Architectural geometry: Freeform Curves

2009년 2월 9일 발표자: 유중현

Freeform curves

Control polygon (points)

- Construction of freeform curve
- Modification of freeform curve

Freeform curves

Interactive curve design

- Interpolation
- Approximation

interpolating curve with tangent directions

Hermite interpolation

$$C(t) = \sum_{i} BF_{i,n}(t)P_{i}$$

BF: basis function

- P : control point
- n : the degree of curve

Parametric curve

-

Representation is not unique!

$$C(t) = \sum_{i=0}^{n} B_{i,n}(t) P_i \ (0 \le t \le 1)$$

=
$$\sum_{i=0}^{n} PB_{i,n}(t) Q_i \ (0 \le t \le 1)$$

 $B_{i,n}(t) = \frac{n!}{i!(n-i)!}t^i(1-t)^{n-i}$: Bernstein basis function

- P : control point
- n : the degree of curve
- $PB_{i,n}(t) = t^i$: Power basis function
- Q: appropriate coefficient

Basis conversion

$$C(t) = \sum_{i=0}^{2} B_{i,2}(t)P_i$$

= $(1-t)^2 P_0 + 2t(1-t)P_1 + t^2 P_2$
= $t^2(P_0 - 2P_1 + P_2) + t(-2P_0 + 2P_1) + P_0$
= $\sum_{i=0}^{2} PB_{i,2}(t)Q_i$

where $Q_0 = P_0$, $Q_1 = -2P_0 + 2P_1$ and $Q_2 = P_0 - 2P_1 + P_2$

Bernstein basis functions

Bernstein basis (polynomial) function for n = 1, n = 2 and n = 3

Bézier curves

de Casteljau algorithm (n = 3;cubic case)

Bézier curves

de Casteljau algorithm (n = 3;cubic case)

Given: $\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_n \in \mathbb{E}^3$ and $t \in \mathbb{R}$, **Set:**

$$\mathbf{b}_{i}^{r}(t) = (1-t)\mathbf{b}_{i}^{r-1}(t) + t\mathbf{b}_{i+1}^{r-1}(t) \qquad \begin{cases} r = 1, \dots, n\\ i = 0, \dots, n-r \end{cases}$$
(3.2)

and $\mathbf{b}_i^0(t) = \mathbf{b}_i$. Then $\mathbf{b}_0^n(t)$ is the point with parameter value t on the Bézier curve \mathbf{b}^n .

Subdivision of Bézier curves

Parabolic arc via Bézier curve

A parabolic arc with axis A as quadratic Bézier curve
Construction of a parabolic arc with a vertex and an axis

Properties of Bézier curves

Limitations of Bézier curves

- A large number of control points is impractical.
 - Required for satisfying a large number of constraints (ex: (n-1)-degree necessary for Bézier curve through n data points)
 - The control points have global control on the shape of the curve.

Piecewise Bézier curves

-

How to select control points in order to satisfy

- Tangent continuity
- Curvature continuity

B-Spline curves

- A set of piecewise Bézier curve segments
 - Control points: (m + 1)
 - Degree: *n*
 - Degree: *n* Knot vector with size (m + 1 + n + 1) = k $U = \{\underbrace{0, \dots, 0, \dots, \underbrace{1, \dots, 1}_{n+1}}_{n+1}\}$
 - # of curve segments: (k 2 * n 1) = (m n + 1)

m = 7, n = 3, k = 12, **5** curve segments

B-Spline basis functions

The influence of the degree

Local control on the shape

Modification of a control point

– change only (n + 1) curve segments

Figure 3.2. (a) Cubic basis functions $U = \{0, 0, 0, 0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, 1, 1, 1\}$; (b) a cubic curve using the basis functions of Figure 3.2a.

Open and closed B-Spline curves

- Closed B-Spline curves
 - Control points: (m + 1)
 - Degree: n
 - # of curve segments: (m + 1)

Open and closed B-Spline curves

- While a parabola can be represented by B-Spline curve, B-Spline curve can not represent a circle, an ellipse, and a hyperbola.
 - Rational (polynomial) is required to represent a circle, an ellipse, and a hyperbola

NURBS curves

The influence of the weight

Figure 4.2. Rational cubic B-spline curves, with w_3 varying.

Figure 4.3. The cubic basis functions for the curves of Figure 4.2. (a) $w_3 = 1$; (b) $w_3 = 3/_{10}$; (c) $w_3 = 0$.

NURBS curves

Conic sections as NURBS curves

	w_0	w_1	w2
Parabola	1	1	1
Hyperbola	1	> 1	1
Ellipse	1	< 1	1
Circle	1	$\sin(\varphi/2)$	1

Subdivision curves

Iteratively subdivide (refine) initial control polygon

- Control polygon (point)
- Subdivision (refinement) level

Chaikin's corner-cutting algorithm

- Uniform quadratic B-Spline curve
- Closed curve /open curve

Subdivision curves

The four-point scheme

$$p_i^{new} = -w \cdot p_{i-1} + (1/2 + w) \cdot p_i + (1/2 + w) \cdot p_{i+1} - w \cdot p_{i+2}$$

