Architectural geometry: Projections

2009년 1월 19일 발표자: 유중현

Vector space

- Geometric meaning
 - Position vector
 - Direction vector
- Operations
 - Addition
 - Multiplication by a real number
 - Zero vector
 - Dot/Cross product
- Linear combination of vectors is also a vector

P (Point) + V (Vector) = ?

Interpolation, line, plane

- Interpolation: find a curve that exactly pass through the given points
 - Approximation
- Fitting = interpolation + approximation
- Linear interpolation
 - Straight line
 - Parametric / Implicit form
- Plane
 - Parametric / Implicit form
- Polygon
 - Regular polygon

Projection

- Transformation of points (objects) in 3D into points (objects) in 2D
 - Center of projection
 - Projection ray (Projector)
 - Projection plane

Parallel vs. Perspective (Central)

Projection

- Why do we need?
 - To visualize the object: realistic rendering
 - To share proper information between designer and manufacturer
- From CAD system user point of view
 - To understand mechanism of the system
 - To make best use of the available parameters of the system

Parallel projection

Center of projection at infinity

Shadows generated by sunlight

Distortion factor

Properties:

- Line \rightarrow Line or Point
- Parallel lines → Parallel lines
- The ratio of distance is preserved

Plane geometric projections

Orthographic projection

Multiple view

- (Normal projection)
- Top view, front view and side view

Axonometric projection

Oblique projection

Plane geometric projections

Perspective projection

Center of projection at fixed point

 Shadows generated by light emanating from a single point source

Perspective projection

Eye point (camera), optical axis, horizontal line
Do not preserve parallelism and ratios

Vanishing point

Optical illusion

Realistic rendering

- Lighting (illumination) model
 - Procedure for computing the intensity of lights
- Surface rendering algorithm
 - Procedure for applying lighting model to obtain the pixel intensities of all projected surface positions

Light sources

Point light

Emanate in all directions

$$I \propto rac{1}{dist^2}$$

Distant light

Constant intensity

Area light

Spot light

Spotlight.

Rendering method

Local methods

- Flat shading
- Gouraud shading
- Phong shading

Global methods

- Ray tracing
- Radiosity

Gouraud shading principle

Phong shading pricinple

Nonlinear projections

Perspective projection with the projection plane replaced by projection cylinder or sphere

Fig. 2.50 Cylindrical projection of a cube.

Nonlinear projections

- Spherical projection
 - **Stereographic projection**

A stereographic projection is an appropriate tool for projecting points of