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Image and shape descriptors
— Affine invariant features
— Comparison of feature descriptors
— Shape context

Readings: Mikolajczyk and Schmid; Belongie et al



Matching with Invariant Features
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http://www.wisdom.weizmann.ac.il/~deniss/vision_spring04/files/InvariantFeatures.ppt

Example: Build a Panorama

M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003



How do we build panorama?

* \We need to match (align) images




Matching with Features

*Detect feature points in both images




Matching with Features

*Detect feature points in both images

Find corresponding pairs




Matching with Features

*Detect feature points in both images

Find corresponding pairs

*Use these pairs to align images




Matching with Features

e Problem 1:
— Detect the same point independently in both
Images
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no chance to match!

We need a repeatable detector




Matching with Features

 Problem 2:

— For each point correctly recognize the
corresponding one

We need a reliable and distinctive descriptor




More motivation...

» [Feature points are used also for:
— Image alignment (homography, fundamental matrix)
— 3D reconstruction
— Motion tracking
— Object recognition
— Indexing and database retrieval
— Robot navigation
— ... other
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An Introductory example:

Harris corner detector

—

C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988



The Basic Idea

« We should easily recognize the point by looking
through a small window

 Shifting a window In any direction should give
a large change In intensity

T\\




Harris Detector: Basic Idea
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“flat” region: “edge”: “corner”;
no change in no change along significant change

all directions the edge direction In all directions
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Harris Detector: Mathematics

Change of intensity for the shift [u,v]:

E(u,v)=> w(x, Y)[I(X+u,y+v)—1(x, |

Window Shifted -
function intensity

Window function W(X,Y) = P ——

1 in window, O outside Gaussian



Harris Detector: Mathematics

For small shifts [U,V] we have a bilinear approximation:

where M Is a 2x2 matrix computed from image derivatives:




Harris Detector: Mathematics

Intensity change in shifting window: eigenvalue analysis

E(u,v)=[u,v] M -

V

Ellipse E(u,v) = const

Ay, A, —eigenvalues of M

direction of the
fastest change

direction of the
slowest change



Harris Detector: Mathematics

Classification of A
Image points using
eigenvalues of M:




Harris Detector: Mathematics

Measure of corner response.

R =detM —k(trace M )2

detM = A4,
traceM =4 + 4,

(k — empirical constant, k = 0.04-0.06)



The principal curva-
tures can be computed from a 2x2 Hessian matrix, H, computed at the location and scale of
the keypoint:

D.. D,
H — L €T (4}
[ Dyy Dy, ]

The derivatives are estimated by taking differences of neighboring sample points.

The eigenvalues of H are proportional to the principal curvatures of D. Borrowing from
the approach used by Harris and Stephens (1988), we can avoid explicitly computing the
elgenvalues, as we are only concerned with their ratio. Let o be the eigenvalue with the
largest magnitude and [ be the smaller one. Then, we can compute the sum of the eigenvalues
from the trace of H and their product from the determinant:

T‘I‘(H) = Dy, + Dyy = a4+ 3,
DPt(H) = -D.T..I,'Dyy - (-D:.r;y)z = (}-ﬁ

In the unlikely event that the determinant is negative, the curvatures have different signs so the
point is discarded as not being an extremum. Let r be the ratio between the largest magnitude
eigenvalue and the smaller one, so that &« = r/3. Then,

Tr(H)? _ (a+8)? _ (rB+8)° _ (r+1)7

DettH) — o8 82 ¢
which depends only on the ratio of the eigenvalues rather than their individual values. The
quantity (r+1)?/r is at a minimum when the two eigenvalues are equal and it increases with
r. Therefore, to check that the ratio of principal curvatures is below some threshold, r, we
only need to check

T(HP (417
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Harris Detector: Mathematics

}‘“2
* R depends only on
eigenvalues of M

* R Is large for a corner

* R Is negative with large
magnitude for an edge

* |R| is small for a flat
region




Harris Detector

he Algorithm:

— Find points with large corner response function
R (R > threshold)

— Take the points of local maxima of R



Harris Detector: Workflow




Harris Detector: Workflow

Compute corner response R




Harris Detector: Workflow
Find points with large corner response: R>threshold




Harris Detector: Workflow

Take only the points of local maxima of R




Harris Detector: Workflow




Harris Detector: Summary

« Average intensity change in direction [u,Vv] can be
expressed as a bilinear form:

EQuv)=[u,v] M P}

V

 Describe a point in terms of eigenvalues of M:
measure of corner response

R=A4,—k(4+4,)

e A good (corner) point should have a large intensity change
in all directions, i.e. R should be large positive
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Harris Detector: Some Properties

e Rotation Invariance

™ \|~ d
57 =

Ellipse rotates but its shape (i.e. eigenvalues)
remains the same

Corner response R is invariant to image rotation




Harris Detector: Some Properties

 Partial invariance to affine intensity change

v Only derivatives are used => invariance
to intensity shiftl > 1 + Db

v Intensity scale: | — a |
PTANEIIA

threshold / T \/\/ \/\/ \

X (image coordinate) X (image coordinate)




Harris Detector: Some Properties

e But: non-invariant to image scale!

e~
: .y =

All points will be Corner !
classified as edges



Harris Detector: Some Properties

Quality of Harris detector for different scale
changes

1
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ImpHarris --+---

mg = 0.8 '+ “\
Repeatability rate:
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C.Schmid et.al. “Evaluation of Interest Point Detectors”. IJCV 2000
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We want to:

detect the same Interest points
regardless of image changes



Models of Image Change

e Geometry

— Rotation [} H’

— Similarity (rotation + uniform scale) [l= .

— Affine (scale dependent on direction) [ilj= 4y
valid for: orthographic camera, locally planar

object
e Photometry
— Affine intensity change (I >al+b) [ =
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Rotation Invariant Detection

e Harris Corner Detector
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C.Schmid et.al. “Evaluation of Interest Point Detectors”. IJCV 2000



Contents

e Harris Corner Detector
— Description
— Analysis

e Detectors
— Rotation invariant

— Scale invariant

— Affine invariant
o Descriptors
— Rotation invariant
— Scale invariant
— Affine invariant



Scale Invariant Detection

o Consider regions (e.g. circles) of different sizes
around a point

* Regions of corresponding sizes will look the same
In both images

=




Scale Invariant Detection

e The problem: how do we choose corresponding
circles independently in each image?

=




Scale Invariant Detection

e Solution:

— Design a function on the region (circle), which is “scale
Invariant” (the same for corresponding regions, even if
they are at different scales)

Example: average intensity. For corresponding regions
(even of different sizes) it will be the same.

— For a point in one image, we can consider it as a
function of region size (circle radius)

Image 1 f1 Image 2

scale = 1/2
/\ ||[||:> /\

g »

region size region size



Scale Invariant Detection

e Common approach:

Take a local maximum of this function

Observation: region size, for which the maximum is
achieved, should be invariant to image scale.

Important: this scale invariant region size Is
found in each image independently!

Image 1 f1 Image 2

scale =1/2 i
/\ i—> /\

Sq region size S, region size



Scale Invariant Detection

o A “good” function for scale detection:
has one stable sharp peak

V" I~ e AR Va8

region size region size region size

e For usual images: a good function would be a one
which responds to contrast (sharp local intensity
change)



Scale Invariant Detection

 Functions for determining scale _

Kernels:

(Laplacian)

(Difference of Gaussians)

where Gaussian —

Note: both kernels are invariant to
scale and rotation




Scale Invariant Detection

e Compare to human vision: eye’s response

Shimon Ullman, Introduction to Computer and Human Vision Course, Fall 2003



Scale Invariant Detectors

T
e Harris-Laplacian? scale — c
Find local maximum of: y = O
— Harris corner detector in =
space (image coordinates) ) S~ 1'

— Laplacian in scale : >

¥ <« Harris —» X
o SIFT (Lowe)? scale o~ A

Find local maximum of: (

. ; ] @\ @)
— Difference of Gaussians in &)
space and scale Y e l

<~ DoG —» X

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to 1JCV 2004



Scale Invariant Detectors

» Experimental evaluation of detectors
w.r.t. scale change

1

: —e— Harris-Laplacian
0.9} == SIFT (Lowe)
: —— Harris

0.8

Repeatability rate:

0.7+

# correspondences
# possible correspondences

0.6

repeatability rate

0.5

04+

03F

02

0.1 . —— ——— -

i I i | i
1 15 2 25 3 35 4 a5
scale

K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001



Scale Invariant Detection:
Summary

* Given: two images of the same scene with a large
scale difference between them

e Goal: find the same interest points independently
In each Image

« Solution: search for maxima of suitable functions
In scale and in space (over the image)

Methods:

1. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian over
scale, Harris’ measure of corner response over the image

2. SIFT [Lowe]: maximize Difference of Gaussians over scale and space




Contents

e Harris Corner Detector
— Description
— Analysis

e Detectors
— Rotation invariant
— Scale invariant

— Affine invariant

o Descriptors
— Rotation invariant
— Scale invariant
— Affine invariant



Affine Invariant Detection

* Above we considered:
Similarity transform (rotation + uniform scale)

S = %

* Now we go on to:
Affine transform (rotation + non-uniform scale)

° - &




Affine Invariant Detection

« Take a local intensity extremum as initial point

e Go along every ray starting from this point and stop when
extremum of function f is reached

W‘J\J F(t) = t||(t)_I0|

- Hrw -1 dt

points along the r:':my

We will obtain approximately
corresponding regions

Remark: we search for scale
In every direction

T.Tuytelaars, L.V.Gool. “Wide Baseline Stereo Matching Based on Local,
Affinely Invariant Regions”. BMVC 2000.



Affine Invariant Detection

* The regions found may not exactly correspond, so we
approximate them with ellipses

e Geometric Moments:

m, = j XxPy9f (x,y)dxdy | Fact moments M, uniquely
02 determine the function f

Taking f to be the characteristic function of a region
(1 inside, 0 outside), moments of orders up to 2 allow
to approximate the region by an ellipse

This ellipse will have the same moments of
orders up to 2 as the original region




Affine Invariant Detection

« Covariance matrix of region points defines an ellipse:

(p =[x, VY] is relative
to the center of mass _ T

Ellipses, computed for corresponding
regions, also correspond!




Affine Invariant Detection

« Algorithm summary (detection of affine invariant region):
— Start from a local intensity extremum point

— Go In every direction until the point of extremum of some
function f

— Curve connecting the points is the region boundary

— Compute geometric moments of orders up to 2 for this
region

— Replace the region with ellipse

T.Tuytelaars, L.V.Gool. “Wide Baseline Stereo Matching Based on Local,
Affinely Invariant Regions”. BMVC 2000.



Affine Invariant Detection

o Maximally Stable Extremal Regions
— Threshold image intensities: 1 > 1,

— Extract connected components
(“Extremal Regions”)

— Find a threshold when an extremal
region is “Maximally Stable”,
1.e. local minimum of the relative
growth of its square

— Approximate a region with
an ellipse

J.Matas et.al. “Distinguished Regions for Wide-baseline Stereo”. Research Report of CMP, 2001.



Affine Invariant Detection :
Summary

e Under affine transformation, we do not know in advance
shapes of the corresponding regions

 Ellipse given by geometric covariance matrix of a region
robustly approximates this region

» For corresponding regions ellipses also correspond

Methods:

1. Search for extremum along rays [Tuytelaars, Van Gool]:

2.  Maximally Stable Extremal Regions [Matas et.al.]
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Point Descriptors

* We know how to detect points
« Next question:
How to match them?

Point descriptor should be:
1. Invariant
2. Distinctive
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Descriptors Invariant to Rotation

e Harris corner response measure:
depends only on the eigenvalues of the matrix M

12 LI,
M :Zw(x,y) v |zy
X,y y

Xy

™ Mj> d
7 =

C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988



Descriptors Invariant to Rotation

e Image moments in polar coordinates

m, = ”r"e“‘s’I | (r,0)drd &

Rotation in polar coordinates is translation of the angle:

60— 0+ 40,
This transformation changes only the phase of the moments, but
not its magnitude

Rotation invariant descriptor consists

- m
of magnitudes of moments: ‘ Kl ‘

Matching is done by comparing vectors [|m|], ,

J.Matas et.al. “Rotational Invariants for Wide-baseline Stereo”. Research Report of CMP, 2003



Descriptors Invariant to Rotation

 Find local orientation

Dominant direction of gradient

e Compute image derivatives relative to this
orientation

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to 1JCV 2004
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Descriptors Invariant to Scale

o Use the scale determined by detector to
compute descriptor in a normalized frame

For example:
e moments integrated over an adapted window

« derivatives adapted to scale: Sl
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Affine Invariant Descriptors

o Affine invariant color moments

m2>° = j xPyIR? (X, Y)G® (X, y)BC (X, y)dxdy

pg
region

Different combinations of these moments
are fully affine invariant

Also Invariant to affine transformation of
intensity |l >al+Db

F.Mindru et.al. “Recognizing Color Patterns Irrespective of Viewpoint and HHlumination”. CVPR99



Affine Invariant Descriptors

e Find affine normalized frame

:<ppT> ||~ @

=A'A A A, T, =AA

‘ rotation ‘

o Compute rotational invariant descriptor in this
normalized frame

J.Matas et.al. “Rotational Invariants for Wide-baseline Stereo”. Research Report of CMP, 2003



SIFT - Scale Invariant Feature Transformd?

« Empirically found? to show very good performance,
Invariant to image rotation, scale, intensity change, and to
moderate affine transformations

Scale=2.5
Rotation = 450

=
o

B2
m

s = sift
;| —— =teerable filters

| = il Invariants
;| —— moments

detection rate

I | & comples filt.
| —e— eross correl

=
=

Py I | TP — S R s S e 4

false positive rale R

1D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to 1JCV 2004
2 K.Mikolajczyk, C.Schmid. “A Performance Evaluation of Local Descriptors”. CVPR 2003



SIFT — Scale Invariant Feature Transform

» Descriptor overview:

— Determine scale (by maximizing DoG in scale and in space),
local orientation as the dominant gradient direction.
Use this scale and orientation to make all further computations
Invariant to scale and rotation.

— Compute gradient orientation histograms of several small windows
(128 values for each point)

— Normalize the descriptor to make it invariant to intensity change

e

)f,,_ T ""‘.
/;+ Nk ﬂ/’ﬂ}\
.,w\*:”“ %
hg "",’.r"?af_‘,.-‘—l
\{ B Sl e 5/

Ny 4

Image gradients Keypoint descriptor

D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to 1JCV 2004



Affine Invariant Texture Descriptor

» Segment the image into regions of different textures (by a non-
Invariant method)

e Compute matrix M (the same as in
Harris detector) over these regions

12l
M =Zw(x,y) y |zy
% y

X'y

e This matrix defines the ellipse

-

y

Regions described by these ellipses are
Invariant under affine transformations

* Find affine normalized frame
« Compute rotation invariant descriptor

F.Schaffalitzky, A.Zisserman. “Viewpoint Invariant Texture Matching and Wide Baseline
Stereo”. ICCV 2003



Invariance to Intensity Change

e Detectors

— mostly invariant to affine (linear) change in
Image Intensity, because we are searching for
maxima

* Descriptors

— Some are based on derivatives => invariant to
Intensity shift

— Some are normalized to tolerate intensity scale

— Generic method: pre-normalize intensity of a
region (eliminate shift and scale)



Talk Resume

o Stable (repeatable) feature points can be detected
regardless of image changes

— Scale: search for correct scale as maximum of
appropriate function

— Affine: approximate regions with ellipses (this
operation is affine invariant)

 [nvariant and distinctive descriptors can be
computed
— Invariant moments

— Normalizing with respect to scale and affine
transformation



Evaluation of interest points and

descriptors

Cordelia Schmid
CVPR’03 Tutorial



Introduction

« Quantitative evaluation of interest point detectors
— points / regions at the same relative location

=> repeatability rate

« Quantitative evaluation of descriptors
— distinctiveness

=> detection rate with respect to false positives



Quantitative evaluation of detectors

* Repeatability rate : percentage of corresponding points

e Two points are corresponding if
1. The location error is less than 1.5 pixel
2. The intersection error is less than 20%



Comparison of different detectors

repeatabllity - image rotation
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[Comparing and Evaluating Interest Points, Schmid, Mohr & Bauckhage, ICCV 98]



Comparison of different detectors

repeatablility — perspective transformation
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[Comparing and Evaluating Interest Points, Schmid, Mohr & Bauckhage, ICCV 98]



Repeatability Rate (%)

100

Harris detector + scale changes

2 3 4 5 6
Scale Factor




Harris detector — adaptation to scale

— Adapted
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Evaluation of scale Invariant detectors

repeatablility — scale changes

Repeatahility of detectors
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Evaluation of affine invariant detectors
repeatability — perspective transformation

100

Fepeatabhility of detectors
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Quantitative evaluation of descriptors

e Evaluation of different local features

— SIFT, steerable filters, differential invariants, moment invariants,
cross-correlation

e Measure : distinctiveness
— receiver operating characteristics of
detection rate with respect to false positives

— detection rate = correct matches / possible matches
— false positives = false matches / (database points * query points)

[A performance evaluation of local descriptors, Mikolajczyk & Schmid,
CVPR’03]



Experimental
evaluation
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Viewpoint change (60 degrees)

4 B
false positive rate

Harris-Affine (Harris-Laplace)



Descriptors - conclusion

o SIFT + steerable perform best

« Performance of the descriptor independent
of the detector

 Errors due to imprecision in region
estimation, localization



shape context slides

 Slides from Jitendra Malik, U.C. Berkeley



Shape context application:
CAPTCHA
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