
Mac OS X
From the server room to your

Jordan Hubbard
Director, Unix Technology Group
Apple, Inc.

Who I am
•Long-time Unix zealot

•Long-time Open Source contributor
(go FreeBSD!)

•Why I came to Apple (in 2001)

•Unix won the server, so next the
desktop

•Freedom to Innovate (more than in

What I do (@Apple)

•BSD and general open source
technology

•Security technology (OS and crypto)

•Other things that would make your
head hurt (mine does)

Let’s start with a
quick history

Mac OS X Releases
Public Beta
(Kodiak)

09 / 2000 0 BX
10.0 (Cheetah) 03 / 2001 6 months
10.1 (Puma) 11 / 2001 8 months
10.2 (Jaguar) 08 / 2002 9 months
10.3 (Panther) 10 / 2003 14 months
10.4 (Tiger) 05 / 2005 19 months
10.4 (Tiger/x86) 01 / 2006 8 months
10.5 (Leopard) 10 / 2007 21 months
10.6
(SnowLeopard)

Q1 2009 14+ months

Release DeltaRelease Date

Mac OS X Releases
Public Beta
(Kodiak)

09 / 2000 0 BX
10.0 (Cheetah) 03 / 2001 6 months
10.1 (Puma) 11 / 2001 8 months
10.2 (Jaguar) 08 / 2002 9 months
10.3 (Panther) 10 / 2003 14 months
10.4 (Tiger) 05 / 2005 19 months
10.5 (Leopard) 10 / 2007 29 months
10.6
(SnowLeopard)

Q1 2009 14+ months

Release DeltaRelease Date

10.0 in brief
•Represented the first merger of NeXTStep

and MacOS technologies as a new,
functional whole

•Introduced Aqua and Quartz

•APIs: Cocoa, Carbon and Java

•First “transition environment”: Classic

•Unix bits: NeXTStep + various *BSD bits +
some GNU software

10.1 in brief
•UI is more polished

•A lot of Unix components are
updated, many from FreeBSD

•Added some new ones (like Apache)

•Early scripting languages appear
(Tcl, Perl, Python) and devtools get a
small polish

10.2 in brief
•Quartz Extreme implemented on OpenGL

•Rendezvous (now Bonjour) appears

•Printer sharing, personal firewall and
other “Unix features” surface to user

•More productivity apps are bundled

•FreeBSD is now principle OSS reference

•Ruby is now bundled (but somewhat
broke)

•LWMLAF: 20%

10.3 in brief
•Exposé and various fancy “UI tricks”

appear

•Fast user switching and filevault
appear

•Much improved Windows
interoperability

•First appearance of Xcode

10.4 in brief
•Spotlight appears - Immediately starts

indexing everything in sight

•Dashboard appears (along with a small
explosion of widgets)

•Voiceover and other key “Accessibility”
features appear

•Launchd eats init, xinetd, cron, mach_init, ...

•Unix environment gets another big overhaul

•LWMLAF: 70% (bye bye Vaio!)

10.5 in brief
•Marketing: Over 300 new features!

•Engineering: Yes, actually, there is a
very large number of features and
improvements in there

•LWMLAF: (so high it’s embarrassing,
really)

•The features, let me show you them...

Security
Improvements in

Leopard

•File Quarantine
•Sandbox
•Package and Code Signing
•Application Firewall
•Parental Controls
•Non-Executable (NX) Data
•Address Space Layout

Randomization

Topics I’ll be racing through

File Quarantine: The problem

File Quarantine: The problem
• Opening a document is expected to launch an
application on Mac OS X

• Malware can therefore be disguised as documents
• Casual inspection is no longer safe

File Quarantine: The problem
• Opening a document is expected to launch an
application on Mac OS X

• Malware can therefore be disguised as documents
• Casual inspection is no longer safe

File Quarantine: The problem
• Opening a document is expected to launch an
application on Mac OS X

• Malware can therefore be disguised as documents
• Casual inspection is no longer safe

File Quarantine: How it works

File Quarantine: How it works
• Download content → Quarantine EA added

■ EA also stores context of download for later use
■ Download time, origin, application, etc…

File Quarantine: How it works
• Download content → Quarantine EA added

■ EA also stores context of download for later use
■ Download time, origin, application, etc…

• Activate quarantined content → system inspection,
user dialog if needed:

Quarantine Propagation
(in popular archivers)

latestpics

latestpics.dmg

latestpics.ziplatestpics latestpics.zip

latestpics.dmg

latestpics.jpglatestpics.jpglatestpicslatestpics

File Quarantine: How it works
(under the hood)

jkh@woot-> ls -l@ FluffyBunny.dmg
-rw-r--r--@ 1 jkh staff 778014 Mar 7 2008 FluffyBunny.dmg
com.apple.diskimages.recentcksum 80
com.apple.metadata:kMDItemWhereFroms 344
com.apple.quarantine 74

This is purely an implementation detail, of
course, so don’t go relying on its name or
contents!

File Quarantine

• APIs and various LaunchServices mechanisms provided
for creating / propagating Quarantine information

• See Open Source tools for reference (tar, zip, et al).

• Automatic Quarantine Mode
■ Quarantines all files created by an application
■ Info.plist keys

■ LSFileQuarantineEnabled
■ LSFileQuarantineExcludedPathPatterns

Sandbox

Sandbox
• Hardens applications and services by restricting
system operations, even for applications with system
privileges

Sandbox
• Hardens applications and services by restricting
system operations, even for applications with system
privileges

• Reduces impact of vulnerabilities

Sandbox
• Hardens applications and services by restricting
system operations, even for applications with system
privileges

• Reduces impact of vulnerabilities
•Many system services now run in a Sandbox

■ BIND, portmap, Xgrid, Spotlight importers,
QuickLooks, … (see /usr/share/sandbox)

;; NOTE: The profile language is a private interface and
;; subject to change without notice
(version 1)
(deny default)
(allow sysctl-read)
(allow network*)
(allow file-write* file-read-data file-read-metadata
 (regex #"^(/private)?/var/run/syslog$"
 #"^(/private)?/var/run/syslog\.pid$"
 #"^(/private)?/var/run/asl_input$"
 #"^(/private)?/dev/console$"
 #"^(/private)?/var/log/.*\.log$"
 #"^(/private)?/var/log/asl\.db$"))
(allow file-read-data file-read-metadata
 (regex #"^(/private)?/dev/klog$"
 #"^(/private)?/etc/asl\.conf$"
 #"^(/private)?/etc/syslog\.conf$"
 #"^/usr/lib/asl/.*\.so$"))

Profile language
Sandbox Hey, that looks familiar!

(OK, it’s Scheme)

(version 1)
(debug deny)
(import "bsd.sb")
(deny default)
(allow process*)
(allow file-read*)
(allow sysctl-read)

Profile language
Sandbox

Let’s try a simpler example.
We’ll call this “testsandbox.sb”

(version 1)
(debug deny)
(import "bsd.sb")
(deny default)
(allow process*)
(allow file-read*)
(allow sysctl-read)

Profile language
Sandbox

Let’s try a simpler example.
We’ll call this “testsandbox.sb”

jkh@woot-> sandbox-exec -f testsandbox.sb bash
I have no name!@woot-> ping localhost
bash: /sbin/ping: Operation not permitted

(version 1)
(debug deny)
(import "bsd.sb")
(deny default)
(allow process*)
(allow file-read*)
(allow sysctl-read)

Profile language
Sandbox

Let’s try a simpler example.
We’ll call this “testsandbox.sb”

jkh@woot-> sandbox-exec -f testsandbox.sb bash
I have no name!@woot-> ping localhost
bash: /sbin/ping: Operation not permitted
I have no name!@woot-> cat > /tmp/youcanttouchthis
bash: /tmp/youcanttouchthis: Operation not permitted

(version 1)
(debug deny)
(import "bsd.sb")
(deny default)
(allow process*)
(allow file-read*)
(allow sysctl-read)

Profile language
Sandbox

Let’s try a simpler example.
We’ll call this “testsandbox.sb”

jkh@woot-> sandbox-exec -f testsandbox.sb bash
I have no name!@woot-> ping localhost
bash: /sbin/ping: Operation not permitted

I have no name!@woot-> head .bashrc
#!/usr/local/bin/bash
#
This is .bashrc, a file composed solely of shell
functions.
...

I have no name!@woot-> cat > /tmp/youcanttouchthis
bash: /tmp/youcanttouchthis: Operation not permitted

(version 1)
(debug deny)
(import "bsd.sb")
(deny default)
(allow process*)
(allow file-read*)
(allow sysctl-read)
(allow mach-lookup (global-name
"com.apple.system.DirectoryService.libinfo_v1"))

Profile language
Sandbox

... To fix the “I have no name!” problem

Sandbox
API

• sandbox_init(…, SANDBOX_NAMED, …)
• Predefined Sandboxes, see sandbox.h

■ Pure computation
■ Read-only
■ Read-only + write temporary folders
■ Prohibit networking

Sandbox
How it works under the hood

•Built on top of Mandatory Access
Control (MAC) subsystem from
SEDarwin (based on TrustedBSD)

•Uses special “compiler” process to
turn high-level form into highly
efficient bytecode (sandbox-
compilerd(8))

•An evolving work in progress
•(JFYI, MAC was also used to protect

Code Signing

Code Signing
• Hard cryptographic signature for stand-

alone executables and application
bundles

Code Signing
• Hard cryptographic signature for stand-

alone executables and application
bundles

• Application identity maintained across
versions, resulting in far fewer
Keychain-related dialogs

Code Signing
• Hard cryptographic signature for stand-

alone executables and application
bundles

• Application identity maintained across
versions, resulting in far fewer
Keychain-related dialogs

• Used by Keychain, Application Firewall,
Parental Controls, Authorization, …

Code Signing
• Hard cryptographic signature for stand-

alone executables and application
bundles

• Application identity maintained across
versions, resulting in far fewer
Keychain-related dialogs

• Used by Keychain, Application Firewall,
Parental Controls, Authorization, …

• Can also be used to implement more
advanced, secure IPC (“knock knock!”

Code Signing
Even the Unixy ones

jkh@woot-> codesign -v -d /bin/cat
Executable=/bin/cat
Identifier=com.apple.cat
Format=Mach-O universal (i386 ppc7400)
CodeDirectory v=20001 size=178 flags=0x0(none)
hashes=4+2 location=embedded
Signature size=4064
Info.plist=not bound
Sealed Resources=none
Internal requirements count=0 size=12

jkh@woot-> codesign -h 296
/bin/bash
/mach_kernel

Package Signing
•Packages are now cryptographically verified
•Sign packages using PackageMaker

Package Signing
•Packages are now cryptographically verified
•Sign packages using PackageMaker

Package Signing
•Packages are now cryptographically verified
•Sign packages using PackageMaker

Package Signing
•Packages are now cryptographically verified
•Sign packages using PackageMaker

Package Signing
•Packages are now cryptographically verified
•Sign packages using PackageMaker

Application Firewall
• New inbound filtering engine
• Traffic is allowed based on application, not just
port/protocol

Application Firewall
• New inbound filtering engine
• Traffic is allowed based on application, not just
port/protocol

Application Firewall
• New inbound filtering engine
• Traffic is allowed based on application, not just
port/protocol

Application Firewall
• Much easier configuration for most users (no need
to use System Preferences)

• IPFW is still present for advanced users, of course
• Applications are tracked by signature

Application Firewall
• Much easier configuration for most users (no need
to use System Preferences)

• IPFW is still present for advanced users, of course
• Applications are tracked by signature

Parental Controls

Allows an admin to:

* Limit access to apps
* Restrict web activity
* Restrict mail / ichat
* Log suspicious activity

Applications are,
again, tracked by
signature

Non Executable (NX) Data

Thread 1 Stack

Heap

Thread 0 Stack

Library text

Library data
Read-only, executable
Read-write, non-executable

Non Executable (NX) Data
• Tiger/x86 had only NX stack

Thread 1 Stack

Heap

Thread 0 Stack

Library text

Library data
Read-only, executable
Read-write, non-executable

Non Executable (NX) Data
• Tiger/x86 had only NX stack

Thread 1 Stack

Heap

Thread 0 Stack

Library text

Library data
Read-only, executable
Read-write, non-executable

• Leopard: 64-bit apps have NX stack,
heap, … → W^X

Non Executable (NX) Data
• Tiger/x86 had only NX stack

Thread 1 Stack

Heap

Thread 0 Stack

Library text

Library data
Read-only, executable
Read-write, non-executable

• Leopard: 64-bit apps have NX stack,
heap, … → W^X
■ Intel 64-bit (Intel Core 2 Duo or later)
■ PPC 64-bit (G5)
■ 32-bit apps as in Tiger for

compatibility

Non Executable (NX) Data
• Tiger/x86 had only NX stack

Thread 1 Stack

Heap

Thread 0 Stack

Library text

Library data
Read-only, executable
Read-write, non-executable

• Leopard: 64-bit apps have NX stack,
heap, … → W^X

•Applications that need to execute
code in data segments use mprotect

■ Intel 64-bit (Intel Core 2 Duo or later)
■ PPC 64-bit (G5)
■ 32-bit apps as in Tiger for

compatibility

Non Executable (NX) Data
• Tiger/x86 had only NX stack

Thread 1 Stack

Heap

Thread 0 Stack

Library text

Library data
Read-only, executable
Read-write, non-executable

• Leopard: 64-bit apps have NX stack,
heap, … → W^X

•Applications that need to execute
code in data segments use mprotect

•Helps mitigate many buffer
overflows, format string bugs, …

■ Intel 64-bit (Intel Core 2 Duo or later)
■ PPC 64-bit (G5)
■ 32-bit apps as in Tiger for

compatibility

Address Space Layout Randomization

Address Space Layout Randomization
•Even with NX data, it may be
possible for an exploit to jump
to a library or framework
function
■ e.g., system(3)—Pass a
command
to the shell

■ This is commonly known as
“return-to-libc”

Address Space Layout Randomization
•Even with NX data, it may be
possible for an exploit to jump
to a library or framework
function
■ e.g., system(3)—Pass a
command
to the shell

■ This is commonly known as
“return-to-libc”

AppKit

WebKit

CoreServices

libSystem

QuartzCore

Address Space Layout Randomization
•Even with NX data, it may be
possible for an exploit to jump
to a library or framework
function
■ e.g., system(3)—Pass a
command
to the shell

■ This is commonly known as
“return-to-libc”

AppKit

WebKit

CoreServices

libSystem

QuartzCore

Address Space Layout Randomization
•Even with NX data, it may be
possible for an exploit to jump
to a library or framework
function
■ e.g., system(3)—Pass a
command
to the shell

■ This is commonly known as
“return-to-libc”

AppKit

WebKit

CoreServices

libSystem

QuartzCore

0x90046ff0 <system>: push %rbp

Address Space Layout Randomization
•Even with NX data, it may be
possible for an exploit to jump
to a library or framework
function
■ e.g., system(3)—Pass a
command
to the shell

■ This is commonly known as
“return-to-libc”

AppKit

WebKit

CoreServices

libSystem

QuartzCore

0x90046ff0 <system>: push %rbp

pre
dic
tab
le

Address Space Layout
•Even with NX data, it may be
possible for an exploit to jump
to a library or framework
function
■ e.g., system(3)—Pass a
command

•Common libraries are loaded in
random order

•Opt-in: Application executables
and libraries loaded at random
page
■ When linked with -pie (i.e., cc -
Wl,-pie)

Address Space Layout

AppKit

WebKit

CoreServices

QuartzCore

•Even with NX data, it may be
possible for an exploit to jump
to a library or framework
function
■ e.g., system(3)—Pass a
command

•Common libraries are loaded in
random order

•Opt-in: Application executables
and libraries loaded at random
page
■ When linked with -pie (i.e., cc -
Wl,-pie)

libSystem

Address Space Layout

AppKit

WebKit

CoreServices

QuartzCore

•Even with NX data, it may be
possible for an exploit to jump
to a library or framework
function
■ e.g., system(3)—Pass a
command

•Common libraries are loaded in
random order

•Opt-in: Application executables
and libraries loaded at random
page
■ When linked with -pie (i.e., cc -
Wl,-pie)

libSystem

Address Space Layout

AppKit

WebKit

CoreServices

QuartzCore

•Even with NX data, it may be
possible for an exploit to jump
to a library or framework
function
■ e.g., system(3)—Pass a
command

•Common libraries are loaded in
random order

•Opt-in: Application executables
and libraries loaded at random
page
■ When linked with -pie (i.e., cc -
Wl,-pie)

libSystem

0x90046ff0 <sStringTable+6265>: sbb (%rdx),%dh

Address Space Layout

AppKit

WebKit

CoreServices

QuartzCore

•Even with NX data, it may be
possible for an exploit to jump
to a library or framework
function
■ e.g., system(3)—Pass a
command

•Common libraries are loaded in
random order

•Opt-in: Application executables
and libraries loaded at random
page
■ When linked with -pie (i.e., cc -
Wl,-pie)

libSystem

0x90046ff0 <sStringTable+6265>: sbb (%rdx),%dh

Address Space Layout

AppKit

WebKit

CoreServices

QuartzCore

•Even with NX data, it may be
possible for an exploit to jump
to a library or framework
function
■ e.g., system(3)—Pass a
command

•Common libraries are loaded in
random order

•Opt-in: Application executables
and libraries loaded at random
page
■ When linked with -pie (i.e., cc -
Wl,-pie)

libSystem

0x90046ff0 <sStringTable+6265>: sbb (%rdx),%dh

Developer Tools Options
•Stack overflow checking

■ Canaries as in StackGuard, ProPolice, Microsoft Visual
Studio /GS

void
bad(const char *filename) {
	 char path[PATH_MAX];

	...
	sprintf(path, "%s/%s", getenv("HOME"), filename);
	 ...	
}

Higher
addresses

const char *filename

Return address

char path[PATH_MAX]

Developer Tools Options
•Stack overflow checking

■ Canaries as in StackGuard, ProPolice, Microsoft Visual
Studio /GS

void
bad(const char *filename) {
	 char path[PATH_MAX];

	...
	sprintf(path, "%s/%s", getenv("HOME"), filename);
	 ...	
}

Higher
addresses

const char *filename

Return address

char path[PATH_MAX]

const char *filename

Return address

char path[PATH_MAX]
char path[PATH_MAX]

const char *filename

Return address
Canary

Developer Tools Options

Developer Tools Options
•Object size checking

Developer Tools Options
•Object size checking

■ Some unsafe API usage → checked-at-runtime
behavior

Developer Tools Options
•Object size checking

■ Some unsafe API usage → checked-at-runtime
behavior

■ memcpy, mempcpy, memmove, memset, strcpy,
stpcpy, strncpy, strcat, strncat, sprintf, vsprintf,

Developer Tools Options
•Object size checking

■ Some unsafe API usage → checked-at-runtime
behavior

■ memcpy, mempcpy, memmove, memset, strcpy,
stpcpy, strncpy, strcat, strncat, sprintf, vsprintf,

void
before(const char *filename) {
	 char path[PATH_MAX];
	...
	sprintf(path, "%s/%s", getenv("HOME"), filename);
	 ...	
}

void
after(const char *filename) {
	 char path[PATH_MAX];
	...
	__builtin___sprintf_chk(path, 0, __builtin_object_size(path, 2>1), "%s/%s",

getenv("HOME"), filename);
	...
}	

Developer Tools Options
•Object size checking

■ Some unsafe API usage → checked-at-runtime
behavior

■ memcpy, mempcpy, memmove, memset, strcpy,
stpcpy, strncpy, strcat, strncat, sprintf, vsprintf,

void
before(const char *filename) {
	 char path[PATH_MAX];
	...
	sprintf(path, "%s/%s", getenv("HOME"), filename);
	 ...	
}

void
after(const char *filename) {
	 char path[PATH_MAX];
	...
	__builtin___sprintf_chk(path, 0, __builtin_object_size(path, 2>1), "%s/%s",

getenv("HOME"), filename);
	...
}	

Developer Tools Options
•Object size checking

■ Some unsafe API usage → checked-at-runtime
behavior

■ memcpy, mempcpy, memmove, memset, strcpy,
stpcpy, strncpy, strcat, strncat, sprintf, vsprintf,

void
before(const char *filename) {
	 char path[PATH_MAX];
	...
	sprintf(path, "%s/%s", getenv("HOME"), filename);
	 ...	
}

void
after(const char *filename) {
	 char path[PATH_MAX];
	...
	__builtin___sprintf_chk(path, 0, __builtin_object_size(path, 2>1), "%s/%s",

getenv("HOME"), filename);
	...
}	

Back to my mac
•Uses wide-area Bonjour / DDNS

(through .Mac) for name registration

•Supports NAT-PMP and UPnP to get
through NATs

•Uses Kerberos and private certs for
authentication

•Makes screen/filesharing really easy
without compromising security

Unix geek
improvements in

Leopard

DTrace
•A dynamic, programmable tracing

environment created by Sun in 2003

•Can trace the execution of everything
from kernel routines, library functions
and even scripts in various interpreted
languages

•Mac OS X offers a hugely comprehensive
set of probe points all the way up the

DTrace
•DTrace scripts are written in Sun’s D

programming language, effectively a “safe
subset” of C, and compiled to bytecode

•A number of generally useful “canned”
scripts can be found in /usr/bin/*.d for
reading/running

•Used internally by Instruments.app in
DevTools

DTrace
•Scripts need not be complex to do useful

things:
#!/usr/sbin/dtrace -s
syscall:::entry { @num[execname] =
count(); }
...
 dtrace 33
 VZAccess Manager 50
 softwareupdate 51
 configd 157
 WindowServer 234

Shows me most “system bound” tasks currently
running

DTrace in Instruments

Even easier!

Launchd
•Since its introduction in Tiger, it has

transformed how all things are launched
on Mac OS X

•Things are launched by dependency, not
by static declarations

•Execution environments are cleanly
constrained

•Ease of use has encouraged the

Launchd
•All configuration controlled by per-user /

per-system XML plist files (though
launchd itself does not grok XML)

•launchctl behaves differently depending
on “which launchd you’re asking”

•sudo launchctl list (system)

•launchctl list (current session)

•launchctl -S / -D flags control this also

ASL
•Apple’s replacement for syslog (and a

secret evidently too-well-kept)

•Supports arbitrary number of log message
properties in a clean, consistently
encoded format

•Powerful boolean operator search API

•Per-process and per-system message
filter values

UNIX03
•A fairly massive multi-year project

involving many Unix commands, libraries
and documentation

•Leopard now joins the ranks of IBM (AIX)
and Sun (Solaris) in being a fully certified
UNIX®

•API compatibility maintained through
symbol versioning tricks and

X11 in Leopard

•The XFree86 vs X.org saga

•Consequences of going with X.org in
Leopard

•XQuartz project on Mac OS Forge

•Current status of fullscreen, GLX, 3D,

ZFS
•Sun’s highly fault-tolerant, dynamic

storage pool-based, snapshotting
“zetabyte” filesystem

•Shipped read-only implementation in
Leopard, for future compatibility only

•Full read/write version available from
http://zfs.macosforge.org (along with
other useful info)

http://zfs.macosforge.org
http://zfs.macosforge.org

Scripting
Languages

•BridgeSupport: Describing ObjC and C
APIs through Metadata (../Resources/
BridgeSupport/)

•RubyCocoa and PyObjC are bundled,
including XCode application templates

•Compatibility will be maintained while
evolving strategy here

Directory Services
•Netinfo is dead. Long live Netinfo.

•Lookupd is also dead, as are several
intermediate layers of mechanism from the
old system

•DirectoryService now provides all lookup,
caching and local host/user/group
database services (as XML plist files in /
var/db/dslocal)

Apple’s evolving Open Source
strategy

Apple’s evolving Open Source
strategy

•2000: In the beginning, there was
Darwin and the stand-alone Darwin
releases

Apple’s evolving Open Source
strategy

•2000: In the beginning, there was
Darwin and the stand-alone Darwin
releases

•2002: The rise of OpenDarwin

Apple’s evolving Open Source
strategy

•2000: In the beginning, there was
Darwin and the stand-alone Darwin
releases

•2002: The rise of OpenDarwin

•2006: The fall of OpenDarwin

Apple’s evolving Open Source
strategy

•2000: In the beginning, there was
Darwin and the stand-alone Darwin
releases

•2002: The rise of OpenDarwin

•2006: The fall of OpenDarwin

•2006: ZFS and DTrace - working with
Sun

Some projects on MacOSForge

•CalendarServer: A CalDAV-compliant
server

•WebKit: Apple’s most successful OSS
project

•MacPorts: Apple’s 2nd most successful
one

•MacRuby: A version of Ruby for MacOSX

MacRuby
•A port of Ruby 1.9 to the Objective C

runtime

•Uses Objective C generational garbage
collector (“autozone”, just released as
OSS)

•Uses Core Foundation types (NSString,
NSArray, NSDictionary, ...) natively

A very simple application

Cocoa Hello World

Objective C version
impor t <Cocoa/Cocoa.h>

@inter face But tonCont ro l le r : NSObject
@end

@implementat ion But tonCont ro l le r

- (vo id)sayHe l lo : (id)sender
{
 NSLog(@"Hel lo Wor ld ! ") ;
}

@end

in t ma in (vo id)
{
 NSAppl ica t ion *app = [NSAppl ica t ion sharedAppl ica t ion] ;

 NSWindow *window = [[NSWindow alloc] initWithContentRect:NSMakeRect(0, 0, 200, 60)
 s ty leMask:NSTi t ledWindowMask |NSClosab leWindowMask |NSMin ia tur i zab leWindowMask |NSRes izab leWindowMask
 back ing :NSBack ingStoreBuffe red
 de fe r :NO] ;

 [w indow setT i t le :@"He l lo Wor ld"] ;

 NSBut ton *but ton = [[NSBut ton a l loc] in i tWi thFrame:NSZeroRect] ;
 [[w indow contentView] addSubv iew:but ton] ;

 [button setBezelStyle:NSRoundedBezelStyle];
 [button setTitle:@"Hello!"];
 [but ton s izeToF i t] ;

 NSSize contentS ize = [[w indow contentView] f rame] .s ize ;
 NSSize buttonSize = [button frame].size;
 NSPoint point = NSMakePoint((contentSize.width / 2.0) - (buttonSize.width / 2.0),
 (contentSize.height / 2.0) - (buttonSize.height / 2.0));
 [button setFrameOrigin:point];

 But tonCont ro l le r *but tonCont ro l le r = [But tonCont ro l le r new] ;
 [but ton setTarget :but tonCont ro l le r] ;
 [button setAction:@selector(sayHello:)];

 [window display];
 [w indow orderFrontRegard less] ;

 [app run];

 re tu rn 0 ;
}

“Straight port” MacRuby
f ramework 'Cocoa'

app = NSAppl ica t ion .sharedAppl ica t ion

win = NSWindow.a l loc . in i tWi thContentRect ([0 , 0 , 200, 60] ,
 s ty leMask:NSTi t ledWindowMask |NSClosab leWindowMask |NSMin ia tur i zab leWindowMask |NSRes izab leWindowMask,
 back ing :NSBack ingStoreBuffe red,
 defer:false)
win. t i t l e = 'He l lo Wor ld '

but ton = NSBut ton .a l loc . in i tWi thFrame(NSZeroRect)
win.contentView.addSubv iew(but ton)

but ton .beze lSty le = NSRoundedBeze lSty le
but ton . t i t l e = 'He l lo ! '
but ton .s izeToF i t
but ton . f rameOr ig in = NSMakePoin t ((w in .contentView. f rameSize .w idth / 2 .0) - (but ton . f rameSize .w idth / 2 .0) ,
 (w in .contentView. f rameSize .he ight / 2 .0) - (but ton . f rameSize .he ight / 2 .0))
but ton_cont ro l le r = Object .new
def but ton_cont ro l le r.sayHe l lo (sender)
 puts "He l lo Wor ld ! "
end
but ton . ta rget = but ton_cont ro l le r
but ton .act ion = 'sayHe l lo : '

win.d isp lay
win.orderFrontRegard less

app. run

MacRuby + HotCocoa version

requ i re 'hotcocoa'
i nc lude HotCocoa
appl ica t ion do
 w indow : t i t l e => 'He l lo Wor ld ' , : f rame => [0 , 0 , 120, 120] do |w |
 button :title => 'Click me' do |b|
 b .on_act ion { puts 'He l lo Wor ld ! ' }
 w << b
 end
 end
end

Our scary future...

The rise of the GPU

0

375

750

1,125

1,500

1998 2000 2001 2002 2003 2004 2005 2006 2007 2008

Number of Transistors (in millions)

2010 ?

Hi!

And these are largely computational, not cache!

The future: GPUs
•GPUs are becoming insanely fast and

capable

•GPUs are also, finally, mathematically
accurate and thus useful for general
computation

•OpenCL is an important development in
this space

•Convergence with CPUs is not that far

The future: Intel
•2008: Penryn: 8 core configurations now

common.

•2009: Nehalem: 12-16 cores become
common, Larrabee also raising this to 32 for
Intel’s “GPU”

•2010: 2nd die-shrink for Larrabee likely to
yield > 32 cores in commodity hardware

•2015: Here’s the plan: ONE MILLION CORES!

(all data coming from published roadmaps)

The future: Intel
•No, seriously, what does this mean?

•It means that Hardware folks are out of
headroom on pure clock speed and must
go lateral

•The hardware folks are also probably tired
of paying for the Software people’s sins.
ccNUMA is likely to eventually yield (back)
to NUMA. Good for them, bad for us!

•Memory access, already very expensive, will
become substantially more so (ex-SGI ,

The future: Intel
•Forget everything you thought you knew

about multi-threaded programming (and,
as it turns out, most developers didn’t
know much anyway)

•The kernel is the only one who really knows
the right mix of cores and power states to
use at any given time - this can’t be a pure
app-driven decision

•We need new APIs and mechanisms for
dealing with this incoming meteor

The future: Intel
If you think I am exaggerating the severity of

this problem, just remember:

Less than 30 years ago, this 16 bit 68000
was state-of-the-art, running at 8
Megahertz on a 3500nm process

And we’re evolving much faster today...

The future:
Mobility•Ubiquitous computing is not “coming”, it is

already HERE

•Small devices under increasing pressure to
become “micro” devices (active badges,
bluetooth headsets, cerebral implants, etc)

•Start thinking in terms of milliwatts, not just
watts, because your power budget is
shrinking

•The same applies to servers (think carbon

iPhone Lessons
•“Enterprise” features (like code signing) can

also be substantially leveraged on mobile
devices

•Mobile device features (like CoreAnimation)
can also encourage innovation in “bigger”
devices

•You can actually can run a full Unix on a
phone now

iPhone Lessons
•It’s all about the power, and all resources

(memory, flash, CPU) take power. We need
to challenge our “Unix assumptions” about
power being plentiful

•Stability is key for something this critical
(can’t crash while dialing emergency
services). You just can’t run everything
you want to

•Even with reduced power demands, mobile

Any questions?

