	

	Platform SDK: Windows Sockets

Writing High-Performance Windows Sockets Applications

Microsoft® Windows® networking components, developed for performance and scalability, enable applications to maximize available network bandwidth. Windows Sockets and the Windows TCP/IP protocol stack have been tuned and streamlined, and as a result, properly written Windows applications can achieve exceptional throughput and performance, as the following facts illustrate:

· Windows is capable of servicing over 200,000 simultaneous TCP connections.

· In a test conducted by SPECWeb96, Internet Information Server on Windows serviced over 25,000 HTTP requests per second.

· Windows set a transmission record of over 750Mbps on a transcontinental Gigabit network consisting of 10 hops.

These achievements illustrate that Windows TCP/IP processes data very quickly. Many applications, however, do not take advantage of the performance capabilities of Windows, of TCP/IP, or of Windows Sockets, because they unknowingly implement performance-hampering techniques.

This guide points out common performance-hampering techniques and how to avoid them. This guide also explains programming techniques that enable Windows Sockets applications to perform as well as possible.

This guide is presented in six sections. Each section addresses important issues for high performance Windows Sockets applications. The order of the sections is intentional; to get the most out of this guide, read it in order.

The following table provides jumps to each section, as well as a brief description of each topic's content.

	Topic
	Description

	Network Terminology
	Defines networking terminology and metrics necessary to understanding the performance of a network application.

	Performance Dimensions
	Discusses performance dimensions that affect the perceived and actual network performance of an application.

	TCP/IP Characteristics
	Defines TCP/IP protocol characteristics that can result in performance issues for a poorly written application.

	Application Behavior
	Explains how to recognize signs of a poor performing network application.

	Improving a Slow Application
	Provides samples of application design issues that contribute to a poorly performing application, and makes changes to the poor-performing code to increase performance.

	Best Practices for Interactive Applications
	A list of best practices for developing interactive network applications.

Platform SDK Release: August 2001

	

	What did you think of this topic?
Let us know.
	[image: image2]
	Order a Platform SDK CD Online
(U.S/Canada) (International)

	

	Platform SDK: Windows Sockets

Network Terminology

Metrics are used to measure aspects of network and protocol performance. The values for such metrics in various scenarios indicate the level of performance of a network application. This section defines terms and metrics used for measuring network application performance. These terms are used throughout the rest of this guide.

Round Trip Time (RTT) – Time, in milliseconds, for a request to make a trip from a source computer to a destination computer, and back again. Lower values indicate better performance. Forward and return path times are not necessarily equal.

RTT values are affected by network infrastructure, distance between nodes, network conditions, and packet size. Packet size, congestion and payload compressibility impact RTT when measured on slow links, such as dial-up connections. Other factors affect RTT, including forward error correction and data compression, which introduce buffers and queues that increase RTT, and therefore decrease performance.

Goodput – Measure of useful application data successfully processed by the receiver, in bits-per-second. Goodput enables the measurement of effective or useful throughput and includes only application data; packet, protocol, and media headers are considered overhead, and are not part of goodput.

Protocol Overhead – Nonapplication bytes, including protocol and media framing, divided by total number of bytes transmitted. The value is expressed as a percentage. Higher values indicate poorer performance.

Overhead is calculated for both directions in this guide, but can be calculated for each direction separately.

Bandwidth-Delay Product – Product of the bits-per-second bandwidth of the network, and the RTT (in seconds). This value equates to the number of bits it takes to fill available network bandwidth. When the value for bandwidth-delay product is high, the TCP/IP stack must handle large amounts of unacknowledged data in order to keep the pipeline full. Bandwidth-delay product is a key end-to-end metric for streaming applications.

[image: image3]
Platform SDK Release: August 2001

	

	What did you think of this topic?
Let us know.
	[image: image5]
	Order a Platform SDK CD Online
(U.S/Canada) (International)

	

	Platform SDK: Windows Sockets

Performance Dimensions

Application performance differs according to the perspective of the judge. For a user, an ideal application would deliver high performance and responsiveness. For an administrator, an ideal application would consume the least amount of network resources.

Performance also differs based on the type of application. Performance for a bulk file transfer application might have different implications than performance for a transactional application.

The next few sections address differing performance dimensions, different application types, and how networking environments can affect performance.

[image: image6]
Platform SDK Release: August 2001

	

	What did you think of this topic?
Let us know.
	[image: image8]
	Order a Platform SDK CD Online
(U.S/Canada) (International)

	

	Platform SDK: Windows Sockets

Performance Needs: Users and Administrators

Users judge application performance by their experience.

· Is the application quick to respond?

· Is an hourglass displayed while background operations are carried out?

· Does the application launch and close quickly?

· Are errors handled in an understandable way rather than hanging the application?

To summarize, users want applications to be fast and predictable.

In contrast, administrators often judge an application's performance on how efficiently it uses network resources. Administrators may ask:

· Does the application have low overhead and efficient network usage?

· Are the minimum number of connections used, so my server can service as many users at once as possible?

· Am I constantly calling helpdesk?

In short, administrators want applications to scale.

Best Practices for Performance Needs

When developing a Windows Sockets application, these performance requirements translate into useful rules.

Have network applications initialize quickly. The user interface should not have to wait for network responses. Some tasks can be performed before the network is available, or without the network. If the network is not responding, the user may need the user interface for simple operations, such as closing the application.

Do not wait for the network for shutdown. Properly written client-server applications handle abortive disconnects gracefully. Do not initiate a possibly lengthy operation that cannot be interrupted on shutdown, such as synchronizing files or folders with a server. Networks are not consistently responsive, so even small operations can prove time consuming. Provide positive feedback, including indications of progress and estimated completion times for users.

Ensure a responsive user interface. A good guideline for interactive response is 500 milliseconds. Unresponsiveness longer than 500 milliseconds is perceived as a lag in performance by the user. Application responsiveness helps eliminate unnecessary helpdesk calls. Applications should be responsive enough to provide the user with confidence about the application; unresponsive applications are often perceived as unreliable.

Scrutinize network errors. Not all network errors are critical. For example, an application that has received or posted all of its data can likely ignore errors when closing the connection. Do not assume the network or the user is available; either handle errors without user intervention, or ignore them if errors are noncritical.

An application should define its own reasonable time outs. For example, a Windows Sockets connect() request may block under some conditions for as much as 21 seconds. Applications may need to introduce their own time outs as appropriate for their users.

Minimize protocol overhead. Conserving network bandwidth is partially about minimizing the protocol overhead incurred by your application. It is also about eliminating unnecessary network traffic. Protocols with a lower header overhead can be used to transfer application data. For example, when sending smaller amounts of noncritical or repeatable data, use UDP as opposed to TCP to reduce the overhead associated with connection establishment and maintenance. If the same data must be sent to multiple recipients, consider multicast. Be aware that UDP applications are not flow-controlled—pushing beyond the available bandwidth can cause catastrophic network failure. The Netstat utility, shipped with Windows 2000, can be used with its -e and -s options to display statistics for various protocols.

Conserve system resources. System resources can be consumed quickly if proper restraint is not used. For example, sockets and TCP connections consume resources. Do not use several TCP connections per client where one will serve your application's purpose.

For transactional applications, a good user experience and low network utilization are not conflicting goals. The network is a bottleneck. Network-intensive applications spend more time waiting, and well written network applications are designed to minimize unnecessary wait time, both for the user interface and for network transmissions.

[image: image9]
Platform SDK Release: August 2001

	

	What did you think of this topic?
Let us know.
	[image: image11]
	Order a Platform SDK CD Online
(U.S/Canada) (International)

	

	Platform SDK: Windows Sockets

Transactional versus Streaming Applications

There are two fundamental types of network applications: transactional and streaming. These application types are also called interactive and batch processing application types, respectively.

Transactional applications are stop and go applications. They usually perform request/reply operations, often ordered. Examples of transactional applications include synchronous remote procedure call (RPC), as well as some HTTP and Domain Name System (DNS) implementations.

Streaming applications move data. To describe streaming applications with a parallel term, streaming applications adhere to a pedal to the metal data transmission philosophy, usually with little concern for data ordering. Examples of streaming applications include network backup and file transfer protocol (FTP).

Once the application type is determined, its network and protocol characteristics are determined as well.

[image: image12]
Platform SDK Release: August 2001

	

	What did you think of this topic?
Let us know.
	[image: image14]
	Order a Platform SDK CD Online
(U.S/Canada) (International)

	

	Platform SDK: Windows Sockets

Different Network Environments

Several network environments affect the networked behavior of an application. Properties that differentiate network environments include low versus high bandwidth, and low versus high RTT. Network environments affect transactional and streaming applications in different ways. Transactional applications are more sensitive to RTT; streaming applications are more sensitive to bandwidth-delay products.

Dial-up networks and some wireless networks have a variable RTT. Satellite networks generally have an asymmetric bandwidth between upstream and downstream. Wireless LAN and xDSL are good examples of networks with bandwidth-delay products similar to that of Fast Ethernet.

[image: image15]
Platform SDK Release: August 2001

	

	What did you think of this topic?
Let us know.
	[image: image17]
	Order a Platform SDK CD Online
(U.S/Canada) (International)

	

	Platform SDK: Windows Sockets

TCP/IP Characteristics

TCP/IP has characteristics that enable the protocol to operate as its standardized implementation requirements dictate. These characteristics can combine with development choices that result in poor performance. The impact these TCP/IP characteristics have on an application depend on whether the application is transactional or streaming.

Transactional applications are affected by the overhead required for connection establishment and termination. For example, each time a connection is established on an Ethernet network, three packets of approximately 60 bytes each must be sent, and approximately one RTT is required for the exchange. When termination of a connection occurs, four packets are exchanged. This is for each connection; an application that opens and closes connections often incurs this overhead on each occurrence.

Another aspect of TCP/IP is slow-start, which takes place whenever a connection is established. Slow-start is an artificial limit on the number of data segments that can be sent before acknowledgment of those segments is received. Slow-start is designed to limit network congestion. When a connection over Ethernet is established, regardless of the receiver's window size, a 4KB transmission can take up to 3-4 RTT due to slow-start.

A TCP/IP optimization called the Nagle Algorithm can also limit data transfer speed on a connection. The Nagle Algorithm is designed to reduce protocol overhead for applications that send small amounts of data, such as Telnet, which sends a single character at a time. Rather than immediately send a packet with lots of header and little data, the stack waits for more data from the application, or an acknowledgment, before proceeding.

Delayed acknowledgments, commonly referred to as delayed ack, are also designed into TCP/IP to enable more efficient piggybacking of acknowledgments when return data is forthcoming from the receiving side application. Unfortunately, if this data is not forthcoming and the sending side is waiting for an acknowledgment, delays of approximately 200 milliseconds per send can occur.

When a TCP connection is closed, connection resources at the node that initiated the close are put into a wait state, called TIME-WAIT, to guard against data corruption if duplicate packets linger in the network. This ensures both ends are finished with the connection. This can cause depletion of resources required per-connection, such as RAM and Ports, when applications open and close connections frequently.

Besides being affected by delayed ack and other congestion avoidance schemes, streaming applications can also be affected by a too-small default receive window size on the receiving end.

[image: image18]
Platform SDK Release: August 2001

	

	What did you think of this topic?
Let us know.
	[image: image20]
	Order a Platform SDK CD Online
(U.S/Canada) (International)

	

	Platform SDK: Windows Sockets

Application Behavior

Another aspect of application development to consider is the difference in behavior between local, or intracomputer operations, and behavior when operations take place between two networked computers. There are application behaviors that may work acceptably well on a local machine, but when run across a network, cause significant performance degradation and resource consumption. The following application behaviors should be avoided when developing Windows Sockets applications.

Behaviors to Avoid

Chatty Applications. Some applications perform many small transactions. When combined with the network overhead associated with each such transaction, the effect is multiplied. In networking, small transactions can consume as many resources and as much time as large transactions. A better approach is to combine many small transactions into a single large transaction.

Serialized Transactions. Unnecessary serialization of transactions can result in poor performance, and affect scalability. For example, 1000 serialized transactions take at least 1000 * RTT to complete. A better approach is to run unrelated transactions in parallel. When serialized applications are combined with chatty applications, responsiveness can be seriously hampered.

Note Properly deserializing an application can be difficult. If changing from serialized to parallel proves too difficult, consider combining multiple transactions into fewer large transactions.

Fat Transactions. Applications that send unnecessary bytes on the network are considered fat applications. Applications that send unnecessary bytes on the network increase network overhead, and performance is hampered. This situation often comes from inefficient data structures or inefficient data streaming. To remedy this, optimize data structures, or consider using compression.

[image: image21]
Platform SDK Release: August 2001

	

	What did you think of this topic?
Let us know.
	[image: image23]
	Order a Platform SDK CD Online
(U.S/Canada) (International)

	

	Platform SDK: Windows Sockets

TCP/IP-specific Issues

Certain programming techniques run into performance issues that are linked to the implementation of TCP/IP. Such performance issues do not suggest that TCP/IP is inefficient or a performance bottleneck; rather, these issues are seen when TCP/IP operations are not understood.

The following issues identify common scenarios in which the combination of TCP/IP operation and network application development choices result in poor performance.

Connect-Heavy Applications. Some applications instantiate a new TCP connection for each transaction. TCP connection establishment takes time, contributes extra RTTs, and is subject to slow-start. In addition, the closed connections are subject to TIME-WAIT, which consumes system resources.

Connect-heavy applications are common largely because they are easy to create; testing and error handling is very simple. Detecting faults on a persistent connection can take considerable code and effort, and therefore is sometimes not completed.

Remedy this situation by reusing the TCP connection. This may cause serialization over the TCP connection unless the transactions are multiplexed over multiple connections. If this approach is taken, the number of connections should be limited to two, and application-layer framing and advanced error handling are required.

Zero-Length Send Buffers and Blocking Sends. Turning off buffering by using the setsockopt function to set the send buffer (SO_SNDBUF) to zero is similar to turning off disk caching. When setting the send buffer to zero and issuing blocking sends, an application has a fifty percent chance of hitting a 200millisecond delayed acknowledgment.

Do not turn off send buffering unless you have considered the impact in all network environments. One exception: streaming data using overlapped I/O should set the send buffer to zero.

Send-Send-Receive programming model. Structuring an application to perform send-send-receives increases your chances of encountering the Nagle Algorithm, which causes a delay of RTT+200ms. The Nagle Algorithm may be encountered if the last send is less than the TCP Maximum Segment Size (MSS, the maximum data in a single datagram). MSS can be a very large value (64K in IPv4, and even larger in IPv6), so do not count on a typically small MSS. A better option is to combine the two sends into a single send using the WSASend or memcpy function.

Large Number of Simultaneous Connections. Concurrent connections should not exceed two, except in special purpose applications. Exceeding two concurrent connections results in wasted resources. A good rule is to have up to four short lived connections, or two persistent connections per destination.

[image: image24]
Platform SDK Release: August 2001

	

	What did you think of this topic?
Let us know.
	[image: image26]
	Order a Platform SDK CD Online
(U.S/Canada) (International)

	

	Platform SDK: Windows Sockets

Recognizing Slow Applications

This guide identifies a slow application as a Windows application that suffers from development decisions that hamper its performance. A slow application exhibits one or more of the following symptoms:

· CPU and network utilization are low. The computer appears to be waiting on something. Often, the application is waiting on the network.

· Turning off the Nagle Algorithm through the TCP_NODELAY socket option increases performance. This also increases the protocol overhead; so do not use this method as a fix for the broken applications—only as an indication the application needs other work to fix performance issues.

· The application exhibits high overhead. To calculate your applications overhead, determine how much data you intended to transfer in each direction. Then use Netstat and add (for Ethernet) 60 bytes for each packet and 500 bytes for each connection. The best overhead that can be expected for streaming over Ethernet is approximately 6%. For a modem connection, the best overhead is approximately 2%, due to the fact that a PPP link uses header compression. See Calculating Overhead with Netstat for more information.

· Application response slows when the connection has a large RTT. Assuming the application is not approaching the link's bandwidth, a large RTT should have little or no effect. A dramatic slowdown with a large RTT is a clear sign of serialized processing and many small transactions.

Every application should be tested in an environment with a large RTT. Doing so reveals most applications that suffer from poor development choices. This testing can be performed in several environments, including a wireless LAN network, a link-delay simulator, or a satellite network.

[image: image27]
Platform SDK Release: August 2001

	

	What did you think of this topic?
Let us know.
	[image: image29]
	Order a Platform SDK CD Online
(U.S/Canada) (International)

	

	Platform SDK: Windows Sockets

Calculating Overhead with Netstat

To calculate an application's network overhead using Netstat, the following four steps must be taken:

1. Retrieve the current interface statistics using Netstat.

2. Execute the application.

3. Get the interface statistics, again using Netstat.

4. Calculate the number of bytes received between the two Netstat measurements.

This should be performed on a quiet network to avoid other network traffic from skewing the data, such as broadcast or multicast traffic. The following example demonstrates these steps, using TTCP to send 10 bytes of data, one byte at a time.

First, a theoretical overhead for the application is calculated. For this test, all packets are 60 bytes (the Ethernet minimum). This transfer requires three packets to set up the connection, 10 data packets, 10 acknowledgment packets (delayed ACK is triggered nearly every time), and four packets to close the connection gracefully.

This equates to 27 packets of 60 bytes each, or 1620 bytes (3+4+10+10)*60=1620). Since only 10 bytes of data are transferred, the overhead is 1610 bytes, which is over 99% protocol overhead.

Here are the command and calculations used to perform this test:

[C:\]

> netstat -e

Interface Statistics

Received Sent

Bytes 392291400 444684566

Unicast packets 487627 570086

Non-unicast packets 1159163 11300

Discards 0 0

Errors 0 0

Unknown protocols 52812

[C:\]

> ttcp -t -h0 -D -l1 -n10 -p9 172.31.71.99

ttcp-t: 10 bytes in 2168 real milliseconds = 0 KB/sec

ttcp-t: 10 I/O calls, msec/call = 216, calls/sec = 4, bytes/call = 1

[C:\]

> netstat -e

Interface Statistics

Received Sent

Bytes 39229207 444685382

Unicast packets 487641 570100

Non-unicast packets 1159164 11301

Discards 0 0

Errors 0 0

Unknown protocols 52812

Calculations:

Sent: 816 bytes, Received: 674 bytes.

Total bytes: 1490

User bytes: 10

Overhead: 1480/1490 = 99.3%

Goodput: = 5 bytes/sec. (or 40 bits/s)

Note Actual bytes transferred do not match the theoretical values due to padding bytes not being accounted for in the Netstat values.

[image: image30]
Platform SDK Release: August 2001

	

	What did you think of this topic?
Let us know.
	[image: image32]
	Order a Platform SDK CD Online
(U.S/Canada) (International)

	

	Platform SDK: Windows Sockets

Improving a Slow Application

This section examines a portion of a sample application that operates over the network very slowly. Throughout this section, modifications are made to the initial code to improve its performance.

The mock sample is the updated portion for a game called Life. The application is written such that the client performs the calculations for the updates and sends them to the server. The server then displays the resulting Life field. The output from the client is a stream of bytes, grouped in threes (triplets), each triplet representing one cell update. The bytes in the triplet represent the row, column, and value, respectively, for the cell.

This sample begins as an intentionally poor performing application, which provides the baseline from which performance improvements can be illustrated. From there, the code is improved three times to address various issues that affect performance. These samples should be read in order, as each iteration improves on the previous version.

The baseline code, and the revisions that improve that code, are the following:

· The Baseline Version: A Very Poor Performing Application

· Revision 1: Cleaning up the Obvious

· Revision 2: Redesigning for Fewer Connects

· Revision 3: Compressed Block Send

· Future Improvements

Warning The first few examples of the application provide intentionally poor performance, in order to illustrate performance improvements possible with changes to code. Do not use these code samples in your application; they are for illustration purposes only.

[image: image33]
Platform SDK Release: August 2001

	

	What did you think of this topic?
Let us know.
	[image: image35]
	Order a Platform SDK CD Online
(U.S/Canada) (International)

	

	Platform SDK: Windows Sockets

The Baseline Version: A Very Poor Performing Application

The initial, poor performing code sample used to calculate the updates is as follows:

Note For simplicity, there is no error handling in the following examples. Any production application always checks return values.

Warning The first few examples of the application provide intentionally poor performance, in order to illustrate performance improvements possible with changes to code. Do not use these code samples in your application; they are for illustration purposes only.

BOOL Map[ROWS][COLS];

void LifeUpdate()

{

 ComputeNext(Map);

 for(int i = 0 ; i < ROWS ; ++i) //serialized

 for(int j = 0 ; j < COLS ; ++j)

 Set(i, j, Map[i][j]); //chatty

}

BYTE Set(row, col, bAlive)

{

 SOCKET s = socket(…);

 BYTE byRet = 0;

 setsockopt(s, SO_SNDBUF, &Zero, sizeof(int));

 bind(s, …);

 connect(s, …);

 send(s, &row, 1);

 send(s, &col, 1);

 send(s, &bAlive, 1);

 recv(s, &byRet, 1);

 closesocket(s);

 return byRet;

}

In this state, the application has the worst possible network performance. The problems with this version of the sample application include:

· The application is chatty. Each transaction is too small—cells do not need to be updated one by one.

· The transactions are strictly serialized, even though the cells could be updated concurrently.

· The send buffer is set to zero, and the application incurs a 200-millisecond delay for each send—three times per cell.

· The application is very connect heavy, connecting once for each cell. Applications are limited in the number of connections per second for a given destination because of TIME-WAIT state, but that is not an issue here, since each transaction takes over 600 milliseconds.

· The application is fat; many transactions have no effect on the server state, because many cells do not change from update to update.

· The application exhibits poor streaming; small sends consume a lot of CPU and RAM.

· The application assumes Little Endian representation for its sends. This is a natural assumption for the current Windows platform, but can be dangerous for long-lived code.

Key Performance Metrics

· Cell time, network time for a single cell update, requires 4*RTT + 600 milliseconds for Nagle and delayed ack interactions.

· The Goodput is less than 6 bytes.

· The overhead is 99.6%.

[image: image36]
Platform SDK Release: August 2001

	

	What did you think of this topic?
Let us know.
	[image: image38]
	Order a Platform SDK CD Online
(U.S/Canada) (International)

	

	Platform SDK: Windows Sockets

Revision One: Cleaning up the Obvious

In this version of the example program, a few obvious changes have been made that will take initial strides at improving performance. This version of the code is far from performance-tuned, but it is a good incremental step that enables examination of the effects of incrementally better approaches.

Warning This example of the application provides intentionally poor performance, in order to illustrate performance improvements possible with changes to code. Do not use this code sample in your application; it is for illustration purposes only.

BYTE Set(row, col, bAlive)

{

 SOCKET s = socket(…);

 BYTE byRet = 0;

 BYTE tmp[3];

 tmp[0] = (BYTE)row;

 tmp[1] = (BYTE)col;

 tmp[2] = (BYTE)bAlive;

 bind(s, …);

 connect(s, …);

 send(s, &tmp, 3);

 recv(s, &byRet, 1);

 closesocket(s);

 return byRet;

}

Changes in this Version

This version reflects the following changes:

· Removed SNDBUF=0. The 200 millisecond delays due to unbuffered sends and delayed acknowledgments are removed.

· Removed the Send-Send-Receive behavior. This change eliminates 200 millisecond delays due to Nagle and delayed ack interactions.

· Removed Little Endian assumption. The bytes are now in order.

Remaining Problems

In this version, the following problems remain:

· The application is still connect heavy. Since the 600+ millisecond delays are removed, the application now hits the 12 connects per second sustained rate. Many concurrent connections now becomes an issue.

· The application is still fat; unchanged cells are still propagated to the server.

· The application still exhibits poor streaming; 3-byte sends are still small sends.

· The application now sends 2 bytes/RTT, which equals 4KB/s on directly connected Ethernet. This is not too fast, but TIME-WAIT will likely cause problems first.

· The overhead is down to 99.3%. Still not a good overhead percentage.

Key Performance Metrics

This version reflect the following performance metrics:

· Cell Time - 2*RTT

· Goodput - 2 bytes/RTT

· Overhead - 99.3%

[image: image39]
Platform SDK Release: August 2001

	

	What did you think of this topic?
Let us know.
	[image: image41]
	Order a Platform SDK CD Online
(U.S/Canada) (International)

	

	Platform SDK: Windows Sockets

Revision Two: Redesigning for Fewer Connects

In this revision, the sample application is redesigned to eliminate unnecessary connects.

Warning This examples of the application also provide intentionally poor performance, in order to illustrate performance improvements possible with changes to code. Do not use this code sample in your application; it is for illustration purposes only.

ComputeNext(Map);

bind(s, …);

connect(s, …);

for(i=0 ; i < ROWS ; ++i)

 for(j=0 ; j < COLS ; ++j)

 {

 BYTE tmp[3];

 tmp[0] = i;

 tmp[1] = j;

 tmp[2] = Map[i][j];

 send(s, tmp, 3);

 recv(s, &byRet, 1);

 }

closesocket(s);

Remaining Problems

The changes in Revision Two redesigned the application to make only one connect per update. The application still includes the following performance issues:

· The application is still serialized and chatty.

· The application still has a fat design; there are many sends that require no operation in this design.

· The sends are still only three bytes, which is poor streaming.

Key Performance Metrics

This version reflects the following performance metrics:

· Cell Time - 1*RTT

· Goodput - 4 bytes/RTT

· Overhead - 96.8%

[image: image42]
Platform SDK Release: August 2001

	

	What did you think of this topic?
Let us know.
	[image: image44]
	Order a Platform SDK CD Online
(U.S/Canada) (International)

	

	Platform SDK: Windows Sockets

Revision Three: Compressed Block Send

In this version of the application, a compressed block send of the data is used. This change results in significant performance improvement.

BYTE tmp[3*ROWS*COLS];

FIELD Old = Map;

ComputeNext(Map);

n=Compact(Map,Old,tmp);

bind(s, …);

connect(s, …);

send(s, tmp, 3*n);

//can't do recv(s,tmp,n)

for(i=0; i < n;)

 recv(s, tmp+i, n-i);

closesocket(s);

Changes in this Version

This version reflects the following changes:

· Cell updates are no longer serialized.

· Since a block send is used, the application is no longer chatty.

· Data compression is used, resulting in a less fat application.

There is still an issue with this version of the application; the risk of deadlock exists since a large send is used with no receives. The server sends one byte for every 3 bytes received. This could cause a deadlock if the receive buffer size is less than 1000 bytes for this sample application.

Key Performance Metrics

This version reflects the following performance metrics:

· Cell Time - .002*RTT

· Goodput - 2 Kbytes/RTT

· Overhead - 14%

Of the 14% overhead, 6% is from the Ethernet headers and the other 8% is from the connection startup and teardown.

[image: image45]
Platform SDK Release: August 2001

	

	What did you think of this topic?
Let us know.
	[image: image47]
	Order a Platform SDK CD Online
(U.S/Canada) (International)

	

	Platform SDK: Windows Sockets

Future Improvements

There are several improvements that can be made to this application, such as:

· A single, persistent connection could be created by the application. Appropriate error handling would have to be added. This would reduce the overhead associated with connection startup and teardown.

· The reply code on the server could be optimized to consolidate replies, reducing the number of packets sent from the server.

· Improvements in the protocol could be made. For example, an update bit mask could be used to signify which cells are to be updated, and only that cell data sent.

· Updates could be overlapped using different threads, so that the network is not idle while the ComputeNext function is running.

[image: image48]
Platform SDK Release: August 2001

	

	What did you think of this topic?
Let us know.
	[image: image50]
	Order a Platform SDK CD Online
(U.S/Canada) (International)

	

	Platform SDK: Windows Sockets

Best Practices for Interactive Applications

In morphing the Life cell update code, several guidelines for writing high performance network applications have been uncovered. Some general strategies to apply when writing these types of applications are:

· Make the data stream as much as possible.

· Use a few large transactions rather than many small ones. Large transactions can also be efficiently streamed.

· Recognize that the network is a slow, unreliable resource and develop each application to minimize its reliance on the network.

· Use a well-architected representation of the data on the network. The data representation should be computer architecture agnostic, contain no fat, and possibly be compressed.

· During initialization and shutdown, don't make the user wait for the network to startup or shutdown. Network related initialization could take a relatively long time. Separate the noncritical network code.

· Handle errors as appropriate to their impact. Not all errors are critical. Implement recovery mechanisms and provide nonintrusive user feedback.

· Use remote procedure calls (RPC) only when appropriate. RPC is synchronous on Windows 98/Me and always results in chatty, fat protocols when used to send small amounts of data.

· Measure your network overhead using Netstat; you may be surprised.

· Test the application on a variety of networks, especially slow or loss-prone networks. Wireless LAN networks, modems and virtual private networks (VPN) over the Internet are good networks for testing.

[image: image51]
Platform SDK Release: August 2001

	

	What did you think of this topic?
Let us know.
	[image: image53]
	Order a Platform SDK CD Online
(U.S/Canada) (International)

