Incremental Machine Descriptions for GCC

Sameera Deshpande

Uday P. Khedker

Indian Institute of Technology, Bombay
{sameera,uday}Qcse.iitb.ac.in

Abstract

The mechanism of providing machine descriptions to the GCC
framework has been quite successful as demonstrated bye wid
variety of the targets for which a GCC port exists. Howevhis t
mechanism is quite ad hoc and the machine descriptions fre di
ficult to construct, understand, maintain, and enhanceusecaf

the verbosity, the amount of details, and the repetitiveng@fe
publicly available material fails to bring out the exact @astions
captured by the machine descriptions. There is no systematy

of constructing machine descriptions and there are no ¢jeigie-
lines on where to begin developing machine description amdtb
construct them systematically. This paper proposes a rdetbgy
based on incremental construction of machine descripstarting
from a well defined minimal machine description. We illusgrthe
process by constructing machine descriptions withstin simu-
lator for MIPS architecture as the target.

1. Introduction

The GCC framework generates a compiler for a given architect
by reading the machine descriptions for that architectiidough
the mechanism of GCC machine descriptions seems to be -practi
cally useful, it is less than satisfactory primarily beaaitss quite
ad hoc. As a consequence, the machine descriptions areutfiféic
construct, understand, maintain, and enhance because okth
bosity, the amount of details, and the repetitiveness. Tkerssize
of machine descriptions is formidable. For example, theaory
gcc/config/i1386 in gce-4.1.1 contains 63103 lines. Further, a
simple comparison of macros defined in various machine gescr
tions reveals the fact that among the descriptions availabblny
distribution, there are more variations than similarit{é3 macros
are common to all machine descriptionsgdc-4.1.1 whereas,
together, they define close to 769 distinct macros).
Unfortunately, not much discussion seems to be centereshdro
these concerns. Most explanations of GCC which are publicly
available (including those presented through special slwks and
tutorials) describe the build and install process of GCE&,HECC
front end, the IRs used by GCC and their manipulations by fitie o
mization phases in GCC, and the structure of machine desorip
required by GCC. Although several dozen actual machinerigesc
tions are readily available, one does not come across mdah in
mation on the insights behind machine descriptions. As &&on
guence, rather than developing a new port from scratch dctjpe,

[Copyright notice will appear here once 'preprint’ optiaremoved.]

a new port is started with an existing machine descriptianafo
architecture of a machine that is close to the new targes iEha
tedious and error-prone process resulting in machine gesxers
are not easy to understand or modify.

Thus it become important to address the following questions

¢ |s there a systematic way of developing GCC machine descrip-
tions? Can one define the notion of tnimal machine de-
scriptions for a given target to which features can be added i
small well-defined steps?

e Can one create more easily understandable abstractionrS©f G
machine descriptions?

e Can the GCC machine descriptions be any simpler?

As a part of our long term investigations aimed at answering
the above questions, this paper attempts to answer thedigstiqn
above. At the moment, the proposed methodology does notssldr
the issue of the quality of generated code and restrictf itse
understanding the abstractions in the machine descriptigiore
details of the proposed methodology are available the wgb p&
the GCC workshop [1].

For simplicity, we restrict the notion of compilation to theo-
cess of generating assembly code and ignore the subsedgejest s

2. Incremental Construction of Machine
Descriptions

The process of compilation and its implications on retafity
are influenced by the following three factors:

1. The phase and pass structure of a compiler.

This comprises of various transformations that the souroe p
gram undergoes as illustrated in standard textbooks [2s&h
transformations can be either

(a) transformations within the same intermediate repitadiem
(IR), or

(b) transformations to convert the program from one IR to an-
other.

. The features of the source language.

These include the primitive operators supported by languag
control structures, calling conventions, scope rulesa dgbes
supported by the language etc.

. The features of the target architecture.
These include the instruction set, registers, addressioges)
data and memory layout etc.

These factors are heavily dependent on each other and ifiei i
ence on machine descriptions cannot be studied in isol&tion
each other. Even if other factors are abstracted out, theeinfle of
a given factor is not easy to understand because:

2007/8/7

e Compilation phases may be independent in principle, but in
practice, they are related by IRs which are quite complex and
heavily dependent on the needs of different phases.

e Translation of many source features depend upon other sourc
features.

e Many target architecture features are dependent on eaeh oth

As a consequence, it does not seem possible to systematicall
classify the information present in machine descriptian®iider
to discover the abstractions present in them.

Instead of the “declarative” approach of explicitly defigiab-
stractions present in machine descriptions, we preseniopar
ational” approach of systematically constructing machdescrip-
tions such that the process uncovers the abstractionsappi®ach
is based on the following two crucial observations:

e Unless optimization is the main concern, source language fe
tures influence the machine descriptions more than thettarge
language features or the phase structure of a compiler.

e |t is not the partitioning of the source language featurets bu
their incremental accumulation which influences the maghin
descriptions systematically. In particular, if the incremts are
identified properly, the corresponding increments in maehi
description are monotonic in that no feature describedegarl

needs to change (unless a dummy value had to be defined for

it.)

In this method, we identify theinimal machine description as
the specification of target architecture features that beslately
necessary to build the compiler. The compiler built might cam-
pile even a single program, but the executatgec is generated. It
is minimal because no redundant or extra information is iplexy
to GCC in this level and even if single macro definition or RTL
pattern is removed from the description, compiler fails tddh We
call this minimal machine description &svel 0 machine descrip-
tion.

The subsequent levels are defined as follows and have been

illustrated in Figure 1:

e Level 1: Assignment statements involving on integer camtsta
and variables.

e Level 2: Arithmetic operations on integer data type.
¢ Level 3: Function handling and calling conventions.
¢ Level 4: Control structures.

We illustrate this process for thepim simulator of MIPS [3].

We identify the minimum information required in machine de-
scriptions to support each level. The machine descriptmmaf
given level is said to support that level if

e The compiler for that level gets built successfully.

e Any program written using source language features supgdort
by corresponding level can be successfully compiled.

¢ Generated assembly program is executed correctipim.

Once the basic machine description with all language featur
is written, the advanced target features can be added orf tiye o
machine description incrementally.

3. spim Machine Description for Level O

The goal of level 0 is to build the minimal machine descriptio
successfully. We further divide the level 0 machine desionis
such that

e Level 0.0 merely builds GCC successfully f@pim. Thexgcc
built does not compile even a single program.

Other data types
Conditional control transfers

Function Calls

Arithmetic Expressions

Sequence of
Simple Assignments
involving Integers

MD Level 1

MD Level 2

MD Level 3

MD Level 4

MD Level 5

- J

Figure 1. Systematic Development of Machine Description

e Level 0.1 adds small increment to level 0.0 so as to build GCC
successfully such that the generated c compiles empty void
functions of the form:

void fun(int paraml, int param?2,..
{

int varl,var2,.

.,int paramN)

. ,varM;

As long as parameters and local variables are not referned, t
xgcc built for level 0.1 can compile the program successfully.
As level 0 does not support any high level language statement
the program containing statement list are bound to fail éael

0.1. When return type is changed from void to int, GCC tries
to generate RTL to move dummy return value into return value
register$vo, for which assignment statement is required, which
is not supported in this level. Hence, only empty void fuoiet

can be compiled.

e Level 0.2 machine description incorporates complete atitin
record structure. Although it is irrelevant for compilinghpty
void functions, it sets stage for level 1 compiler for which
knowledge of location of variables being used in assignment
operation is necessary, to generate semantically coroeiet.c

Although level 0 supports minimal functions, the retartdity
mechanism in GCC still requires plenty of details to be sigajplo
the compiler generation framework. This information isidad in
the following categories:

1. Memory Layout

2. Supported Instructions

3. Registers

4. Addressing Modes

5. Activation Record Conventions

We describe them in the following subsections.

3.1 Memory layout issues
In memory layout related issues, following details are reed

Bit, byte and word endiannessThespim simulator assumes the
endianness of the underlying architecture on which the lsimu
tor is being executed. For our experiments, the underlyimg a

2007/8/7

chitecture isi*86 and all entities are ordered in little endian
manner.

Alignment boundaries: Alignment is not enforced strictly by the

spim simulator. We have chosen to align stack data at 64 bits
whereas words are aligned to 32 bits.

3.2 Supported Instructions

Level 0.0 does not support any high level language statenyvent
some details are required because of the following two mesiso

Since no operation needs to be supported, in principle, the
.md can be empty. However, this results in the declaration of
initialized empty arrayinsn_conditions® in the generated
source. As a result, the build for level 0.0 compiler crashes
due to-pedantic option supplied by the build process to the
native C compiler. We overcome this problem by including the
following dummy pattern in themd file.

(define_insn "dummy_pattern"
[(reg:SI 0)]
I|1Il
"This stmnt should not be emitted!"
)
There is nothing else in thend file.

Since the compiler adds a common exit to each function, it
expects the presence of direct and indirect jump instrastio
Since our programs are empty programs, the jump to common
exit gets optimized away in later RTL passes. Thereforepjum
and indirect jump patterns need not exist in the file. How-
ever, we have to make GCC believe that the jump instructions
have been provided. We do so by providing dummy defini-
tions of macros and functions for which build process crashe
Though the macre&0DE_FOR_indirect_jump and functions
gen_jump andgen_indirect_jump have their own semantics

in GCC, for level 0.0 we write dummy definitions for the macro
CODE_FOR_indirect_jump as

#define CODE_FOR_indirect_jump 8

GCC generates functiongn_jump andgen_indirect_jump
from the patterns in themd file associated with the standard
pattern namesndirect_jump andjump. Since we do not have
these patterns, we include dummy definitions shown below in
the . c file.

rtx gen_jump
(rtx operand0 ATTRIBUTE_UNUSED)
{

return O;

}

rtx gen_indirect_jump
(rtx operand0 ATTRIBUTE_UNUSED)
{

return O;

}

Our .md file continues to have only the dummy pattern in level
0.0.

For level 0.1, the compiler requires following additionafdarma-
tion in order to compile an empty function to a valid assenysty-
gram accepted bypim simulator:

e Assembly formats

e Jump instructions.

The dummy definitions for macro0DE_FOR_indirect_jump
and functiongen_jump andgen_indirect_jump provided in
level 0.0 are not sufficient for compiling void empty progimm

and generating the corresponding assembly program. Hence,

we define the patterns fgrump andindirect_jump in the .md
file as shown below:

(define_insn "jump"
[(set (pc)
(label_ref
(match_operand 0 "" "")))]
nj \\t%lon
)

(define_insn "indirect_jump"
[(set (pc)
(match_operand:SI 0
"register_operand" ""))]
njr \\t%OII
)

Return instruction.

The GCC standard pattegeturn is to be used only if the tar-
get has a single assembly instruction that is sufficientfdaha
work of returning from a function. In particular, the insttion
must destroy the activation record. Howeversjiim, the return
is effected through an indirect jump to the return addregisre
ter $ra. This does not destroy the activation record. Therefore,
instead of using the GCC standard pattegturn, we use the
epilogue standard pattern which emits thpim indirect jump
instruction as a part of dismantling the activation andmnhg
to the caller.

The full epilogue is required when function calls are fully
supported. Until that stage, the epilogue is graduallytlagitoss
levels.

For the present level, we generate the return through stdnda
patternepilogue as shown below.

(define_expand "epilogue"
[(clobber (const_int 0))]

{
spim_epilogue();
DONE;
}
)
void spim_epilogue()
{
emit_jump_insn(gen_IITB_return());
}

(define_insn "IITB_return"
[(return)]

1This array holds condition codes for various patterns ddfinethe .md "jr \\t\\$ra"

file.)

3 2007/8/7

All Registers

AN

Available Not available
to compiler to compiler
General Floating point
GPR Fixed
Caller Callee Address data
Saved saved registers registers

Figure 2. Register Class Hierarchy

Note that in this level, there is no activation record to be de
stroyed.

As a side effect of inclusion of jump instruction, the corepiso
generated can also compile the program

void foo()
{

L: goto L;
}

Level 0.2 does not support any additional instruction.

3.3 Addressing Mode Issues

In level 0, only jump and indirect_jump have been supported.
Hence, the only addressing modes supported in level 0 are

e For address of data: absolute addressing.

¢ For address of code: absolute and register indirect addreas
shown below.

- Register indirect addressing, ejg. $ra
- Absolute addressing, e.g. L2
Macro GO_IF_LEGITIMATE_ADDRESS is used for data addresses

Caller's Activation Record

Parameter n

Parameter n-1

Parameter 1

< Argument
Return Address Pointer

Caller's FPR (Control Link)

Caller's SPR

Callee Saved Registers

<—— |nitial Frame
Local Variable 1 Pointer

Local Variable 2

Local Variable m

<«—— Stack
Pointer

Figure 3. Activation Record Design fospim

Registers$so to $s7 are callee saved registers, and they must
be saved by callee’s prologue, and restored back by callee’s
epilogue. As in level 0, no register will be used, prologue an
epilogue need not store any of the registers.

Registerssgp, $sp and$£p are global pointer registers, stack
pointer and frame pointer respectively.

e $ra is return address register, which is used in function epi-
logue, to return to caller.

These registers can be classified in different groups asepeiine-
ment. The classification of registers is shown in Figure 2.
3.5 Activation Record Specific Information

Though activation record is not required in level 0, acimatrecord
design is completely orthogonal issue. Hence, we can desiiya-
tion record in level 0.2 which can be used in level 1. The atitin

and is defined in such a way that no address other than constantecord designed fogpim is shown in Figure 3. While describing

addresses is considered legitimate.

3.4 Register Specific Information
spim contains 32 32-bit general purpose registers[4].
¢ Register 0 contains value 0.

¢ Registersgat and$ko, $k1 are reserved as assembler and ker-

nel registers respectively, and hence are not availablerno c
piler. We can either remove them completely from speciforati
or mark them a§IXED_REGISTERS.

function. This is irrelevant till level 0.1 as activationcard
related issues are not handled in these levels. For leveb®.2

all arguments are passed on stack, these registers are sised a

other general purpose registers only.

Registerspt0 to $t9 are caller saved registers. i.e. it is caller’s
responsibility to save these registers, and callee canheset

registers freely. Hence, these registers must be markedlas c

clobbered.

Registers$a0 to $a3 an be used to pass arguments to the

activation record to GCC, following information must be yided
through macro definitions:

e Direction of growth of stack frame: pushing a word onto the
stack moves the stack pointer to a smaller address.

Direction of growth of local variable frame: Local variable
frame grows in same direction of stack.

e Direction of growth of Parameter frame: Parameter framevgro
in opposite direction of growth of stack.

Position where current stack pointgsp points: It is assumed
in spim that the stack pointer always points to first empty slot
on the stack.

Position where current frame point&fp points: Because of de-
sign of activation record, the callee saved registers lteseen
parameters and local variable frame. As argument pointér an
frame pointer inspim are same, the offset calculation of both,
parameters and local variables is done with reference to the
frame pointer register. However, the variables as well asma
eters are referred well before register allocation phasdd

2007/8/7

the computed offsets before register allocation might ffferdi

ent from actual offsets after register allocation. In suithas
tions, we have to make use of dummy frame pointer initially,
which gets eliminated to final frame pointer after registiés-a
cation is done. As shown in Figure 3, the dummy frame pointer
points to the location where first local variable is saved.

e Position where current arguments pointer AP points: The-arg
ment pointer points to the location from where first paramete
can be obtained.

¢ Relative offsets of fields from address registers in adtivat
record:

- Parameters passed to the function: The first argument’s lo-
cation from argument pointer is specified using the macro
FIRST_PARM_OFFSET. As shown in the figure, this offset is
0 for spim.

#define FIRST_PARM_OFFSET(FUN) O

The offset at which outgoing parameters are to be placed
is given by macroSTACK_POINTER_OFFSET which gives
offset of first parameter to be passed from stack pointer.

#define STACK_POINTER_OFFSET O

Callee saved registers: This is callee’s responsibiity] is
handled by function prologue. Even though, this informa-
tion will not be needed until function calls are incorporate
in the language features (which is actually done in level
3), the number of registers stored by callee is required for
proper offset computation of other fields. Hence total num-
ber of registers stored is computed as follows:

int
registers_to_be_saved
(void)
{
int i,num;
for (i=0,num=0;
i<FIRST_PSEUDO_REGISTER;
i++)
{
if (regs_ever_live[i]
&& !call_used_regs[i]
&& !'fixed_regs[il)
num++;
}
return num;

}

Return address: lgpim, return address is passed in register
$ra. Hence it becomes callee’s responsibility to store return
address register on stack, if required. However, for aceura
offset computations, knowing number of words reserved for
return address is necessary.

Previous activation’s pointer: Previous activation met®
pointers can be obtained from stack pointer, frame pointer
and argument pointer registers. dpim, frame pointer and

#define FUNCTION_VALUE(valtype, func)\
function_value()
rtx
function_value
(void)
{
/* Return register is register 2
* when value is of type SImode.*/
return (gen_rtx_REG(SImode,2));
}

Local frame: The location of first local variable allocataul
stack from dummy frame pointer can be specified by macro
STARTING_FRAME_OFFSET.

#define STARTING_FRAME_OFFSET \
starting_frame_offset ()

int
starting_frame_offset
(void)
{

return O;

}

¢ Relative offsets of frame pointer and argument pointersegi
ters from stack pointer: This information can be specified by
defining the macroBLIMINABLE_REGS, CAN_ELIMINATE and
INITIAL_ELIMINATION_OFFSET as follows:

#define ELIMINABLE_REGS\
0\
{FRAME_POINTER_REGNUM,
STACK_POINTER_REGNUM},\
{FRAME_POINTER_REGNUM,
HARD_FRAME_POINTER_REGNUMZ,\
{ARG_POINTER_REGNUM,
STACK_POINTER_REGNUM},\
{HARD_FRAME_POINTER_REGNUM,
STACK_POINTER_REGNUM}\
}

#define CAN_ELIMINATE(FROM, TO) \
((FROM == FRAME_POINTER_REGNUM

&& (TO == STACK_POINTER_REGNUM
|| TO == HARD_FRAME_POINTER_REGNUM)) \
|| (FROM == ARG_POINTER_REGNUM

&% TO == STACK_POINTER_REGNUM) \
|| (FROM == HARD_FRAME_POINTER_REGNUM
&& TO == STACK_POINTER_REGNUM))

#define INITIAL_ELIMINATION_OFFSET(FROM,TO,V)\
(V) = initial_elimination_offset (FROM,TO)

4. Machine Description for Level 1 ofspim

argument pointer registers are same. Hence, we store stack|_eve| 1 supports assignment operation involving integerstants

pointer and frame pointer in activation record. However,
since it is callee’s responsibility, we just compute the Aum

or integer variables. Level 1 machine description is builtop of
level 0.2 machine description, hence no macro is requirebeto

ber of bytes to be allocated on stack for proper offset com- 54ded in level 1. However,

putation of other fields.

Return value: The register in which the value to be returned
is stored is given by macmBUNCTION_VALUE. In spim reg-

ister number 2 serves this purpose. Hence, this can be spec-

ified as:

e Some dummy definitions of macros are replaced by meaning-
ful definitions. These include the macros related to aditrgss
modes and assembly format.

e RTL patterns for newly added operations are included in the
.md file.

2007/8/7

HLL Primitive Implementation emit_move_insn(gen_rtx_MEM(SImode,
Operation Variants plus_constant (hard_frame_pointer_rtx,
Dest — S R; — R; move rj, ri -4x3)),

R — M Twr,n gen_rtx_REG(SImode,i));

R—C 1ir, c Jtts

M — R SW r, m I
RETURNS<c RETURN $v0 — SC emit_move_insn(stack_pointer_rtx,

j $ra plus_constant (hard_frame_pointer_rtx,

Dest— S¢C, +SC; | R, — R; + R, | add ri, rj, rk -((3+j)*4+get_frame_size())));

Ri—R; +C | addi i, 1], c by

(define_expand "epilogue"
[(clobber (const_int 0))]

Table 1. Instructions supported in Level 1. "

{

spim_epilogue() ;
. DONE;

4.1 Supported Instructions 3
Level 1 primarily supports assignment operations whos¢irges)
tion can be a register or a memory location; the source can be avoid
register, a memory location or a constant value. Dependpanu spim_epilogue(void)
whether the variable is defined globally or locally, addiegsnode {
for the memory operand varies. The memory location can be ad- int i,j;
dressed using symbol associated with name of variable atitt for(i=0, j=3;i<FIRST_PSEUDO_REGISTER;i++){
of the variable in activation record. The instructions suped in if (regs_ever_live[i]
level 1 are listed in Table 1. && !call_used_regs[il

Inclusion of RETURN instruction is to ensure correctnesthef && 'fixed_regs[i]){
assembly code generated. The implementation of returruirigin emit_move_insn(gen_rtx_REG(SImode,i),
as shown in Table 1 says that while executing the high larguag gen_rtx_MEM(SImode,
return instruction, compiler first moves the value to be med into plus_constant (hard_frame_pointer_rtx,
return value registe$v0, using one of the move instructions given -4%3)));
in same table, followed by jump to return address, given gister Jj++;
$ra. }r

The inclusion of addition operation is necessitated forténgj emit_move_insn(stack_pointer_rtx,
prologue as explained in the following. Though we have desig hard_frame_pointer_rtx) ;
activation record in level 0, we haven't constructed thavatibn emit_move_insn(hard_frame_pointer_rtx,
record in that level as it was not needed. In level 1, we caostr gen_rtx_MEM(SImode,
activation record as shown in Figure 3 by defining RTL patdan plus_constant (stack_pointer_rtx,-8)));
function prologue and epilogue. emit_move_insn(return_addr_rtx,

gen_rtx_MEM(SImode,

plus_constant (stack_pointer_rtx,0)));

emit_jump_insn(gen_IITB_return());

(define_expand "prologue"
[(clobber (const_int 0))]

{
spim_prologue(); It can be seen from the code snippet given above, that to ntaek s
DONE; pointer in activation record for memory allocation, adulitioper-
} ation is required. Hence,as a side-effect of prologue anidgpe
) definition, add instruction is added in level 1.

Vo}d . 4.2 Addressing Mode Issues
spim_prologue(void)

Though only assignment operation is supported in level 1s it
evident from Table 1 that the operands of move instruction iz

registers, constants along with local and global memonndde

we must support all addressing modes in this level. The adire

modes that are supporteddpim are as follows:

int 1i,j;
emit_move_insn(gen_rtx_MEM(SImode,
plus_constant (stack_pointer_rtx,0)),
return_addr_rtx) ;
emit_move_insn(gen_rtx_MEM(SImode,
plus_constant (stack_pointer_rtx,-4)),
stack_pointer_rtx);
emit_move_insn(gen_rtx_MEM(SImode,
plus_constant (stack_pointer_rtx,-8)),
hard_frame_pointer_rtx);
emit_move_insn(hard_frame_pointer_rtx,
stack_pointer_rtx);
for(i=0,j=3;i<FIRST_PSEUDO_REGISTER;i++){
if (regs_ever_live[i]
&& !'call_used_regs[i]
&% 'fixed_regs([i]){

e Absolute addressing:

- Labels which give absolute address of code memory, for
examplejal _fun.

- Symbols which represent global data memory, for example
1w $v0, _var.

Note that the symbol names are prefixed by an underschre (
It is because assembler may give error because symbol/label
name and instruction mnemonics fgsim might be the same.

e Register indirect addressing: The address of memory locati
is stored in register, for example $ra.

6 2007/8/7

HLL Operation Primitive Implementation
Variants
Dest — Sc¢; — S¢Co Ri<—Rj—Rk sub ri, rj, rk
Dest — —Sc R; — —R; neg ri, rj
Dest — S /ScCo RZ<—R] R div rj, rk
mflo ri
Dest +— Sc; %S¢, R; — Rj%Rk div rj, rk
mfhi ri
Dest — S; * SCo R; — Rj x Ry, mul ri, rj, rk
Dest — Sc; <« S¢C; | Ry +— R; K Ry, | sllv ri, rj, rk
R — R; < Cs | sll ri, rj, c
Dest — Sc; >» Sc; | Ry — R; > Ry, | srav ri, rj, rk
Ri— R; > Cs | sra ri, rj, c
Dest — Sc1&Scy RZHR]&RJC and ri, rj, rk
R; — R;&C andi ri, rj, c
Dest<—Src1|Src2 RZ<—R] Ry or ri, rj, rk
R; — R;|C ori ri, rj, ¢
Dest — Sc; ~ Sco RZ<—R] R xor ri, rj, rk
Ri—R; " C xori ri, rj, c
Dest —~ ScC R; —~ R; not ri, rj

Table 2. Instructions supported in Level 2.

e Base offset addressing: The effective address of memory lo-
cation is offset plus contents of base register, for example
sw $v0, -20($fp).

5. Machine Description for Level 2 ofspim

Level 2 of machine description covers arithmetic and bignoper-
ations in the source language. The macro definitions renzaires
asinlevel 1. New RTL patterns are added it file corresponding
to additional operations supported in this level. The regislass
information is modified in order to let compiler know aboutamal
registers ofspim.

5.1 Supported Instructions

The instructions supported in level 2 are given in Table 2t @u
these operations, the division (*/") and modulo (‘%’) requéa spe-
cial treatment because of the implementatioddf instruction in
spim. This instruction internally stores the quotient of dieisiin
registerLo and remainder in registat . Hence it becomes the com-
piler’s responsibility to ensure that the result is exphicmoved
to the destination registers by using special instructnfisi and
mflo. The former moves a value from the register to the speci-
fied destination while the latter moves a value from tbeegister
to the specified destination. Thus division and modulo dpmra

(match_operand:SI 2 "register_operand" "r"))
)]
"div \\t%1, %2\\n\\tmfhi \\t%0"
)

Though itis very simple to add RTL pattern usigf ine_insn,
and primitive language features are represented as siagfierp in
the .md file, the drawback of this pattern definition mechanism is
that it suppresses instruction scheduling: Since the idivisind
modulo operations are expressed by single patterns in all RT
passes and are split directly at assembly level, dathandmflo
or mfhi instructions which are actually independent of each other,
are treated atomically thereby prohibiting the possiitif being
scheduled independently.

In order to enable this optimization, we split these indions
into two independent instructions right from the first RTL IR
the expander pass. Thievsi3 pattern can be defined as follows,
which needs definition of named RTL patte&IB_divide and
IITB_move_from_lo Which are used at the time of assembly gen-
eration.

(define_expand "divsi3"
[(parallel[(set
(match_operand:SI 0 "register_operand" "")
(div:SI
(match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "register_operand" "")))
(clobber (reg:SI 26))
(clobber (reg:SI 27))1)]
{
emit_insn(gen_IITB_divide(gen_rtx_REG(SImode,26),
operands[1], operands[2]));
emit_insn(gen_IITB_move_from_lo(operands[0],
gen_rtx_REG(SImode,26)));
DONE;
}

(define_insn "IITB_divide"
[(parallel[(set
(match_operand:SI 0 "LO_register_operand" "=q")
(div:SI
(match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r")))
(clobber (reg:SI 27))1)]

"div \\t%1, %2"

in high level language can be seen as compound statements con)

sisting of div instruction followed by move instruction issembly
language. This compound operation can be supported by the fo
lowing pattern:

(define_insn "divsi3"

[(set (match_operand:SI O "register_operand" "=r")
(div:SI

(match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r"))

)]

"div \\t%1, %2\\n\\tmflo \\t%0"

)

(define_insn "modsi3"

[(set (match_operand:SI O "register_operand" "=r")

(mod:SI
(match_operand:SI 1 "register_operand" "r")

(define_insn "IITB_move_from_lo"
[(set
(match_operand:SI O "register_operand" "=r")
(match_operand:SI 1 "LO_register_operand" "q")
)]

"mflo \\t%0"
)

Similarly, modsi3 pattern can be defined as follows which makes
use of named RTL patterndTB_mod andIITB_move_from_hi for
expanding.

(define_expand "modsi3"
[(parallell
(set (match_operand:SI 0O "register_operand" "")

2007/8/7

(mod:SI HLL Primitive Implementation

(match_operand:SI 1 "register_operand" "") Operation Variants
(match_operand:SI 2 "register_operand" ""))) Dest — fun(Py, ..., P,) 1w 7;, LSP]
(clobber (reg:SI 26)) sw r;, [SP]

(clobber (reg:SI 27))1)]

call Ljfyn,n| 1w r;, [SP-n*4]

{ sw Ti, [SP-nx*4]
emit_insn(gen_IITB_mod(gen_rtx_REG(SImode,27), jal L
operands[1], operands[2])); Dest «— %00
emit_insn(gen_IITB_move_from_hi(operands[0], fun(P1, P, ..., Pn) 1w r;, LSP]
gen_rtx_REG(SImode,27))); sw r;, [SP]
DONE; :
} call Lyyn,n| 1w r;, [SP-n*4]
) sw r;, [SP-n*4]
jal L

Although this enables instruction scheduling, this methad fol-
lowing drawbacks:

Table 3. Instructions supported in Level 3
¢ Cinterface is needed imd file.

e Compilation becomes slower and requires more space. 5.2 Register Specific Information
. . The registerdo andhi are internal registers iapim which are
Hence, we uséefine_split construct for these instructions. not introduced to GCC as they were not being used in previous
levels. However, as ‘/" and ‘%’ operations modify contentsteese
(define_split registers by moving quotient in registes and remainder in register
[(parallel hi, we introduce these registers to GCC by announcing them in
[(set register set. Special register class is created for thenhes are
(match_operand:SI 0 "register_operand" "") not general purpose registers, and are used by specificdtisins
(leSI On|y_
(match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "register_operand" "")) i?um reg_class \
)
(clobber (reg:SI 26)) NO_REGS, ZERO_REGS,\
(clobber (reg:SI 27))1)] CALLER_SAVED_REGS, \
" CALLEE_SAVED_REGS, \
[(parallel [(set (match_dup 3) BASE_REGS, HI_REGS,\
(div:SI (match_dup 1) LO_REGS, GENERAL_REGS,\
(match_dup 2))) ALL_REGS, LIM_REG_CLASSES \
(clobber (reg:SI 27))]1) g
(set (match_dup 0)
(match_dup 3)) 6. Machine Description for Level 3 ofspim
] Level 3 of machine description adds function handling artinca
"{operands [3]=gen_rtx_REG(SImode,26); }" conventions. No new macro is defined in this level. New irstru
) tions are added in thend file corresponding to instructions added
. . in this level. The activation record definition remains saasein
(define_split level 0.2.
[(parallel
[(set 6.1 Supported Instructions
Eﬁz;fgior’erand'ﬂ 0 "register_operand) The sequence of operations performed when a function isca|
(match_operand:SI 1 "register_operand" "") as follows:
(match_operand:SI 2 "register_operand" "")) e Operations performed by the caller
) - Push parameters on the stack.
(clobber (reg:SI 26))))
(clobber (reg:SI 27))1)1] - Load the return address in the return address register.

1lel t tch_d 3 .
[(pﬁlid:; Erﬁ::ch(fi‘zpcls up 3) e Operations performed by callee

(match_dup 2))) - Push the return address register on the stack.
(clobber (reg:SI 26))])
(set (match_dup 0)

- Transfer control to the callee.

- Push the caller’s frame pointer register on the stack.

(match_dup 3)) - Push the caller’s stack pointer on the stack.
1 - Save the callee saved registers, if used by callee on tble sta
"{operands [3]=gen_rtx_REG(SImode,27); }"
) - Create local variable frame on the stack.

- Start callee body execution.

8 2007/8/7

Operation Primitive Implementation We can defineif-then-else construct as a combination of
Variants compare and conditional branch instructions. In thisd pattern
Sc < Sc ? sets conditional code, which is used by branch if conditiatigyn
gotoL: PC | CC «— R; < R; that in turn checks the conditional code setdayd, and goto label
CC<07?gotoL:PC| bltri,rj,L if condition is satisfied. There is single standard nhametepafor
Sc > 9¢c, 7 each conditional code to represent the branch conditiomcéle
gotoL: PC' | CC «— R; > R; instead of defining each pattern separately, we make usedef co
CC>07?gotoL:PC| bgt ri,r;,L macro and implement the conditional branch as follows:
Sci < Sco ?
gotoL: PC' | CC «— R; < R; (define_code_macro cond_code
CC<L0?gotoL : PC| bler;,r;,L [1t 1tu eq ge geu gt gtu le leu nel)
Sc > Scy 7
gotoL: PC | CC «— R; > R; (define_expand "cmpsi"
CC>07?gotoL :PC| bge r;,7;,L [(set (cc0)
(compare
(match_operand:SI O "register_operand" "")

Table 4. Instructions supported in Level 4 (match_operand:SI 1 "nonmemory_operand” "")

)]

Out of these, the operations performed by callee are takem ca {

of by the prologue of the callee which has already been defined

Hence, in this level, we cover tasks performed by the caliea i

call instruction. Depending upon whether the callee retarmalue

or not, there are two variants of a call as shown in Table 3. }
The standard pattern namedl1 is used to define pattern for)

subroutine call instruction which does not return a valdeisl

defined in.md file as follows:

compare_opO=operands [0] ;
compare_opl=operands[1];
DONE;

(define_expand "b<code>"

(define_insn "call" [(set (pc)
[(call (match_operand:SI O "memory_operand" "m") (if_then_else
(match_operand:SI 1 "immediate_operand" "i")) (cond_code:SI (match_dup 1)
(clobber (reg:SI 31)) (match_dup 2))
] (label_ref (match_operand 0 "" ""))
" (pc)))]
ll* nn
return emit_asm_call(operands,0); {

" operands [1]=compare_op0;
) if (immediate_operand(compare_opl,SImode))

The call instruction returning a value is defined using napegtern operands [2] =force_reg (SImode, compare_op1) ;

call_value as follows: }
(define_insn "call_value" else

[(set (match_operand:SI O "register_operand" "=r") {

(call (match_operand:SI 1 "memory_operand" "m") operands [2]=compare_op1;
(match_operand:SI 2 "immediate_operand" "i")) }
)
(clobber (reg:SI 31)))
]
"k Same effect of above define patterns can be obtained by dgpfinin
return emit_asm_call (operands,1); single patterrcbranchsi4, as shown below:
) (define_insn "cbranchsid"
[(set (pc)
7. Machine Description for Level 4 ofspim (if_then_else ,
. (match_operator:SI O "comparison_operator"
Level 4 covers conditional control transfers and controlictres [(match_operand:SI 1 "register_operand" "")
in higher level languages. The looping constructs #ikele, for (match_operand:SI 2 "register_operand" "")1)
can be transformed into simple structure which is combamatf (label_ref (match_operand 3 "" ""))
sequential operational instructions and branch and gatersients. (pc)N)]
Hence, the only high level language construct we supporhim t wn
level isif-then-else. "
. return conditional_insn(GET_CODE (operands[0]),

7.1 Supported Instructions operands,0) ;

The conditional constructs supported in this level are a&srgin
Table 4

9 2007/8/7

8. Conclusions and Future Work

Until now the techniques of writing GCC machine descripsion
have been ad hoc. We demonstrate that it is possible to cohstr
them systematically by identifying suitable language émeents.
This allows us to define the minimal machine descriptionsctvhi
can then be systematically enhanced. The significance fhi
proach lies in the fact that it allows us to ask meaningfulstjoas
on the need of various constructs in machine descriptiomsh&Ve
demonstrated this approach by generating compilers féerdift
levels of C for thespim simulator. The effectiveness of this ap-
proach became evident in the workshop we had conducted: Even
novices could start writing meaningful machine descrimion a
span of just 3 days! The complete descriptions correspgnttin
each level are available on the workshop page [1].

For the future work, we would like to extend the proposed ma-
chine descriptions to include various data types. Once a bes
chine description for the full language is ready, subsetjurame-
ments in the machine descriptions should be sought for inipgo
the quality of generated code.

Acknowledgement

We would like to thank Ramana Radhakrishnan and Abhijat
Vichare for their valuable suggestions from time to time.

References

[1] Workshop on GCC Internals. Centre for Formal Design aedfi¢a-
tion of Software and Dept. of Computer Science & Engg., I Triéay.,
June 2007http://wuw.cse.iitb.ac.in/uday/gcc-workshop.

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D.ldan.
Compilers: Principles, Techniques, and Tools (2nd Edition). Addison
Wesley, August 2006.

[3] James Larus. Spim: A mips32 simulattittp://pages.cs.wisc.
edu/ " larus/spim.html.

[4] David A. Patterson and John L. Hennessy. Appendix AC&mputer
Organization and Design: The Hardware/Software Interface, Third
Edition. Morgan Kaufmann, August 2004.

10

2007/8/7

