
Tutorial 1

Fundamentals

CS/SWE 4/6TE3 September 12, 2006

Review of derivatives, gradients and Hessians:

• The gradient extends the notion of derivative, the Hessian matrix – that of second derivative.

• Given a function f of n variables x1, x2, . . . , xn we define the partial derivative relative to

variable xi, written as ∂f
∂xi

, to be the derivative of f with respect to xi treating all variables

except xi as constant. Let x denote the vector (x1, x2, . . . , xn)T . With this notation, f(x) =

f(x1, x2, . . . , xn).

• The gradient of f at x, written as ∇f(x), is

∇f(x) =

⎛
⎜⎜⎜⎜⎝

∂f
∂x1
∂f
∂x2
...

∂f
∂xn

⎞
⎟⎟⎟⎟⎠

• The gradient vector ∇f(x) gives the direction of steepest ascent of the function f at point

x. The gradient acts like the derivative in that small changes around a given point x∗ can be

estimated using the gradient (see first-order Taylor series expansion).

• Second partial derivatives ∂2f
∂xi∂xj

are obtained from f(x) by taking the derivative relative to

xi (this yields the first partial derivative ∂f
∂xi

) and then by taking the derivative of ∂f
∂xi

relative

to xj . So, we can compute ∂2f
∂x1∂x1

= ∂2f
∂x2

1
, ∂2f

∂x1∂x2
and so on. This values are arranged into the

Hessian matrix:

∇2f(x) =

⎛
⎜⎜⎜⎜⎜⎝

∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂x2∂xn

. . . ∂2f
∂x2

n

⎞
⎟⎟⎟⎟⎟⎠

The Hessian matrix is a symmetric matrix, that is ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

.
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Computing gradients and Hessians:

Example

Compute the gradient and the Hessian of the function f(x1, x2) = x2
1 − 3x1x2 + x2

2 at the point

x = (x1, x2)T = (1, 1)T .

∇f(x) =

(
∂f
∂x1
∂f
∂x2

)
=
(

2x1 − 3x2

−3x1 + 2x2

)
=
( −1

−1

)

∇2f(x) =

⎛
⎝ ∂2f

∂x2
1

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x2

2

⎞
⎠ =

(
2 −3
−3 2

)

Taylor series expansion:

Second-order Taylor series expansion:

f(x) = f(x0) + ∇f(x0)T (x − x0) +
1
2
(x − x0)T∇2f(x0)(x − x0)

First-order Taylor series expansion:

f(x) = f(x0) + ∇f(x0)T (x − x0)

Example

f(x1, x2) = x2
1 − 3x1x2 + x2

2, compute f(1.01, 1.01) using first- and second-order Taylor series

expansion at the point x0 = (1, 1)T .

First-order Taylor series expansion:

f(1.01, 1.01) = f(1, 1) + ∇f(1, 1)T
(

1.01 − 1
1.01 − 1

)
= −1 + (−1,−1)

(
0.01
0.01

)
= −1.02

Second-order Taylor series expansion:

f(1.01, 1.01) = f(1, 1) + ∇f(1, 1)T
(

0.01
0.01

)
+

1
2
(0.01, 0.01)∇2f(1, 1)

(
0.01
0.01

)
=

= −1 + (−1,−1)
(

0.01
0.01

)
+

1
2
(0.01, 0.01)

(
2 −3
−3 2

)(
0.01
0.01

)
= −1.0201
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Taylor series expansion은 특정 포인트(x0)에서gradient, Hessian 등의 derivative 정보를 이용하여그 점(x0)에 인접한 곳에서의 함수값(f(x))을 예측하는 방법



Convex functions:

Definition A function f is convex if for any x1, x2 ∈ C and 0 ≤ λ ≤ 1

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2).

A square matrix A said to be positive definite (PD) if xT Ax > 0 for all x �= 0.

A square matrix A said to be positive semidefinite (PSD) if xT Ax ≥ 0 for all x.

Hessian ∇f2(x) is PD =⇒ strictly convex function.

Hessian ∇f2(x) is PSD =⇒ convex function.

Gradient ∇f(x̄) = 0 and Hessian ∇f2(x̄) is PSD =⇒ x̄ is a minimum of the function f .

Gradient ∇f(x̄) = 0 and Hessian ∇f2(x̄) is PD =⇒ x̄ is a strict minimum of the function f .

Checking a matrix for PD and PSD:

Leading principal minors Dk, k = 1, 2, . . . , n of a matrix A = (aij)[n×n] are defined as

Dk = det

⎛
⎜⎝

a11 . . . a1k
...

...
ak1 . . . akk

⎞
⎟⎠

A square matrix A is PD ⇔ Dk > 0 for all k = 1, 2, . . . , n.

Example

Consider the function f(x) = 3x2
1 + 3x2

2 + 5x2
3 − 2x1x2. The corresponding Hessian matrix is

∇2f(x) = 2

⎛
⎝ 3 −1 0

−1 3 0
0 0 5

⎞
⎠

Leading principal minors of ∇2f(x) are

D1 = 2 · 3 = 6 > 0, D2 = 2 · det
(

3 −1
−1 3

)
= 2[3 · 3 − (−1)(−1)] = 2 · 8 = 16 > 0,

D3 = 2 · det

⎛
⎝ 3 −1 0

−1 3 0
0 0 5

⎞
⎠

= 2([3 · 3 · 5 + 0 · 0 · (−1) + 0 · 0 · (−1)] − [0 · 0 · 3 + 0 · 0 · 3 + (−1) · (−1) · 5])
= 2 · 40 = 80 > 0

So, the Hessian is positive definite (PD) and the function is strictly convex.
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A square matrix A is PSD ⇔ all the principal minors of A are ≥ 0.

The principal minor is

det

⎛
⎜⎝

ai1i1 . . . ai1ip
...

...
aipi1 . . . aipip

⎞
⎟⎠ ,where 1 ≤ i1 < i2 < . . . < ip ≤ n, p ≤ n.
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