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Abstract

The purpose of this note is to give a specific form for Kruppa’s equations in terms of
the Fundamental matrix. Kruppa’s equations can be written explicitly in terms of the
singular value decomposition (SVD) of the fundamental matrix. In the final section, the
known relationship between the absolute conic and camera calibration is reviewed, for
convenience’ sake.

1 Derivation of Kruppa’s Equations

Consider two camera matrices P and P ′ with the same calibration. Let C be the dual
of the image of the absolute conic (abbreviated DIAC) as imaged by these two cameras.
As is well known the image of the absolute conic (IAC) is independent of the pose of the
camera, and so it is the same for the two cameras in question.

Let F be the fundamental matrix for the pair of cameras. We wish to apply projec-
tive transformations represented by 3× 3 transformation matrices A and A′ to the two
images. After the transformation, the effective camera matrices will be AP and A′P ′,
corresponding to the camera projection followed by projective transformation of the im-
age. This will of course change the DIAC to some new conic envelopes, which we will
call D and D′. Since A and A′ may be different, we can no longer assume that D = D′.

Suppose that A and A′ are chosen so that the fundamental matrix for the two new camera
matrices AP and A′P ′ has the special form

E =



0 −1 0
1 0 0
0 0 0


 .

This is a very special fundamental matrix having the property that the two epipoles are
at the origin and that corresponding epipolar lines are identical in the two images.

Now, consider a plane passing through the two camera centres, tangent to the absolute
conic. Such a plane will project to a pair of corresponding epipolar lines in the two images,
and these two lines will be tangent to the IAC. Since there are two such tangential planes,
there are two pairs of corresponding epipolar tangents.

We recall that corresponding epipolar lines in the two images are identical. Let (λ, µ, 0)�

be a tangent to the IAC. Since D is the DIAC in the first image, this tangential relation-
ship may be written as

(λ, µ, 0)D(λ, µ, 0)� = 0



and similarly, (λ, µ, 0)D′(λ, µ, 0)� = 0. Writing these two equations out explicitly gives

λ2d11 + 2λµd12 + µ2d22 = 0

and
λ2d′11 + 2λµd

′
12 + µ

2d′22 = 0

where D = (dij and D′ = (d′ij), both of which are symmetric.

Since the two tangent lines to the IAC must be the same two lines in the two images,
these two equations must have the same pair of solutions for λ and µ. This means that
they must be identical equations (up to scale), and so

d11

d′11

=
d12

d′12

=
d22

d′22

. (1)

These are the Kruppa equations.

We now repeat this argument, this time being more precise about specific values. The
purpose is to find explicit expressions for the matrices D and D′ in terms of the funda-
mental matrix F .

Let the Singular Value Decomposition of the fundamental matrix be F = UDV �, where
U and V are orthogonal, and D = diag(r, s, 0) is a diagonal matrix. We may write this
as follows:

F = U




r
s
1





0 −1 0
1 0 0
0 0 0






0 1 0
−1 0 0
0 0 1


V � .

We write

A′� = U




r
s
1




and

A =




0 1 0
−1 0 0
0 0 1


V � .

Then, we see that F = A′�EA with A and A′ non-singular. For a pair of matching
image points u′ ↔ u we have u′�Fu = 0. Thus, u′�A′�EAu = 0. Setting û = Au
and û′ = A′u′, we see that û′�Eû = 0. Thus, A and A′ are the two transforms that we
require.

Next, we investigate the effect of this transformation of the DIAC. Consider a transfor-
mation A. How does this transformation transform lines ? Well, a point u lies on a
line λ if and only if λ�u = 0. This can be written as λ�A−1Au = 0. Thus, u lies
on λ if and only if Au lies on A−�λ. Thus, A−�λ is the transformed line. Now, a
line λ belongs to a conic envelope C if and only if λ�Cλ = 0. This can be written as
(λA−1)(ACA�)(A−�λ) = 0. Thus, the transformation A maps the conic envelope C to
a D = ACA�, and similarly A′ maps C to D′ = A′CA′�.

Now, we want to compute dij , where D = (dij). Let

A =




a1
�

a2
�

a3
�



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where ai is the i-th row of A. Then, from D = ACA� we compute dij = ai�Caj .

Then (1) leads to the following explicit form for the Kruppa equations :

a1
�Ca1

a′1
�Ca′1

=
a1
�Ca2

a′1
�Ca′2

=
a2
�Ca2

a′2
�Ca′2

(2)

We can write these equations directly in terms of the SVD of the fundamental matrix
F = Udiag(r, s, 0)V �. Specifically, we have

A′ =




r
s
1


U�

from which we have

A′ =




a′1
�

a′2
�

a′3
�


 =




ru1
�

su2
�

u3
�


 .

where ui is the i-th column of U .

For A we have

A =




0 1 0
−1 0 0
0 0 1


V �

and so

A =




a1
�

a2
�

a3
�


 =




v2
�

−v1
�

v3
�


 .

where vi is the i-th column of V .

From (2) we obtain
v2
�Cv2

r2u1
�Cu1

=
−v2

�Cv1

rsu1
�Cu2

=
v1
�Cv1

s2u2
�Cu2

(3)

2 The DIAC and calibration

Finally, we investigate the exact relationship between the DIAC and the camera calibra-
tion.

The absolute conic has equation x2+y2+z2 = 0; t = 0. Define a vector x = (x, y, z)�.
Thus a point (x, y, z, 0)� is on the absolute conic if and only if x�x = 0. Let a cam-
era matrix P = K(R | −Rt). A point (x, y, z, 0)� on the absolute conic maps to
u = P (x, y, z, 0)� = KRx. Thus, x = R�K−1u, and the condition x�x becomes
u�K−�RR�K−1u = u�K−�K−1u = 0. Thus, a point u is on the IAC if and only
if it lies on the conic represented by the matrix K−�K−1. In other words, K−�K−1

is the matrix representing the IAC. Taking inverses (dual conics) reveals that KK� is
the DIAC, denoted C in equations (3). Thus, we may find C by solving the Kruppa
equations (3) and then find K by Choleski factorization.
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