Tutorial 1

Fundamentals
CS/SWE 4/6TE3 September 12, 2006

Review of derivatives, gradients and Hessians:
The gradient extends the notion of derivative, the Hessian matrix — that of second derivative.

Given a function f of n variables x1,x2,...,x, we define the partial derivative relative to
variable z;, written as %, to be the derivative of f with respect to z; treating all variables

except x; as constant. Let x denote the vector (1, s, ...,7,)T. With this notation, f(z) =

flxi, o, ... xy).

The gradient of f at z, written as V f(x), is

Vi) =]

of
OTn

The gradient vector V f(z) gives the direction of steepest ascent of the function f at point
x. The gradient acts like the derivative in that small changes around a given point z* can be

estimated using the gradient (see first-order Taylor series expansion).

Second partial derivatives %&ij are obtained from f(z) by taking the derivative relative to

x; (this yields the first partial derivative g—gz,) and then by taking the derivative of g—:{i relative

, ’f _ Pf _9*f : :
to ;. So, we can compute Tri0m — 9a2) Ouidm and so on. This values are arranged into the
Hessian matrix:
2*f f > f
833% Ox10xs "  Ox10Tn
>f 2*f > f
v2f(56) _ O0z20z1 Ox2 *t Oxo0zn
9% f 9%f 9%f
0rn0x1  Ox20THn ~° 0x2

2 2
The Hessian matrix is a symmetric matrix, that is ﬁ = L
) O0x;0x; Ox;0x;
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Computing gradients and Hessians:

Example

Compute the gradient and the Hessian of the function f(z1,x2) = x% — 3z129 + :):% at the point

v = (z1,22)7 = (1,1)7.
vio=( ) - () - ()

9%f 9% f
2 _ 8_93% 611612 _ 2 —3
\4 f(.I) - 02 f 9% f - -3 2

0x2071 6_13

Taylor series expansion:

Second-order Taylor series expansion:

F(x) = f(ao) + VT (@0)" (&~ 20) + 3 (2 — 20)" V2 zo) x — w0)

First-order Taylor series expansion:

f(a) = f(zo) + Vf(wo)" (z — w0)

Example

f(w1,29) = 22 — 3w129 + 23, compute f(1.01,1.01) using first- and second-order Taylor series
expansion at the point 2o = (1,1)7.

First-order Taylor series expansion:

FLO1,1.01) = £(1,1) +Vf(1,1)T< 181 j ) — 14 (-1,-1) < 881 > — 102

Second-order Taylor series expansion:

0.01 1 0.01
F(L01,1.01) = f(1,1) + V£(1,1)" ( 0.01 ) +5(0:01,00)VE£(1,1) ( 0.01 ) -

0.01 1 2 -3 0.01
=1+ (~1,-1) ( 0.01 ) +§(0.01,0.01)( 3 9 ) < 0.01 ) = —1.0201
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Taylor series expansion은 특정 포인트(x0)에서
gradient, Hessian 등의 derivative 정보를 이용하여
그 점(x0)에 인접한 곳에서의 함수값(f(x))을 예측하는 방법


Convex functions:

Definition A function f is convex if for any 2!, 22 € C and 0 < A < 1
FOw! + (1= N)a2) < Af() + (1= N f(2?).

A square matrix A said to be positive definite (PD) if 27 Az > 0 for all  # 0.
A square matrix A said to be positive semidefinite (PSD) if 27 Az > 0 for all z.
Hessian V f2(z) is PD == strictly convex function.

Hessian V f2(z) is PSD = convex function.

Gradient V f(z
Gradient V f(z

) = 0 and Hessian V f?(z) is PSD = 7 is a minimum of the function f.
)

= 0 and Hessian Vf2(z) is PD = 7 is a strict minimum of the function f.

Checking a matrix for PD and PSD:

Leading principal minors Dy, k =1,2,...,n of a matrix A = (a;;)[,xn) are defined as
ai;p ... Qi
D;. = det
a1 ... Qg

A square matrix Ais PD < Dy >0 forall k=1,2,...,n.

Example

Consider the function f(z) = 327 + 323 + 523 — 2z125. The corresponding Hessian matrix is
Vif(x)=2| —1

Leading principal minors of V2 f(z) are

DI =2.3=6>0, D2:2-det( ’ _31):2[3~3—(—1)(—1)]:2-8:16>0,

3 -1 0
Dy = 2-det| -1 3 0
0 0 5
= 2([3-3-54+0-0-(=1)40-0-(=1)] —[0-0-340-0-3+ (1) (~1)-5))
= 2:-40=80>0

So, the Hessian is positive definite (PD) and the function is strictly convex.




A square matrix A is PSD < all the principal minors of A are > 0.
The principal minor is
aml e am-p
det : : ,where 1 <41 <ipg < ... <1ip <mn, p<n.

Qipiy oo Qiyi,



