
 

 

Abstract Unpackers are as old as the packers themselves, but 

anti-unpacking tricks are a more recent development.  These 

anti-unpacking tricks have developed quickly in number and, in 

some cases, complexity.  In this paper, we will describe some of 

the most common anti-unpacking tricks, along with some 

countermeasures. 

 

INTRODUCTION 

nti-unpacking tricks can come in different forms, 

depending on what kind of unpacker they want to attack.  

The unpacker can be in the form of a memory-dumper, a 

debugger, an emulator, a code-buffer, or a W-X interceptor.  It 

can be a tool in a virtual machine.  There are corresponding 

tricks for each of these, and they will be discussed separately. 

 

- A memory-dumper dumps the process memory of the 

running process, without regard to the code inside it. 

 

- A debugger attaches to the process, allowing single-

stepping, or the placing of breakpoints at key locations, in 

order to stop execution at the right place.  The process can 

then be dumped with more precision than a memory-dumper 

alone. 

 

- An emulator, as used within this paper, is a purely 

software-based environment, most commonly used by anti-

malware software.  It places the file to execute inside the 

environment and watches the execution for particular events of 

interest. 

 

- A code-buffer is similar to, but different from, a debugger.  

It also attaches to a process, but instead of executing 

instructions in-place, it copies each instruction into a private 

buffer and executes it from there.  It allows fine-grained control 

over execution as a result.  It is also more transparent than a 

debugger, and faster than an emulator. 

 

- A W-X interceptor uses page-level tricks to watch for 

write-then-execute sequences.  Typically, an executable region 

is marked as read-only and executable, and everything else is 

marked as read-only and non-executable (or simply non-

present, depending on the hardware capabilities).  Then the 

code is allowed to execute freely.  The interceptor intercepts 

exceptions that are triggered by writes to read-only pages, or 

execution from non-executable or non-present pages.  If the 

hardware supports it, a read-only page will be replaced by a 

writable but non-executable page, and the write will be allowed 

to continue.  Otherwise, the single-step exception will be used 

to allow the write to complete, after which the page will be 

restored to its non-present state.  In either case, the page 

address is kept in a list.  In the event of exceptions triggered by 

execution of non-executable or non-present pages, the page 

address is compared to the entries in that list.  A match 

indicates the execution of newly-written code, and is a possible 

host entrypoint. 

 

I. ANTI-UNPACKING BY ANTI-DUMPING 

 

a. SizeOfImage 

 

The simplest of anti-dumping tricks is to change the 

SizeOfImage value in the Process Environment Block (PEB).  

This interferes with process access, including preventing a 

debugger from attaching to the process.  It also breaks tools 

such as LordPE in default mode, among others. 

Example code looks like this: 

 

    mov eax, fs:[30h] ;PEB 

    mov eax, [eax+0ch] ;LdrData 

    ;get InLoadOrderModuleList 

    mov eax, [eax+0ch] 

    ;adjust SizeOfImage 

    add dw [eax+20h], 1000h 

 

The technique is used by many packers now.  However, 

the technique is easily defeated, even by user-mode code.  

We can simply ignore the SizeOfImage value, and call the 

VirtualQuery() function instead.  The VirtualQuery() function 

returns the number of sequential pages whose attributes are 

the same.  Since there cannot be gaps between sections in 

memory, the ranges can be enumerated by querying the first 

page after the end of the previous range.  The enumeration 

would begin with the ImageBase page and continue while 

the MEM_IMAGE type is returned.  A page that is not of 

the MEM_IMAGE type did not come from the file. 

 

b. Erasing the header 

 

Some unpackers examine the section table to gather 

interesting information about the image.  Erasing or altering 

that section table in the PE header can interfere with the 

gathering of that information.  This is typically used as to 

defeat ProcDump-style tools, which rely on the section table 

to dump the image. 

Example code looks like this: 

 

ANTI-UNPACKER TRICKS 

CURRENT 
Peter Ferrie, Senior Anti-Virus Researcher, Microsoft Corporation 

A 



 

 

    ;get image base 

    push 0 

    call GetModuleHandleA 

    push eax 

    push esp 

    push 4 ;PAGE_READWRITE 

    ;rounded up to hardware page size 

    push 1 

    push eax 

    xchg edi, eax 

    call VirtualProtect 

    xor  ecx, ecx 

    mov  ch, 10h ;assume 4kb pages 

    ;store VirtualProtect return value 

    rep  stosb 

 

This technique is used by Yoda's Crypter, among others.  

As above, the VirtualQuery() function can be used to 

recover the image size, and some of the layout (i.e. which 

pages are executable, which are writable, etc), but there is no 

way to recover the section table once it has been erased. 

 

c. Nanomites 

 

Nanomites are a more advanced method of anti-dumping.  

They were introduced in Armadillo.  They work by replacing 

branch instructions with an "int 3" instruction, and using 

tables in the unpacking code to determine the details.  The 

details in this case are whether or not the "int 3" is a 

nanomite or a debug break; whether or not the branch 

should be taken, if it is a nanomite; the address of the 

destination, if the branch is taken; and how large the 

instruction is, if the branch is not taken. 

 

A process that is protected by nanomites requires self-

debugging (known as "Debug Blocker" in Armadillo, see 

Anti-Debugging:Self-Debugging section below), which uses 

a copy of the same process.  This allows the debugger to 

intercept the exceptions that are generated by the debuggee 

when the nanomite is hit.  When the exception occurs in the 

debuggee, the debugger recovers the exception address and 

searches for it in an address table.  If a match is found, then 

the nanomite type is retrieved from a type table.  If the CPU 

flags match the type, then the branch will be taken.  When 

that happens, the destination address is retrieved from a 

destination table, and execution resumes from that address.  

Otherwise, the size of the branch is retrieved from the size 

table, in order to skip the instruction. 

 

d. Stolen Bytes 

 

Stolen bytes are opcodes that are taken from the host and 

placed in dynamically allocated memory, where they will be 

executed separately.  A jump instruction is placed at the 

start of the stolen bytes in the host, to point to the start of 

the relocated code.  A jump instruction is placed at the end 

of the relocated code, to point to the end of the stolen bytes.  

The rest of the opcodes in the s tolen region in the host are 

then replaced with garbage.  The relocated code can also be 

interspersed with garbage instructions, in order to make it 

more difficult to determine the real instructions from the fake 

instructions.  This complicates the restoration of the original 

code.  This technique was introduced in ASProtect. 

 

e. Guard Pages 

 

Guard pages act as a one-shot access alarm.  The first 

time that a guard page is accessed for any reason, an 

EXCEPTION_GUARD_PAGE (0x80000001) exception will be 

raised.  This can be used for a variety of things, but overall it  

acts as a demand-paging system for ring 3 code.  The 

technique is achieved by intercepting the 

EXCEPTION_GUARD_PAGE (0x80000001) exception, 

checking if the page is within a particular range (for example, 

within the process image space), then mapping in some 

appropriate content if so. 

 

This technique is used by Shrinker to perform on-

demand decompression.  By decompressing only the pages 

that are accessed, the startup time is reduced significantly.  

The committed memory consumption can be reduced, since 

any pages that are not accessed do not need any physical 

memory to back them.  The overall application performance 

can also be increased, when compared to other packers that 

decompress the entire application immediately.  Shrinker 

works by hooking the ntdll KiUserExceptionDispatcher() 

function, and watching for the EXCEPTION_GUARD_PAGE 

(0x80000001) exception.  If the exception occurs within the 

process image space, then Shrinker will load from disk the 

individual page that is being accessed, decompress it, and 

then resume execution.  If an access spans two pages, then 

upon resuming, an exception will occur for the next page, 

and Shrinker will load and decompress that page, too. 

 

A variation of this technique is used by Armadillo, to 

perform on-demand decryption (known as "CopyMem2").  

However, as with nanomites, it requires the use of self-

debugging.  This is in contrast to Shrinker, which is entirely 

self-contained.  Armadillo decompresses all of the pages 

into memory at once, rather than loading them from disk 

when they are accessed.  Armadillo uses the debugger to 

intercept the exceptions in the debuggee, and watches for 

the EXCEPTION_GUARD_PAGE (0x80000001) exception.  If 

the exception occurs within the process image space, then 

Armadillo will decrypt the individual page that is being 

accessed, and then resume execution.  If an access spans 

two pages, then upon resuming, an exception will occur for 

the next page, and Armadillo will decrypt that page, too. 



 

 

 

If performance were not a concern, a protection method of 

this type could also remember the last page that was loaded, 

and discard it when an exception occurs for another page 

(unless the exception address suggests an access that 

spanned them).  That way, no more than two pages will ever 

be in the clear in memory at the same time.  In fact, that 

Armadillo does not do this could be considered a weakness 

in the implementation, because by simply touching all of the 

pages in the image, Armadillo will decrypt them all, and then 

the process can be dumped entirely. 

 

f. Imports 

 

The list of imported functions can be very useful to get at 

least some idea of what a program does.  To combat this, 

some packers alter the import table after the imports have 

been resolved.  The alteration typically takes the form of 

completely erasing the import table, but there are variations 

that include changing the imported address to point to a 

private buffer that is allocated dynamically.  Within the 

buffer is a jump to the real function address.  This buffer is 

usually not dumped by default, so when the process exits, 

the information is lost as to the real function addresses. 

 

g. Virtual machines 

 

Virtual machines are perhaps the ultimate in anti-dumping 

technology, because at no point is the directly executable 

code ever visible in memory.  Further, the import table might 

contain only the absolutely required functions 

(LoadLibrary() and GetProcAddress()), leaving no clue as to 

what the program does.  Additionally, the p-code might be 

encoded in some way, such that two behaviourally identical 

samples might have very different-looking contents.  This 

technique is used by VMProtect. 

 

The p-code itself can be polymorphic, where do-nothing 

instructions are inserted into the code flow, in the same way 

as is often done for native code.  This technique is used by 

Themida. 

 

The p-code can contain anti-debugging routines, such as 

checking specific memory locations for specific values (see 

Anti-Debugging section below).  This technique is used by 

HyperUnpackMe2
i
. 

 

The p-code interpreter can be obfuscated, such that the 

method for interpretation is not immediately obvious.  This 

technique is used by Themida and Virtual CPU
ii
. 

 

II. ANTI-UNPACKING BY ANTI-DEBUGGING 

 

a. PEB fields 

 

i. NtGlobalFlag 

 

The NtGlobalFlag field exists at offset 0x68 in the PEB.  

The value in that field is zero by default.  On Windows 

2000 and later, there is a particular value that is typically 

stored in the field when a debugger is running.  The 

presence of that value is not a reliable indication that a 

debugger is really running (especially since it is entirely 

absent on Windows NT).  However, it is often used for 

that purpose.  The field is composed of a set of flags.  The 

value that suggests the presence of a debugger is 

composed of the following flags: 

 

FLG_HEAP_ENABLE_TAIL_CHECK (0x10) 

FLG_HEAP_ENABLE_FREE_CHECK (0x20) 

FLG_HEAP_VALIDATE_PARAMETERS (0x40) 

 

Example incorrect code looks like this: 

 

    mov eax, fs:[30h] ;PEB 

    ;check NtGlobalFlag 

    cmp b [eax+68h], 70h 

    jne being_debugged 

 

This technique is used by ExeCryptor, among others. 

 

The "cmp" instruction above is a common mistake.  

The assumption is that no other flags can be set, which is 

not true.  Those three flags alone are usually set for a 

process that is  created by a debugger, but not for a 

process to which a debugger attaches afterwards.  

However, there are three further exceptions. 

 

The first exception is that additional flags can be set for 

all processes, by a registry value.  The registry value is 

the "GlobalFlag" string value of the 

"HKLM\System\CurrentControlSet\Control\Session 

Manager" registry key. 

 

The second exception is that all of the flags can be 

controlled on a per-process basis, by a different registry 

value.  The registry value is the also the "GlobalFlag" 

string value (note that "Windows Anti-Debug Reference" 

by Nicolas Falliere
iii
 incorrectly calls it "GlobalFlags") of 

the "HKLM\Software\Microsoft\Windows 

NT\CurrentVersion\Image File Execution 

Options\<filename>" registry key.  The "<filename>" must 

be replaced by the name of the executable file (not a DLL) 

to which the flags will be applied when the file is 

executed.  An empty "GlobalFlag" string value will result 

in no flags being set. 

 



 

 

The third exception is that, on Windows 2000 and later, 

all of the flags can be controlled on a per-process basis, 

by the Load Configuration Structure.  The Load 

Configuration Structure has existed since Windows NT, 

but the format was not documented by Microsoft in the 

PE/COFF Specification until 2006 (and incorrectly).  The 

structure was extended to support Safe Exception 

Handling in Windows XP, but it also contains two fields 

of relevance to this paper: GlobalFlagsClear and 

GlobalFlagsSet.  As their names imply, they can be used 

to clear and/or set any combination of bits in the PEB-

>NtGlobalFlag field.  The flags specified by the 

GlobalFlagsClear field are cleared first, then the flags 

specified by the GlobalFlagsSet field are set.  This means 

that even if all of the flags are specified by the 

GlobalFlagsClear field, any flags that are specified by the 

GlobalFlagsSet field will still be set.  No current packer 

supports this structure. 

 

If the FLG_USER_STACK_TRACE_DB (0x1000) is 

specified to be set, either by the "GlobalFlag" registry 

value, or in the GlobalFlagsSet field, the 

FLG_HEAP_VALIDATE_PARAMETERS will 

automatically be set, even if it is specified in the 

GlobalFlagsClear field. 

 

Thus, the correct implementation to detect the default 

value is this one: 

 

    mov eax, fs:[30h] ;PEB 

    mov al, [eax+68h] ; NtGlobalFlag 

    and al, 70h 

    cmp al, 70h 

    je  being_debugged 

 

The simplest method to defeat this technique is to 

create the empty "GlobalFlag" string value. 

 

b. Heap flags 

 

The process default heap is another place to find 

debugging artifacts.  The base heap pointer can be retrieved 

by the kernel32 GetProcessHeap() function.  Some packers 

avoid using the API and look directly at the PEB instead. 

 

Example code looks like this: 

 

    mov eax, fs:[30h] ;PEB 

    ;get process heap base 

    mov eax, [eax+18h] 

 

Within the heap are two fields of interest.  The PEB-

>NtGlobalFlags field forms the basis for the values in those 

fields.  The first field (Flags) exists at offset 0x0c in the heap, 

the second one (ForceFlags) is at offset 0x10 in the heap.  

The Flags field indicates the settings that were used for the 

current heap block.  The ForceFlags field indicates the 

settings that will be used for subsequent heap manipulation.  

The value in the first field is two by default, the value in the 

second field is zero by default.  There are particular values 

that are typically stored in those fields when a debugger is 

running, but the presence of those values is not a reliable 

indication that a debugger is really running.  However, they 

are often used for that purpose. 

 

The fields are composed of a set of flags.  The value in 

the first field that suggests the presence of a debugger is 

composed of the following flags:  

 

HEAP_GROWABLE (2) 

HEAP_TAIL_CHECKING_ENABLED (0x20) 

HEAP_FREE_CHECKING_ENABLED (0x40) 

HEAP_SKIP_VALIDATION_CHECKS (0x10000000) 

HEAP_VALIDATE_PARAMETERS_ENABLED 

(0x40000000) 

 

Example code looks like this: 

 

    mov eax, fs:[30h] ;PEB 

    ;get process heap base 

    mov eax, [eax+18h] 

    mov eax, [eax+0ch] ;Flags 

    dec eax 

    dec eax 

    jne being_debugged 

 

The value in the second field that suggests the presence 

of a debugger is composed of the following flags: 

 

HEAP_TAIL_CHECKING_ENABLED (0x20) 

HEAP_FREE_CHECKING_ENABLED (0x40) 

HEAP_VALIDATE_PARAMETERS_ENABLED 

(0x40000000) 

 

Example code looks like this: 

 

    mov eax, fs:[30h] ;PEB 

    ;get process heap base 

    mov eax, [eax+18h] 

    cmp [eax+10h], 0 ;ForceFlags 

    jne being_debugged 

 

The "tail" flags are set in the heap fields if the 

FLG_HEAP_ENABLE_TAIL_CHECK flag is set in the PEB-

>NtGlobalFlags field.  The "free" flags are set in the heap 

fields if the FLG_HEAP_ENABLE_FREE_CHECK flag is set 

in the PEB->NtGlobalFlags field.  The validation flags are set 

in the heap fields if the 



 

 

FLG_HEAP_VALIDATE_PARAMETERS flag is set in the 

PEB->NtGlobalFlags field.  However, the heap flags can be 

controlled on a per-process basis, through the 

"PageHeapFlags" value, in the same manner as "GlobalFlag" 

above.   

 

c. The Heap 

 

The problem with simply clearing the heap flags is that 

the initial heap will have been initialised with the flags 

active, and that leaves some artifacts that can be detected.  

Specifically, at the end of the heap block will one definite 

value, and one possible value.  The 

HEAP_TAIL_CHECKING_ENABLED flag causes the 

sequence 0xABABABAB to always appear twice at the 

exact end of the allocated block.  The 

HEAP_FREE_CHECKING_ENABLED flag causes the 

sequence 0xFEEEFEEE (or a part thereof) to appear if 

additional bytes are required to fill in the slack space until 

the next block. 

Example code looks like this: 

 

    mov   eax, <heap ptr> 

    ;get unused_bytes 

    movzx ecx, b [eax-2] 

    movzx edx, w [eax-8] ;size 

    sub   eax, ecx 

    lea   edi, [edx*8+eax] 

    mov   al, 0abh 

    mov   cl, 8 

    repe  scasb 

    je    being_debugged 

 

These values are checked by Themida. 

 

d. Special APIs 

 

i. IsDebuggerPresent 

 

The kernel32 IsDebuggerPresent() function was 

introduced in Windows 95.  It returns TRUE if a debugger 

is present.  Internally, it simply returns the value of the 

PEB->BeingDebugged flag. 

Example code looks like this: 

 

    call IsDebuggerPresent 

    test al, al 

    jne  being_debugged 

 

Some packers avoid using the kernel32 

IsDebuggerPresent() function and look directly at the PEB 

instead. 

Example code looks like this: 

 

    mov eax, fs:[30h] ;PEB 

    ;check BeingDebugged 

    cmp b [eax+2], 0 

    jne being_debugged 

 

To defeat these methods requires only setting the PEB-

>BeingDebugged flag to FALSE.  A common 

convenience while debugging is to place a breakpoint at 

the first instruction in the kernel32 IsDebuggerPresent() 

function.  Some unpackers check explicitly for this 

breakpoint. 

Example code looks like this: 

 

    push offset l1 

    call GetModuleHandleA 

    push offset l2 

    push eax 

    call GetProcAddress 

    cmp  b [eax], 0cch 

    je   being_debugged 

    ... 

l1: db "kernel32", 0 

l2: db "IsDebuggerPresent", 0 

 

Some packers check that the first byte in the function is 

the "64" opcode ("FS:" prefix). 

Example code looks like this: 

 

    push offset l1 

    call GetModuleHandleA 

    push offset l2 

    push eax 

    call GetProcAddress 

    cmp  b [eax], 64h 

    jne  being_debugged 

    ... 

l1: db "kernel32", 0 

l2: db "IsDebuggerPresent", 0 

 

ii. CheckRemoteDebuggerPresent 

 

The kernel32 CheckRemoteDebuggerPresent() function 

has these parameters: HANDLE hProcess, PBOOL 

pbDebuggerPresent.  The function is a wrapper that was 

introduced in Windows XP SP1, to query a value that has 

existed since Windows NT.  "Remote" in this sense refers 

to a separate process on the same machine.  The function 

sets to 0xffffffff the value to which the 

pbDebuggerPresent argument points, if a debugger is 

present.  Internally, it simply returns the value from the 

ntdll NtQueryInformationProcess  (ProcessDebugPort 

class) function. 

Example code looks like this: 

 



 

 

    push eax 

    push esp 

    push -1 ;GetCurrentProcess() 

    call CheckRemoteDebuggerPresent 

    pop  eax 

    test eax, eax 

    jne  being_debugged 

 

Some packers avoid using the kernel32 

CheckRemoteDebuggerPresent() function, and call the 

ntdll NtQueryInformationProcess() function directly. 

 

iii. NtQueryInformationProcess  

 

The ntdll NtQueryInformationProcess() function has 

these parameters: HANDLE ProcessHandle, 

PROCESSINFOCLASS ProcessInformationClass, PVOID 

ProcessInformation, ULONG ProcessInformationLength, 

PULONG ReturnLength.  Windows Vista supports 45 

classes of ProcessInformationClass information (up from 

38 in Windows XP), but only four of them are documented 

by Microsoft so far.  One of them is the 

ProcessDebugPort.  It is possible to query for the 

existence (not the value) of the port.  The return value is 

0xffffffff if the process is being debugged.  Internally, the 

function queries for the non-zero state of the EPROCESS-

>DebugPort field. 

Example code looks like this: 

 

    push eax 

    mov  eax, esp 

    push 0 

    push 4 ;ProcessInformationLength 

    push eax 

    push 7 ;ProcessDebugPort 

    push -1 ;GetCurrentProcess() 

    call NtQueryInformationProcess 

    pop  eax 

    test eax, eax 

    jne  being_debugged 

 

This technique is used by MSLRH, among others.  

Since this information comes from the kernel, there is no 

easy way for user-mode code to prevent this call from 

revealing the presence of the debugger. 

 

iv. Debug Objects 

 

Windows XP introduced a "debug object".  When a 

debugging session begins, a debug object is created, and 

a handle is associated with it.  It is possible to query for 

the value of this handle, using the undocumented 

ProcessDebugObjectHandle class. 

Example code looks like this: 

 

    push eax 

    mov  eax, esp 

    push 0 

    push 4 ;ProcessInformationLength 

    push eax 

    ;ProcessDebugObjectHandle 

    push 1eh 

    push -1 ;GetCurrentProcess() 

    call NtQueryInformationProcess 

    pop  eax 

    test eax, eax 

    jne  being_debugged 

 

This technique is used by HyperUnpackMe2, among 

others.  Since this information comes from the kernel, 

there is no easy way for user-mode code to prevent this 

call from revealing the presence of the debugger. 

 

The undocumented ProcessDebugFlags class returns 

the inverse value of the EPROCESS->NoDebugInherit bit.  

That is, the return value is FALSE if a debugger is 

present. 

Example code looks like this: 

 

    push eax 

    mov  eax, esp 

    push 0 

    push 4 ;ProcessInformationLength 

    push eax 

    push 1fh ;ProcessDebugFlags 

    push -1 ;GetCurrentProcess() 

    call NtQueryInformationProcess 

    pop  eax 

    test eax, eax 

    je   being_debugged 

 

This technique is used by HyperUnpackMe2, among 

others.  Since this information comes from the kernel, 

there is no easy way for user-mode code to prevent this 

call from revealing the presence of the debugger. 

 

v.  NtQuerySystemInformation 

 

The ntdll NtQuerySystemInformation() function has 

these parameters: SYSTEM_INFORMATION_CLASS 

SystemInformationClass, PVOID SystemInformation, 

ULONG SystemInformationLength, PULONG 

ReturnLength.  Windows Vista supports 106 classes of 

SystemInformationClass information (up from 72 in 

Windows XP), but only nine of them are documented by 

Microsoft so far.  None of them is the 

SystemKernelDebuggerInformation class, which has  

existed since Windows NT. 



 

 

 

The SystemKernelDebuggerInformation class returns 

the value of two flags: KdDebuggerEnabled in al, and 

KdDebuggerNotPresent in ah.  Thus, the return value in 

ah is FALSE if a debugger is present. 

Example code looks like this: 

 

    push eax 

    mov  eax, esp 

    push 0 

    push 2 ;SystemInformationLength 

    push eax 

    ;SystemKernelDebuggerInformation 

    push 23h 

    call NtQuerySystemInformation 

    pop  eax 

    test ah, ah 

    je   being_debugged 

 

This technique is used by SafeDisc.  Since this 

information comes from the kernel, there is no easy way to 

prevent this call from revealing the presence of the 

debugger. 

 

vi. NtQueryObject 

 

The ntdll NtQueryObject() function has these 

parameters: HANDLE Handle, 

OBJECT_INFORMATION_CLASS 

ObjectInformationClass, PVOID ObjectInformation, 

ULONG ObjectInformationLength, PULONG 

ReturnLength.  Windows NT-based platforms support five 

classes of ObjectInformationClass information, but only 

two of them are documented by Microsoft so far.  Neither 

of them is the ObjectAllTypesInformation, which we 

require. 

 

As noted above, when a debugging session begins on 

Windows XP, a debug object is created, and a handle is 

associated with it.  It is possible to query for the list of 

existing objects, and check the number of debug objects 

that exist.  This API is supported by Windows NT-based 

platforms, but only Windows XP and later will return a 

debug object in the list. 

Example code looks like this: 

 

    xor   ebx, ebx 

    push  ebx 

    push  esp ;ReturnLength 

    ;ObjectInformationlength of 0 

    ;to receive required size 

    push  ebx 

    push  ebx 

    ;ObjectAllTypesInformation 

    push  3  

    push  ebx 

    call  NtQueryObject 

    pop   ebp 

    push  4 ;PAGE_READWRITE 

    push  1000h ;MEM_COMMIT 

    push  ebp 

    push  ebx 

    call  VirtualAlloc 

    push  ebx 

    ;ObjectInformationLength 

    push  ebp  

    push  eax 

    ;ObjectAllTypesInformation 

    push  3 

    push  ebx 

    xchg  esi, eax 

    call  NtQueryObject 

    lodsd ;handle count 

    xchg  ecx, eax 

l1: lodsd ;string lengths 

    movzx edx, ax ;length 

    ;pointer to TypeName 

    lodsd 

    xchg  esi, eax 

    ;sizeof(L"DebugObject") 

    ;avoids superstrings 

    ;like "DebugObjective" 

    cmp   edx, 16h  

    jne   l2 

    xchg  ecx, edx 

    mov   edi, offset l3 

    repe  cmpsb 

    xchg  ecx, edx 

    jne   l2 

    ;TotalNumberOfObjects 

    cmp   [eax], edx 

    jne   being_debugged 

    ;point to trailing null 

l2: add   esi, edx 

    ;round down to dword 

    and   esi, -4 

    ;skip trailing null 

    ;and any alignment bytes 

    lodsd 

    loop  l1 

    ... 

l3: dw    "D","e","b","u","g" 

    dw    "O","b","j","e","c","t" 

 

Since this information comes from the kernel, there is 

no easy way for user-mode code to prevent this call from 

revealing the presence of the debugger. 

 



 

 

vii. Thread hiding 

 

Windows 2000 introduced an explicitly anti-debugging 

API extension, in the form of an information class called 

HideThreadFromDebugger.  It can be applied on a per-

thread basis, using the ntdll SetInformationThread() 

function. 

Example code looks like this: 

 

    push 0 

    push 0 

    ;HideThreadFromDebugger 

    push 11h 

    push -2 ;GetCurrentThread() 

    call NtSetInformationThread 

 

When the function is called, the thread will continue to 

run but a debugger will no longer receive any events 

related to that thread.  Among the missing events are that 

the process has terminated, if the main thread is the 

hidden one.  This technique is used by 

HyperUnpackMe2, among others. 

 

viii. OpenProcess 

 

When a process acquires the SeDebugPrivilege, it 

gains full control of the CSRSS.EXE, even though 

CSRSS.EXE is a system process.  The reason for that is 

because SeDebugPrivilege overrides all of the restrictions 

for that process alone.  Further, the privilege is passed to 

child processes, such as the ones created by a debugger.  

The result is if a debugged application can obtain the 

process ID for CSRSS.EXE, it can open the process via 

the kernel32 OpenProcess() function.  The process ID can 

be obtained by the kernel32 CreateToolhelp32Snapshot() 

function and a kernel32 Process32Next() function 

enumeration; or the ntdll NtQuerySystemInformation 

(SystemProcessInformation (5)) function (and the ntdll 

NtQuerySystemInformation() function is how the kernel32 

CreateToolhelp32Snapshot() function gets its information 

on Windows NT-based platforms).  Alternatively, 

Windows XP introduced the ntdll CsrGetProcessId() 

function, which simplifies things greatly. 

Example code looks like this: 

 

    call CsrGetProcessId 

    push eax 

    push 0 

    push 1f0fffh ;PROCESS_ALL_ACCESS 

    call OpenProcess 

    test eax, eax 

    jne  being_debugged 

 

This opens (no pun intended) the way to a system-

level denial-of-service, by causing the CSRSS.EXE 

process to perform an illegal operation.  One method is 

the creation of a thread at an invalid memory address, or a 

thread that executes an infinite loop.  However, since the 

control is complete, an application can inject a thread into 

the CSRSS.EXE process space and perform some 

meaningful action, which results in a privilege elevation.  

However, this is of only minor concern, since usually only 

Administrators will be able to acquire the debug privilege, 

and Administrators are highly privileged already.  This 

technique was described publicly by Piotr Bania
iv
 in 2005. 

 

Both OllyDbg and WinDbg acquire the debug privilege, 

but Turbo Debug does not.  The best way to defeat this 

technique is to not acquire the privilege arbitrarily, and 

keep it for only as long as truly necessary. 

 

ix. CloseHandle 

 

If an invalid handle is passed to the kernel32 

CloseHandle() function (or directly to the ntdll NtClose() 

function), and no debugger is present, then an error code 

is returned.  However, if a debugger is present, an 

EXCEPTION_INVALID_HANDLE (0xc0000008) exception 

will be raised.  This exception can be intercepted by an 

exception handler, and is an indication that a debugger is 

running. 

Example code looks like this: 

 

    xor  eax, eax 

    push offset being_debugged 

    push dw fs:[eax] 

    mov  fs:[eax], esp 

    ;any illegal value will do 

    ;must be dword-aligned on Vista 

    push esp 

    call CloseHandle 

 

To defeat this method is easiest on Windows XP, where 

a FirstHandler Vectored Exception Handler can be 

registered by the debugger to hide the exception and 

silently resume execution.  Of course, there is the problem 

of transparently hooking the kernel32 

AddVectoredExceptionHandler() function, in order to 

prevent another handler from registering as the first 

handler.  However, it is still better than the problem of 

transparently hooking the ntdll NtClose() on Windows NT 

and Windows 2000, in order to register a Structured 

Exception Handler to hide the exception. 

 

x. OutputDebugString 

 

The kernel32 OutputDebugString() function can 

demonstrate different behaviour, depending on whether 



 

 

or not a debugger is present.  The most obvious 

difference in behaviour that the kernel32 GetLastError() 

function will return zero if a debugger is present. 

Example code looks like this: 

 

    push 0 

    push esp 

    call OutputDebugStringA 

    call GetLastError 

    test eax, eax 

    je   being_debugged 

 

xi. ReadFile 

 

The kernel32 ReadFile() function can be used as a 

technique for self-modification, by reading file content 

into the code stream.  It is also an effective method for 

removing software breakpoints that a debugger might 

place.  This is a technique that I discussed privately in 

1999, but it was described publicly by Piotr Bania
v
 in 2007. 

Example code looks like this: 

 

    xor  ebx, ebx 

    mov  ebp, offset l2 

    push 104h ;MAX_PATH 

    push ebp 

    push ebx ;self filename 

    call GetModuleFileNameA 

    push ebx 

    push ebx 

    push 3 ;OPEN_EXISTING 

    push ebx 

    push 1 ;FILE_SHARE_READ 

    push 80000000h ;GENERIC_READ 

    push ebp 

    call CreateFileA 

    push ebx 

    push esp 

    ;more bytes might be more useful 

    push 1 

    push offset l1 

    push eax 

    call ReadFile 

    ;replaced by "M" 

    ;from the MZ header 

l1: int  3 

    ... 

l2: db   104h dup (?);MAX_PATH 

 

The way to defeat this technique is to use hardware 

breakpoints instead of software breakpoints after the API 

call. 

 

xii. WriteProcessMemory 

 

The kernel32 WriteProcessMemory() function 

technique is a simple variation on the kernel32 ReadFile() 

function technique above, but it requires that the data to 

write are already present in the process memory space. 

Example code looks like this: 

 

    push 1 

    push offset l1 

    push offset l2 

    push -1 ;GetCurrentProcess() 

    call WriteProcessMemory 

l1: nop 

l2: int  3 

 

This technique is used by NsAnti.  The way to defeat 

this technique is to use hardware breakpoints instead of 

software breakpoints after the API call. 

 

xiii. UnhandledExceptionFilter 

 

When an exception occurs, and no registered 

Structured Exception Handlers (neither Safe nor Legacy) 

or Vectored Exception Handlers exist, or none of the 

registered handlers handles the exception, the kernel32 

UnhandledExceptionFilter() function will be called as a 

last resort.  Within that function is a call to the handler 

that was registered by the kernel32 

SetUnhandledExceptionFilter() function, but that call will 

not reached if a debugger is present.  Instead, the 

exception will be passed to the debugger.  The presence 

of a debugger is determined by a call to the ntdll 

NtQueryInformationProcess (ProcessDebugPort class) 

function.  So, for applications that do not know about the 

ntdll NtQueryInformationProcess  (ProcessDebugPort 

class) function, the missing exception can be used to infer 

the presence of the debugger. 

Example code looks like this: 

 

    push offset l1 

    call SetUnhandledExceptionFilter 

    ;force an exception to occur 

    int  3 

    jmp  being_debugged 

l1: ... 

 

xiv. Block Input 

 

The user32 BlockInput() function blocks mouse and 

keyboard events from reaching applications.  It is a very 

effective way to disable debuggers. 

Example code looks like this: 

 

    push 1 



 

 

    call BlockInput 

 

This technique is  used by Yoda's Protector, among 

others. 

 

xv. SuspendThread 

 

The kernel32 SuspendThread() function can be another 

very effective way to disable user-mode debuggers like 

OllyDbg and Turbo Debug.  This can be achieved by 

enumerating the processes, as described above, then 

suspending the main thread of the parent process, if it 

does not match "Explorer.exe".  This technique is used by 

Yoda's Protector. 

 

xvi. Guard Pages 

 

Guard pages can be used for a simple debugger 

detection.  An exception handler is registered, an 

executable/writable page is allocated dynamically, a "C3" 

opcode ("RET" instruction) is written to it, and then the 

page protection is changed to PAGE_GUARD.  Then an 

attempt is made to execute the instruction.  This should 

result in an EXCEPTION_GUARD_PAGE (0x80000001) 

exception being received by the exception handler, but if a 

debugger is present, the debugger might intercept the 

exception and allow the execution to continue.  In fact, 

that's exactly what happens in OllyDbg (see Anti-

debugging:OllyDbg section below). 

Example code looks like this: 

 

    xor  ebx, ebx 

    push 40h ;PAGE_EXECUTE_READWRITE 

    push 1000h ;MEM_COMMIT 

    push 1 

    push ebx 

    call VirtualAlloc 

    mov  b [eax], 0c3h 

    push eax 

    push esp 

    ;PAGE_EXECUTE_READWRITE 

    ;+ PAGE_GUARD 

    push 140h 

    push 1 

    push eax 

    xchg ebp, eax 

    call VirtualProtect 

    push offset l1 

    push dw fs:[ebx] 

    mov  fs:[ebx], esp 

    push offset being_debugged 

    ;executing ret will branch 

    ;to being_debugged 

    jmp  ebp 

    ;an exception will reach here 

l1: ... 

 

This technique is used by PC Guard. 

 

xvii. Alternative desktop 

 

Windows NT-based platforms support multiple 

desktops per session.  It is possible to select a different 

active desktop, which has the effect of hiding the 

windows of the previously active desktop, and with no 

obvious way to switch back to the old desktop. 

 

Example code looks like this: 

 

    xor  eax, eax 

    push eax 

    ;DESKTOP_CREATEWINDOW 

    ;+ DESKTOP_WRITEOBJECTS 

    ;+ DESKTOP_SWITCHDESKTOP 

    push 182h 

    push eax 

    push eax 

    push eax 

    push offset l1 

    call CreateDesktopA 

    push eax 

    call SwitchDesktop 

    ... 

l1: db   "mydesktop", 0 

 

This technique is used by HyperUnpackMe2. 

 

e. Hardware tricks 

 

i. Prefetch queue 

 

Given this code: 

 

l1: call l3 

l2: ... 

l3: mov  al, 0c3h 

    mov  edi, offset l3 

    or   ecx, -1 

    rep  stosb 

 

What happens next?  The answer depends on several 

things.  Clearly, the code overwrites itself, which might 

lead one to conclude that it stops as soon as the REP is 

destroyed.  If a debugger is used to single-step, then that 

is exactly what happens.  However, if a debugger is not 

present, then the write continues until an exception 

occurs.  Which exception that is depends on the memory 

layout at the time. 



 

 

 

If, after the code, is a purely virtual region that has 

been accessed by a debugger, for example, then an access  

violation exception will occur and the program will exit if 

no exception handler has been registered. 

 

On the other hand, if the virtual memory has not been 

accessed, then the REP will stop.  No visible exception 

will occur, but a "C3" opcode ("RET" instruction) will be 

executed, and control will be returned to l2. 

 

Why?  The answer is the prefetch queue.  On the x86 

family of CPUs prior to the Pentium, the prefetch queue 

would not be flushed automatically when a memory write 

occurred at an address that corresponded to the address 

of the bytes in the prefetch queue.  However, the queue 

would be flushed whenever an exception occurred, such 

as the single-step exception that many debuggers use to 

step through code.  This behaviour allowed for all kinds 

of anti-debugger tricks, mostly concerned with 

overwriting the next instruction to execute.  In the 

absence of a debugger, the prefetch queue would execute 

the original instruction.  In the presence of a debugger 

that triggers a single-step exception, the queue would be 

flushed, and the alteration would be applied. 

 

Intel considered this behaviour to be a bug, and it was 

fixed in the Pentium and later CPUs, but with two 

exceptions that remain to this day: the REP MOVS and 

REP STOS instructions.  For those two instructions, the 

CPU still caches them and continues to execute them even 

when the instruction sequence has been overwritten in 

memory. 

 

The execution continues until completion, or until an 

exception occurs.  In the case above, an exception occurs, 

but it is a page fault when the value in EDI reaches a 

reserved page in memory.  At that time, the CPU flushes 

and reloads the prefetch queue, sees the "C3" opcode 

("RET" instruction) where the REP STOS instruction was 

previously, and executes that instead. 

 

This technique is used by Invius. 

 

Another example of this trick exists that does not rely 

on the page fault. 

Example code looks like this: 

 

l1: mov  al, 90h 

    push 10h 

    pop  ecx 

    mov  edi, offset l1 

    rep  stosb 

    ... 

 

One variation contains a JMP instruction within the 

altered range; the other contains a JECXZ instruction 

outside of the altered range.  They have opposite effects. 

 

In both cases, the "90" opcode ("NOP" instruction) in 

the AL register is used to overwrite the REP STOSB and 

some of the following bytes.  Incorrect emulation (or 

single-stepping through the code, as with a debugger) 

will cause the REP to exit prematurely, allowing the 

instructions immediately following the STOSB instruction 

to execute.  In the first variation, the JMP instruction will 

be executed as a result, revealing the presence of a 

debugger or similar.  In the second variation, the value in 

ECX will be zero only if the REP STOSB completes.  If the 

JECXZ instruction is not executed, this reveals the 

presence of a debugger or similar. 

 

The JECXZ version of this technique is used by 

Obsidium. 

 

The Pentium Pro introduced an additional behaviour, 

called a "fast string" operation, which is also supported 

by modern CPUs.  It is available for both MOVS and 

STOS.  It requires these conditions: REP prefix, EDI 

aligned to a multiple of 8 bytes (and ESI, too, for MOVS 

on a Pentium 3), ESI and EDI at least a cache-line apart 

(64 bytes for the Pentium 4 and later CPUs, 32 bytes for 

earlier CPUs) for MOVS, ECX at least 64, D flag clear in 

the EFLAGS register, and WB or WC memory type for 

EDI (and ESI for MOVS).  Additionally, a Model Specific 

Register (MSR) must be set appropriately (though by 

default it is already enabled) - either 1A0 bit 0 or 1E0 bit 2.  

Of particular interest is that the single-step exception 

cannot interrupt the operation. 

 

ii. Hardware Breakpoints 

 

When an exception occurs, Windows passes to the 

exception handler a context structure which contains the 

values of the general registers, segment registers, control 

registers, and the debug registers.  If a debugger is 

present and passes the exception to the debuggee with 

hardware breakpoints in use, then the debug registers will 

contain values that reveal the presence of the debugger. 

Example code looks like this: 

 

    xor  eax, eax 

    push offset l1 

    push dw fs:[eax] 

    mov  fs:[eax], esp 

    ;force an exception to occur 

    jmp  eax 

    ... 



 

 

    ;ContextRecord 

l1: mov  eax, [esp+0ch] 

    mov  eax, [eax+4] ;Dr0 

    or   eax, [eax+8] ;Dr1 

    or   eax, [eax+0ch] ;Dr2 

    or   eax, [eax+10h] ;Dr3 

    jne  being_debugged 

 

The debugger is also vulnerable to being bypassed if 

the debuggee erases the contents of the debug registers 

prior to resuming execution after the exception.  This 

technique is used by ASProtect, among others. 

 

iii. Instruction Counting 

 

Instruction counting can be performed by registering 

an exception handler, then setting some hardware 

breakpoints on particular addresses.  When each address 

is hit, an EXCEPTION_SINGLE_STEP (0x80000004) 

exception will be raised.  This exception will be passed to 

the exception handler, which can adjust the instruction 

pointer to point to a new instruction, and then resume 

execution.  To set the breakpoints requires access to a 

context structure.  This can be achieved by calling the 

kernel32 GetThreadContext() function.  Alternatively, a 

context structure is passed to an exception handler, so by 

forcing an exception to occur, the context can be acquired 

in a more obfuscated manner.  Some debuggers do not 

handle correctly hardware breakpoints that they did not 

set themselves, leading to some instructions not being 

counted by the exception handler. 

Example code looks like this: 

 

    xor  eax, eax 

    cdq 

    push offset l5 

    push dw fs:[eax] 

    mov  fs:[eax], esp 

    int  3 

l1: nop 

l2: nop 

l3: nop 

l4: nop 

    div  edx 

    cmp  al, 4 

    jne  being_debugged 

    ... 

l5: xor  eax, eax 

    ;ExceptionRecord 

    mov  ecx, [esp+4] 

    ;ContextRecord 

    mov  edx, [esp+0ch] 

    ;CONTEXT_Eip 

    inc  b [edx+0b8h] 

    ;ExceptionCode 

    mov  ecx, [ecx] 

    ;EXCEPTION_INT_DIVIDE_BY_ZERO 

    cmp  ecx, 0c0000094h 

    jne  l6 

    ;CONTEXT_Eip 

    inc  b [edx+0b8h] 

    mov  [edx+4], eax ;Dr0 

    mov  [edx+8], eax ;Dr1 

    mov  [edx+0ch], eax ;Dr2 

    mov  [edx+10h], eax ;Dr3 

    mov  [edx+14h], eax ;Dr6 

    mov  [edx+18h], eax ;Dr7 

    ret 

    ;EXCEPTION_BREAKPOINT 

l6: cmp  ecx, 80000003h 

    jne  l7 

    ;Dr0 

    mov  dw [edx+4], offset l1 

    ;Dr1 

    mov  dw [edx+8], offset l2 

    ;Dr2 

    mov  dw [edx+0ch], offset l3 

    ;Dr3 

    mov  dw [edx+10h], offset l4 

    ;Dr7 

    mov  dw [edx+18h], 155h 

    ret 

    ;EXCEPTION_SINGLE_STEP 

l7: cmp  ecx, 80000004h 

    jne  being_debugged 

    ;CONTEXT_Eax 

    inc  b [edx+0b0h] 

    ret 

 

This technique is used by tELock . 

 

iv. Execution Timing 

 

When a debugger is present, and used to single-step 

through the code, there is a significant delay between the 

executions of the individual instructions , when compared 

to native execution.  This delay can be measured using 

one of several possible time sources.  These sources 

include the RDTSC instruction, the kernel32 

GetTickCount() function, and the winmm timeGetTime() 

function, among others.  However, the resolution of the 

winmm timeGetTime() function is variable, depending on 

whether or not it branches internally to the kernel32 

GetTickCount() function, making it very unreliable to 

measure small intervals. 

Example code looks like this for RDTSC: 

 

    rdtsc 



 

 

    xchg  ecx, eax 

    rdtsc 

    sub   eax, ecx 

    cmp   eax, 500h 

    jnbe  being_debugged 

 

Example code looks like this for kernel32 

GetTickCount(): 

 

    call GetTickCount 

    xchg ebx, eax 

    call GetTickCount 

    sub  eax, ebx 

    cmp  eax, 1 

    jnb  being_debugged 

 

Example code looks like this for winmm timeGetTime(): 

 

    call timeGetTime 

    xchg ebx, eax 

    call timeGetTime 

    sub  eax, ebx 

    cmp  eax, 10h 

    jnb  being_debugged 

 

v. EIP via Exceptions 

 

Using exceptions to alter the value of eip is a very 

common technique among packers.  It serves as an 

effective anti-debugging technique, since debuggers 

typically intercept some of the exceptions (int 1 and int 3, 

for example).  It also provides for a level of obfuscation, 

particularly if the exception trigger is not immediately 

obvious. 

Example code looks like this: 

 

    xor  eax, eax 

    push offset l3 

    push dw fs:[eax] 

    mov  fs:[eax], esp 

l1: call l1 

l2: jmp  l2 

l3: pop  eax 

    pop  eax 

    pop  esp 

l4: ... 

 

Is l2 ever reached?  No, it's not.  A stack overflow 

exception occurs at l1, causing a transfer of control to l3.  

After the stack is restored, execution continues from l4.  

This technique is used by PECompact, among others. 

 

f. Process tricks 

 

i. Header entrypoint 

 

Any section of the file, whose attributes do not include 

IMAGE_SCN_MEM_WRITE (writable) and/or 

IMAGE_SCN_MEM_EXECUTE (executable), is read-only 

by default to a remote debugger.  This includes the PE 

header, since there is no section that describes it (there is 

an exception to this, see Anti-Emulating:File-Format 

section below).  If the entrypoint happens to be in such a 

section, then a debugger will not be able to successfully 

set any breakpoints, if it does not first call the kernel32 

VirtualProtectEx() function to write-enable the memory 

region.  Further, if the failure to set the breakpoint is not 

noticed by the debugger, then the debugger might allow 

the debuggee to run freely.  This is the case for Turbo 

Debugger.  This technique is used by MEW, among 

others. 

 

ii. Parent process 

 

Users usually execute applications manually via a 

window provided by the shell.  As a result, the parent of 

any such process will be Explorer.exe.  Of course, if the 

application is executed from the command-line, then the 

command-line application will be the parent.  Executing 

applications from the command-line can be a problem for 

certain packers.  This is because some packers check the 

parent process name, expecting it to be "Explorer.exe", or 

the packers compare the parent process ID against that of 

Explorer.exe.  A mismatch in either case is then assumed 

to be caused by a debugger creating the process. 

 

The process ID of both Explorer.exe, and the parent of 

the current process, can be obtained by the kernel32 

CreateToolhelp32Snapshot() function and a kernel32 

Process32Next() function enumeration. 

Example code looks like this: 

 

    xor   esi, esi 

    xor   edi, edi 

    push  esi 

    push  2 ;TH32CS_SNAPPROCESS 

    call  CreateToolhelp32Snapshot 

    mov   ebx, offset l5 

    push  ebx 

    push  eax 

    xchg  ebp, eax 

    call  Process32First 

l1: call  GetCurrentProcessId 

    ;th32ProcessID 

    cmp   [ebx+8], eax 

    ;th32ParentProcessID 

    cmove edi, [ebx+18h] 

    test  esi, esi 



 

 

    je    l2 

    test  edi, edi 

    je    l2 

    cmp   esi, edi 

    jne   being_debugged 

l2: lea   ecx, [ebx+24h] ;szExeFile 

    push  esi 

    mov   esi, ecx 

l3: lodsb 

    cmp   al, "\" 

    cmove ecx, esi 

    or    b [esi-1], " " 

    test  al, al 

    jne   l3 

    sub   esi, ecx 

    xchg  ecx, esi 

    push  edi 

    mov   edi, offset l4 

    repe  cmpsb 

    pop   edi 

    pop   esi 

    ;th32ProcessID 

    cmove esi, [ebx+8] 

    push  ebx 

    push  ebp 

    call  Process32Next 

    test  eax, eax 

    jne   l1 

    ... 

l4: db    "explorer.exe " 

    ;sizeof(PROCESSENTRY32) 

l5: dd    128h 

    db    124h dup (?) 

 

This technique is used by Yoda's Protector, among 

others.  Since this information comes from the kernel, 

there is no easy way for user-mode code to prevent this 

call from revealing the presence of the debugger.  

However, a common technique is to force the kernel32 

Process32Next() function to return FALSE, which causes 

the loop to exit early.  It should be a suspicious condition 

if either Explorer.exe or the current processes were not 

seen, but Yoda's Protector (and some other packers) does 

not contain any requirement that both were found. 

 

The process ID of both Explorer.exe, and the parent of 

the current process, can be obtained by the ntdll 

NtQuerySystemInformation (SystemProcessInformation 

(5)) function. 

Example code looks like this: 

 

    xor   ebp, ebp 

    xor   esi, esi 

    xor   edi, edi 

    jmp   l2 

l1: push  8000h ;MEM_RELEASE 

    push  esi 

    push  ebx 

    call  VirtualFree 

l2: xor   eax, eax 

    mov   ah, 10h ;MEM_COMMIT 

    add   ebp, eax ;4kb increments 

    push  4 ;PAGE_READWRITE 

    push  eax 

    push  ebp 

    push  esi 

    call  VirtualAlloc 

    ;function does not return 

    ;required length for this class 

    push  esi 

    ;must calculate by brute-force 

    push  ebp 

    push  eax 

    ;SystemProcessInformation 

    push  5 

    xchg  ebx, eax 

    call  NtQuerySystemInformation 

    ;STATUS_INFO_LENGTH_MISMATCH 

    cmp   eax, 0c0000004h 

    je    l1 

l3: call  GetCurrentProcessId 

    ;UniqueProcessId 

    cmp   [ebx+44h], eax 

    ;InheritedFromUniqueProcessId 

    cmove edi, [ebx+48h] 

    test  esi, esi 

    je    l4 

    test  edi, edi 

    je    l4 

    cmp   esi, edi 

    jne   being_debugged 

l4: mov   ecx, [ebx+3ch] ;ImageName 

    jecxz l6 

    push  esi 

    xor   eax, eax 

    mov   esi, ecx 

l5: lodsw 

    cmp   eax, "\" 

    cmove ecx, esi 

    push  ecx 

    push  eax 

    call  CharLowerW 

    mov   w [esi-2], ax 

    pop   ecx 

    test  eax, eax 

    jne   l5 

    sub   esi, ecx 

    xchg  ecx, esi 



 

 

    push  edi 

    mov   edi, offset l7 

    repe  cmpsb 

    pop   edi 

    pop   esi 

    ;UniqueProcessId 

    cmove esi, [ebx+44h] 

    ;NextEntryOffset 

l6: mov   ecx, [ebx] 

    add   ebx, ecx 

    inc   ecx 

    loop  l3 

    ... 

l7: dw "e","x","p","l","o","r" 

    dw "e","r",".","e","x","e",0 

 

However, the process ID of Explorer.exe can be 

obtained most simply by the user32 GetShellWindow() 

and user32 GetWindowThreadProcessId() functions.  The 

process ID of the parent of the current process can be 

obtained most simply by the ntdll 

NtQueryInformationProcess  (ProcessBasicInformation 

(0)) function. 

Example code looks like this: 

 

    call GetShellWindow 

    push eax 

    push esp 

    push eax 

    call GetWindowThreadProcessId 

    push 0 

   ;sizeof(PROCESS_BASIC_INFORMATION) 

    push 18h  

    mov  ebp, offset l1 

    push ebp 

    push 0 ;ProcessBasicInformation 

    push -1 ;GetCurrentProcess() 

    call NtQueryInformationProcess 

    pop  eax 

    ;InheritedFromUniqueProcessId 

    cmp  [ebp+14h], eax 

    jne  being_debugged 

    ... 

;sizeof(PROCESS_BASIC_INFORMATION) 

l1: db   18h dup (?) 

 

iii. Self-execution 

 

One of the simplest ways to escape from the control of 

a debugger is for a process to execute another copy of 

itself.  Typically, the process will use a synchronisation 

object, such as a mutex, to prevent infinite executions.  

The first process will create the mutex, and then execute 

the copy of the process.  The second process will not be 

debugged, even if the first process was.  It will also know 

that it is the copy since the mutex will exist. 

Example code looks like this: 

 

    xor  ebx, ebx 

    push offset l2 

    push eax 

    push eax 

    call CreateMutexA 

    call GetLastError 

    ;ERROR_ALREADY_EXISTS 

    cmp  eax, 0b7h  

    je   l1 

    mov  ebp, offset l3 

    push ebp 

    call GetStartupInfoA 

    call GetCommandLineA 

    ;sizeof(PROCESS_INFORMATION) 

    sub  esp, 10h 

    push esp 

    push ebp 

    push ebx 

    push ebx 

    push ebx 

    push ebx 

    push ebx 

    push ebx 

    push eax 

    push ebx 

    call CreateProcessA 

    pop  eax 

    push -1 ;INFINITE 

    push eax 

    call WaitForSingleObject 

    call ExitProcess 

l1: ... 

l2: db   "my mutex", 0 

    ;sizeof(STARTUPINFO) 

l3: db   44h dup (?) 

 

A common mistake is the use of the kernel32 Sleep() 

function, instead of the kernel32 WaitForSingleObject() 

function, because it introduces a race condition.  The 

problem occurs when there is CPU-intensive activity.  

This could be because of a sufficiently complicated 

protection (or intentional delays) in the second process; 

but also actions that the user might perform while the 

execution is in progress, such as browsing the network or 

extracting files from an archive.  The result is that the 

second process might not reach the mutex check before 

the delay expires; leading it to think that it is the first 

process.  The result is that it executes yet another copy of 

the process.  This behaviour can be repeated any number 

of times, until one of the processes completes the mutex 



 

 

check successfully.  This technique is used by MSLRH, 

and the exact problem is present there. 

 

iv. Process Name 

 

As noted above, the list of process names can be 

retrieved by the kernel32 CreateTool32Snapshot() 

function, or the ntdll QuerySystemInformation() function.  

In addition to finding Explorer.exe or the current process 

name, some packers look for other process names, 

particularly those which belong to anti-malware vendors 

or specialised tools. 

Example code looks like this for kernel32 

CreateToolhelp32Snapshot(): 

 

    push  0 

    push  2 ;TH32CS_SNAPPROCESS 

    call  CreateToolhelp32Snapshot 

    mov   ebx, offset l5 

    push  ebx 

    push  eax 

    xchg  ebp, eax 

    call  Process32First 

l1: lea   ecx, [ebx+24h] ;szExeFile 

    mov   esi, ecx 

l2: lodsb 

    cmp   al, "\" 

    cmove ecx, esi 

    or    b [esi-1], " " 

    test  al, al 

    jne   l2 

    sub   esi, ecx 

    xchg  ecx, esi 

    mov   edi, offset l4 

l3: push  ecx 

    push  esi 

    repe  cmpsb 

    je    being_debugged 

    mov   al, " " 

    not   ecx 

    ;move to previous character 

    dec   edi 

    ;then find end of string 

    repne scasb 

    pop   esi 

    pop   ecx 

    cmp   [edi], al 

    jne   l3 

    push  ebx 

    push  ebp 

    call  Process32Next 

    test  eax, eax 

    jne   l1 

    ... 

l4: <array of space-terminated ASCII 

strings, space to end> 

    ;sizeof(PROCESSENTRY32) 

l5: dd   128h 

    db   124h dup (?) 

 

Example code looks like this for ntdll 

NtQuerySystemInformation(): 

 

    xor   ebp, ebp 

    xor   esi, esi 

    jmp   l2 

l1: push  8000h ;MEM_RELEASE 

    push  esi 

    push  ebx 

    call  VirtualFree 

l2: xor   eax, eax 

    mov   ah, 10h ;MEM_COMMIT 

    add   ebp, eax ;4kb increments 

    push  4 ;PAGE_READWRITE 

    push  eax 

    push  ebp 

    push  esi 

    call  VirtualAlloc 

    ;function does not return 

    ;required length for this class 

    push  esi 

    ;must calculate by brute-force 

    push  ebp 

    push  eax 

    ;SystemProcessInformation 

    push  5 

    xchg  ebx, eax 

    call  NtQuerySystemInformation 

    ;STATUS_INFO_LENGTH_MISMATCH 

    cmp   eax, 0c0000004h 

    je    l1 

l3: mov   ecx, [ebx+3ch] ;ImageName 

    jecxz l6 

    xor   eax, eax 

    mov   esi, ecx 

l4: lodsw 

    cmp   eax, "\" 

    cmove ecx, esi 

    push  ecx 

    push  eax 

    call  CharLowerW 

    mov   w [esi-2], ax 

    pop   ecx 

    test  eax, eax 

    jne   l4 

    sub   esi, ecx 

    xchg  ecx, esi 

    mov   edi, offset l7 



 

 

l5: push  ecx 

    push  esi 

    repe  cmpsb 

    je    being_debugged 

    not   ecx 

    ;move to previous character 

    dec   edi 

    ;force word-alignment 

    and   edi, -2 

    ;then find end of string 

    repne scasw 

    pop   esi 

    pop   ecx 

    cmp   [edi], ax 

    jne   l5 

    ;NextEntryOffset 

l6: mov   ecx, [ebx] 

    add   ebx, ecx 

    inc   ecx 

    loop  l3 

    ... 

    ;must be word-aligned 

    ;for correct scanning 

    align 2 

l7: <array of null-terminated Unicode 

strings, null to end> 

 

v. Threads 

 

Threads are used by some packers to perform actions 

such as periodically checking for the presence of a 

debugger, or ensuring the integrity of the main code.  The 

use of threads had an additional advantage early on, 

which was that some anti-malware emulators did not 

support threads, allowing the packed file to cause an early 

exit. 

Example code looks like this: 

 

l1: xor   eax, eax 

    push  eax 

    push  esp 

    push  eax 

    push  eax 

    push  offset l2 

    push  eax 

    push  eax 

    call  CreateThread 

    ... 

l2: xor   eax, eax 

    cdq 

    mov   ecx, offset l4 - offset l1 

    mov   esi, offset l1 

l3: lodsb 

    ;simple sum 

    ;to detect breakpoints 

    add   edx, eax 

    loop  l3 

    cmp   edx, <checksum> 

    jne   being_debugged 

    ;small delay then restart 

    push  100h 

    call  Sleep 

    jmp   l2 

l4: ;code end 

 

This technique is used by PE-Crypt32, among others. 

 

vi. Self-debugging 

 

Self-debugging is the act of running a copy of a 

process, and attaching to it as a debugger.  Since only 

one debugger can be attached to a process at any point in  

time, the copy of the process becomes undebuggable by 

ordinary means. 

Example code looks like this: 

 

    xor  ebx, ebx 

    mov  ebp, offset l3 

    push ebp 

    call GetStartupInfoA 

    call GetCommandLineA 

    mov  esi, offset l4 

    push esi 

    push ebp 

    push ebx 

    push ebx 

    push 1 ;DEBUG_PROCESS 

    push ebx 

    push ebx 

    push ebx 

    push eax 

    push ebx 

    call CreateProcessA 

    mov  ebx, offset l5 

    jmp  l2 

l1: push 10002h ;DBG_CONTINUE 

    push dw [esi+0ch] ;dwThreadId 

    push dw [esi+8] ;dwProcessId 

    call ContinueDebugEvent 

l2: push -1 ;INFINITE 

    push ebx 

    call WaitForDebugEvent 

    cmp  b [ebx], 5 

;EXIT_PROCESS_DEBUG_EVENT 

    jne  l1 

    ... 

    ;sizeof(STARTUPINFO) 

l3: db   44h dup (?) 



 

 

    ;sizeof(PROCESS_INFORMATION) 

l4: db   10h dup (?) 

    ;sizeof(DEBUG_EVENT) 

l5: db   60h dup (?) 

 

This technique is used by Armadillo, among others.  

This technique can be defeated most easily by kernel-

mode code zeroing the EPROCESS->DebugPort field.  

Doing so will allow another debugger to attach to the 

process.  The debugged process can also be opened via 

the kernel32 OpenProcess() function, which means that a 

DLL can be injected into the process space.  

Alternatively, on Windows XP and later, the kernel32 

DebugActiveProcessStop() function can be used to 

detach the debugger. 

 

vii. Disassembly 

 

Some packers examine not just the first few bytes of an 

API for breakpoints, but actively disassemble the 

function code.  There are a few reasons why they might 

do that.  One reason is in order to perform API 

interception, whereby some complete instructions from 

the function are copied to a private buffer and executed 

from there.  A jump is placed at the end of those 

instructions, to point after the last copied instruction in 

the original API code.  This has the effect of bypassing 

breakpoints that are placed anywhere within the first few 

instructions of the original API code. 

 

Another reason is in order to perform a more reliable 

search for breakpoints.  By knowing the location of the 

instruction boundaries, there is no risk of encountering 

what appears to be a breakpoint, but is actually some 

data.  For example, 0xb8 0xcc 0x00 0x00 0x00 appears to 

contain a breakpoint, but when disassembled and 

displayed, the sequence is "MOV EAX, 000000CC". 

 

In addition to searching for breakpoints, some packers 

search for detours.  Detours are jump instructions that are 

inserted, usually as the first instruction, to point to a 

private location.  The code at that private location 

typically creates a log of the APIs that are called, though 

it is not restricted to that behaviour.  The problem with 

detecting detours is that it also detects hot-patching.  

Microsoft added a dummy instruction to many functions 

in Windows XP, that allows a jump instruction to be 

placed cleanly (that is, without concern for instruction 

boundaries, since the dummy instruction achieves the 

required alignment).  This jump instruction would point to 

a private location that contains code to deal with a 

vulnerability in the hooked function.  If a packer detects 

detours and refuses to run if a detour of any kind is 

found, then it will also refuse to run if a function has been 

hot-patched. 

 

viii. TLS Callback 

 

This is a technique that allows the execution of user-

defined code before the execution of the main entrypoint 

code.  It is a technique that I discussed privately in 2000, 

but it was demonstrated publicly by Radim Picha
vi
 later 

that same year.  It was used in a virus
vii

 in 2002.  It has 

been used by ExeCryptor and others since 2004. 

 

ix. Device names 

 

Tools that make use of kernel-mode drivers also need a 

way to communicate with those drivers.  A very common 

method is through the use of named devices.  Thus, by 

attempting to open such a device, any success indicates 

the presence of the driver. 

Example code looks like this: 

 

    xor   eax, eax 

    mov   edi, offset l2 

l1: push  eax 

    push  eax 

    push  3 ;OPEN_EXISTING 

    push  eax 

    push  eax 

    push  eax 

    push  edi 

    call  CreateFileA 

    inc   eax 

    jne   being_debugged 

    or    ecx, -1 

    repne scasb 

    cmp   [edi], al 

    jne   l1 

    ... 

l2: <array of ASCIIZ strings, null to 

end> 

 

A typical list includes the following names: 

 

\\.\SICE 

\\.\SIWVID 

\\.\NTICE 

 

These names belong to SoftICE.  Note that a 

successful opening of the device does  not mean that 

SoftICE is active, but that it is present.  However, that is 

sufficient for many people.  The first two drivers are 

present on Windows 9x-based platforms, the third driver 

is present on Windows NT-based platforms, but a lot of 

copy/paste occurs in the packer space, so this list 

appears often, even in packers that do not run on 



 

 

Windows 9x-based platforms. 

 

Other common device names include these: 

 

\\.\REGVXG 

\\.\REGSYS 

 

These names belong to RegMon.  The first name is for 

Windows 9x-based platforms, the second name is for 

Windows NT-based platforms. 

 

\\.\FILEVXG 

\\.\FILEM 

 

These names belong to FileMon.  The first name is for 

Windows 9x-based platforms, the second name is for 

Windows NT-based platforms. 

 

\\.\TRW 

 

This name belongs to TRW.  TRW is a debugger for 

only Windows 9x-based platforms, yet some packers 

check for it even on Windows NT-based platforms. 

 

\\.\ICEEXT 

 

This name belongs to SoftICE extender. 

 

g. SoftICE-specific 

 

For many years, SoftICE was the most popular of 

debuggers for the Windows platform.  It is a debugger that 

makes use of a kernel-mode driver, in order to support 

debugging of both user-mode and kernel-mode code, 

including transitions in either direction between the two. 

 

SoftICE contains a number of vulnerabilities.  A 

description of them is beyond the scope of this paper.  A 

companion paper (Anti-Unpacking Tricks - Future) will 

cover the topic in detail. 

 

i. Driver information 

 

The names of the device drivers on the system can be 

enumerated.  This can be achieved using the ntdll 

NtQuerySystemInformation (SystemModuleInformation 

(0x0b)) function.  For each module that is returned, the 

version information in the file can be retrieved using the 

version VerQueryValue() function.  This information 

typically includes the Product Name and Copyright 

strings, which can be matched against specific products 

and companies, such as "SoftICE", "Compuware", and 

"NuMega". 

 

ii. Interrupt 1 

 

The interrupt 1 descriptor normally has a descriptor 

privilege level (DPL) of 0, which means that the "cd 01" 

opcode ("int 1" instruction) cannot be issued from ring 3.  

An attempt to execute this interrupt directly will result in a 

general protection fault ("int 0x0d" exception) being 

issued by the CPU, eventually resulting in an 

EXCEPTION_ACCESS_VIOLATION (0xc0000005) 

exception being raised by Windows. 

 

However, if SoftICE is running, it hooks interrupt 1 and 

adjusts the DPL to 3, so that SoftICE can single-step 

through user-mode code.  This is not visible from within 

SoftICE, though - the "IDT" command, to display the 

interrupt descriptor table, shows the original interrupt 1 

handler address with a DPL of 0, as though SoftICE were 

not present. 

 

The problem is that when an interrupt 1 occurs, SoftICE 

does not check if it was caused by the trap flag or by a 

software interrupt.  The result is that SoftICE always calls 

the original interrupt 1 handler, and an 

EXCEPTION_SINGLE_STEP (0x80000004) exception is 

raised instead of the EXCEPTION_ACCESS_VIOLATION 

(0xc0000005) exception, allowing for an easy detection 

method. 

Example code looks like this: 

 

    xor  eax, eax 

    push offset l1 

    push dw fs:[eax] 

    mov  fs:[eax], esp 

    int  1 

    ... 

    ;ExceptionRecord 

l1: mov  eax, [esp+4] 

    ;EXCEPTION_SINGLE_STEP 

    cmp  dw [eax], 80000004h 

    je   being_debugged 

 

This technique is used by SafeDisc.  To defeat this 

technique might appear to be a simple matter of restoring 

the DPL of interrupt 1.  It is not so simple.  The problem is 

to determine reliably the cause of an exception at the 

interrupt 0x0d level.  The instruction queue can be 

examined for an "int 1" sequence, but the trap flag could 

also appear to be set at the same time, even though it did 

not become active.  This can happen if interrupts are 

delayed for one instruction (via "pop ss", for example), 

then the trap flag will not be responsible for the exception, 

even though it is set.  A companion paper (Anti-

Unpacking Tricks - Future) will cover some additional 

aspects of this problem. 



 

 

 

h. OllyDbg-specific 

 

OllyDbg is perhaps the most popular of user-mode 

debuggers.  It supports plug-ins.  Some packers have been 

written to detect OllyDbg, so some plug-ins have been 

written to attempt to hide OllyDbg from those packers.  

Correspondingly, other packers have been written to detect 

these plug-ins.  A description of those plug-ins, and the 

vulnerabilities in them, is beyond the scope of this paper.  A 

companion paper (Anti-Unpacking Tricks - Future) will 

cover the topic in detail. 

 

i. Malformed files 

 

OllyDbg is too strict regarding the Portable Executable 

format - it will refuse to open a file whose data directories 

do not end at exactly the end of the Optional Header.  It 

attempts to allocate the amount of memory specified by 

the Export Directory Size, Base Relocation Directory Size, 

Export Address Table Entries, and PE->SizeOfCode fields, 

regardless of how large the values are.  This can cause 

the operating system swap file to grow enormously, 

which has a significant performance impact on the 

system. 

 

ii. Initial esi value 

 

The esi register has an initial value of 0xffffffff in 

OllyDbg on Windows XP, which seems to be constant, 

leading some people to use it as a detection method
viii

.  In 

fact, it's just a coincidence (and the initial value is 0 on 

Windows 2000).  The value is a remnant of an exception 

handler structure that Windows XP created during a call 

to the ntdll RtlAllocateHeap() function.  That location of 

that value corresponds to the esi member in the context 

structure that is created by the kernel32 CreateProcess() 

function.  The kernel32 CreateProcess() function does not 

initialise the esi member. 

 

iii. OutputDebugString 

 

OllyDbg passes user-defined data directly to the 

msvcrt _vsprintf() function.  If those data contain 

formatting string tokens, particularly if multiple "%s" 

tokens are used, then it is likely that one of them will point 

to an invalid memory region and crash OllyDbg. 

 

iv. FindWindow 

 

OllyDbg can be found by calling the user32 

FindWindow() function, and passing "OLLYDBG" as the 

class name to find. 

Example code looks like this: 

 

    push 0 

    push offset l1 

    call FindWindowA 

    test eax, eax 

    jne  being_debugged 

    ... 

l1: db   "OLLYDBG", 0 

 

v. Guard Pages 

 

OllyDbg uses guard pages to handle memory 

breakpoints.  As noted above, if an application places 

executable instructions in a guarded page, an attempt to 

execute them should result in an exception, but in 

OllyDbg they will be executed instead. 

 

i. HideDebugger-specific 

 

HideDebugger is a plug-in for OllyDbg.  Early versions of 

HideDebugger hooked the debuggee's kernel32 

OpenProcess() function.  The hook was done by placing a 

far jump to a new handler, at offset 6 in the kernel32 

OpenProcess() function.  The presence of the jump was a 

good indicator that the HideDebugger plug-in was present. 

Example code looks like this: 

 

    push offset l1 

    call GetModuleHandleA 

    push offset l2 

    push eax 

    call GetProcAddress 

    cmp  b [eax+6], 0eah 

    je   being_debugged 

    ... 

l1: db   "kernel32", 0 

l2: db   "OpenProcess", 0 

 

j. ImmunityDebugger-specific 

 

ImmunityDebugger is essentially OllyDbg with a Python 

command-line interface.  In fact, it is largely byte-for-byte 

identical to the OllyDbg code.  Correspondingly, it has the 

same vulnerabilities as OllyDbg, with respect to both detect 

and exploitation. 

 

k. WinDbg-specific 

 

i. FindWindow 

 

WinDbg can be found by calling the user32 

FindWindow() function, and passing 

"WinDbgFrameClass" as the class name to find. 

Example code looks like this: 



 

 

 

    push 0 

    push offset l1 

    call FindWindowA 

    test eax, eax 

    jne  being_debugged 

    ... 

l1: db   "WinDbgFrameClass", 0 

 

l. Miscellaneous tools  

 

i. FindWindow 

 

There are several less common tools that are of interest 

to some packers, such as window name of "Import 

REConstructor v1.6 FINAL (C) 2001-2003 MackT/uCF", or 

a class name of "TESTDBG", "kk1, "Eew57", or 

"Shadow".  These names are checked by MSLRH. 

 

III. ANTI-UNPACKING BY ANTI-EMULATING 

Some methods to detect emulators and virtual machines 

have been described elsewhere
ix
.  Some additional methods are 

described here.  A companion paper (Anti-Unpacking Tricks - 

Future) will describe some further methods. 

 

a. Software Interrupts 

 

i. Interrupt 3 

 

When an EXCEPTION_BREAKPOINT (0x80000003) 

occurs, the eip register has already been advanced to the 

next instruction, so Windows wants to rewind the eip to 

point to the proper place.  The problem is that Windows 

assumes that the exception is caused by a single-byte 

"CC" opcode (short form "INT 3" instruction).  If the "CD 

03" opcode (long form "INT 3" instruction) is used to 

cause the exception, then the eip will be pointing to the 

wrong location.  The same behaviour can be seen if any 

prefixes are placed before the short-form "INT 3" 

instruction.  An emulator that does not behave in the 

same way will be revealed instantly.  This technique is 

used by TryGames. 

 

b. Time-locks 

 

Time-locks are a very effective anti-emulation technique.  

Most anti-malware emulators intentionally contain a limit to 

the amount of time and/or the number of CPU instructions 

that can be emulated, before the emulator will exit with no 

detection.  This behavior is almost a requirement, since a 

user will typically not be patient enough to wait for an 

emulated application to exit on its own (if it ever would), 

before being able to access it normally.  This leads to a 

vulnerability, whereby an attacker will produce a sample 

which intentionally delays its main execution, usually via a 

dummy loop, in an attempt to force an emulator to give up. 

Example code looks like this: 

 

    mov  ecx, 400000h 

l1: loop l1 

 

In some cases, such dummy loops can be recognized and 

skipped, but in that case, care must be taken to adjust the 

values of any internal timers, and also the CPU registers that 

are involved.  Otherwise, the arbitrary skipping of the loop 

might be detected. 

Example code looks like this: 

 

    call GetTickCount 

    xchg ebx, eax 

    mov  ecx, 400000h 

l1: loop l1 

    call GetTickCount 

    sub  eax, ebx 

    cmp  eax, 1000h 

    jbe  being_debugged 

 

Further, the loop might not be a dummy one at all, in the 

sense that the results might be used for a real purpose, even 

though they could have been calculated without resorting to  

a loop. 

Real-world example code looks like this: 

 

    mov ebp, esp 

    mov ebp, [ebp+1ch] ;0ffffffffh 

    sub ebp, 5 

l1: sub ebp, 0ah 

    dec eax 

    or  ebp, ebp 

    jne l1 

 

In this case, the calculated value is also used as a key, so 

the loop cannot be skipped arbitrarily.  This technique is 

used by Tibs. 

 

c. Invalid API parameters 

 

Many APIs return error codes when they receive invalid 

parameters.  The problem for anti-malware emulators is that, 

for simplicity, such error checking is not implemented.  This 

leads to a vulnerability, whereby an attacker will 

intentionally pass known invalid parameters to the function, 

and expecting an error code to be returned.  In s ome cases, 

this error code is used as a key for decryption.  Any 

emulator that fails to return the error code will not be able to 

decrypt the data. 

Example code looks like this: 



 

 

 

    push 1 

    push 1 

    call Beep 

    call GetLastError 

    ;ERROR_INVALID_PARAMETER (0x57) 

    push 5 ;sizeof(l2) 

    pop  ecx 

    xchg edx, eax 

    mov  esi, offset l2 

    mov  edi, esi 

l1: lodsb 

    xor  al, dl 

    stosb 

    loop l1 

    ... 

l2: db   3fh, 32h, 3bh, 3bh, 38h 

;secret message 

 

This technique is used by Tibs. 

 

d. GetProcAddress 

 

The kernel32 GetProcAddress() function is intended to 

return the address of a function exported by the specified 

module.  Since there is a potentially unlimited number of 

possible functions which can be retrieved from an infinite 

number of modules, it is impossible for them all to be 

available in an emulated environment that is provided by an 

anti-malware emulator.  However, even some expected 

functions might be missing from such an environment, 

because of their lack of likely requirement, such as the 

kernel32 GetTapeParameters() function.  The problem is that 

some packers will exit early if not all function addresses 

could be retrieved.  To defeat that, some anti-malware 

emulators will always return a value for the kernel32 

GetProcAddress(), regardless of the parameters that are 

passed in.  This leads to a vulnerability, whereby an attacker 

will intentionally pass known invalid parameters to the 

function, and expecting no function address to be returned.  

Any emulator that returns an address in such a situation will 

be revealed. 

Example code looks like this: 

 

    push offset l1 

    push 12345678h ;illegal value 

    call GetProcAddress 

    test eax, eax 

    jne  being_debugged 

    ... 

l1: db   "myfunction", 0 

 

This technique is used by NsAnti.  It is a specific case of 

the general bad API problem from above. 

 

e. GetProcAddress(internal) 

 

Some anti-malware emulators export special APIs, which 

can be used to communicate with the host environment, for 

example.  This technique has been published elsewhere
x
. 

Example code looks like this: 

 

    push offset l1 

    call GetModuleHandleA 

    push offset l2 

    push eax 

    call GetProcAddress 

    test eax, eax 

    jne  being_debugged 

    ... 

l1: db   "kernel32", 0 

l2: db   "Aaaaaa", 0 

 

f. "Modern" CPU instructions 

 

Different CPU emulators have different capabilities.  The 

problem for anti-malware emulators is that, for simplicity, 

some (in some cases, many) CPU instructions are not 

supported.  This can include entire classes, such as FPU, 

MMX, and SSE, as well as less common instructions such as 

CMPXCHG8B.  In addition, some instructions have slightly 

unexpected behaviours which might also not be supported, 

such as that the CMPXCHG instruction always writes to 

memory, regardless of the result.  Some of these behaviours 

have attributes (particularly the CPU flags) that are marked 

as "undefined", but nothing is undefined in hardware.  The 

challenge is to determine the algorithm to reproduce it. 

 

Some packers use FPU and MMX instructions as do-

nothing instructions, but the side-effect is that the anti-

malware emulator might give up and fail to detect anything. 

 

g. Undocumented instructions  

 

Some packers make use of undocumented CPU 

instructions, for the same reason as they do for the modern 

CPU instructions.  That is, an anti-malware emulator is less 

likely to support undocumented instructions or 

undocumented encodings of documented instructions, so it 

might give up and fail to detect anything.  A list of these has 

been published elsewhere
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. 

 

h. Selector verification 

 

Selector verification is used to ensure that the descriptor 

table layout matches the operating system platform, as 

returned by the kernel32 GetVersion() function, for example.  

On Windows 9x-based platforms, the value of the cs selector 



 

 

can exceed 0xff, but on Windows NT-based platforms, the 

value is always 0x1b for ring 3 code. 

Example code looks like this: 

 

    call   GetVersion 

    test   eax, eax 

    ;Windows 9x-based platform 

    js     l1 

    mov    eax, cs 

    xor    al, al 

    test   eax, eax 

    jne    being_emulated 

l1: ... 

 

This technique is used by MSLRH, among others. 

 

i. Memory layout 

 

There are certain in-memory structures that are always in 

a predictable location.  One of those is the 

RTL_USER_PROCESS_PARAMETERS, which appears at 

memory location 0x20000 in normal circumstances.  Within 

that structure, the "DllPath" field exists at 0x20498, and the 

command-line at 0x205f8.  This structure can be moved if PE-

>ImageBase value is 0x20000 or less.  The reason for this is 

because the PE sections  are mapped into memory first, then 

the environment (at 0x10000 by default, and occupying 64kb 

of virtual memory because of the behaviour of the memory 

allocation function that is used), then the process 

parameters.  By accessing these fields directly, certain APIs, 

such as the kernel32 GetCommandLine() function, do not 

need to be called.  This can make it difficult to know from 

where certain information is gathered, and anti-malware 

emulators might not include these structures at all.  This 

technique is used by TryGames. 

 

j. File-format tricks 

 

There are many known file-format tricks, yet occasionally 

a new one will appear.  This can be a significant problem for 

anti-malware emulators, since if the emulator is responsible 

for parsing the file-format, then incompatibilities can appear 

because of differences in the emulated operating system.  

For example, Windows 9x-based platforms use a hard-coded 

value for the size of the Optional Header, and ignore the PE-

>SizeOfOptionalHeader field.  They also allow gaps in the 

virtual memory described by the section table.  Windows NT-

based platforms honour the value in the PE-

>SizeOfOptionalHeader field, and do not allow any gaps. 

Typical tricks include: 

 

i. Non-aligned SizeOfImage 

 

The file-format documentation states that the value in 

the PE->SizeOfImage field should be a multiple of the 

value in the PE->SectionAlignment field, but this is not a 

requirement.  Instead, Windows will round up the value as 

required. 

 

ii. Overlapping structures 

 

By adjusting the values of certain fields, it is possible 

to produce structures that overlap each other.  The 

common targets are the MZ->lfanew field, to produce a PE 

header that appears inside the MZ header; the PE-

>SizeOfOptionalHeader field, to produce a section table 

that appears inside the DataDirectory array; and the 

Import Address Table and Import Lookup Table virtual 

addresses, to produce an import table which has fields 

inside the PE header. 

 

iii. Non-standard NumberOfRvaAndSizes  

 

A common mistake is to assume that the value in the 

PE->NumberOfRvaAndSizes field is set to the value that 

exactly fills the Optional Header, and that the section 

table follows immediately.  The proper method to calculate 

the location of the section table is to use the PE-

>SizeOfOptionalHeader field.  Both SoftICE and OllyDbg 

contain this mistake.  A companion paper (Anti-

Unpacking Tricks - Future) will cover the implications in 

detail. 

 

iv. Non-aligned SizeOfRawData 

 

The SizeOfRawData field in the section table is another 

field that is subject to automatic rounding up by 

Windows.  By relying on this behavior, it is possible to 

produce a section whose entrypoint appears to reside in 

purely virtual memory, but because of rounding, will have 

physical data to execute. 

 

v. Non-aligned PointerToRawData 

 

The PointerToRawData field in the section table is a 

field that is subject to automatic rounding down by 

Windows.  By relying on this behaviour, it is possible to 

produce a section whose entrypoint appears to point to 

data other than what will actually be executed. 

 

vi. No section table 

 

An interesting thing happens if the value in the PE-

>SectionAlignment field is reduced to less than 4kb.  

Normally, the section that contains the PE header is 

neither writable nor executable, since there is no section 

table entry that describes it.  However, if the value in the 

PE->SectionAlignment field is less than 4kb, then the PE 



 

 

header is marked internally as both writable and 

executable.  Further, the contents of the section table 

become optional.  That is, the entire section table can be 

zeroed out, and the file will be mapped as though it were 

one section whose size is equal to the value in the PE-

>SizeOfImage field. 

 

IV. ANTI-UNPACKING BY ANTI-INTERCEPTING 

 

a. Write->Exec 

 

Some unpacking tools work by intercepting the execution 

of newly written pages, to guess when the unpacker has 

completed its main function and transferred control to the 

host.  By writing then executing a dummy instruction, an 

unpacker can cause an intercepter to exit early. 

Example code looks like this: 

 

    mov [offset dest], 0c3h 

    call dest 

 

This technique is used by ASPack , among others.  

However, it is probably for an entirely different reason, 

which is to force a CPU queue flush for multiprocessor 

environments. 

 

b. Write^Exec 

 

Some unpacking tools work by changing the previously 

writable-executable page attributes to either writable or 

executable, but not both.  These changes can be detected 

indirectly.  The easier method to achieve this is to use a 

function that uses the kernel to write to a specified user-

mode address.  The function will return an error if it fails to 

write to the address.  In this case, the address to specify is 

one in which the page attributes are likely to have been 

altered.  A good candidate function is the kernel32 

VirtualQuery() function. 

Example code looks like this: 

 

    ;sizeof(MEMORY_BASIC_INFORMATION) 

    push 1ch  

    mov  ebx, offset l1 

    push ebx 

    push ebx 

    call VirtualQuery 

    test eax, eax 

    je   being_debugged 

    ... 

    ;sizeof(MEMORY_BASIC_INFORMATION) 

l1: db   1ch dup (?)  

 

Not only does the kernel32 VirtualQuery() function write 

to a specified user-mode address, but it also returns the 

original value of the page attributes.  Any change in the 

attributes is an indication that an intercepter is running. 

Example code looks like this: 

 

    ;sizeof(MEMORY_BASIC_INFORMATION) 

    push 1ch 

    mov  ebx, offset l1 

    push ebx 

    push ebx 

    call VirtualQuery 

    ;PAGE_EXECUTE_READWRITE 

    cmp  b [ebx+14h], 40h  

    jne  being_debugged 

    ... 

    ;sizeof(MEMORY_BASIC_INFORMATION) 

l1: db   1ch dup (?) 

 

The kernel32 VirtualProtect() function is another way to 

query the page attributes, since the previous attributes are 

returned by the function.  Any change in the attributes is an 

indication that an intercepter is running. 

Example code looks like this: 

 

l1: push eax 

    push esp 

    push 40h ;PAGE_EXECUTE_READWRITE 

    push 1 

    push offset l1 

    call VirtualProtect 

    pop  eax 

    ;PAGE_EXECUTE_READWRITE 

    cmp  al, 40h 

    jne  being_debugged 

 

V. MISCELLANEOUS 

 

a. Fake signatures 

 

Some packers emit the startup code for other popular 

packers and tools, in an attempt to fool unpackers into 

misidentifying the wrapper.  Among the most popular of 

these fake signatures is the startup code for Microsoft 

Visual C, which was written to fool PEiD.  This technique is 

used by RLPack Professional, among others. 

 

CONCLUSION 

There are many different classes of anti-unpacking 

techniques, and this paper has attempted to describe a subset 

of the known ones.  A companion paper (Anti-Unpacking 

Tricks - Future) will describe some of the possible future ones, 



 

 

so that we can, where possible, construct defenses against 

them. 

 

Final note: 

 

The text of this paper was completed before I joined 

Microsoft. 

It was produced without access to any Microsoft source 

code or personnel. 
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