
Selectively Damped Least Squares

for Inverse Kinematics

Samuel R. Buss∗

Department of Mathematics
University of California, San Diego

Jin-Su Kim
Department of Computer Science

University of California, San Diego

October 25, 2004

Abstract

We introduce two methods for the inverse kinematics of multibodies
with multiple end effectors. The first method clamps the distance of
the target positions. Experiments show this is effective in reducing
oscillation when target positions are unreachable. The second method
is an extension of damped least squares called selectively damped least
squares (SDLS) which adjusts the damping factor separately for each
singular vector of the Jacobian singular value decomposition based on
the difficulty of reaching the target positions. SDLS has advantages
in converging in fewer iterations and in not requiring ad hoc damping
constants.

Source code is available online.

1 Introduction

A central problem in inverse kinematics (IK) is the control of a rigid
multibody, that is, an assemblage of rigid links connected by joints. A joint
may be rotational, translational, or more general type, and the configuration
of the joint is specified by one or more joint values, for example, the angle
of a rotational joint. The problem is to choose joint values so as to place
the end effectors of the multibody into desired target positions. More
general goals are also possible, for instance, orientation goals. Methods to
solve IK problems include cyclic coordinate descent [9], pseudoinverses [10],

∗Supported in part by NSF grant DMS-0100589. Contact author: sbuss@ucsd.edu

1

Jacobian transpose methods [2, 11], damped least squares (DLS) [8, 7], and
quasi-Newton search and conjugate gradients [9, 12, 4].

The present paper introduces a refinement of the damped least squares
method, called selectively damped least squares (SDLS). Selective damped
least squares can be viewed as extension of the numeric filtering of Maciejew-
ski and Klein [6]. Those authors applied numeric filtering to the smallest
non-zero singular value of the Jacobian; SDLS extends this by selectively
applying filtering to all singular vectors and by defining the damping in
terms of the difficulty of reaching the target.

The paper also introduces a method of setting distant target positions
closer to the end effector positions. This is intended primarily for the case
where target positions are unreachable; its purpose to reduce oscillation or
jitter in trying to reach an optimal configuration.

We present experimental results for situations in which the target
positions are reachable as well as for situations where the target positions
are not (all) reachable. There are several reasons it is important to allow
unreachable target positions. First, it may be difficult to completely
eliminate the possibility of unreachable positions and still get the desired
motion. Indeed, it may not be known whether the target positions are
reachable before trying to reach them. Second, if target positions are barely
reachable, then the situation is very similar to having unreachable targets.

2 Preliminaries

We begin by reviewing some basic facts about IK; see [3] for a more in-depth
treatment. A configuration of a multibody is specified by joint values. The
joint values are written as a column vector θ = (θ1, . . . , θn)T ; we shall
consider mostly the case where θi is the angle of a 1-DOF rotational joint.
The position of the j -th end effector is given by a function sj(θ), for
1 ≤ j ≤ k . The column vector of end effector positions, ~s = (s1, s2, . . . , sk)T

can be viewed as containing either m = 3k many scalar values or k many
values from R

3 . The target positions are also expressed as a vector ~t =
(t1, . . . , tk)T . Let ei = ti − si , the desired change in position of the ith end
effector. IK algorithms typically control a multibody by seeking values for θ
such that

ti = si(θ), for all i , (1)

where ti is a target position for the i-th end effector.
The equations (1) can be solved by iterative local search based on the

m × n Jacobian matrix J which is defined by J(θ) = (∂si/∂θj)i,j . These

2

iterative methods use the current values for θ , ~s and ~t to compute a value
∆θ and update the joint angles by

θ := θ + ∆θ. (2)

Since ~s ′ = J(θ)θ′, the resulting change in end effector positions can be
estimated as ∆~s ≈ J ∆θ . The update (2) to the angles may be done
once per frame so that the end effectors only approximately follow the target
positions, or it can done iteratively until the end effectors are sufficiently
close to the targets.

The pseudoinverse method [10] sets ∆θ := J†~e , where the n × m
matrix J† is the pseudoinverse of J . This method gives best possible
solution to J∆θ = ~e in the sense of least squares. Unfortunately, the
pseudoinverse method is unstable near singularities where J is not of full
row rank. This occurs when there is a direction of movement of the end
effectors that is not (first-order) achievable by changes in joint angle. If the
configuration is close to a singularity, the pseudoinverse method need to be
clamped to prevent very large changes in joint angles.

The Jacobian transpose method [2, 11] uses JT instead of J† . It sets
∆θ := αJT~e , for suitable α > 0. For sufficiently small values of α , this
always moves the end effector position vector ~s closer to the target positions
vector ~t (see [2, 11] or [3]). The Jacobian transpose method is stable and
works acceptably for multibodies with a single end effector. However, with
multiple end effectors, it converges very slowly.

The damped least squares (DLS) method avoids many of the pseudo-
inverse method’s problems with singularities; it was first used for inverse
kinematics by [8, 7]. DLS works by finding the value of ∆θ that minimizes
the quantity ||J∆θ − ~e||2 + λ2||∆θ||2 , where λ > 0 is a non-zero damping
constant. This is achieved by setting ∆θ = JT (JJT + λ2I)−1~e . The
damping constant λ depends on the details of the multibody and the target
positions and must be chosen carefully to make DLS numerically stable.
It should large enough so that the solutions for ∆θ are well-behaved near
singularities but not so large that the convergence rate is too slow.

The singular value decomposition (SVD) is a powerful method for
analyzing the pseudoinverse and the damped least squares methods. In
addition, the SVD will be used to design the SDLS method. A singular value
decomposition of the Jacobian J expresses J as

J = UDV T ,

where U and V are orthogonal matrices and D is an n × n diagonal
matrix. The only non-zero entries in the matrix D are the diagonal values

3

σi = di,i . We henceforth assume m ≤ n . Without loss of generality,
σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0.

The rank of J is the largest value r such that σr 6= 0. The columns ui

of U (resp., the columns vi of V) form an orthonormal basis for R
m (resp.,

for R
n). The vectors vr+1, . . . ,vn are an orthonormal basis for the nullspace

of J . The SVD allows J to be written in the form

J =
∑m

i=1
σiuivT

i =
∑r

i=1
σiuivT

i .

The pseudoinverse of J equals

J† =
∑r

i=1
σ−1

i viuT
i .

The DLS matrix can be expressed in similar form as

JT (JJT + λ2I)−1 =
∑r

i=1

σi

σ2
i +λ2 viuT

i .

Both methods “invert” J with an expression
∑

i τiviuT
i , where τi

equals σ−1
i or σi/(σ2

i + λ2). The pseudoinverse method is unstable as
σi approaches zero; in fact, it is exactly at singularities that σi ’s equal zero.

The SDLS will be defined by a similar formula, but with different
coefficients on viuT

i . In particular, this means that the SDLS, like the
DLS and pseudoinverse methods, does not cause any (first-order) motion
in the direction of the nullspace. Therefore, the SDLS, like the DLS and
pseudoinverse methods, allows the use of motion in the nullspace to achieve
secondary targets such as avoiding of joint limits or obstacles, c.f., [5, 1],

3 Setting target positions closer.

A recurring problem in tracking unreachable targets is that when the targets
are too distant, the multibody’s arms stretch out to towards the targets,
become close to a singularity and then oscillate or jitter trying to converge
towards the targets. The problem is that the Jacobian gives only a first-order
approximation to movement of the end effectors, but higher-order effects
become more important near a singularity. These problems can be reduced
with DLS and SDLS algorithms, but are difficult to remove completely.

One technique to reduce this problem is to move the target positions
closer to the end effector positions. For this, the definition of ~e is changed.
Instead of setting ~e = ~t − ~s , each component ei in the vector ~e has its
length clamped to a specified maximum value, namely

ei = ClampMag(ti − si, Dmax),

4

where

ClampMag(w, d) =

{
w if ||w|| ≤ d

d w
||w|| otherwise

Here ||w|| is the Euclidean norm of w . The value Dmax is an upper bound
on how far we attempt to move an end effector in a single update step.
When the end effectors are tracking continuously moving target positions,
the Dmax distance should be at least several times larger than an end effector
moves in a single update step. In experiments described below, setting Dmax

to be approximately half the length of a typical link worked well. For target
positions that may jump discontinuously, we have used separate maximum
values Dmax,i for each i . After a discontinuous movement of the target
positions (or when beginning a simulation of a continuously moving target),
we initially set Dmax,i to infinity. After the first simulation step, di is set
equal to the amount by which the previous simulation step moved the ith
end effector closer to its target position. In the next step, the magnitude
of ei is clamped to Dmax,i = di + Dmax .

Experiments with SDLS show that clamping the magnitudes of ~ei in
this way can effectively reduce oscillation when target positions are out of
reach. With DLS, using ClampMag allows smaller damping constant to be
used without causing oscillation; the smaller damping constants give a faster
convergence rate.

4 Selectively damped least squares

This section introduces a new method generalizing DLS called selectively
damped least squares. Its effect is similar to choosing a different damping
value for each singular value σi in the SVD. The novel aspect of selective
damping is that the damping constants depend not only on the current
configuration of the articulated multibody, but also on the relative positions
of the end effector and the target position. This kind of selective filtering
has previously been used only in rather restricted ways; most notably,
the influential paper [6] described “numeric filtering” that used a variable
damping constant based on the distance to the target position: that work
only performed selective filtering on the smallest nonzero singular value
however. SDLS selectively damps, or filters, all the singular values. In
addition, the damping depends on the difficulty of reaching the target rather
than just the distance to the target and the configuration of the multibody.

To motivate selective filtering, we consider an example of the instability
of the pseudoinverse. Figure 1 shows a planer multibody that has one arm

5

a
b

e
t1

t′1

Figure 1: An example of a planar multibody that is near a singular
configuration. The root position is fixed at a ; a and b are rotational
joints and e is the end effector.

composed of two links and rotational joints. The links are nearly collinear,
and the system is close to a singularity. The pseudoinverse gives a first-order
approximation to the motion needed to move the end effector towards the
target position t1 ; namely, it would lead to a large counterclockwise rotation
in the root joint a and a large clockwise motion in the second joint b .
The problem is that after even small changes in angles, the first-order
approximation becomes very inaccurate. Thus, in this situation, we would
use a large amount of damping to reduce the motion in this direction. If on
the other hand, the target position was t′1 instead of t1 , the pseudoinverse
solution would call for both angles to rotate in the counterclockwise motion.
In this case, the first-order order approximation of how the end effector
position moves with respect to joint angles is accurate over a wider range of
angles, and in this case, less damping is needed since a wider range of motion
is appropriate. Finally, had the target position t1 been to the right of, but
very close to, the end effector position, we would use less damping since the
end effector could be moved to the target position with only a small change
in the joint angles.

Thus, we conclude that the target position should be taken into account
when deciding how much to damp the joint angle changes. The intuition
behind the SDLS method is to consider each joint angle individually and
decide how much is it trying to move the end effector(s), and then compare
this to the distance from the end effector to the target position. If the former
distances are much greater than the latter distance, then the the motion of
the joint is to be damped more severely. This damping will be implemented
by restricting the maximum change in joint angles.

These intuitions are formalized by the following definitions. For now,
assume all joints are 1-DOF rotational. First, a global constant γmax is
chosen. This will be the maximum permissible change in any joint angle
in a single step; a typical value for γmax is π/4 (i.e., 45 degrees). Second,
let J have SVD J = UDV T . Suppose ~e is the desired change in end
effector positions. Express ~e as a linear combination of the columns of U ,

6

~e =
∑

i αiui where αi = 〈~e,ui〉 = uT
i ~e . Similarly to the pseudoinverse

and DLS methods, the SDLS method computes ∆θ by

∆θ =
∑r

i=1
τiviuT

i ~e =
∑r

i=1
αiτivi,

for some scalars τi . In particular, SDLS method computes the response to
each component αiui of ~e independently.

So fix a value for i . Let Ni equal the sum of the magnitudes of the
vectors in the ith column of U , namely,

Ni =
∑k

j=1
||uj,i|| ,

where ui = (uT
1,i, . . . ,u

T
k,i)

T with each uj,i ∈ R
3 .

Now suppose the ith diagonal entry σi of D is non-zero. Let vj,i be
the entry in V ’s j th row and ith column. Also let ρ`,j = ||∂s`/∂θj || , the
relative magnitude of the change of `th end effector’s position in response
to a small change in the j th joint angle. Then let

Mi,` = σ−1
i

∑n

j=1
|vj,i|ρ`,j .

To understand Mi,` , note that the pseudoinverse method acting on ~e = ui

would change the j th joint angle by σ−1
i vj,i and this would, by itself,

move the `th end effector a distance which is first-order approximable as
σ−1

i |vj,i|ρ`,j . Thus, Mi,` estimates the sum of the distances moved by the
`th end effector caused by the individual changes in joint angles. Sum over
all end effectors to get an aggregate change in all end effector positions:

Mi =
∑

`
Mi,`.

The condition Mi > Ni denotes the presence of cancellation where joints
are moving end effectors in opposite directions. Too much cancellation is
associated with being close to singularities. So, let γi equal

γi = min(1, Ni/Mi) · γmax.

The value γi bounds the maximum angle change in response to the
component αiui of ~e . The intuition is that when the ratio Ni/Mi is
small, there is a lot of cancellation and, for this singular value, the first-order
Jacobian approximation is likely to be accurate only for small angles. Thus,
Ni/Mi is used to control the bound γi for the ith singular vector. Different
singular vectors have different bounds γi .

7

Figure 2: The Y and double-Y shapes. The end effectors are at the ends of
the branches; the red balls indicate the target positions.

To finish the definition of the SDLS algorithm, let

ϕi = ClampMaxAbs(σ−1
i αivi, γi), (3)

where ClampMaxAbs(w, d) is defined just like ClampMag, but using the
1-norm instead of the Euclidean norm (the 1-norm of w is the maximum of
the absolute values of the components of w). Finally, let ∆θ equal

∆θ = ClampMaxAbs(
∑

i
ϕi, γmax), (4)

where the summation is taken over all values i such that σi 6= 0. The SDLS
method uses this value for ∆θ to update the joint angles according to (2).

The above discussion considered only rotational joints. For translational
joints, the first-order approximations to the induced movements of end
effectors are completely accurate, and it is no need to clamp the motion of
a translational joint. The only change to the algorithm is in equations (3)
and (4), where now only the non-translational joints are clamped. Screw
joints would be treated exactly like rotational joints.

5 Experimental results

We implemented the “Y”-shaped and “double-Y” shaped multibodies of
figure 2. The first has seven links with two end effectors; the latter has
16 links with 4 end effectors. The target positions (the red balls in the
figures) were moved by varying each x , y , z component sinusoidally, each
component with its own period. Our experiments did not include any joint
limits, but all the methods could be enhanced to enforce joint limits by the
usual technique of locking any joint that tries to exceed its range of motion.

8

In the first experiments, the target positions moved in small increments
(just small enough to look visually smooth), and in each time step we
updated the joint angles once. Thus, end effectors tracked the target
positions only approximately, even when the target positions were within
reach. The simulations for oscillations and tracking abilities were visually
inspected for smooth motion and the accuracy of the tracking was measured
over hundreds of simulation steps.

The Jacobian transpose was tested with α = 〈~e, JJT~e〉/〈JJT~e, JJT~e〉 ;
this value attempts to minimize the new value ~e = ~t−~s based on a first-order
approximation [3]. The Jacobian transpose method is fast, but its ability to
track the end effectors with a single update per frame was poor for the Y
shape and extremely poor for the double-Y shape.

We implemented a truncated form of the pseudoinverse method, wherein
singular values below a certain threshold were treated as if they were equal to
zero. We additionally limited the maximum change of any joint angle; this
reduced oscillation, but did not completely remove it. When we limited
the maximum angle enough to remove visible oscillation, it made the
pseudoinverse unable to effectively track the targets with only a single
update per frame. However, the worst feature of the pseudoinverse was
that unreachable target positions caused the the multibody to oscillate but
otherwise stay frozen in place. This meant that the end effectors were unable
to keeping pointing towards the directions of the targets. (The reason for
this behavior is that the very small singular values would indicate large
motion; and the bound on the maximum angle change scaled back any useful
motion in the direction of the targets. The DLS and SLDS methods avoid
this problem since they treat different singular vectors separately.)

The damped least squares method worked substantially better than the
pseudoinverse and Jacobian transpose methods. We attempted to set the
damping constant λ so as to minimize the average error of the end effectors’
positions; however, this lead to a lot of oscillation and shaking. Thus, the
damping constant had to be increased until unwanted oscillation became
rare. This was at the cost of accuracy in tracking the target positions.

We also implemented a version of the DLS method which uses the
ClampMag method to clamp the components of the ~e vector: this method
is called DLS ′ . This reduced oscillation and shaking, and permitted setting
the damping constant lower.

The SDLS method was implemented with the use of ClampMag. Since
the SDLS computes the SVD, it is slower than the other methods. SDLS
was substantially better than DLS in terms having end effectors track the
target positions that were within reach, and keeping the other end effectors

9

n 0 1 2 3 4
SDLS over DLS 1.4% 3.1% 20.6% 55.7% 19.3%
SDLS over DLS′ 9.3% 24.3% 32.9% 20.0% 13.6%

Figure 3: The percentage of the time that the SDLS method gave better
positions than the DLS or DLS ′ method for n of the end effectors.

pointing at the targets that were not within reach. The first line of Figure 3
shows the results of test with the double-Y shape that measured how many
of the end effectors were closer to the target positions in the SDLS or the
DLS methods. For over 19% of the time steps all four of the end effectors
were closer with the SDLS method than the DLS method, and for 76% of the
time at least three were closer. The DLS outperformed the SDLS method in
less than 5% of the time steps. The second line of the same table compares
SDLS and DLS ′ . The two methods are almost exactly equivalent in terms
of accuracy. The quality of the SDLS method thus outperformed the DLS
method, but more-or-less matched the DLS ′ method. Other tests (discussed
below) indicate that the advantage of DLS ′ over DLS is due primarily to the
fact that DLS ′ can use a lower damping constant.

An advantage to SDLS over DLS and DLS ′ is that there is no damping
constant to be chosen. The only parameter to set is γmax , and γmax = π/4
was a good, robust choice. On the other hand, for DLS and DLS ′ , the
damping constant had to be carefully chosen. We wrote routines to try
multiple damping constants to find the damping constants that reduced
the end effector error, but then generally had to increase the damping
constant above this level to remove oscillation or too much jerky movement.
Unfortunately, the optimal damping constant depends on many factors,
including the size of the time steps; thus any change to the multibody may
require redetermining the damping constant. Our experiments with DLS
and DLS ′ used damping constants of 1.1 and 0.7, respectively.

A second set of tests measured how well the different methods converged
accurately to fixed target positions. For these tests, the target positions were
moved discontinuously and the joint angles were updated repeatedly until
either the end effectors either reached the end effector position or failed to
continue moving towards the end effectors. Figure 4 reports average results
from 10,000 tests, separated into the cases where either the target positions
where reachable or unreachable (if no method reached the target positions,
they were deemed unreachable). The “Wins” counts the number of times the
method reached the best position among the methods; the “Mean Excess” is
the mean difference between the optimum distance from the target positions

10

Mean Mean # iterations for accuracy of
Method Wins Excess 0.1 0.01 0.001 0.0001
SDLS 2972 0.0 39.3 48.7 52.2 53.5
DLS 0 0.00015 61.5 231.6 467.1 635.2
DLS′ 0 0.00007 29.7 110.9 228.3 327.2
DLS∗ 0 0.00015 63.3 222.9 448.0 609.4
JT 0 2.362 44.0 51.6 53.4 53.9

Mean Mean # iterations for accuracy of
Method Wins Excess 0.1 0.01 0.001 0.0001
SDLS 940 0.182 173.5 336.0 548.1 686.0
DLS 52 0.106 116.1 448.9 1166.7 1706.2
DLS′ 6097 0.00011 75.2 318.7 863.6 1289.5
DLS∗ 123 0.00097 63.3 647.3 1748.5 2429.8
JT 0 4.907 44.0 142.27 142.30 142.30

Figure 4: The first table shows results of tests in which the target positions
were reached; the second table show results for unreached targets.

and the attained distance from the target positions. The “Mean Iterations”
shows how many iterations were required before the total distance from the
end effectors was less than the indicated amount away from the optimum
attained by that method. The DLS∗ method is the DLS ′ method but with
the damping constant 1.1 of the DLS method. The iterations were stopped
when either (i) the distance to the target positions improved by less than
10−5 in any single step, (ii) the distance increased in three trials, generally
from oscillations, or (iii) 4000 iterations were performed. The JT method
has such low numbers of iterations since it started oscillating frequently, thus
aborting the test.

Several conclusions can be drawn from Figure 4. First, not unexpectedly,
the quality of the JT method is much lower than the various DLS and
SDLS methods. The low numbers of iterations reported for that method
indicate only the tests being aborted due to oscillations. Second, the DLS
methods somewhat outperformed SDLS in the early iterations, but once
the optimal positions were nearly reached, SDLS outperformed the DLS
methods. Once the target positions were only 0.01 distant, the SDLS
method usually converged in just two more iterations (but a mean of five
more); whereas the various DLS methods continued to converge only very
slowly. This suggests using DLS at first and switching to SDLS once the
target positions are nearly reached. Third, when the target positions were

11

not reachable, SDLS converged in fewer iterations than the DLS methods,
but often to a configuration slightly more distant from the targets.

The runtimes for a single iteration of the double-Y shape for the JT , the
DLS and the SDLS methods were 6.5 µs, 18.5 µs and 120 µs, respectively.
These times were for C++ code on a 2.8GHz Pentium. The Jacobian for the
double-Y shape is 12 × 16.

We conclude with some recommendations. First, the pseudoinverse
and Jacobian transpose methods performed poorly in our tests, but they
can work when there is a single end effector and the targets are reachable
and if multiple updates are allowed per frame. For those applications,
the Jacobian transpose is fast and easy to implement. For multiple end
effectors, the DLS, DLS ′ or SDLS methods should be used. The DLS and
DLS ′ methods are easier to code and substantially faster, but the SDLS
offers improved performance for applications where its runtime is acceptable
and where it is not possible to pick a good damping constant. For controlled
situations where a damping constant can be set ahead of time, the DLS ′

method with its clamping of target distance gives good performance and
easy implementation. When convergence to precise positions is required, the
SDLS is superior.

Web resources

Our test programs, including source code, and short movie clips are available
from the web page http://www.acm.org/jgt/papers/BussKim05.

Acknowledgements. We thank R. Barzel and the anonymous referees for
helpful feedback and suggestions.

References

[1] J. Baillieul, Kinematic programming alternatives for redundant ma-
nipulators, in Proc. IEEE International Conference on Robotics and
Automation, 1985, pp. 722–728.

[2] A. Balestrino, G. De Maria, and L. Sciavicco, Robust control of
robotic manipulators, in Proceedings of the 9th IFAC World Congress,
Vol. 5, 1984, pp. 2435–2440.

[3] S. R. Buss, Introduction to inverse kinematics with Jacobian transpose,
pseudoinverse and damped least squares methods. Typeset manuscript,

12

available from http://math.ucsd.edu/~sbuss/ResearchWeb, April
2004.

[4] A. S. Deo and I. D. Walker, Adaptive non-linear least squares for
inverse kinematics, in Proc. IEEE International Conference on Robotics
and Automation, 1993, pp. 186–193.

[5] A. A. Maciejewski and C. A. Klein, Obstacle avoidance for kine-
matically redundant manipulators in dynamically varying environments,
International Journal of Robotic Research, 4 (1985), pp. 109–117.

[6] , Numeric filtering for the operation of robotic manipulators through
kinematically singular configurations, Journal of Robotic Systems, 5
(1988), pp. 527–552.

[7] Y. Nakamura and H. Hanafusa, Inverse kinematics solutions with
singularity robustness for robot manipulator control, Journal of Dynamic
Systems, Measurement, and Control, 108 (1986), pp. 163–171.

[8] C. W. Wampler, Manipulator inverse kinematic solutions based on
vector formulations and damped least squares methods, IEEE Transac-
tions on Systems, Man, and Cybernetics, 16 (1986), pp. 93–101.

[9] L.-C. T. Wang and C. C. Chen, A combined optimization method
for solving the inverse kinematics problem of mechanical manipulators,
IEEE Transactions on Robotics and Automation, 7 (1991), pp. 489–499.

[10] D. E. Whitney, Resolved motion rate control of manipulators and
human prostheses, IEEE Transactions on Man-Machine Systems, 10
(1969), pp. 47–53.

[11] W. A. Wolovich and H. Elliot, A computational technique for
inverse kinematics, in Proc. 23rd IEEE Conference on Decision and
Control, 1984, pp. 1359–1363.

[12] J. Zhao and N. I. Badler, Inverse kinematics positioning using
nonlinear programming for highly articulated figures, ACM Transactions
on Graphics, 13 (1994), pp. 313–336.

13

