.org/data/definitions/9.html
http://capec.mitre.org/data/definitions/10.html
http://capec.mitre.org/data/definitions/13.html
http://capec.mitre.org/data/definitions/14.html
http://capec.mitre.org/data/definitions/18.html
http://capec.mitre.org/data/definitions/22.html
http://capec.mitre.org/data/definitions/24.html
http://capec.mitre.org/data/definitions/28.html
http://capec.mitre.org/data/definitions/31.html
http://capec.mitre.org/data/definitions/32.html
http://capec.mitre.org/data/definitions/42.html
http://capec.mitre.org/data/definitions/43.html
http://capec.mitre.org/data/definitions/45.html
http://capec.mitre.org/data/definitions/46.html
http://capec.mitre.org/data/definitions/47.html
http://capec.mitre.org/data/definitions/52.html
http://capec.mitre.org/data/definitions/53.html
http://capec.mitre.org/data/definitions/63.html
http://capec.mitre.org/data/definitions/64.html
http://capec.mitre.org/data/definitions/66.html
http://capec.mitre.org/data/definitions/67.html
http://capec.mitre.org/data/definitions/71.html
http://capec.mitre.org/data/definitions/72.html
http://capec.mitre.org/data/definitions/73.html
http://capec.mitre.org/data/definitions/78.html
http://capec.mitre.org/data/definitions/79.html
http://capec.mitre.org/data/definitions/80.html
http://capec.mitre.org/data/definitions/81.html
http://capec.mitre.org/data/definitions/83.html
http://capec.mitre.org/data/definitions/85.html
http://capec.mitre.org/data/definitions/86.html
http://capec.mitre.org/data/definitions/88.html
http://capec.mitre.org/data/definitions/91.html
http://capec.mitre.org/data/definitions/99.html
http://capec.mitre.org/data/definitions/101.html
http://cwe.mitre.org/data/definitions/116.html

exposing the other components to exploits that the attacker would not be able to
launch directly. This turns "do what I mean" into "do what the attacker says." When
your program generates outputs to other components in the form of structured
messages such as queries or requests, it needs to separate control information and
metadata from the actual data. This is easy to forget, because many paradigms
carry data and commands bundled together in the same stream, with only a few
special characters enforcing the boundaries. An example is Web 2.0 and other
frameworks that work by blurring these lines. This further exposes them to attack.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design Use stored procedures or other structured mechanisms if
available, especially if they use strong typing. Such procedures
will typically automatically escape or encode special characters
for communicating with the component.

Architecture and Design Understand the context in which your data will be used and the
encoding that will be expected, especially at component
boundaries. Understand how the data will be transmitted
between different components. Study all expected
communication protocols and data representations to determine
the required encoding strategies. . Be especially careful of
environments such as the WWW, in which encoding can vary
depending on the location within a single document (such as
scripting sections, URIs, CSS, attributes, or HTML body).

Architecture and Design Apply the proper encoding at each interface. Use libraries that
use the expected encoding or handle it automatically, such as
the ESAPI Encoding API. Alternately, use built-in functions, but
consider using wrappers in case the built-in functions are
discovered to have a vulnerability.

Architecture and Design In some cases, input validation may be an important strategy
when output encoding is not a complete solution. For example,
you may be providing the same output that will be processed by
multiple consumers that use different encodings or
representations. In other cases, you may be required to allow
user-supplied input to contain control information, such as
limited HTML tags that support formatting in a wiki or bulletin
board. When this type of requirement must be met, use an
extremely strict white list to limit which control sequences can be
used. Verify that the resulting syntactic structure is what you
expect. Use your normal encoding methods for the remainder of
the input.

Architecture and Design Use input validation as a defense-in-depth measure to reduce
the likelihood of output encoding errors (see CWE-20).

Requirements Fully specify which encodings are required by components that
will be communicating with each other.

Implementation When exchanging data between components, ensure that both
components are using the same character encoding. Explicitly
set the encoding you are using whenever the protocol allows you
to do so.

http://cwe.mitre.org/data/definitions/116.html

Implementation Use automated static and dynamic analysis tools that target this
type of weakness. Many modern techniques use data flow
analysis to minimize the number of false positives. This is not a
perfect solution, since 100% accuracy and coverage is not
feasible.

Related CWEs

CWE-74 Injection

CWE-78 OS command injection

CWE-79 Cross-site Scripting (XSS)

CWE-88 Argument Injection

CWE-89 SQL injection

CWE-93 CRLF Injection

Related Attack Patterns

CAPEC-IDs: [view all]
18, 63, 73, 81, 85, 86

CWE-89: Failure to Preserve SQL Query Structure (aka 'SQL Injection')

Summary

Weakness Prevalence High Consequences Data loss
Security bypass

Remediation Cost Low Ease of Detection Easy

Attack Frequency Often Attacker Awareness High

Discussion

These days, it seems as if software is all about the data: getting it into the database,
pulling it from the database, massaging it into information, and sending it elsewhere
for fun and profit. If attackers can influence the SQL that you use to communicate
with your database, then they can do nasty things where they get all the fun and
profit. If you use SQL queries in security controls such as authentication, attackers
could alter the logic of those queries to bypass security. They could modify the
queries to steal, corrupt, or otherwise change your underlying data. They'll even
steal data one byte at a time if they have to, and they have the patience and know-
how to do so.

...View Full Technical Details

Prevention and Mitigations

http://cwe.mitre.org/data/definitions/74.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/88.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/93.html
http://cwe.mitre.org/data/definitions/116.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/18.html
http://capec.mitre.org/data/definitions/63.html
http://capec.mitre.org/data/definitions/73.html
http://capec.mitre.org/data/definitions/81.html
http://capec.mitre.org/data/definitions/85.html
http://capec.mitre.org/data/definitions/86.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/89.html

Requirements Choose database frameworks and languages with capabilities
that make it easier to apply other mitigations listed in this entry.

Architecture and Design Consider using persistence layers such as Hibernate or
Enterprise Java Beans, which can provide significant protection
against SQL injection if used properly.

Architecture and Design Process SQL queries using prepared statements, parameterized
queries, or stored procedures. These features should accept
parameters or variables and support strong typing. Do not
dynamically construct and execute query strings within these
features using "exec" or similar functionality, since you may re-
introduce the possibility of SQL injection.

Architecture and Design Follow the principle of least privilege when creating user
accounts to a SQL database. The database users should only
have the minimum privileges necessary to use their account. If
the requirements of the system indicate that a user can read and
modify their own data, then limit their privileges so they cannot
read/write others' data. Use the strictest permissions possible on
all database objects, such as execute-only for stored procedures.

Architecture and Design Duplicate any filtering done on the client-side on the server side.
Attackers can bypass any client-side checks (CWE-602).

Implementation If you need to use dynamically-generated query strings in spite
of the risk, use proper encoding and escaping of inputs. Instead
of building your own implementation, such features may be
available in the database or programming language. For
example, the Oracle DBMS_ASSERT package can check or
enforce that parameters have certain properties that make them
less vulnerable to SQL injection. For MySQL, the
mysql_real_escape_string() API function is available in both C
and PHP.

Implementation While proper output encoding is the most effective solution for
preventing SQL injection, input validation may provide some
defense-in-depth. Use vigorous white-list style checking on any
user input that may be used in a SQL command, and use proper
quoting. Narrowly define the set of safe characters based on the
expected value of the parameter in the request. Rather than
escape meta-characters, it is safest to disallow them entirely.
This is because later use of data that have been entered in the
database may neglect to escape meta-characters before use.
This approach will not always prevent SQL injection, especially if
you are required to support free-form text fields that could
contain arbitrary characters. For example, the name "O'Reilly"
would likely pass the validation step since it is a common last
name in the English language. However, it cannot be directly
inserted into the database because it contains the "'" apostrophe
character, which would need to be escaped or otherwise
handled. In this case, stripping the apostrophe might reduce the
risk of SQL injection, but it would produce incorrect behavior
because the wrong name would be recorded.

Related CWEs

CWE-564 SQL Injection: Hibernate

http://cwe.mitre.org/data/definitions/564.html

CWE-566 Access Control Bypass Through User-Controlled SQL Primary Key

CWE-619 Cursor Injection

CWE-90 LDAP Injection

Related Attack Patterns

CAPEC-IDs: [view all]
7, 66

CWE-79: Failure to Preserve Web Page Structure (aka 'Cross-site Scripting')

Summary

Weakness Prevalence High Consequences Code execution
Security bypass

Remediation Cost Low Ease of Detection Easy

Attack Frequency Often Attacker Awareness High

Discussion

Cross-site scripting (XSS) is one of the most prevalent, obstinate, and dangerous
vulnerabilities in web applications. It's pretty much inevitable when you combine the
stateless nature of HTTP, the mixture of data and script in HTML, lots of data
passing between web sites, diverse encoding schemes, and feature-rich web
browsers. If you're not careful, attackers can inject Javascript or other browser-
executable content into a web page that your application generates. Your web page
is then accessed by other users, whose browsers execute that malicious script as if it
came from you (because, after all, it *did* come from you). Suddenly, your web site
is serving code that you didn't write. The attacker can use a variety of techniques to
get the input directly into your server, or use an unwitting victim as the middle man
in a technical version of the "why do you keep hitting yourself?" game.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design Use libraries or frameworks that make it easier to generate web-
safe output. Examples include Microsoft's Anti-XSS library, the
OWASP ESAPI Encoding module, and Apache Wicket.

Architecture and Design Duplicate any filtering done on the client-side on the server side.
Attackers can bypass any client-side checks (CWE-602).

http://cwe.mitre.org/data/definitions/566.html
http://cwe.mitre.org/data/definitions/619.html
http://cwe.mitre.org/data/definitions/90.html
http://cwe.mitre.org/data/definitions/89.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/7.html
http://capec.mitre.org/data/definitions/66.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/79.html

Implementation When writing output to a web page - whether directly or
indirectly - understand the context in which your output will be
appear, including the encoding that will be expected. The
encoding will vary depending on whether the output is part of
the HTML body, element attributes, URIs, JavaScript sections,
Cascading Style Sheets, etc.

Implementation Use and specify a strong character encoding such as ISO-8859-1
or UTF-8. When an encoding is not specified, the web browser
may choose a different encoding by guessing which encoding is
actually being used by the web page. This can open you up to
subtle XSS attacks related to that encoding. See CWE-116 for
more mitigations related to encoding/escaping.

Implementation With Struts, you should write all data from form beans with the
bean's filter attribute set to true.

Implementation To help mitigate XSS attacks against the user's session cookie,
set the session cookie to be HttpOnly. In browsers that support
the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's
session cookie from being accessible to malicious client-side
scripts that use document.cookie. This is not a complete
solution, since HttpOnly is not supported by all browsers. More
importantly, XMLHTTPRequest and other powerful browser
technologies provide read access to HTTP headers, including the
Set-Cookie header in which the HttpOnly flag is set.

Implementation HTML Entity Encoding can be used on all non-alphanumeric
characters in data that was received from the user and is now
being written to the request. However, this is only effective for
the portion of your page that contains "normal" HTML - and
there are many other portions where entity encoding doesn't
work, such as URLs, element attributes, Cascading Style Sheets,
and so on.

Implementation While proper output encoding is the most effective solution for
preventing XSS, input validation may provide some defense-in-
depth. Carefully check or filter each input against a rigorous
positive specification (white list) defining the specific characters
and format allowed. All input should be validated and cleansed,
not just parameters that the user is supposed to specify, but all
data in the request, including hidden fields, cookies, headers, the
URL itself, and so forth. A common mistake that leads to
continuing XSS vulnerabilities is to validate only fields that are
expected to be redisplayed by the site. It is common to see data
from the request that is reflected by the application server or the
application that the development team did not anticipate. Also, a
field that is not currently reflected may be used by a future
developer. Therefore, validating ALL parts of the HTTP request is
recommended. Input validation is really a defense-in-depth
measure, since it effectively restricts the contents of the input
before it is further processed, which has an impact on what
appears in the output. However, it is often insufficient. If you are
developing a data-rich application, many inputs may have
unlimited sets of allowable characters that would pass your
validation step but still be launched for XSS. In addition, even if
you make a mistake in your validation (such as forgetting one
out of 100 input fields), appropriate encoding is still likely to

protect you from injection-based attacks. As long as it is not
done in isolation, input validation is still a useful technique since
it may significantly reduce your attack surface, and there are
other security benefits that proper encoding does not address.
Ensure that you perform input validation at well-defined
interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

Operation Use a web application firewall. This is not a complete solution,
but it can detect many common attacks.

Implementation Use automated static and dynamic analysis tools that target this
type of weakness. Many modern techniques use data flow
analysis to minimize the number of false positives. This is not a
perfect solution, since 100% accuracy and coverage is not
feasible.

Testing Use the XSS Cheat Sheet (see references) to launch a wide
variety of attacks against your web application. The Cheat Sheet
contains many subtle XSS variations that are specifically
targeted against weak XSS defenses.

Related CWEs

CWE-692 Incomplete Blacklist to Cross-Site Scripting

CWE-82 Failure to Sanitize Script in Attributes of IMG Tags in a Web Page

CWE-85 Doubled Character XSS Manipulations

CWE-87 Failure to Sanitize Alternate XSS Syntax

Related Attack Patterns

CAPEC-IDs: [view all]
19, 32, 85, 86, 91

CWE-78: Failure to Preserve OS Command Structure (aka 'OS Command
Injection')

Summary

Weakness Prevalence Medium Consequences Code execution

Remediation Cost Medium Ease of Detection Easy

Attack Frequency Often Attacker Awareness High

Discussion

Your software is often the bridge between an outsider on the network and the
internals of your operating system. When you invoke another program on the
operating system, but you allow untrusted inputs to be fed into the command string
that you generate for executing that program, then you are inviting attackers to

http://cwe.mitre.org/data/definitions/692.html
http://cwe.mitre.org/data/definitions/82.html
http://cwe.mitre.org/data/definitions/85.html
http://cwe.mitre.org/data/definitions/87.html
http://cwe.mitre.org/data/definitions/79.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/19.html
http://capec.mitre.org/data/definitions/32.html
http://capec.mitre.org/data/definitions/85.html
http://capec.mitre.org/data/definitions/86.html
http://capec.mitre.org/data/definitions/91.html
http://cwe.mitre.org/data/definitions/78.html

cross that bridge into a land of riches by executing their own commands instead of
yours.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design If at all possible, use library calls rather than external processes
to recreate the desired functionality.

Architecture and Design Run the entire command in a "jail" or similar sandbox
environment that enforces strict boundaries between the process
and the operating system. Examples include the Unix chroot jail
and AppArmor. This may not be a feasible solution, and some
technologies do not necessarily prevent a malicious command
from damaging resources that are accessible to the application
itself.

Architecture and Design For any data that will be used to generate a command to be
executed, keep as much of that data out of external control as
possible. For example, in web applications, this may require
storing the command locally in the session's state instead of
sending it out to the client in a hidden form field.

Architecture and Design Use an output-encoding framework that supports OS commands,
such as the ESAPI Encoding control.

Implementation Properly quote arguments and escape any special characters
within those arguments. If some special characters are still
needed, wrap the arguments in quotes, and escape all other
characters that do not pass a strict whitelist. Be careful of
argument injection (CWE-88).

Implementation If the program to be executed allows arguments to be specified
within an input file or from standard input, then consider using
that mode to pass arguments instead of the command line.

Implementation Some languages offer multiple functions that can be used to
invoke commands. Where possible, identify any function that
invokes a command shell using a single string, and replace it
with a function that requires individual arguments. These
functions typically perform appropriate quoting and filtering of
arguments. For example, in C, the system() function accepts a
string that contains the entire command to be executed,
whereas execl(), execve(), and others require an array of
strings, one for each argument. In Windows, CreateProcess()
only accepts one command at a time. In Perl, if system() is
provided with an array of arguments, then it will quote each of
the arguments.

Implementation Apply a strict whitelist for each potential argument in order to
filter non-relevant OS command syntax from all input. This will
indirectly limit the scope of an attack, but this technique is less
important than proper output encoding and escaping.

http://cwe.mitre.org/data/definitions/78.html

Operation Run the code in an environment that performs automatic taint
propagation and prevents any command execution that uses
tainted variables, such as Perl's "-T" switch. This will force you to
perform validation steps that remove the taint, although you
must be careful to correctly validate your inputs so that you do
not accidentally mark dangerous inputs as untainted (see CWE-
183 and CWE-184).

Operation Use runtime policy enforcement to create a white list of
allowable commands, then prevent use of any command that
does not appear in the whitelist. Technologies such as AppArmor
are available to do this.

System Configuration Assign permissions to the software system that prevent the user
from accessing/opening privileged files. Run the application with
the lowest privileges possible (CWE-250).

Related CWEs

CWE-88 Argument Injection

Related Attack Patterns

CAPEC-IDs: [view all]
6, 15, 43, 88

CWE-319: Cleartext Transmission of Sensitive Information

Summary

Weakness Prevalence Medium Consequences Data loss

Remediation Cost Medium Ease of Detection Easy

Attack Frequency Sometimes Attacker Awareness High

Discussion

If your software sends sensitive information across a network, such as private data
or authentication credentials, that information crosses many different nodes in
transit to its final destination. Attackers can sniff this data right off the wire, and it
doesn't require a lot of effort. All they need to do is control one node along the path
to the final destination, control any node within the same networks of those transit
nodes, or plug into an available interface. Trying to obfuscate traffic using schemes
like Base64 and URL encoding doesn't offer any protection, either; those encodings
are for normalizing communications, not scrambling data to make it unreadable.

...View Full Technical Details

Prevention and Mitigations

http://cwe.mitre.org/data/definitions/88.html
http://cwe.mitre.org/data/definitions/78.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/6.html
http://capec.mitre.org/data/definitions/15.html
http://capec.mitre.org/data/definitions/43.html
http://capec.mitre.org/data/definitions/88.html
http://cwe.mitre.org/data/definitions/319.html
http://cwe.mitre.org/data/definitions/319.html

Architecture and Design Secret information should not be transmitted in cleartext.
Encrypt the data with a reliable encryption scheme before
transmitting.

Implementation When using web applications with SSL, use SSL for the entire
session from login to logout, not just for the initial login page.

Operation Configure servers to use encrypted channels for communication,
which may include SSL or other secure protocols.

Related CWEs

CWE-312 Plaintext Storage of Sensitive Information

CWE-614 Sensitive Cookie in HTTPS Session Without "Secure" Attribute

Related Attack Patterns

CAPEC-IDs: [view all]
65

CWE-352: Cross-Site Request Forgery (CSRF)

Summary

Weakness Prevalence High Consequences Data loss
Code execution

Remediation Cost High Ease of Detection Moderate

Attack Frequency Often Attacker Awareness Medium

Discussion

You know better than to accept a package from a stranger at the airport. It could
contain dangerous contents. Plus, if anything goes wrong, then it's going to look as
if you did it, because you're the one with the package when you board the plane.
Cross-site request forgery is like that strange package, except the attacker tricks a
user into activating a request that goes to your site. Thanks to scripting and the way
the web works in general, the user might not even be aware that the request is
being sent. But once the request gets to your server, it looks as if it came from the
user, not the attacker. This might not seem like a big deal, but the attacker has
essentially masqueraded as a legitimate user and gained all the potential access that
the user has. This is especially handy when the user has administrator privileges,
resulting in a complete compromise of your application's functionality. When
combined with XSS, the result can be extensive and devastating. If you've heard
about XSS worms that stampede through very large web sites in a matter of
minutes, there's usually CSRF feeding them.

...View Full Technical Details

http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/614.html
http://cwe.mitre.org/data/definitions/319.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/65.html
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/352.html

Prevention and Mitigations

Architecture and Design Use anti-CSRF packages such as the OWASP CSRFGuard.

Implementation Ensure that your application is free of cross-site scripting issues
(CWE-79), because most CSRF defenses can be bypassed using
attacker-controlled script.

Architecture and Design Generate a unique nonce for each form and verify the nonce. Be
sure that the nonce is not predictable (CWE-330).

Architecture and Design Perform a verification step for especially dangerous operations.

Architecture and Design Use the "double-submitted cookie" method as described by
Felten and Zeller.

Architecture and Design Use the ESAPI Session Management control, which includes a
component for CSRF.

Architecture and Design Do not use the GET method for any request that triggers a state
change.

Implementation Check the HTTP Referer header to see if the request originated
from an expected page. This is not a very effective solution,
because an attacker might be able to force the client to use a
spoofed Referer. This could also break legitimate functionality,
because users or proxies may have disabled sending the Referer
for privacy reasons.

Testing Use OWASP CSRFTester to identify potential issues.

Related CWEs

CWE-346 Origin Validation Error

CWE-441 Unintended Proxy/Intermediary

Related Attack Patterns

CAPEC-IDs: [view all]
62

CWE-362: Race Condition

Summary

Weakness Prevalence Medium

Consequences Denial of service
Code execution
Data loss

Remediation Cost Medium to High Ease of Detection Moderate

Attack Frequency Sometimes Attacker Awareness High

Discussion

http://cwe.mitre.org/data/definitions/346.html
http://cwe.mitre.org/data/definitions/441.html
http://cwe.mitre.org/data/definitions/352.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/62.html
http://cwe.mitre.org/data/definitions/362.html

Traffic accidents occur when two vehicles attempt to use the exact same resource at
almost exactly the same time, i.e., the same part of the road. Race conditions in
your software aren't much different, except an attacker is consciously looking to
exploit them to cause chaos or get your application to cough up something valuable.
In many cases, a race condition can involve multiple processes in which the attacker
has full control over one process. Even when the race condition occurs between
multiple threads, the attacker may be able to influence when some of those threads
execute. Your only comfort with race conditions is that data corruption and denial of
service are the norm. Reliable techniques for code execution haven't been developed
- yet. At least not for some kinds of race conditions. Small comfort indeed. The
impact can be local or global, depending on what the race condition affects - such as
state variables or security logic - and whether it occurs within multiple threads,
processes, or systems.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design In languages that support it, use synchronization primitives.
Only wrap these around critical code to minimize the impact on
performance.

Architecture and Design Use thread-safe capabilities such as the data access abstraction
in Spring.

Architecture and Design If possible, avoid using resources that are shared across threads.

Implementation When using multi-threading, only use thread-safe functions on
shared variables.

Implementation Use atomic operations on shared variables. Be wary of innocent-
looking constructs like "x++". This is actually non-atomic, since
it involves a read followed by a write.

Implementation Use a mutex if available, but be sure to avoid related
weaknesses such as CWE-412.

Implementation Avoid double-checked locking (CWE-609) and other
implementation errors that arise when trying to avoid the
overhead of synchronization.

Implementation Disable interrupts or signals over critical parts of the code, but
also make sure that the code does not go into a large or infinite
loop.

Implementation Use the volatile type modifier for critical variables to avoid
unexpected compiler optimization or reordering. This does not
necessarily solve the synchronization problem, but it can help.

Testing Stress-test the code by calling it simultaneously from multiple
threads or processes, and look for evidence of any unexpected
behavior. Insert breakpoints or delays in between relevant code
statements to artificially expand the race window so that it will
be easier to detect.

Related CWEs

CWE-364 Signal Handler Race Condition

http://cwe.mitre.org/data/definitions/362.html
http://cwe.mitre.org/data/definitions/364.html

CWE-366 Race Condition within a Thread

CWE-367 Time-of-check Time-of-use (TOCTOU) Race Condition

CWE-370 Race Condition in Checking for Certificate Revocation

CWE-421 Race Condition During Access to Alternate Channel

Related Attack Patterns

CAPEC-IDs: [view all]
26, 29

CWE-209: Error Message Information Leak

Summary

Weakness Prevalence High Consequences Data loss

Remediation Cost Low Ease of Detection Easy

Attack Frequency Often Attacker Awareness High

Discussion

If you use chatty error messages, then they could disclose secrets to any attacker
who dares to misuse your software. The secrets could cover a wide range of valuable
data, including personally identifiable information (PII), authentication credentials,
and server configuration. Sometimes, they might seem like harmless secrets that
are convenient for your users and admins, such as the full installation path of your
software. Even these little secrets can greatly simplify a more concerted attack that
yields much bigger rewards, which is done in real-world attacks all the time. This is
a concern whether you send temporary error messages back to the user or if you
permanently record them in a log file.

...View Full Technical Details

Prevention and Mitigations

http://cwe.mitre.org/data/definitions/366.html
http://cwe.mitre.org/data/definitions/367.html
http://cwe.mitre.org/data/definitions/370.html
http://cwe.mitre.org/data/definitions/421.html
http://cwe.mitre.org/data/definitions/362.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/26.html
http://capec.mitre.org/data/definitions/29.html
http://cwe.mitre.org/data/definitions/209.html
http://cwe.mitre.org/data/definitions/209.html

Implementation Ensure that error messages only contain minimal information that
are useful to its intended audience, and nobody else. The
messages need to strike the balance between being too cryptic and
not being cryptic enough. They should not necessarily reveal the
methods that were used to determine the error. Such detailed
information can help an attacker craft another attack that now will
pass through the validation filters. If errors must be tracked in
some detail, capture them in log messages - but consider what
could occur if the log messages can be viewed by attackers. Avoid
recording highly sensitive information such as passwords in any
form. Avoid inconsistent messaging that might accidentally tip off
an attacker about internal state, such as whether a username is
valid or not.

Implementation Handle exceptions internally and do not display errors containing
potentially sensitive information to a user.

Build and Compilation Debugging information should not make its way into a production
release.

System Configuration Where available, configure the environment to use less verbose
error messages. For example, in PHP, disable the display_errors
setting during configuration, or at runtime using the error_reporting
() function.

System Configuration Create default error pages or messages that do not leak any
information.

Related CWEs

CWE-204 Response Discrepancy Information Leak

CWE-210 Product-Generated Error Message Information Leak

CWE-538 File and Directory Information Leaks

Related Attack Patterns

CAPEC-IDs: [view all]
7, 54

Risky Resource Management

CWE-119: Failure to Constrain Operations within the Bounds of a Memory
Buffer

Summary

Weakness Prevalence High

Consequences Code execution
Denial of service
Data loss

http://cwe.mitre.org/data/definitions/204.html
http://cwe.mitre.org/data/definitions/210.html
http://cwe.mitre.org/data/definitions/538.html
http://cwe.mitre.org/data/definitions/209.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/7.html
http://capec.mitre.org/data/definitions/54.html
http://cwe.mitre.org/data/definitions/119.html

Remediation Cost Low Ease of Detection Easy to Moderate

Attack Frequency Often Attacker Awareness High

Discussion

Buffer overflows are Mother Nature's little reminder of that law of physics that says:
if you try to put more stuff into a container than it can hold, you're going to make a
mess. The scourge of C applications for decades, buffer overflows have been
remarkably resistant to elimination. One reason is that they aren't just about using
strcpy() incorrectly, or improperly checking the length of your inputs. Attack and
detection techniques continue to improve, and today's buffer overflow variants
aren't always obvious at first or even second glance. You may think that you're
completely immune to buffer overflows because you write your code in higher-level
languages instead of C. But what is your favorite "safe" language's interpreter
written in? What about the native code you call? What languages are the operating
system API's written in? How about the software that runs Internet infrastructure?
Thought so.

...View Full Technical Details

Prevention and Mitigations

Requirements Use a language that is not susceptible to buffer overflows.

Architecture and Design Use an abstraction library to abstract away risky APIs. Examples
include the Safe C String Library (SafeStr) by Messier and Viega,
and the Strsafe.h library from Microsoft. These libraries provide
safer versions of string-handling functions that are subject to
buffer overflows. This is not a complete solution, since many
buffer overflows are not related to strings.

Build and Compilation Use automatic buffer overflow detection mechanisms that are
offered by certain compilers or compiler extensions. Examples
include the Microsoft Visual Studio /GS flag, Fedora/Red Hat
FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice. This is
not necessarily a complete solution, since these mechanisms can
only detect certain types of overflows. In addition, a buffer
overflow attack can still cause a denial of service, since the
typical response is to exit the application.

Implementation Programmers should adhere to the following rules when
allocating and managing their application's memory: Double
check that your buffer is as large as you specify. When using
functions that accept a number of bytes to copy, such as strncpy
(), be aware that if the destination buffer size is equal to the
source buffer size, it may not NULL-terminate the string. Check
buffer boundaries if calling this function in a loop and make sure
you are not in danger of writing past the allocated space. If
necessary, truncate all input strings to a reasonable length
before passing them to the copy and concatenation functions.

Implementation Use an automated code analysis tool that uses data flow analysis
techniques to find overflows. Modern tools are usually good at
finding this type of weakness.

http://cwe.mitre.org/data/definitions/119.html

Operation Use a feature like Address Space Layout Randomization (ASLR).
This is not a complete solution. However, it forces the attacker to
guess an unknown value that changes every program execution.

Operation Use a CPU and operating system that offers Data Execution
Protection (NX) or its equivalent. This is not a complete solution,
since buffer overflows could be used to overwrite nearby
variables to modify the software's state in dangerous ways. In
addition, it cannot be used in cases in which self-modifying code
is required.

Related CWEs

CWE-120 Classic Buffer Overflow

CWE-129 Unchecked Array Indexing

CWE-130 Failure to Handle Length Parameter Inconsistency

CWE-131 Incorrect Calculation of Buffer Size

CWE-415 Double Free

CWE-416 Use After Free

Related Attack Patterns

CAPEC-IDs: [view all]
8, 9, 10, 14, 24, 42, 44, 45, 46, 47, 100

CWE-642: External Control of Critical State Data

Summary

Weakness Prevalence High

Consequences Security bypass
Data loss
Code execution

Remediation Cost Medium Ease of Detection Easy

Attack Frequency Often Attacker Awareness High

Discussion

There are many ways to store user state data without the overhead of a database.
Unfortunately, if you store that data in a place where an attacker can modify it, this
also reduces the overhead for a successful compromise. For example, the data could
be stored in configuration files, profiles, cookies, hidden form fields, environment
variables, registry keys, or other locations, all of which can be modified by an
attacker. In stateless protocols such as HTTP, some form of user state information
must be captured in each request, so it is exposed to an attacker out of necessity. If
you perform any security-critical operations based on this data (such as stating that
the user is an administrator), then you can bet that somebody will modify the data

http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/129.html
http://cwe.mitre.org/data/definitions/130.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/415.html
http://cwe.mitre.org/data/definitions/416.html
http://cwe.mitre.org/data/definitions/119.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/8.html
http://capec.mitre.org/data/definitions/9.html
http://capec.mitre.org/data/definitions/10.html
http://capec.mitre.org/data/definitions/14.html
http://capec.mitre.org/data/definitions/24.html
http://capec.mitre.org/data/definitions/42.html
http://capec.mitre.org/data/definitions/44.html
http://capec.mitre.org/data/definitions/45.html
http://capec.mitre.org/data/definitions/46.html
http://capec.mitre.org/data/definitions/47.html
http://capec.mitre.org/data/definitions/100.html
http://cwe.mitre.org/data/definitions/642.html

in order to trick your application into doing something you didn't intend.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design Understand all the potential locations that are accessible to
attackers. For example, some programmers assume that cookies
and hidden form fields cannot be modified by an attacker, or
they may not consider that environment variables can be
modified before a privileged program is invoked.

Architecture and Design Do not keep state information on the client without using
encryption and integrity checking, or otherwise having a
mechanism on the server side to catch state tampering. Use a
message authentication code (MAC) algorithm, such as Hash
Message Authentication Code (HMAC). Apply this against the
state data that you have to expose, which can guarantee the
integrity of the data - i.e., that the data has not been modified.
Ensure that you use an algorithm with a strong hash function
(CWE-328).

Architecture and Design Store state information on the server side only. Ensure that the
system definitively and unambiguously keeps track of its own
state and user state and has rules defined for legitimate state
transitions. Do not allow any application user to affect state
directly in any way other than through legitimate actions leading
to state transitions.

Architecture and Design With a stateless protocol such as HTTP, use a framework that
maintains the state for you. Examples include ASP.NET View
State and the OWASP ESAPI Session Management feature. Be
careful of language features that provide state support, since
these might be provided as a convenience to the programmer
and may not be considering security.

Implementation If you are using PHP, configure your application so that it does
not use register_globals. During implementation, develop your
application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to
weaknesses such as CWE-95, CWE-621, and similar issues.

Related CWEs

CWE-472 External Control of Assumed-Immutable Web Parameter

CWE-565 Use of Cookies in Security Decision

Related Attack Patterns

CAPEC-IDs: [view all]

CWE-73: External Control of File Name or Path

http://cwe.mitre.org/data/definitions/642.html
http://cwe.mitre.org/data/definitions/472.html
http://cwe.mitre.org/data/definitions/565.html
http://cwe.mitre.org/data/definitions/642.html#Related_Attack_Patterns
http://cwe.mitre.org/data/definitions/73.html

Summary

Weakness Prevalence High Consequences Code execution
Data loss

Remediation Cost Medium Ease of Detection Easy

Attack Frequency Often Attacker Awareness High

Discussion

While data is often exchanged using files, sometimes you don't intend to expose
every file on your system while doing so. When you use an outsider's input while
constructing a filename, the resulting path could point outside of the intended
directory. An attacker could combine multiple ".." or similar sequences to cause the
operating system to navigate out of the restricted directory. Other file-related
attacks are simplified by external control of a filename, such as symbolic link
following, which causes your application to read or modify files that the attacker
can't access directly. The same applies if your program is running with raised
privileges and it accepts filenames as input. And if you allow an outsider to specify
an arbitrary URL from which you'll download code and execute it, you're just asking
for worms.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design When the set of filenames is limited or known, create a mapping
from a set of fixed input values (such as numeric ID's) to the
actual filenames, and reject all other inputs. For example, ID 1
could map to "inbox.txt" and ID 2 could map to "profile.txt".
Features such as the ESAPI AccessReferenceMap provide this
capability.

Installation Use OS-level permissions and run as a low-privileged user to
limit the scope of any successful attack.

Architecture and Design Create a chroot() jail or similar sandbox structure that restricts
all access to files within a particular directory. Be mindful of CWE-
243 and other weaknesses related to jails.

Implementation Use stringent whitelists that limit the character set to be used in
filenames. If feasible, only allow a single "." character in the
filename. Use blacklists to reject any unexpected inputs.

Implementation Use a built-in path canonicalization function (such as realpath()
in C) that produces the canonical version of the pathname, which
effectively removes ".." sequences and symbolic links.

Related CWEs

CWE-22 Path Traversal

CWE-434 Unrestricted File Upload

CWE-59 Link Following

http://cwe.mitre.org/data/definitions/73.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/434.html
http://cwe.mitre.org/data/definitions/59.html

CWE-98 Remote File Inclusion

Related Attack Patterns

CAPEC-IDs: [view all]
13, 64, 72, 76, 78, 79, 80

CWE-426: Untrusted Search Path

Summary

Weakness Prevalence Low Consequences Code execution

Remediation Cost Medium Ease of Detection Easy

Attack Frequency Rarely Attacker Awareness High

Discussion

Your software depends on you, or its environment, to provide a search path so that
it knows where it can find critical resources such as code libraries or configuration
files. If the search path is under attacker control, then the attacker can modify it to
point to resources of the attacker's choosing. This causes the software to access the
wrong resource at the wrong time. The same risk exists if a single search path
element could be under attacker control, such as the current working directory.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design Hard-code your search path to a set of known-safe values, or
allow them to be specified by the administrator in a configuration
file. Do not allow these settings to be modified by an external
party. Be careful to avoid related weaknesses such as CWE-427
and CWE-428.

Implementation When invoking other programs, specify those programs using
fully-qualified pathnames.

Implementation Sanitize your environment before invoking other programs. This
includes the PATH environment variable, LD_LIBRARY_PATH and
other settings that identify the location of code libraries, and any
application-specific search paths.

Implementation Check your search path before use and remove any elements
that are likely to be unsafe, such as the current working
directory or a temporary files directory.

http://cwe.mitre.org/data/definitions/98.html
http://cwe.mitre.org/data/definitions/73.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/13.html
http://capec.mitre.org/data/definitions/64.html
http://capec.mitre.org/data/definitions/72.html
http://capec.mitre.org/data/definitions/76.html
http://capec.mitre.org/data/definitions/78.html
http://capec.mitre.org/data/definitions/79.html
http://capec.mitre.org/data/definitions/80.html
http://cwe.mitre.org/data/definitions/426.html
http://cwe.mitre.org/data/definitions/426.html

Implementation Use other functions that require explicit paths. Making use of any
of the other readily available functions that require explicit paths
is a safe way to avoid this problem. For example, system() in C
does not require a full path since the shell can take care of it,
while execl() and execv() require a full path.

Related CWEs

CWE-427 Uncontrolled Search Path Element

CWE-428 Unquoted Search Path or Element

Related Attack Patterns

CAPEC-IDs: [view all]
38

CWE-94: Failure to Control Generation of Code (aka 'Code Injection')

Summary

Weakness Prevalence Medium Consequences Code execution

Remediation Cost High Ease of Detection Moderate

Attack Frequency Sometimes Attacker Awareness Medium

Discussion

For ease of development, sometimes you can't beat using a couple lines of code to
employ lots of functionality. It's even cooler when you manage the code
dynamically. While it's tough to deny the sexiness of dynamically-generated code,
attackers find it equally appealing. It becomes a serious vulnerability when your
code is directly callable by unauthorized parties, if external inputs can affect which
code gets executed, or (horror of horrors) if those inputs are fed directly into the
code itself. The implications are obvious: all your code are belong to them.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design Refactor your program so that you do not have to dynamically
generate code.

Architecture and Design Run your code in a "jail" or similar sandbox environment that
enforces strict boundaries between the process and the
operating system. This may not be a feasible solution, and it
only limits the impact to the operating system; the rest of your
application may still be subject to compromise.

http://cwe.mitre.org/data/definitions/427.html
http://cwe.mitre.org/data/definitions/428.html
http://cwe.mitre.org/data/definitions/426.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/38.html
http://cwe.mitre.org/data/definitions/94.html
http://cwe.mitre.org/data/definitions/94.html

Implementation Utilize an appropriate mix of whitelist and blacklist evaluation to
filter non-relevant code syntax from all input that should not
contain code.

Operation Run the code in an environment that performs automatic taint
propagation and prevents any command execution that uses
tainted variables, such as Perl's "-T" switch. This will force you to
perform validation steps that remove the taint, although you
must be careful to correctly validate your inputs so that you do
not accidentally mark dangerous inputs as untainted (see CWE-
183 and CWE-184).

Related CWEs

CWE-470 Unsafe Reflection

CWE-95 Eval Injection

CWE-96 Static Code Injection

CWE-98 Remote File Inclusion

Related Attack Patterns

CAPEC-IDs: [view all]
35, 77

CWE-494: Download of Code Without Integrity Check

Summary

Weakness Prevalence Medium Consequences Code execution

Remediation Cost Medium to High Ease of Detection Moderate

Attack Frequency Rarely Attacker Awareness Low

Discussion

You don't need to be a guru to realize that if you download code and execute it,
you're trusting that the source of that code isn't malicious. Maybe you only access a
download site that you trust, but attackers can perform all sorts of tricks to modify
that code before it reaches you. They can hack the download site, impersonate it
with DNS spoofing or cache poisoning, convince the system to redirect to a different
site, or even modify the code in transit as it crosses the network. This scenario even
applies to cases in which your own product downloads and installs its own updates.
When this happens, your software will wind up running code that it doesn't expect,
which is bad for you but great for attackers.

...View Full Technical Details

http://cwe.mitre.org/data/definitions/470.html
http://cwe.mitre.org/data/definitions/95.html
http://cwe.mitre.org/data/definitions/96.html
http://cwe.mitre.org/data/definitions/98.html
http://cwe.mitre.org/data/definitions/94.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/35.html
http://capec.mitre.org/data/definitions/77.html
http://cwe.mitre.org/data/definitions/494.html
http://cwe.mitre.org/data/definitions/494.html

Prevention and Mitigations

Implementation Perform proper forward and reverse DNS lookups to detect DNS
spoofing. This is only a partial solution since it will not prevent
your code from being modified on the hosting site or in transit.

Implementation Use encrypted channels that perform integrity checking to
transfer the code from the host server. This will only a partial
solution, since it will not detect DNS spoofing and it will not
prevent your code from being modified on the hosting site.

Architecture and Design If you are providing the code that is to be downloaded, such as
for automatic updates of your software, then use cryptographic
signatures for your code and modify your download clients to
verify the signatures. Ensure that your implementation does not
contain CWE-295, CWE-320, CWE-347, and related weaknesses.

Architecture and Design Use code signing technologies such as Authenticode. See
references.

Related CWEs

CWE-247 Reliance on DNS Lookups in a Security Decision

CWE-292 Trusting Self-reported DNS Name

CWE-346 Origin Validation Error

CWE-350 Improperly Trusted Reverse DNS

Related Attack Patterns

CAPEC-IDs: [view all]

CWE-404: Improper Resource Shutdown or Release

Summary

Weakness Prevalence Medium Consequences Denial of service
Code execution

Remediation Cost Medium Ease of Detection Easy to Moderate

Attack Frequency Rarely Attacker Awareness Low

Discussion

When your precious system resources have reached their end-of-life, you need to
dispose of them correctly. Otherwise, your environment will become heavily
congested or contaminated. This applies to memory, files, cookies, data structures,
sessions, communication pipes, and so on. Attackers can exploit improper shutdown
to maintain control over those resources well after you thought you got rid of them.
This can lead to significant resource consumption because nothing actually gets
released back to the system. If you don't wash your garbage before you dispose of

http://cwe.mitre.org/data/definitions/247.html
http://cwe.mitre.org/data/definitions/292.html
http://cwe.mitre.org/data/definitions/346.html
http://cwe.mitre.org/data/definitions/350.html
http://cwe.mitre.org/data/definitions/494.html#Related_Attack_Patterns
http://cwe.mitre.org/data/definitions/404.html

it, attackers may sift through it, looking for gems in the form of sensitive data that
should have been wiped. They could also reuse the resources, which may seem like
the right thing to do in a "Green" world, except in the virtual world, those resources
may still have significant value.

...View Full Technical Details

Prevention and Mitigations

Requirements Use technologies that perform automatic garbage collection.

Implementation It is good practice to be responsible for freeing all resources you allocate
and to be consistent with how and where you free memory in a function.
If you allocate memory that you intend to free upon completion of the
function, you must be sure to free the memory at all exit points for that
function including error conditions.

Implementation Memory should be allocated/freed using matching functions such as
malloc/free, new/delete, and new[]/delete[].

Implementation When releasing a complex object or structure, ensure that you properly
dispose of all of its member components, not just the object itself.

Related CWEs

CWE-14 Compiler Removal of Code to Clear Buffers

CWE-226 Sensitive Information Uncleared Before Release

CWE-262 Not Using Password Aging

CWE-299 Failure to Check for Certificate Revocation

CWE-401 Memory Leak

CWE-415 Double Free

CWE-416 Use After Free

CWE-568 finalize() Method Without super.finalize()

CWE-590 Free of Invalid Pointer Not on the Heap

Related Attack Patterns

CAPEC-IDs: [view all]

CWE-665: Improper Initialization

Summary

Weakness Prevalence Medium Consequences Code execution
Data loss

Remediation Cost Low Ease of Detection Easy

http://cwe.mitre.org/data/definitions/404.html
http://cwe.mitre.org/data/definitions/14.html
http://cwe.mitre.org/data/definitions/226.html
http://cwe.mitre.org/data/definitions/262.html
http://cwe.mitre.org/data/definitions/299.html
http://cwe.mitre.org/data/definitions/401.html
http://cwe.mitre.org/data/definitions/415.html
http://cwe.mitre.org/data/definitions/416.html
http://cwe.mitre.org/data/definitions/568.html
http://cwe.mitre.org/data/definitions/590.html
http://cwe.mitre.org/data/definitions/404.html#Related_Attack_Patterns
http://cwe.mitre.org/data/definitions/665.html

Attack Frequency Sometimes Attacker Awareness Low

Discussion

Just as you should start your day with a healthy breakfast, proper initialization helps
to ensure that your software will run without fainting in the middle of an important
event. If you don't properly initialize your data and variables, an attacker might be
able to do the initialization for you, or extract sensitive information that remains
from previous sessions. When those variables are used in security-critical
operations, such as making an authentication decision, then they could be modified
to bypass your security. Incorrect initialization can occur anywhere, but it is
probably most prevalent in rarely-encountered conditions that cause your code to
inadvertently skip initialization, such as obscure errors.

...View Full Technical Details

Prevention and Mitigations

Requirements Use a language that forces the programmer to explicitly initialize
all variables before use.

Architecture and Design Identify all variables and data stores that received information
from external sources, and apply input validation to make sure
that they are only initialized to expected values.

Implementation Explicitly initialize all your variables and other data stores, either
during declaration or just before the first usage.

Implementation Pay close attention to complex conditionals that affect
initialization, since some conditions might not perform the
initialization.

Implementation Avoid race conditions (CWE-362) during initialization routines.

Build and Compilation If you are using a language that does not require explicit
initialization such as C, Perl, or PHP, then run or compile your
software with settings that generate warnings about uninitialized
data.

Testing Use fuzzing or similar techniques that are likely to generate a
wide variety of errors that may produce usage of uninitialized
data.

Testing Identify rarely-encountered errors and trigger them. You may
trigger an unhandled-exception or similar bug, but if the error
itself is handled smoothly, then it is possible that some
initialization was incomplete or skipped entirely.

Related CWEs

CWE-453 Insecure Default Variable Initialization

CWE-454 External Initialization of Trusted Variables

CWE-456 Missing Initialization

Related Attack Patterns

http://cwe.mitre.org/data/definitions/665.html
http://cwe.mitre.org/data/definitions/453.html
http://cwe.mitre.org/data/definitions/454.html
http://cwe.mitre.org/data/definitions/456.html

CAPEC-IDs: [view all]

CWE-682: Incorrect Calculation

Summary

Weakness Prevalence High

Consequences Denial of service
Data loss
Code execution

Remediation Cost Low Ease of Detection Easy to Difficult

Attack Frequency Often Attacker Awareness Medium

Discussion

Computers can perform calculations whose results don't seem to make mathematical
sense. For example, if you are multiplying two large, positive numbers, the result
might be a much smaller number due to an integer overflow. In other cases, the
calculation might be impossible for the program to perform, such as a divide-by-
zero. When attackers have some control over the inputs that are used in numeric
calculations, this weakness can actually have security consequences. It could cause
you to make incorrect security decisions. It might cause you to allocate far more
resources than you intended - or maybe far fewer, as in the case of integer
overflows that trigger buffer overflows due to insufficient memory allocation. It could
violate business logic, such as a calculation that produces a negative price. Finally,
denial of service is also possible, such as a divide-by-zero that triggers a program
crash.

...View Full Technical Details

Prevention and Mitigations

Implementation Understand your programming language's underlying representation and
how it interacts with numeric calculation. Pay close attention to byte size
discrepancies, precision, signed/unsigned distinctions, truncation,
conversion and casting between types, "not-a-number" calculations, and
how your language handles numbers that are too large or too small for
its underlying representation.

Implementation Perform input validation on any numeric inputs by ensuring that they are
within the expected range.

Implementation Use the appropriate type for the desired action. For example, in C/C++,
only use unsigned types for values that could never be negative, such as
height, width, or other numbers related to quantity.

Implementation Use a safe integer handling package such as SafeInt (C++) or IntegerLib
(C or C++).

Testing Perform thorough testing of the calculation algorithm, using a variety of
numeric ranges and types as inputs.

http://cwe.mitre.org/data/definitions/665.html#Related_Attack_Patterns
http://cwe.mitre.org/data/definitions/682.html
http://cwe.mitre.org/data/definitions/682.html

Related CWEs

CWE-131 Incorrect Calculation of Buffer Size

CWE-135 Incorrect Calculation of Multi-Byte String Length

CWE-190 Integer Overflow or Wraparound

CWE-193 Off-by-one Error

CWE-369 Divide By Zero

CWE-467 Use of sizeof() on a Pointer Type

CWE-681 Incorrect Conversion between Numeric Types

Related Attack Patterns

CAPEC-IDs: [view all]

Porous Defenses

CWE-285: Improper Access Control (Authorization)

Summary

Weakness Prevalence High Consequences Security bypass

Remediation Cost Low to Medium Ease of Detection Moderate

Attack Frequency Often Attacker Awareness High

Discussion

Suppose you're hosting a house party for a few close friends and their guests. You
invite everyone into your living room, but while you're catching up with one of your
friends, one of the guests raids your fridge, peeks into your medicine cabinet, and
ponders what you've hidden in the nightstand next to your bed. Software faces
similar authorization problems that could lead to more dire consequences. If you
don't ensure that your software's users are only doing what they're allowed to, then
attackers will try to exploit your improper authorization and exercise unauthorized
functionality that you only intended for restricted users.

...View Full Technical Details

Prevention and Mitigations

http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/135.html
http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/193.html
http://cwe.mitre.org/data/definitions/369.html
http://cwe.mitre.org/data/definitions/467.html
http://cwe.mitre.org/data/definitions/681.html
http://cwe.mitre.org/data/definitions/682.html#Related_Attack_Patterns
http://cwe.mitre.org/data/definitions/285.html
http://cwe.mitre.org/data/definitions/285.html

Architecture and Design Reduce the attack surface by carefully mapping roles with data
and functionality. Divide your application into anonymous,
normal, privileged, and administrative areas. Use role-based
access control (RBAC) to enforce the roles at the appropriate
boundaries. Note that this approach may not protect against
horizontal authorization, i.e., it will not protect a user from
attacking others with the same role.

Architecture and Design Ensure that you perform access control checks related to your
business logic. These may be different than the access control
checks that you apply to the resources that support your
business logic.

Architecture and Design Use authorization frameworks such as the JAAS Authorization
Framework and the OWASP ESAPI Access Control control.

Architecture and Design For web applications, make sure that the access control
mechanism is enforced correctly at the server side on every
page. Users should not be able to access any information that
they are not authorized for by simply requesting direct access to
that page. One way to do this is to ensure that all pages
containing sensitive information are not cached, and that all such
pages restrict access to requests that are accompanied by an
active and authenticated session token associated with a user
who has the required permissions to access that page.

System Configuration Use the access control capabilities of your operating system and
server environment and define your access control lists
accordingly. Use a "default deny" policy when defining these
ACLs.

Related CWEs

CWE-425 Direct Request ('Forced Browsing')

CWE-749 Insecure Exposed Methods

Related Attack Patterns

CAPEC-IDs: [view all]
1, 13, 17, 39, 45, 51, 59, 60, 76, 77, 87

CWE-327: Use of a Broken or Risky Cryptographic Algorithm

Summary

Weakness Prevalence High Consequences Data loss
Security bypass

Remediation Cost Medium to High Ease of Detection Moderate

Attack Frequency Rarely Attacker Awareness Medium

Discussion

http://cwe.mitre.org/data/definitions/425.html
http://cwe.mitre.org/data/definitions/749.html
http://cwe.mitre.org/data/definitions/285.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/1.html
http://capec.mitre.org/data/definitions/13.html
http://capec.mitre.org/data/definitions/17.html
http://capec.mitre.org/data/definitions/39.html
http://capec.mitre.org/data/definitions/45.html
http://capec.mitre.org/data/definitions/51.html
http://capec.mitre.org/data/definitions/59.html
http://capec.mitre.org/data/definitions/60.html
http://capec.mitre.org/data/definitions/76.html
http://capec.mitre.org/data/definitions/77.html
http://capec.mitre.org/data/definitions/87.html
http://cwe.mitre.org/data/definitions/327.html

If you are handling sensitive data or you need to protect a communication channel,
you may be using cryptography to prevent attackers from reading it. You may be
tempted to develop your own encryption scheme in the hopes of making it difficult
for attackers to crack. This kind of grow-your-own cryptography is a welcome sight
to attackers. Cryptography is just plain hard. If brilliant mathematicians and
computer scientists worldwide can't get it right (and they're always breaking their
own stuff), then neither can you. You might think you created a brand-new
algorithm that nobody will figure out, but it's more likely that you're reinventing a
wheel that falls off just before the parade is about to start.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design Do not develop your own cryptographic algorithms. They will
likely be exposed to attacks that are well-understood by
cryptographers. Reverse engineering techniques are mature. If
your algorithm can be compromised if attackers find out how it
works, then it is especially weak.

Architecture and Design Use a cryptographic algorithm that is currently considered to be
strong by experts in the field. You should choose a well-tested
and widely used implementation. For example, US government
systems require FIPS 140-2 certification. As with all
cryptographic mechanisms, the source code should be available
for analysis. Ensure that you aren't using obsolete cryptography.
Some older algorithms, once thought to require a billion years of
computing time, can now be broken in days or hours.

Architecture and Design Periodically ensure that you aren't using obsolete cryptography.
Some older algorithms, once thought to require a billion years of
computing time, can now be broken in days or hours. This
includes MD4, MD5, SHA1, DES, and other algorithms which
were once regarded as strong.

Architecture and Design Design your software so that you can replace one cryptographic
algorithm with another. This will make it easier to upgrade to
stronger algorithms.

Architecture and Design Carefully manage and protect cryptographic keys (see CWE-
320). If the keys can be guessed or stolen, then the strength of
the cryptography itself is irrelevant.

Implementation Where possible, use industry-standard implementations. This
saves you development time and may be more likely to avoid
errors that can occur during implementation of cryptographic
algorithms. Consider the ESAPI Encryption feature.

Implementation When you use industry-approved techniques, you need to use
them correctly. Don't cut corners by skipping resource-intensive
steps (CWE-325). These steps are often essential for preventing
common attacks.

Related CWEs

CWE-320 Key Management Errors

http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/320.html

CWE-329 Not Using a Random IV with CBC Mode

CWE-331 Insufficient Entropy

CWE-338 Use of Cryptographically Weak PRNG

Related Attack Patterns

CAPEC-IDs: [view all]
97

CWE-259: Hard-Coded Password

Summary

Weakness Prevalence Medium Consequences Security bypass

Remediation Cost High Ease of Detection Moderate

Attack Frequency Rarely Attacker Awareness High

Discussion

Hard-coding a secret account and password into your software's authentication
module is extremely convenient - for skilled reverse engineers. While it might shrink
your testing and support budgets, it can reduce the security of your customers to
dust. If the password is the same across all your software, then every customer
becomes vulnerable if (rather, when) your password becomes known. Because it's
hard-coded, it's usually a huge pain for sysadmins to fix. And you know how much
they love inconvenience at 2 AM when their network's being hacked - about as much
as you'll love responding to hordes of angry customers and reams of bad press if
your little secret should get out. Most of the CWE Top 25 can be explained away as
an honest mistake; for this issue, though, customers won't see it that way.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design For outbound authentication: store passwords outside of the
code in a strongly-protected, encrypted configuration file or
database that is protected from access by all outsiders, including
other local users on the same system. Properly protect the key
(CWE-320). If you cannot use encryption to protect the file, then
make sure that the permissions are as restrictive as possible.

Architecture and Design For inbound authentication: Rather than hard-code a default
username and password for first time logins, utilize a "first login"
mode that requires the user to enter a unique strong password.

http://cwe.mitre.org/data/definitions/329.html
http://cwe.mitre.org/data/definitions/331.html
http://cwe.mitre.org/data/definitions/338.html
http://cwe.mitre.org/data/definitions/327.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/97.html
http://cwe.mitre.org/data/definitions/259.html
http://cwe.mitre.org/data/definitions/259.html

Architecture and Design Limit which entities can access the feature that contains the hard-
coded password. For example, a feature might only be enabled
through the system console instead of through a network
connection.

Architecture and Design For inbound authentication: apply strong one-way hashes to
your passwords and store those hashes in a configuration file or
database with appropriate access control. That way, theft of the
file/database still requires the attacker to try to crack the
password. When handling an incoming password during
authentication, take the hash of the password and compare it to
the hash that you have saved. Use randomly assigned salts for
each separate hash that you generate. This increases the
amount of computation that an attacker needs to conduct a
brute-force attack, possibly limiting the effectiveness of the
rainbow table method.

Architecture and Design For front-end to back-end connections: Three solutions are
possible, although none are complete. The first suggestion
involves the use of generated passwords which are changed
automatically and must be entered at given time intervals by a
system administrator. These passwords will be held in memory
and only be valid for the time intervals. Next, the passwords
used should be limited at the back end to only performing
actions valid for the front end, as opposed to having full access.
Finally, the messages sent should be tagged and checksummed
with time sensitive values so as to prevent replay style attacks.

Related CWEs

CWE-256 Plaintext Storage of a Password

CWE-257 Storing Passwords in a Recoverable Format

CWE-260 Password in Configuration File

CWE-321 Use of Hard-coded Cryptographic Key

Related Attack Patterns

CAPEC-IDs: [view all]

CWE-732: Insecure Permission Assignment for Critical Resource

Summary

Weakness Prevalence Medium Consequences Data loss
Code execution

Remediation Cost Low to High Ease of Detection Easy

Attack Frequency Often Attacker Awareness High

Discussion

http://cwe.mitre.org/data/definitions/256.html
http://cwe.mitre.org/data/definitions/257.html
http://cwe.mitre.org/data/definitions/260.html
http://cwe.mitre.org/data/definitions/321.html
http://cwe.mitre.org/data/definitions/259.html#Related_Attack_Patterns
http://cwe.mitre.org/data/definitions/732.html

It's rude to take something without asking permission first, but impolite users (i.e.,
attackers) are willing to spend a little time to see what they can get away with. If
you have critical programs, data stores, or configuration files with permissions that
make your resources readable or writable by the world - well, that's just what they'll
become. While this issue might not be considered during implementation or design,
sometimes that's where the solution needs to be applied. Leaving it up to a harried
sysadmin to notice and make the appropriate changes is far from optimal, and
sometimes impossible.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design When using a critical resource such as a configuration file, check
to see if the resource has insecure permissions (such as being
modifiable by any regular user), and generate an error or even
exit the software if there is a possibility that the resource could
have been modified by an unauthorized party.

Architecture and Design Define distinct user groups, privileges, and/or roles that will
allow you to maintain finer-grained control over your resources.

Implementation When the application starts, explicitly set the default permissions
or umask to a restricted setting so that you do not inherit less
secure settings from the user who started the application.

System Configuration For all configuration files, make sure that they are only readable
and writable by the software's administrator.

Documentation Do not suggest insecure configuration changes in your
documentation, especially if those configurations can extend to
resources and other software that are outside the scope of your
own software.

Installation During product installation, explicitly set the permissions for the
resources that you install instead of using the default
permissions of the user who is installing the software. This will
prevent you from inheriting insecure default permissions.

Installation Do not assume that the system administrator will manually
change the configuration to the settings that you recommend in
the manual.

Testing Ensure that your software runs properly under the Federal
Desktop Core Configuration (FDCC) or an equivalent hardening
configuration guide, which many organizations use to limit the
attack surface and potential risk of deployed software.

Related CWEs

CWE-276 Insecure Default Permissions

CWE-277 Insecure Inherited Permissions

CWE-279 Insecure Execution-assigned Permissions

Related Attack Patterns

http://cwe.mitre.org/data/definitions/732.html
http://cwe.mitre.org/data/definitions/276.html
http://cwe.mitre.org/data/definitions/277.html
http://cwe.mitre.org/data/definitions/279.html

CAPEC-IDs: [view all]

CWE-330: Use of Insufficiently Random Values

Summary

Weakness Prevalence Medium Consequences Security bypass
Data loss

Remediation Cost Medium Ease of Detection Easy to Difficult

Attack Frequency Rarely Attacker Awareness Medium

Discussion

Imagine how quickly a Las Vegas casino would go out of business if gamblers could
predict the next roll of the dice, spin of the wheel, or turn of the card. If you use
security features that require good randomness, but you don't provide it, then you'll
have attackers laughing all the way to the bank. You may depend on randomness
without even knowing it, such as when generating session IDs or temporary
filenames. Pseudo-Random Number Generators (PRNG) are commonly used, but a
variety of things can go wrong. Once an attacker can determine which algorithm is
being used, he or she can guess the next random number often enough to launch a
successful attack after a relatively small number of tries. After all, if you were in
Vegas and you figured out that a game with 1000-to-1 odds could be knocked down
to 10-1 odds after you paid close attention for a couple games, wouldn't it be
worthwhile to keep playing until you hit the jackpot?

...View Full Technical Details

Prevention and Mitigations

Architecture and Design Use well-vetted pseudo-random number generating algorithms
with adequate length seeds. In general, if a PRNG algorithm is
not advertised as being cryptographically secure, then it is
probably a statistical PRNG and should not be used in security-
sensitive contexts. Pseudo-random number generators can
produce predictable numbers if the generator is known and the
seed can be guessed. A 256-bit seed is a good starting point for
producing a "random enough" number.

Implementation Perform FIPS 140-1 tests on data to catch obvious entropy
problems.

Implementation Consider a PRNG that re-seeds itself, as needed from a high
quality pseudo-random output, like hardware devices.

Related CWEs

CWE-329 Not Using a Random IV with CBC Mode

CWE-331 Insufficient Entropy

http://cwe.mitre.org/data/definitions/732.html#Related_Attack_Patterns
http://cwe.mitre.org/data/definitions/330.html
http://cwe.mitre.org/data/definitions/330.html
http://cwe.mitre.org/data/definitions/329.html
http://cwe.mitre.org/data/definitions/331.html

CWE-334 Small Space of Random Values

CWE-336 Same Seed in PRNG

CWE-337 Predictable Seed in PRNG

CWE-338 Use of Cryptographically Weak PRNG

CWE-341 Predictable from Observable State

Related Attack Patterns

CAPEC-IDs: [view all]
59

CWE-250: Execution with Unnecessary Privileges

Summary

Weakness Prevalence Medium Consequences Code execution

Remediation Cost Medium Ease of Detection Moderate

Attack Frequency Sometimes Attacker Awareness High

Discussion

Spider Man, the well-known comic superhero, lives by the motto "With great power
comes great responsibility." Your software may need special privileges to perform
certain operations, but wielding those privileges longer than necessary can be
extremely risky. When running with extra privileges, your application has access to
resources that the application's user can't directly reach. For example, you might
intentionally launch a separate program, and that program allows its user to specify
a file to open; this feature is frequently present in help utilities or editors. The user
can access unauthorized files through the launched program, thanks to those extra
privileges. Command execution can happen in a similar fashion. Even if you don't
launch other programs, additional vulnerabilities in your software could have more
serious consequences than if it were running at a lower privilege level.

...View Full Technical Details

Prevention and Mitigations

http://cwe.mitre.org/data/definitions/334.html
http://cwe.mitre.org/data/definitions/336.html
http://cwe.mitre.org/data/definitions/337.html
http://cwe.mitre.org/data/definitions/338.html
http://cwe.mitre.org/data/definitions/341.html
http://cwe.mitre.org/data/definitions/330.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/59.html
http://cwe.mitre.org/data/definitions/250.html
http://cwe.mitre.org/data/definitions/250.html

Architecture and Design Identify the functionality that requires additional privileges, such
as access to privileged operating system resources. Wrap and
centralize this functionality if possible, and isolate the privileged
code as much as possible from other code. Raise your privileges
as late as possible, and drop them as soon as possible. Avoid
weaknesses such as CWE-288 and CWE-420 by protecting all
possible communication channels that could interact with your
privileged code, such as a secondary socket that you only intend
to be accessed by administrators.

Implementation Perform extensive input validation for any privileged code that
must be exposed to the user and reject anything that does not
fit your strict requirements.

Implementation Ensure that you drop privileges as soon as possible (CWE-271),
and make sure that you check to ensure that privileges have
been dropped successfully (CWE-273).

Implementation If circumstances force you to run with extra privileges, then
determine the minimum access level necessary. First identify the
different permissions that the software and its users will need to
perform their actions, such as file read and write permissions,
network socket permissions, and so forth. Then explicitly allow
those actions while denying all else. Perform extensive input
validation and canonicalization to minimize the chances of
introducing a separate vulnerability. This mitigation is much
more prone to error than dropping the privileges in the first
place.

Testing Ensure that your software runs properly under the Federal
Desktop Core Configuration (FDCC) or an equivalent hardening
configuration guide, which many organizations use to limit the
attack surface and potential risk of deployed software.

Related CWEs

CWE-272 Least Privilege Violation

CWE-273 Failure to Check Whether Privileges Were Dropped Successfully

CWE-653 Insufficient Compartmentalization

Related Attack Patterns

CAPEC-IDs: [view all]
69

CWE-602: Client-Side Enforcement of Server-Side Security

Summary

Weakness Prevalence Medium Consequences Security bypass

Remediation Cost High Ease of Detection Moderate

http://cwe.mitre.org/data/definitions/272.html
http://cwe.mitre.org/data/definitions/273.html
http://cwe.mitre.org/data/definitions/653.html
http://cwe.mitre.org/data/definitions/250.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/69.html
http://cwe.mitre.org/data/definitions/602.html

Attack Frequency Sometimes Attacker Awareness High

Discussion

Rich clients can make attackers richer, and customers poorer, if you trust the clients
to perform security checks on behalf of your server. Remember that underneath that
fancy GUI, it's just code. Attackers can reverse engineer your client and write their
own custom clients that leave out certain inconvenient features like all those pesky
security controls. The consequences will vary depending on what your security
checks are protecting, but some of the more common targets are authentication,
authorization, and input validation. If you've implemented security in your servers,
then you need to make sure that you're not solely relying on the clients to enforce
it.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design Protection mechanisms must be implemented on the server side;
no interactions or inputs from the client can be assumed to be
safe. Some protection schemes can still be duplicated in the
client such as input validation, because they are frequently
useful for general error-checking.

Architecture and Design If some degree of trust is required between the two entities,
then use integrity checking and strong authentication to ensure
that the inputs are coming from a trusted source. Design the
product so that this trust is managed in a centralized fashion,
especially if there are complex or numerous communication
channels, in order to reduce the risks that the implementer will
mistakenly omit a check in a single code path.

Related CWEs

CWE-20 Insufficient Input Validation

CWE-642 External Control of Critical State Data

Related Attack Patterns

CAPEC-IDs: [view all]

Entries on the CWE Top 25 were selected using two primary criteria: weakness prevalence
and severity. The severity is reflected in the common consequences of the weakness.

Weakness Prevalence

How often this weakness appears in software that was not developed with security integrated
into the software development life cycle (SDLC). The prevalence only applies to applications

Appendix A: Selection Criteria and Supporting Fields

http://cwe.mitre.org/data/definitions/602.html
http://cwe.mitre.org/data/definitions/20.html
http://cwe.mitre.org/data/definitions/642.html
http://cwe.mitre.org/data/definitions/602.html#Related_Attack_Patterns

that are potentially susceptible. For example, the prevalence of SQL injection is only evaluated
with respect to applications that use a database.

The prevalence value is determined based on estimates from multiple contributors to the Top
25 list, including CVE vulnerability trend data. Top 25 contributors advocated using more
precise statistics, but such statistics are not readily available, in terms of depth and coverage.
Most vulnerability tracking efforts work at high levels of abstraction. For example, CVE trend
data can track buffer overflows, but public vulnerability reports rarely mention the specific bug
that led to the overflow. Some software vendors may track weaknesses at low levels, but they
may be reluctant to share such information.

● High: the weakness is likely to occur at least once in over 50% of potentially affected
software.

● Medium: the weakness is likely to occur at least once in 10% to 50% of potentially
affected software.

● Low: the weakness is likely to occur in less than 10% of potentially affected software.

Consequences

When this weakness occurs in software to form a vulnerability, what are the typical
consequences of exploiting it?

● Code execution: an attacker can execute code or commands
● Data loss: an attacker can steal, modify, or corrupt sensitive data
● Denial of service: an attacker can cause the software to fail or slow down, preventing

legitimate users from being able to use it
● Security bypass: an attacker can bypass a security protection mechanism; the

consequences vary depending on what the mechanism is intended to protect

Attack Frequency

How often does this weakness occur in vulnerabilities that are targeted by the skilled,
determined attacker?

Consider an "exposed host" which is either: an Internet-facing server, an Internet-using
client, a multi-user system with untrusted users, or a multi-tiered system that crosses
organizational or trust boundaries. Also consider that a skilled, determined attacker can
combine attacks on multiple systems in order to reach a target host.

● Often: an exposed host is likely to see this attack on a daily basis.
● Sometimes: an exposed host is likely to see this attack more than once a month.
● Rarely: an exposed host is likely to see this attack less often than once a month.

Ease of Detection

How easy is it for the skilled, determined attacker to find this weakness, whether using black-
box or white-box methods, manual or automated?

● Easy: automated tools or techniques exist for detecting this weakness, or it can be found
quickly using simple manipulations (such as typing "<script>" into form fields).

● Moderate: only partial support using automated tools or techniques; might require some
understanding of the program logic; might only exist in rare situations that might not be
under direct attacker control (such as low memory conditions).

● Difficult: requires time-consuming, manual methods or intelligent semi-automated
support, along with attacker expertise.

Remediation Cost

How resource-intensive is it to fix this weakness when it occurs? This cannot be quantified in a
general way, since each developer is different. For the purposes of this list, the cost is defined
as:

● Low: code change in a single block or function
● Medium: code or algorithmic change, probably local to a single file or component
● High: requires significant change in design or architecture, or the vulnerable behavior is

required by downstream consumers, e.g. a design problem in a library function

This selection does not take into account other cost factors, such as procedural fixes, training,
patch deployment, QA, etc.

Attacker Awareness

The likelihood that a skilled, determined attacker is going to be aware of this particular
weakness, methods for detection, and methods for exploitation. This assumes that the
attacker knows which configuration or environment is used.

● High: the attacker is capable of detecting this type of weakness and writing reliable
exploits for popular platforms or configurations.

● Medium: the attacker is aware of the weakness through regular monitoring of security
mailing lists or databases, but has not necessarily explored it closely, and automated
exploit frameworks or techniques are not necessarily available.

● Low: the attacker either is not aware of the issue, does not pay close attention to it, or
the weakness requires special technical expertise that the attacker does not necessarily
have (but could potentially acquire).

Related CWEs

Some CWE entries that are related to the given entry. This includes lower-level variants, or
CWEs that can occur when the given entry is also present.

The list of Related CWEs is illustrative, not complete.

Selection for the CWE Top 25 assumes that the user wants to make it difficult and time-
consuming for a skilled, determined attacker to break into the software.

Though many kinds of attackers exist, it is assumed that the attacker has most of the
following characteristics.

Skill:

● Has a solid technical understanding of well-documented vulnerabilities;
● Can detect and exploit those vulnerabilities with some success, using black box and white

box methods;
● Can learn new vulnerabilities and attack techniques without significant effort; and
● Can combine attacks on multiple systems to gain deeper access into the targeted

organization.

Appendix B: Threat Model for the Skilled, Determined Attacker

Determination:

● Seeks to steal confidential data or take over an entire software package for its computing
capability, independent of the motive (financial, military, political, or other);

● Is not necessarily part of a large or well-funded group, but may collaborate with a small
number of other individuals; and

● Is willing to invest at least 20 hours to attack a single software package.

Informally, the attacker's skills and determination exceed that of a "script kiddie" but are less
than that of a nation-state or criminal organization.

Note that the model does not consider denial of service to be a primary motivation for the
attacker. This is contrary to the model that may be followed in some areas, such as critical
infrastructure protection and e-commerce, in which system downtime may have catastrophic
consequences.

Also note that this model was developed late in the review period for the Top 25, so it did not
influence the selection of the Top 25 items significantly. However, it is included here to give
some context for how the values for other supporting fields were derived. Authors of future
"top N" lists should consider making their threat model more explicit, which can ensure that
the prioritization is appropriate for the desired environments.

While this is the primary document, other supporting documents are available:

● Supporting quotes for the Top 25
● List of contributors
● On the Cusp - list of weaknesses that almost made it
● CWE View for the Top 25
● Frequently Asked Questions (FAQ)
● Description of the process for creating the Top 25
● Change log for earlier draft versions

CWE is a Software Assurance strategic initiative sponsored by the National Cyber Security Division of the U.S. Department of
Homeland Security.

This Web site is hosted by The MITRE Corporation.
Copyright 2009, The MITRE Corporation. CWE and the CWE logo are trademarks of The MITRE Corporation.

Contact cwe@mitre.org for more information.

Privacy policy
Terms of use
Contact us

Page Last Updated: February 05, 2009

Appendix C: Other Resources for the Top 25

http://cwe.mitre.org/top25/quotes.html
http://cwe.mitre.org/top25/contributors.html
http://cwe.mitre.org/top25/cusp.html
http://cwe.mitre.org/data/definitions/750.html
http://cwe.mitre.org/top25/faq.html
http://cwe.mitre.org/top25/process.html
http://cwe.mitre.org/top25/changelog.html
https://buildsecurityin.us-cert.gov/swa/
http://www.us-cert.gov/
http://www.dhs.gov/
http://www.dhs.gov/
http://www.mitre.org/
mailto:cwe@mitre.org
http://cwe.mitre.org/about/privacy_policy.html
http://cwe.mitre.org/about/termsofuse.html
mailto:cwe@mitre.org

