
UML
for

Java
Programmers

Robert Cecil Martin
Object Mentor Inc.

Prentice Hall, Englewood Cliffs, New Jersey 07632
Don’t Panic Don’t Panic Don’t Panic Don’t Panic Don’t Panic Don’t Panic Don’t Panic Don’t Panic Don’t Panic Don’t Panic Don’t Panic Don’t Panic Don’t Panic Don’t Panic Don’t Panic Don’t Panic Don’t Pan ic Don’t Pan ic Don’t Pan ic Don’t Panic Don’t Panic Don’t Panic Don’t Panic Don’t Panic Don’t Panic Don’t Panic Don’t Panic Don’t Panic Don’t Panic

The author and publisher of this book have used their best efforts in preparing this
book. These efforts include the development, research, and testing of the theories and pro-
grams to determine their effectiveness. The author and publisher shall not be liable in any
event for incidental or consequential damages in connection with, or arising out of, the
furnishing, performance, or use of these programs.

All rights reserved. No part of this book may be reproduced, in any form or by any
means, without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-203837-4

Publisher: Alan Apt

Production Editor:

Cover Designer:

Copy Editor:

© 2002 by Prentice-Hall, Inc.

A Simon & Schuster Company

Martin, Robert Cecil.

The Principles, Practices, & Patterns of Agile Software Development

/Robert Cecil Martin.

p. cm.

“An Alan R. Apt Book.”

Includes index.

ISBNxxxxxxxxx

PRENTICE-HALL INTERNATIONAL (UK) Limited, London

PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney

PRENTICE-HALL CANADA, INC., Toronto

PRENTICE-HALL HISPANOAMERICANA, S.A., Mexico

PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi

PRENTICE-HALL OF JAPAN, INC., Tokyo

SIMON & SCHUSTER ASIA PTE. LTD., Singapore

EDITORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro

This book is dedicated to my grandchildren:
XXX: the son of Micah and Angelique.

Alexis: the daughter of Angela and Matt.

It has been said that grandchildren are the desert of life.
If that’s so, what am I supposed to do with all the many

main courses I’m not done with yet?

Source Code and Contact Information:

Much of the source code presented in this book can be obtained from the
Object Mentor Inc. web site. www.objectmentor.com/UMLFJP

Robert C. Martin: unclebob@objectmentor.com

Object Mentor Inc.: info@objectmentor.com
www.objectmentor.com

i Chapter :

Chapter 1:
Overview of UML for Java Programmers1

Diagram Types ..2
Class Diagrams...4
Object Diagrams...5
Sequence Diagrams ..6
Collaboration Diagrams ...6
State Diagrams ...7

Conclusion..8
Bibliography ..8

Chapter 2:
Working with Diagrams ..9

Why Model?...9
Why build models of software? ...10
Why should we build comprehensive designs before coding?10

Making Effective use of UML ..10
Communicating with Others. ...11
Back end Documentation ...13
What to keep, and What to throw away. ..14

Iterative Refinement ...15
Behavior first..15
Check the structure...17
Envisioning the code. ...19
Iterative Refinement ...20

Minimalism ..21
When and how to draw diagrams..21

When to draw diagrams, and when to stop.21
CASE Tools..22
But what about documentation?...23
And Javadocs?..23

Conclusion..24

Chapter 3:
Class Diagrams ...25

ii

The Basics ..25
Classes ..25
Association ...26
Multiplicity...26
Inheritance ..27

An Example Class Diagram ...28
The Details ...30

Class Stereotypes..30
Abstract classes ..31
Properties..31
Aggregation..32
Composition ...33
Multiplicity...34
Association Stereotypes ...35
Inner Classes ..36
Anonymous Inner Classes..36
Association classes...37
Association Qualifiers ..38

Conclusion..38
Bibliography ..39

Chapter 4:
Sequence Diagrams ...41

The Basics ..41
Objects, Lifelines, Messages, and other odds and ends.41
Creation and Destruction..43
Simple Loops..44
Cases and Scenarios ...44

Advanced Concepts...48
Loops and Conditions...48
Messages that take time..49
Asynchronous Messages. ...51
Multiple Threads ..53
Active Objects ..54
Sending Messages to Interfaces. ..54

Conclusion..56

iii Chapter :

Chapter 5:
Use Cases ...57

Writing Use Cases ...57
What is a use case...58
The Primary Course ...58
Alternate Courses ...59
What else? ..59

Use Cases Diagrams ..60
System Boundary Diagram ..60
Use Case Relationships ..61

Conclusion..61

Chapter 6:
Principles of OOD ..63

Design Quality ...63
Design Smells...63
Dependency Management ..64

The Single Reponsibility Principle (SRP) ...64
The Open Closed Principle (OCP) ..66
The Liskov Substitution Principle (LSP) ..78
The Dependency Inversion Principle (DIP)......................................80
The Interface Segregation Principle..81
Conclusion..82
Bibliography ..83

Chapter 7:
The Practices: dX ...85

Iterative Development...85
The Initial Exploration ...85
Estimating the features ...86
Spikes ...87

Planning ...87
Planning Releases...87
Planning Iterations..87
The midpoint. ...88

iv

Velocity Feedback..89
Organizing the Iterations into Management Phases........................89
What’s in an Iteration?...89

Developing in Pairs ..90
Acceptance Tests..90
Unit Tests ...91
Refactoring ...91
Open Office ..92
Continuous Integration...92

Conclusion..92
Bibliography ..93

Chapter 8:
Packages ..95

Java Packages ..95
Packages ...95
Dependencies ...96

Binary Components -- .jar files..97
Principles of Package Design ...97

The Release/Reuse Equivalency Principle (REP)98
The Common Closure Principle (CCP)..98
The Common Reuse Principle (CRP) ..99
The Acyclic Dependencies Principle (ADP)....................................99
The Stable Dependencies Principle (SDP).......................................99
The Stable Abstractions Principle (SAP)100

Conclusion..100

Chapter 9:
Object Diagrams ..103

A Snapshot in Time. ..103
Active Objects..105
Conclusion..108

Chapter 10:
State Diagrams ..109

v Chapter :

The Basics ..109
Special Events ..110
Super States ..111
Initial and Final Pseudo States ...113

Using FSM Diagrams ..113
SMC ...114
ICE: A Case Study ...116

Conclusion..121

Chapter 11:
Heuristics and Coffee ...123

The Mark IV Special Coffee Maker ..123
A Challenge..126
A Common, but Hideous, Coffee Maker Solution.........................126
MissingMethods. ..126
Vapor Classes...127
Imaginary Abstraction..128
God Classes ..129

A Coffee Maker Solution ..129
Crossed Wires ..130
The Coffee Maker User Interface...131
Use Case 1: User pushes brew button. ...131
Use Case 2: Containment Vessel not Ready.132
Use Case 3: Brewing Complete. ..132
Use Case 4: Coffee all gone. ..134
Implementing the Abstract Model..134
Use Case 1. User pushes Brew Button (Mark IV)135
Implementing the isReady() functions. ..136
Implementing the start() functions. ..137
How does M4UserInterface.checkButton get called?138
Completing the Coffee Maker..139
The Benefits of this design...141
How did I really come up with this design?...................................141

Chapter 12:
SMC Remote Service: Case Study ...153

vi

Caveat Emptor..153
Unit Tests. ..154

The SMCRemote System. ...154
SMCRemoteClient ..154

SMCRemoteClient Command Line ...155
SMCRemote Communication Protocols ..155
SMCRemoteClient ...157
The Loggers..164
The Remote Sessions. ..165
RemoteSessionBase ...166
The Remote Registrar...169
The Remote Compiler ..171
FileCarrier ..176
SMCRemoteClient Conclusion ..177

SMCRemoteServer ...178
SocketService ...178
SMCRemoteService ...183
SMCRemoteServer...187
ServerSession ...190
Three Level FSM ...192
UserRepository...192
OReillyEmailSender...202
PasswordGenerator...202

Conclusion..203
Tests for SMCRemoteClient ...204
Tests for SocketService ...211
Tests for SMCRemoteServer ..214
Other Tests...224
ServerController (SMC Generated) ...227
Bibliography ..235

1

1

Overview of UML for Java
Programmers

The Unified Modeling Language (UML) is a graphical notation for drawing diagrams of
software concepts. One can use it for drawing diagrams of a problem domain, a proposed
software design, or an already completed software implementation. Fowler1 describes
these three different levels as Conceptual, Specification, and Implementation. This deals
with the last two.

Specification and Implementation level diagrams have a strong connection to source
code. Indeed it is the intent for a Specification level diagram to be turned into source code.
Likewise it is the intent for an Implementation level diagram to describe existing source
code. As such there are rules and semantics that diagrams at these levels must follow.
Such diagrams have very little ambiguity, and a great deal of formality.

On the other hand, diagrams at the Conceptual level are not strongly related to source
code. Rather they are related to human language. They are a shorthand used describe con-
cepts and abstractions that exist in the human problem domain. They don’t follow strong
semantic rules and therefore their meaning can be ambiguous and subject to interpretation.

Consider, for example, the following sentence: A dog is an animal. We can create a
Conceptual UML diagram that respresents this sentence. (See Figure 1-1.)

This diagram depicts two entities named Animal and Dog connected by generaliza-
tion relationship. An Animal is a generalization of a Dog. A Dog is a special case of an
Animal. That’s all the diagram means. Nothing more can be inferred from it. We might be
asserting that our pet dog, Sparky, is an animal; or we might be asserting that dogs, as a

1. [Fowler00], p??

2Diagram Types

biological species, belong to the animal kingdom. Thus, the diagram is subject to interpre-
tation.

However, the same diagram at the Specification or Implementation level has a much
more precise meaning:

public class Animal {}
public class Dog extends Animal {}

This source code defines Animal and Dog as classes connected by an inheritance
relationship. Whereas the Conceptual model says nothing at all about computers, data pro-
cessing, or programs, the Specification model describes part of a program.

It is unfortunate that the diagrams themselves don’t communicate what level they are
drawn at. Failure to recognize the level of a diagram is the source of significant miscom-
munication between programmers and analysts. A Conceptual level diagram does not
define source code, nor should it. A Specification level diagram that descibes the solution
to a problem does not have to look anything like the Conceptual level diagram that
describes that problem.

All the rest of the diagrams in this book will be at the Specification/Implementation
level, and will be accompanied by corresponding source code where feasible. We have
seen our last Conceptual level diagram.

Diagram Types

Below is a very quick tour of the primary diagrams used in UML. Once you read through
it, you will be able to read and write most of the UML diagrams you will usually need.
What remains, and what subsquent chapters address, are the details and formalisms that
you will need to become proficient in UML.

UML has three main kinds of diagrams. Static diagrams describe the unchanging log-
ical structure of software elements by depicting classes, objects, and data structures; and
the relationships that exist between them. Dynamic diagrams show how software entities
change during execution by depicting the flow of execution, or the way entities change

Figure 1-1
A Dog is an Animal

Animal

Dog

3 Chapter : Overview of UML for Java Programmers

state. Physical diagrams show the unchanging physical structure of software entities by
depicting physical entities such as source files, libraries, binary files, data files, etc., and
the relationships that exist between them.

Consider the code in Listing 1-1. This program implements a map based upon a sim-
ple binary tree algorithm. Familiarize yourself with the code before you consider the dia-
grams that follow.

Listing 1-1
TreeMap.java
public class TreeMap {

TreeMapNode topNode = null;

public void add(Comparable key, Object value) {
if (topNode == null)

topNode = new TreeMapNode(key, value);
else

topNode.add(key, value);
}

public Object get(Comparable key) {
return topNode == null ? null : topNode.find(key);

}
}

class TreeMapNode {
private final static int LESS = 0;
private final static int GREATER = 1;
private Comparable itsKey;
private Object itsValue;
private TreeMapNode nodes[] = new TreeMapNode[2];

public TreeMapNode(Comparable key, Object value) {
itsKey = key;
itsValue = value;

}

public Object find(Comparable key) {
if (key.compareTo(itsKey) == 0) return itsValue;
return findSubNodeForKey(selectSubNode(key), key);

}

private int selectSubNode(Comparable key) {
return (key.compareTo(itsKey) < 0) ? LESS : GREATER;

}

private Object findSubNodeForKey(int node, Comparable key) {
return nodes[node] == null ? null : nodes[node].find(key);

}

public void add(Comparable key, Object value) {
if (key.compareTo(itsKey) == 0)

itsValue = value;
else

addSubNode(selectSubNode(key), key, value);
}

4Diagram Types

Class Diagrams

The Class Diagram in Figure 1-2 shows the major classes and relationships in the
program. It shows that there is a TreeMap class that has public methods named add and
get. It shows that TreeMap holds a reference to a TreeMapNode in a variable named
topNode. It shows that each TreeMapNode holds a reference to two other TreeMapNode
instances in some kind of container named nodes. And it shows that each TreeMapNode

instance holds references to two other instances in variables named itsKey and
itsValue. The itsKey variable holds a reference to some instance that implements the
Comparable interface. The itsValue variable simply holds a reference to some object.

We’ll go over the nuances of class diagrams in a subsequent chapter. For now, there
are only a few things you need to know.

• Rectangles represent classes, and arrows represent relationships.

• In this diagram all the relationships are associations. Associations are simple
data relationships in which one object holds a reference to, and invokes methods

private void addSubNode(int node, Comparable key,
Object value) {

if (nodes[node] == null)
nodes[node] = new TreeMapNode(key, value);

else
nodes[node].add(key, value);

}
}

Figure 1-2
Class Diagram of TreeMap

Listing 1-1 (Continued)
TreeMap.java

+ add(key, value)
+ get(key)

TreeMap

+ add(key, value)
+ find(key)

TreeMapNodetopNode

2 nodes

Comparable
«interface»

Object

itsKey

itsValue

5 Chapter : Overview of UML for Java Programmers

upon, the other.

• The name on an association maps to the name of the variable that holds the refer-
ence.

• A number next to an arrowhead typically shows the number of instances held by
the relationship. If that number is greater than one then some kind of container,
usually an array, is implied.

• Class icons can have more than one compartment. The top compartment always
holds the name of the class. The other compartments describe functions and vari-
ables.

• The «interface» notation means that Comparable is an interface.

• Most of the notations shown are optional.

Look carefully at this diagram and relate it to the code in Listing 1-1. Notice how the
association relationships correspond to instance variables. For example, the association
from TreeMap to TreeMapNode is named topNode and corresponds to the topNode

variable within TreeMap.

Object Diagrams

Figure 1-3 is an Object Diagram. It shows a set of objects and relationships at a par-
ticular moment in the execution of the system. You can view it as a snapshot of memory.

Figure 1-3
TreeMap Object Diagram

:TreeMap

- itsKey = "Martin"

:TreeMapNode

- itsKey = "Bob"

:TreeMapNode

- itsKey = "Don"

:TreeMapNode

- itsKey = "Alan"

:TreeMapNode

- itsKey = "Paul"

:TreeMapNode

- itsKey = "Sam"

:TreeMapNode

- itsKey = "Robin"

:TreeMapNode

nodes[GREATER]nodes[LESS]

nodes[LESS] nodes[LESS]nodes[GREATER] nodes[GREATER]

topNode

6Diagram Types

In this diagram the rectangle icons represent objects. You can tell that they are objects
because their names are underlined. The the name after the colon is the name of the class
that the object belongs to. Note that the lower compartment of each object shows the value
of that object’s itsKey variable.

The relationships between the objects are called links, and are derived from the asso-
ciations in Figure 1-3. Note that the links are named for the two array cells in the nodes

array.

Sequence Diagrams

Figure 1-4 is a Sequence Diagram. It describes how the TreeMap.add method is imple-
mented.

The stick figure represents an unknown caller. This caller invokes the add method on
a TreeMap object. If the topNode variable is null, then TreeMap responds by creating a
new TreeMapNode and assigning it to topNode. Otherwise the TreeMap sends the add

message to topNode.

The boolean expressions inside square brackets are called guards. They show which
path is taken. The message arrow that terminates on the TreeMapNode icon represents
construction. The little arrows with circles are called data tokens. In this case they depict
the construction arguments. The skinny rectangle below TreeMap is called an activation.
It depicts how much time the add method executes.

Collaboration Diagrams

The diagram in Figure 1-5 is a Collaboration Diagram depicting the case of
TreeMap.add where treeNode is not null. Collaboration diagrams contain the same
information that sequence diagrams contain. However whereas sequence diagrams make
the order of the messages clear, collaboration diagrams make the relationships between the
objects clear.

Figure 1-4
TreeMap.add

:TreeMap

add(key, value)

topNode:
TreeMapNode

keyvalue

[topNode == null]

add(key, value)

[topNode != null]

7 Chapter : Overview of UML for Java Programmers

The objects are connected by relationships called links. A link exists wherever one
object can send a message to another. Traveling over those links are the messages them-
selves. They are depicted as the smaller arrows. The messages are labeled with the name
of the message, its sequence number, and any guards that apply.

The dot structure of the sequence number shows the calling hierarchy. The
TreeMap.add function (message 1) invokes the TreeMapNode.add function (message
1.1). Thus message 1.1 is the first message sent by the function invoked by message 1.

State Diagrams

UML has a very comprehensive notation for finite state machines. Figure 1-6 shows just
the barest subset of that notation.

Figure 1-6 shows the state machine for a subway turnstile. There are two states
named Locked and Unlocked. Two events may be sent to the machine. The coin event
means that the user has dropped a coin into the turnstyle. The pass event means that the
user has passed through the turnstile.

The arrows are called transitions. They are labeled with the the event that triggers the
transition, and the action that the transition performs. When a transition is triggered it
causes the state of the system to change.

Figure 1-5
Collaboration Diagram of one case of TreeMap.add

Figure 1-6
State Machine of a Subway Turnstile

:TreeMap

topNode
:TreeMapNode

1: add(key, value)

[topNode != null]
1.1:add(key, value)

Locked

Unlocked

coin / Unlock

pass / Lock
coin / Thankyou

pass / Alarm

8Conclusion

We can translate Figure 1-6 to english as follows:

• If we are in the Locked state, and we get a coin event, then we transition to the
Unlocked state and we invoke the Unlock function.

• If we are in the Unlocked state and we get a pass event then we transition to the
Locked state and we invoke the Lock function.

• If we are in the Unlocked state and we get a coin event, then we stay in the
Unlocked state and we call the Thankyou function.

• If we are in the Locked state and we get a pass event then we stay in the
Locked state and we call the Alarm function.

Diagrams like this are extremely useful for figuring out the way a system behaves.
They give us the opportunity to explore what the system should do in unexpected cases,
like when a user drops a coin, and then drops another coin for no good reason.

Conclusion

The diagrams shown in this chapter are enough for most purposes. Most programmers
could live without any more knowledge of UML that what is shown here.

Bibliography

[Fowler00]: UML Distilled, 2d. ed. Martin Fowler, Addison Wesley, 199?

9

2

Working with Diagrams

“Before we explore the details of UML, it would be wise to talk about when and why we
use it. Much harm has been done to software projects through the misuse and overuse of
UML.

Why Model?

Why do engineers build models? Why do aerospace engineers build models of aircraft?
Why do structural engineers build models of bridges? What purposes do these models
serve?

These engineers build models to find out if their designs will work. Aerospace engi-
neers build models of aircraft and then put them into wind tunnels to see if they will fly.
Structural engineers build models of bridges to see if they will stand. Architects build
models of buildings to see if their clients will like the way they look. Models are built to
find out if something will work.

This implies that models must be testable. It does no good to build a model if there are
no criteria you can apply to that model in order to test it. If you can’t evaluate the model,
the model has no value.

Why don’t aerospace engineers just build the plane and try to fly it? Why don’t struc-
tural engineers just build the bridge and then see if it stands? Because airplanes and
bridges are a lot more expensive than the models. We investigate designs with models
when the models are much cheaper than the real thing we are building.

10Making Effective use of UML

Why build models of software?

Can a UML diagram be tested? Is it much cheaper to create and test than the software it
represents? In both cases the answer is nowhere near as clear as it is for aerospace engi-
neers and structural engineers. There are no firm criteria for testing a UML diagram. We
can look at it, and evaluate it, and apply principles and patterns to it; but in the end the
evaluation is still very subjective. UML diagrams are less expensive to draw than software
is to write; but not by a huge factor. Indeed, there are times when it’s easier to change
source code than it is to change a diagram. So then, does it make sense to use UML?

I wouldn’t be writing this book if UML didn’t make sense to use. However, the above
illustrates just how easy UML is to misuse. We make use of UML when we have something
definitive we need to test, and when using UML to test it is cheaper than using code to test
it.

For example, lets say I have an idea for a certain design. I need to test whether the
other developers on my team think it is a good idea. So I write a UML diagram on the
whiteboard and ask my teammates for their feedback.

Why should we build comprehensive designs before coding?

Architects, aerospace engineers, and structural engineers all draw blueprints. Why?
Because one person can draw the blueprints for a home that will require five or more peo-
ple to build. A few dozen aerospace engineers can draw blueprints for an airplane that will
require thousands of people to build. Blueprints can be drawn without digging founda-
tions, pouring concrete, or hanging windows. In short, it is much cheaper to plan a build-
ing up front, than it is to try to build it without a plan. It doesn’t cost much to throw away
a faulty blueprint, but it costs a lot to tear down a faulty building.

Once again things are not so clear cut in software. It is not at all clear that drawing
UML diagrams is much cheaper than writing code. Indeed, many project teams have spent
more on their diagrams than they have on the code itself. It is also not clear that throwing
away a diagram is much cheaper than throwing away code. Therefore, it is not at all clear
that creating a comprehensive UML design before writing code is a cost effective option.

Making Effective use of UML

Apparently neither architecture, nor aerospace engineering, nor structural engineering pro-
vide a clear metaphor for software development. We cannot blithely use UML the way
those other disciplines use blueprints and models. So when and why should we use UML?

11 Chapter 2: Working with Diagrams

Communicating with Others.

UML is enormously convenient for communicating design concepts between software
developers. A lot can be done with a small group of developers at a whiteboard. If you
have some ideas that you need to communicate to others, UML can be a big benefit.

UML is very good for communicating focussed design ideas. For example, the dia-
gram in Figure 2-1 is very clear. We see the LoginServlet implementing the Servlet

interface and using the UserDatabase. Apparently the classes HTTPRequest and
HTTPResponse are needed by the LoginServlet. One could easily imagine a group of
developers standing around a whiteboard debating a diagram like this. Indeed, the diagram
makes it very clear what the code structure would look like.

On the other hand, UML is not particularly good for communicating algorithmic
detail. Consider the simple bubble sort code in Listing 2-1. Expressing this simple module
in UML is not very satisfying..

Figure 2-1
Login Servlet

Listing 2-1
Bubble Sort
public class BubbleSorter
{

static int operations = 0;
public static int sort(int [] array)
{

operations = 0;
if (array.length <= 1)

return operations;

for (int nextToLast = array.length-2;
nextToLast >= 0; nextToLast--)

for (int index = 0; index <= nextToLast; index++)
compareAndSwap(array, index);

return operations;
}

Servlet HTTPRequest

HTTPResponse

+ processRequest()

Login
Servlet

«interface»

+ getUser()

User
Database

12Making Effective use of UML

The diagram in Figure 2-2 gives us a rough structure, but is combersome and reflects
none of the interesting details. The diagram in Figure 2-3 is no eaiser to read than the code
and is substantially more difficult to create. UML for these purposes leaves much to be
desired.

private static void swap(int[] array, int index)
{

int temp = array[index];
array[index] = array[index+1];
array[index+1] = temp;

}

private static void compareAndSwap(int[] array, int index)
{

if (array[index] > array[index+1])
swap(array, index);

operations++;
}

}

Figure 2-2
Bubble Sorter

Figure 2-3
Bubble Sort Sequence Diagram

Listing 2-1 (Continued)
Bubble Sort

BubbleSorter

+ sort(array: int[]) : int
- swap(array : int[], index : int)
- compareAndSwap(array : int[], index : int)

BubbleSorter

sort

for (int nextToLast = array.length-2; nextToLast >= 0; nextToLast--)

for (int index = 0; index <= nextToLast; index++)

compareAndSwap(array, index)

13 Chapter 2: Working with Diagrams

UML can be useful for creating roadmaps of large software structures. Such road-
maps give developers a quick way to find out which classes depend upon which others and
provide a reference to the structure of the whole system.

For example, in Figure 2-4 it is easy to see that Space objects have a Polyline con-
structed of many Lines which are derived from LinearObject which contains two
Points. Finding this structure in code would be tedious. Finding it in a roadmap diagram
is trivial.

Such roadmaps can be useful teaching tools. However, any team member ought to be
able to throw such a diagram up on the whiteboard at a moments notice. Indeed, I drew the
one above from my memory of a system I was working on five years ago. Such diagrams
capture the knowledge that all the developers must keep in their heads in order to work
effectively in the system. So, for the most part, there is not much point is going to a lot of
trouble to create and archive such documents. Their best use is, once again, at the white-
board.

Back end Documentation

When is the best time to create a design document? At the end of the project as the last act
of the team. Such a document will accurately reflect the state of the design as the team left
it, and could certainly be useful to an incomming team.

Figure 2-4
Roadmap

Space Authored
Space

Portal

Human
Portal Window

Door WallOpening

2

PolyLine

Line

itsOutline

*

LinearObject

InfiniteLineRay

Geometric
Object

Point
2

14Making Effective use of UML

However, there are some pitfalls. UML diagrams need to be carefully considered. We
don’t want a thousand pages of sequence diagrams! Rather, we want a few very salient
diagrams that describe the major issues in the system. No UML diagram is worse than one
that is cluttered with so many lines and boxes that you get lost in the tangle (See Figure 2-
5). Don’t do this.

What to keep, and What to throw away.

Get into the habit of throwing UML diagrams away. Better yet, get into the habit of not
creating them on a persistent medium. Write them on a whiteboard, or on scraps of paper.
Erase the whiteboard frequently, and throw the scraps of paper away. Don’t use a case tool
or a drawing program as a rule. There is a time and place for such tools, but most of your
UML should be short-lived.

Some diagrams, however, are useful to save. There are diagrams that express a com-
mon design solution in your system. There are diagrams that record complex protocols
that are hard to see in the code. There are diagrams that provide roadmaps for areas of the

Figure 2-5

fravitz fradle fivvle

parnangle gabaduchi turnatls

gazatch

goassach

coriadon

dorasifus

gilmaso

teliadora

tolanomatine

bisotias

Kobe

Sobe

castigamator

zelsofus

quidatle

sagatock

garmatos

Gossage

Gorsage

freedle meek

Kaastor

denar

15 Chapter 2: Working with Diagrams

system that aren’t touched very often. There are diagrams that record designer intent in a
way that is better than code can express it.

There is no point in hunting for these diagrams; you’ll know them when you see
them. There’s no point in trying to create these diagrams up front. You’ll be guessing, and
you’ll guess wrong. The real useful diagrams will keep showing up over and over again.
They’ll show up on whiteboards or scraps of paper in design session after design session.
Eventually someone will make a persistent copy of the diagram just so it doesn’t have to
be drawn again. That is the time to place the diagram in some common area that everyone
has access to.

It is important to keep common areas convenient and uncluttered. Putting useful dia-
grams on a web server, or a networked knowledge base, is a good idea. However, don’t
allow hundreds or thousands of diagrams to accumulate there. Be judicious about what
diagrams are truly useful, and which could be recreated by anybody on the team at a
moments notice. Keep only those whose long term survival has lots of value.

Iterative Refinement

How do we create UML diagrams? Do we draw them in one brilliant flash of insight? Do
we draw the class diagrams first and then the sequence diagrams? Should we scaffold the
whole structure of the system first before we flesh in any of the details?

The answer to all these questions is a resounding NO. Anything humans do well they
do by taking tiny little steps and then evaluating what they have done. The things that
humans do not do well are things that they do in great leaps. We desire to create useful uml
diagrams. Therefore we will create them in tiny little steps.

Behavior first.

I like to start with behavior. For those problems where I think UML will help me think the
problem through, I’ll start by drawing a simple sequence diagram of the problem. Condis-
der, for example, the software that controls a cellular phone. How does this software make
the phone call?

We might imagine that the software detects each button press and sends a message to
some object that controls dialing. So we’ll draw a Button object and a Dialler object
and show the Button sending the digit message to the Dialler.

: Button :Dialler

1*:digit(n)

16Iterative Refinement

What will the Dialler do when it recieves the digit message? Well, it needs to get
the digit displayed on the screen. So perhaps it’ll send displayDigit to the Screen

object.

Next the Dialler had better cause a tone to be emitted from the speaker. So we’ll
have it send the tone message to the Speaker object.

At some point the user will press the “send” button indicating that he wants the call to
go through. At that point we’ll have to tell the cellular radio to connect to the cellular net-
work and pass along the phone number that was dialled.

Once the connection has been established, the Radio can tell the Screen to light up
the “in use” indicator. This message will almost certainly be sent in a different thread of
control (which is denoted by the letter in front of the sequence number). The final collabo-
ration diagram is shown in Figure 2-6.

: Button :Dialler

1*:digit(n)

: Screen

1.1 : displayDigit(n)

: Button :Dialler

1*:digit(n)

: Screen

1.1 : displayDigit(n)

: Speaker

1.2: tone(n)

: Button :Dialler

1*:digit(n)

: Screen

1.1 : displayDigit(n)

: Speaker

1.2: tone(n)

2:Send

send : Button

:Radio

2.1 : connect(pno)

17 Chapter 2: Working with Diagrams

Check the structure

This little exersize has shown how we build a collaboration from nothing. Notice how we
invented objects along the way. We didn’t know these objects were going to be there ahead
of time, we just knew we needed certain things to happen, so we invented objects to do
them.

But now, before we go much further, we need to examine what this collaboration
means to the structure of the code. So we’ll create a class diagram that supports the collab-
oration. This class diagram will have a class for each object in the collaboration, and an
association for each link in the collaboration.

Those of you who are familiar with UML will note that I have ignored aggregation
and composition. That’s intentional. There’ll be plenty of time to consider whether any of
those relationships apply nor not.

Figure 2-6
Cell Phone Collaboration Diagram

Figure 2-7
Cell Phone Class Diagram

: Button :Dialler

1*:digit(n)

: Screen

1.1 : displayDigit(n)

: Speaker

1.2: tone(n)

2:Send

send : Button

:Radio

2.1 : connect(pno)

A1 : inUse

Button Dialler Radio

Speaker Screen

18Iterative Refinement

What’s important to me right now is an analysis of the dependencies. Why should
Button depend upon Dialler? If you think about this, it’s pretty hideous. Consider the
implied code:

public class Button
{

private Dialler itsDialler;
public Button(Dialler dialler)
{itsDialler = dialler;}
...

}
I don’t want the source code of Button mentioning the source code of Dialler.

Button is a class that I can use in many different contexts. For example, I’d like to use the
Button class to control the on/off switch, or the menu button, or the other control buttons
on the phone. If I bind the Button to the Dialler, then I won’t be able to reuse the
Button code for other purposes.

I can fix this by inserting an interface between Button and Dialler as shown in
Figure 2-8. Here we see that each Button is given a token that identifies it. When the
Button class detects that the real button has been pressed, it invokes the
buttonPressed method of the ButtonListener interface, passing the token. This
breaks the dependence of Button upon Dialler and allows Button to be used virtually
anywhere that needs to recieve button presses..

Notice that this change has had no effect upon the dynamic diagram in Figure 2-6.
The objects are all the same, it’s just the classes that have changed.

Unfortunately now we’ve made Dialler know something about Button. Why
should Dialler expect to get its input from ButtonListener? Why should it have a

Figure 2-8
Isolating Button from Dialler

- token

Button

Dialler Radio

Speaker Screen

+ buttonPressed(token)

ButtonListener
«interface»

19 Chapter 2: Working with Diagrams

method within it named buttonPressed? What has the Dialler got to do with
Button?

We can solve this problem, and get rid of all the token nonsense, by using a batch of
little adapters. The ButtonDiallerAdapter implements the ButtonListener inter-
face. It receives the buttonPressed method and sends a digit(n) message to the
Dialler. The digit passed to the Dialler is held in the adapter.

Envisioning the code.

We can easily envision the code for the ButtonDiallerAdapter. It appears in Listing 2-
2. Being able to envision the code is critically important when working with diagrams. We
use the diagrams as a shortcut for code, not a replacement for it. If you are drawing dia-
grams and cannot envision the code that they represent, then you are building castles in the
air. Stop what you are doing, and figure out how to translate it to code. Never let the dia-
grams become an end unto themselves. You must always be sure you know what code you
are representing.

Figure 2-9
Adapting Buttons to Diallers

Listing 2-2
ButtonDiallerAdapter.java
public class ButtonDiallerAdapter implements ButtonListener
{

private int digit;
private Dialler dialler;
public ButtonDiallerAdapter(int digit, Dialler dialler)
{

this.digit = digit;
this.dialler = dialler;

}

Button

+ digit(n)

Dialler
Radio

Speaker Screen

+ buttonPressed()

ButtonListener
«interface»

- digit

ButtonDialler
Adapter

20Iterative Refinement

Iterative Refinement

Note that the last change we made in Figure 2-9 has invalidated the dynamic model back
in Figure 2-6. The dynamic model knows nothing of the adapters. We’ll change that now.
See Figure 2-10.

This shows how the diagrams evolve together in an iterative fashion. You start with a
little bit of dynamics. Then you explore what those dynamic imply to the static relation-
ships. You alter the static relationships according to the principles of good design. Then
you go back and improve the dynamic diagrams.

Each of these steps in tiny. We don’t want to invest any more than 5 minutes into a
dynamic diagram before exploring the static structure implied. We don’t want to spend
any more than 5 minutes refining that static structure before we consider the impact on the
dynamic behavior. Rather, we want to evolve the two diagrams together using very short
cycles.

Remember, we’re probably doing this at a whiteboard, and we are probably not
recording what we are doing for posterity. We aren’t trying to be very formal or very pre-
cise. Indeed, the diagrams I have included in the figures above are a bit more precise and

public void buttonPressed()
{

dialler.digit(digit);
}

}

Figure 2-10
Adding Adapters to the Dynamic Model

Listing 2-2
ButtonDiallerAdapter.java

: ButtonDialler
Adapter

:Dialler

1.1:digit(n)

: Screen

1.1.1 :
displayDigit(n)

: Speaker

1.1.2: tone(n)

2.1:Send

:SendButton
DiallerAdapter

:Radio

2.1.1 : connect(pno)

A1 : inUse

:Button

ButtonListener

ButtonListener

2:buttonPressed

1*:buttonPressed

21 Chapter 2: Working with Diagrams

formal than you would normally have to be. The goal at the whiteboard is not to get all the
dots right on your sequence numbers. The goal is to get everybody standing at the board to
understand the discussion. The goal is to stop working at the board and start writing code.

Minimalism

This book will show you all the various widgets and icons you can adorn a UML diagram
with. Using these adornments you can make your diagrams very complex. It is possible to
represent an amazing amount of detail in a UML diagram. However, I advise against this.

As we’ll discuss below, diagrams are most useful for communicating with other, and
for helping you work out design problems. It is important that you only use the amount of
detail necessary to accomplish your goal. Loading a diagram up with lots of adornments is
possible, but counter-productive. Keep your diagrams simple and clean. UML diagrams
are not source code and should not be treated as the place to declare every method, vari-
able, and relationship.

When and how to draw diagrams.

Drawing UML diagrams can be a very useful activity. It can also be a horrible waste of
time. A decision to use UML can be a very good thing, or it can be a very bad thing. It
depends upon how, and how much, you choose to use it.

When to draw diagrams, and when to stop.

Don’t make a rule that everything must be diagrammed. Such rules are worse than useless.
Enormous amounts of project time and energy can be wasted in pursuit of diagrams that
no one will ever read.

When to draw diagrams:

• Draw diagrams when several people need to understand the structure of a partic-
ular part of the design because they are all going to be working on it simulta-
neously. Stop when everyone agrees that they understand.

• Draw diagrams when two or more people disagree on how a particular element
should be designed, and you want team consensus. Put the discussion into a time-
box choose a means for deciding, like a vote, or an impartial judge. Stop at the
end of the timebox, or when the decision can be made. Then erase the diagram.

• Draw diagrams when you just want to play with a design idea, and the diagrams
can help you think it through. Stop when you’ve gotten to the point that you can
finish your thinking in code. Discard the diagrams.

22When and how to draw diagrams.

• Draw diagrams when you need to explain the structure of some part of the code
to someone else, or to yourself. Stop when the explanation would be better done
by looking at code.

• Draw diagrams when it’s close to the end of the project and your customer has
requested them as part of a documentation stream for others.

When not to draw diagrams:

• Don’t draw diagrams because the process tells you to.

• Don’t draw diagrams because you feel guilty not drawing them or because you
think that’s what good designers do. Good designers write code and draw dia-
grams only when necessary.

• Don’t draw diagrams to create comprehensive documetation of the design phase
prior to coding. Such documents are almost never worth anything and consume
immense amounts of time.

• Don’t draw diagrams for other people to code. True software architects partici-
pate in the coding of their designs, so that they can lay in the bed they have made.

CASE Tools.

UML CASE tools can be beneficial, but they can also be expensive dust collectors. Be
very careful about making a decision to purchase and deploy a UML CASE tool.

• Don’t UML CASE tools make it easier to draw diagrams?
No, they make it significantly harder. There is a long learning curve to get profi-
cient; and even then the tools are more cumbersome than whiteboards. White-
boards are very easy to use. Developers are usually already familiar with them. If
not, there is virtually no learning curve.

• Don’t UML CASE tools make it easier for large teams to collaborate on dia-
grams?
In some cases. However, the vast majority of developer and development
projects do not need to be producing diagrams in such quantities and complexi-
ties that they require an automated collaborative system to coordinate their activ-
ities. In any case, the best time to purchase a system to coordinate the preparation
of UML diagrams is when a manual system has first been put in place, is starting
to show the strain, and there is no other choice but to automate.

• Don’t UML CASE tools make it easier to generate code?
The sum total effort involved in creating the diagrams, generating the code, and
then using the generated code is not likely to be less then the cost of just writing
the code in the first place. If there is a gain, it is not an order of magnitude, or
even a factor of two. Developers know how to edit text file and use IDEs. Gener-

23 Chapter 2: Working with Diagrams

ating code from diagrams may sound like a good idea; but I stronly urge you to
measure the productivity increase before you spend a lot of money.

• What about these CASE tools that are also IDEs and show the code and dia-
grams together?
These tools are definitely cool. However, I don’t think the constant presence of
UML is important. The fact that the diagram changes as I modify the code, or
that the code changes as I modify the diagram, does not really help me much.
Frankly, I’d rather buy an IDE that has put its effort on figuring out how to help
me manipulate my programs than my diagrams. Again, measure productivity
improvement before making a huge monetary committment.

In short, look before you leap, and look very hard. There may be a benefit to outfitting
your team with an expensive CASE tool; but verify that benefit with your own experi-
ments before buying something that could very well turn into shelfware.

But what about documentation?

Good documentation is essential to any project. Without it the team will get lost is a sea of
code. On the other hand, too much documentation of the wrong kind is worse; because
then you have all this distracting and misleading paper, and you still have the sea of code.

Documentation must be created, but it must be created prudently. Often the choice not
to document is just as important as the choice to document. A complex communication
protocol needs to be documented. A complex relatoinal schema needs to be documented.
A complex reusable framework needs to be documented.

However, none of these things needs a hundred pages of UML. Software documenta-
tion should be short, and to the point. The value of a software document is inversely pro-
portional to its size.

For a project team of 12 people working on a project of a million lines of Java, I
would have a total of 25 to 200 pages of persistent documentation, with my preference
being for the smaller. These documents would include UML diagrams of the high level
structure of the important modules, ER diagrams of the relational schema, a page or two
about how to build the system, testing instructions, source code control instructions, etc.

I would put this documentation into a wiki, or some collaborative authoring tool so
that anyone on the team can have access to it on their screens and search it, and anyone
can change it as need be.

It takes a lot of work to make a document small, but that work is worth it. People will
read small documents. They won’t read 1,000 pages tomes.

And Javadocs?

Javadocs are excellent tools. Create them. But keep them small and focussed. Those that
describe functions that others will use, should be written with care, and should contain

24Conclusion

enough information to help the user understand. Javadocs that describe private utility
functions or methods that aren’t for wide distribution can be much smaller.

Conclusion

A few folks at a whiteboard can use UML to help them think through a design problem.
Such diagrams should be created iteratively, in very short cycles. It is best to explore
dynamic scenarios first, and then determine their implications on static structure. It is
important to evolve the dynamic and static diagrams together using very short iterative
cycles on the order of 5 minutes or less.

UML CASE tools can be beneficial in certain cases; but for the normal development
team they are likely to be more of a hindrance than a help. If you think you need a UML
CASE tool; even one integrated with an IDE, run some productivity experiments first.
Look before you leap.

UML is a tool, not an end in itself. As a tool, it can help you think through your
designs and communicate them to others. Use it sparingly and it will give you great bene-
fit. Overuse it and it will waste a lot of your time. When using UML, think small.

25

3

Class Diagrams

UML class diagrams allow us to denote the static contents of, and relationships between
classes. In a class diagram we can show the member variables, and member functions of a
class. We can also show whether one class inherits from another, or whether it holds a ref-
erence to another. In short, we can depict all the source code dependencies between
classes.

This can be valuable. It can be much eaiser to evaluate the dependency structure of a
system from a diagram than from source code. Diagrams make certain dependency struc-
tures visible. We can see dependency cycles, and determine how best to break them. We
can see when abstract classes depend upon concrete classes, and determine a strategy for
rerouting such dependencies. .

The Basics

Classes

Figure 3-1 shows the simplest form of class diagram. The class named Dialler is repre-
sented as a simple rectangle. This diagram represents nothing more than the code shown to
its right.

public class Dialler
{
}

Figure 3-1
Class Icon

Dialler

26The Basics

This is the most common way you will represent a class. The classes on most dia-
gramd don’t need any more than their name to make clear what is going on.

A class icon can be subdivided into compartments. The top compartment is for the
name of the class, the second is for the variables of the class, and the third is for the meth-
ods of the class. Figure 3-2 shows these compartments and how they translate into code.

Notice the character in front of the variables and functions in the class icon. A dash
(-) denotes private, hash (#) denotes protected, and plus (+) denotes public.

The type of a variable, or a function argument is shown after the colon following the
variable or argument name. Similarly, the return value of a function is shows after the
colon following the function.

This kind of detail is sometimes useful; but should not be used very often. UML dia-
grams are not the place to declare variables and function. Such declarations are better done
in source code. Use these adornments only when they are essential to the purpose of the
diagram.

Association

Associations between classes most often represent instance variables that hold references
to other objects. For example, in Figure 3-3 we see an association between Phone and
Button. The direction of the arrow tells us that Phone holds a reference to Button. The
name near the arrowhead is the name of the instance variable. The number near the arrow-
head tells us how many references are held.

Multiplicity

The number near the arrowhead represents the number of objects that connected to the
other associate. In Figure 3-3 above we saw that fifteen Button objects were connected to

public class Dialler
{

private Vector digits;
int nDigits;
public void digit(int n);
protected boolean recordDigit(int n);

}

Figure 3-2

public class Phone
{

private Button itsButtons[15];
}

Figure 3-3

+ digit(n : int)
recordDigit(n : int) : boolean

- digits : Vector
- nDigits : int

Dialler

Phone Button
15

itsButtons

27 Chapter : Class Diagrams

the Phone object. Below, in Figure 3-4, we see what happens when there is no limit. A
Phonebook is connected to many PhoneNumber objects. The star means many. In Java
this is most commonly implemented with a Vector, a List, or some other container type.

Why didn’t I use HASA? You may have noticed that I avoided using the word
“has”. I could have said: “A Phonebook has many PhoneNumbers.” This was inten-
tional. The common OO verbs HASA and ISA have lead to a number of unfortunate mis-
understandings. We’ll explore some of them later in Chapter 6. For now, don’t expect me
to use the common terms. Rather, I’ll use terms that are descriptive of what actually hap-
pens in software.

Inheritance

You have to be very careful with your arrowheads in UML. Figure 3-5 shows why. The
little arrowhead pointing at Employee denotes inheritance1. If you draw your arrowheads
carelessly, it may be hard to tell whether you mean inheritance or association. To make it
clearer, I often make inheritance relationships vertical and associations horizontal.

In UML all arrowheads point in the direction of source code dependency. Since it is
the SalariedEmployee class that mentions the name of Employee, the arrowhead
points at Employee. So, in UML, inheritance arrows point at the base class.

UML has a special notation for the kind of inheritance used between a Java class and
a Java interface. It is shown, in Figure 3-6, as a dashed inheritance arrow2. In the diagrams
to come, you’ll probably catch me forgetting to dash the arrows that point to interfaces. I

public class Phonebook
{

private Vector itsPnos;
}

Figure 3-4

1. Actually, it denotes Generalization, but as far as a Java programmer is concerned, the difference
is moot.

public class Employee
{

...
}

public class SalariedEmployee extends Employee
{

...
}

Figure 3-5

2. This is called a Realizes relationship. There’s more to it than just inheritance of interface, but the
difference is beyond the scope of this book.

Phonebook
Phone

Number
*

itsPnos

Employee

Salaried
Employee

28An Example Class Diagram

suggest you forget to dash the arrows that you draw on whiteboards too. Life’s too short to
be dashing arrows.

Figure 3-7 shows another way to convey the same information. Interfaces can be
drawn as little lollipops on the classes that implement them. We often see this kind of
notation in COM designs.

An Example Class Diagram

Figure 3-8 shows a simple class diagram of part of an ATM system. This diagram is inter-
esting both for what it shows, and for what it does not show. Note that I have taken pains
to mark all the interfaces. I consider it crucial to make sure my readers know what classes
I intend to be interfaces and which I intend to be implemented. For example, the diagram
immediately tells you that WithdrawTransaction talks to a CashDispenser interface.
Clearly some class in the system will have to implement the CashDispenser, but in this
diagram we don’t care which class it is.

Note that I have not been particularly thorough in documenting the methods of the
various UI interfaces. Certainly WithdrawlUI will need more than just the two methods
shown there. What about promptForAccount or informCashDispenserEmpty? Put-
ting those methods in the diagram would just clutter it. By providing a representative
batch of methods, I’ve given the reader the idea. That’s all that’s really necessary.

interface ButtonListener
{

...
}

public class ButtonDiallerAdapter
implements ButtonListener

{
...

}

Figure 3-6

Figure 3-7

ButtonListener
«interface»

ButtonDialler
Adapter

DiallerButton
Adapter

ButtonListener

29 Chapter : Class Diagrams

Again note the convention of horizontal association and vertical inheritance. This
really helps to differentiate these vastly different kinds of relationships. Without a conven-
tion like this it can be hard to tease the meaning out of the tangle.

Notice how I’ve separated the diagram into three distinct zones. The transactions and
their actions are on the left, the various UI interfaces are all on the right, and the UI imple-
mentation is on the bottom. Note also that the connections between the groupings are min-
imal and regular. In one case it is three associations, all pointing the same way. In the other
case it is three inheritance relationships all merged into a single line. The grouping, and
the way they are connected help the reader to see the diagram in coherent pieces.

You should be able to see the code as you look at the diagram. Is Listing 3-1 close to
what you expected for the implementation of UI?

Figure 3-8
ATM Class Diagram

Withdrawl
Transaction

Deposit
Transaction

Transfer
Transaction

+ execute()

Transaction
«interface»

+ promptForWithdrawlAmount
+ informInsufficientFunds

WithdrawlUI

+ promptForDepositAmount
+ promptForEnvelope

DepositUI

+ promptForTransferAmount
+ promptForFromAccount
+ promptForToAccount

TransferUI

+ displayMessage

UI

SpanishUI EnglishUI

+ displayMessage

Screen
«interface»

«interface»

«interface»

«interface»

+ logMessage

MessageLog

CashDispenser

DepositAccepter
«interface»

«interface»

30The Details

The Details

There are a vast number of details and adornments that can be added to UML class dia-
grams. Most of the time these details and adornments should not be added. But there are
times when they can be helpful.

Class Stereotypes

Class stereotypes appear between guilmette3 characters, usually above the name of the
class. We have seen them before. The «interface» denotation in Figure 3-8 is a class ste-
reotype. «interface» is one of two standard stereotypes that can be used by java program-
mers. The other is «utility».

«interface». All the methods of classes marked with this stereotype are abstract. None
of the methods can be implemented. Morevover, «interface» classes can have no instance
variables. The only variables they can have are static variables. This corresponds exactly
to java interfaces. See Figure 3-9.

«utility». All the methods and variables of a «utility» class are static. Booch4 used to
call these class utilities. See Figure 3-10.

Listing 3-1
UI.java
public class UI implements

WithdrawlUI, DepositUI, TransferUI
{

private Screen itsScreen;
private MessageLog itsMessageLog;

public void displayMessage(String message)
{

itsMessageLog.logMessage(message);
itsScreen.displayMessage(message);

}
}

3. The quotation marks that look like double angle brackets « ». These are not two less-than, and two
greater-than signs. If you use doubled inequality operators instead of the appropriate and proper
guilmette characters, the UML police will find you.

interface Transaction
{

public void execute();
}

Figure 3-9

4. [Booch94], p. 186

+ execute()

Transaction
«interface»

31 Chapter : Class Diagrams

You can make your own stereotypes if you like. I often use stereotypes like «persis-
tent», «C-API», «struct», or «function». You just have to make sure that the people who
are reading your diagrams know what your stereotype means.

Abstract classes

In UML there are two ways to denote that a class, or a method, is abstract. You can write
the name in italics, or you can use the {abstract} property. Both options are shown in Fig-
ure 3-11.

It’s a little difficult to write italics at a whiteboard, and the {abstract} property is
wordy. So at the whiteboard, if I need to denote a class or method as abstract, I use the
convention shown in Figure 3-12. This isn’t legal UML, but at the whiteboard it is a lot
more convenient5.

Properties

Properties, like {abstract} can be added to any class. They represent extra information
that’s not usually part of a class. You can create your own properties at any time.

public class Math
{

public static final double PI =
3.14159265358979323;

public static double sin(double theta){...}
public static double cos(double theta){...}

}

Figure 3-10

public abstract class Shape
{

private Point itsAnchorPoint;
public abstract void draw();

}

Figure 3-11

5. Some of you may remember the Booch notation. One of the nice things about that notation was
it’s convenience. It was truly a whiteboard notation.

+ PI : double
+ sin()
+ cos()

Math
«utility»

- itsAnchorPoint

Shape

+ draw() {abstract}

- itsAnchorPoint

Shape

+ draw()

{abstract}

32The Details

Properties are written in a comma separated list of name value pairs like this:

{author=Martin, date=20020429, file=shape.java, private}

The properties in the above example are not part of UML. The {abstract} property is
the only defined property of UML that java programmres would find useful.

If a property does not have a value, it is assumed to take the boolean value true. Thus
{abstract} and {abstract = true} are synonyms.

Properties are written below and to the right of the name of the class as shown in Fig-
ure 3-13.

Other than the {abstract} property, I don’t know when you’d this useful. Personally,
in the many years that I’ve been writing UML diagrams, I’ve never had occasion to use
class properties for anything.

Aggregation

Aggregation is a special form of association that connotes a “whole/part” relationship.
Figure 3-14 shows how it is drawn and implemented. Notice that the implementation
shown in Figure 3-14 is indistinguishable from association. That’s a hint.

Unfortunately, UML does not provide a strong definition for this relationship. This
leads to confusion because various programmers and analysts adopt their own pet defini-

Figure 3-12

Figure 3-13

public class Whole
{

private Part itsPart;
}

Figure 3-14

+ draw() {A}

Shape
{A}

Shape

{author=Martin,
date=20020429,
file=shape.java,
private}

Whole Part

33 Chapter : Class Diagrams

tions for the relationship. For that reason, I don’t use the relationship at all; and I recom-
mend that you avoid it as well.

The one hard rule that UML gives us regarding aggregations is simply this. A whole
cannot be its own part. Therefore instances cannot form cycles of aggregations. A single
object cannot be an aggregate of itself; two objects cannot be aggregates of each other;
three objects cannot form a ring of aggregation, etc. See Figure 3-15

I don’t find this to be a particularly useful definition. How often am I concerned about
making sure that instances form a directed acyclic graph? Not very often. Therefore I find
this relationship useless in the kinds of diagrams I draw.

Composition

Composition is a special form of aggregation shown in Figure 3-16. Again, notice that the
implementation is indistinguishable from association. However, this time the reason is not
due to a lack of definition; this time it’s because the relationship does not have a lot of use
in a Java program. C++ programmers, on the other hand, find a lot of use for it.

The same rule applies to Composition that applied to aggregation. There can be no
cycles of instances. An owner cannot be its own ward. However UML provides quite a bit
more definition.

• An instance of a ward cannot be simultaneously owned by two owners. The
object diagram in Figure 3-17 is illegal. Note, however, that the corresponding
class diagram is not illegal. An owner can transfer ownership of a ward to
another owner.

Figure 3-15
Cycles of aggregation between instances.

public class Owner
{

private Ward itsWard;
}

Figure 3-16

X

Y Z

Q

P R

Owner Ward

34The Details

• The owner is reponsible for the lifetime of the ward. If the owner is destroyed,
the ward must be destroyed with it. If the owner is copied, the ward must be cop-
ied with it.

In Java destruction happens behind the scenes by the garbage collector, so there is sel-
dom a need to manage the lifetime of an object. Deep copies are not unheard of, but the
need to show deep copy semantics on a diagram is rare. So, though I have used composi-
tion relationships to describe some Java programs, such use is infrequent.

Figure 3-18 shows how composition is used to denote deep copy. We have a class
named Address which holds many Strings. Each string holds one line of the address.
Clearly, when you make a copy of the Address, you want the copy to change indepen-
dently of the original. Thus, we need to make a deep copy. The composition relationship
between the Address and the Strings indicates that copies need to be deep6.

Multiplicity

Objects can hold arrays or vectors of other objects; or they can hold many of the same
kind of object in seperate instance variables. In UML this can be shown by placing a mul-
tiplicity expression on the far end of the association. Multiplicity expressions can be sim-
ple numbers, ranges, or a combination of both. For example Figure 3-19 shows a
BinaryTreeNode, using a multiplicity of 2.

Here are the allowable forms:

• Digit. The exact number of elements

• * or 0..* zero to many.

• 0..1 Zero or one. In Java this is often implemented with a reference that
can be null.

• 1..* One to many.

• 3..5 Three to five.

• 0, 2..5, 9..* Silly, but legal.

Figure 3-17
Illegal composition.

6. Exercize: Why was it enough to clone the itsLines vector? Why didn’t I have to clone the actual
String instance?

O1 O2

W

35 Chapter : Class Diagrams

Association Stereotypes

Associations can be labeled with stereotypes that change their meaning. Figure 3-20
shows the ones that I use most often. All but the last are standard UML.

The «creates» sterotype indicates that the target of the association is created by the
source. The implication is that the source creates the target and then passes it around to
other parts of the system. In the example I’ve shown a typical factory.

The «local» stereotype is used when the source class creates an instance of the target
and holds it in a local variable. The implication is that the created instance does not sur-

import java.util.Vector;

public class Address implements Cloneable{
private Vector itsLines = new Vector();

public void setLine(int n, String line) {
if (n >= itsLines.size())

itsLines.setSize(n+1);
itsLines.setElementAt(line, n);

}

public Object clone() throws CloneNotSupportedException
{

Address clone = (Address)super.clone();
clone.itsLines = (Vector)itsLines.clone();
return clone;

}
}

Figure 3-18
DeepCopy is implied by Composition

public class BinaryTreeNode
{

private BinaryTreeNode leftNode;
private BinaryTreeNode rightNode;

}

Figure 3-19
Simple multiplicity

+setLine(n,line)

Address
String

*

Cloneable
«interface»

itsLines

BinaryTreeNode

2

36The Details

vive the member function that creates it. Thus, it is not held by any instance variable nor
passed around the system in any way.

The «parameter» stereotype shows that the source class gains access to the target
instance though the parameter of one of its member functions. Again, the implication is
that the source forgets all about this object once the member function returns. The target is
not saved in an instance variable.

The «delegates» stereotype is not a standard part of UML, it is one of my own. How-
ever, I find I use it so often that I thought I’d include it here. I use it when the source class
forwards a member function invocation to the target. There are a number of design pat-
terns where this technique is applied, such as PROXY, DECORATOR, and COMPOSITE7.
Since I use these patterns a lot, I find the notation helpful.

Inner Classes

Inner (nested) classes are represented in UML with an association adorned with a crossed
circle.

Anonymous Inner Classes

One of Java’s most interesting features is anonymous inner classes. While UML does not
have an official stance on these, I find the notation in Figure 3-22 works well for me. It is

public class A {
public B makeB() {

return new B();
}

}

public class A {
public void f() {

B b = new B();
// use b

}
}

public class A {
public void f(B b) {

// use b;
}

}

public class A {
private B itsB;
public void f() {

itsB.f();
}

}

Figure 3-20

7. [GOF94] p207, 175, 163

A B
«creates»

A B
«local»

A B
«parameter»

A B
«delegates»

37 Chapter : Class Diagrams

concise and descriptive. The anonymous inner class is shown as a nested class that is
given the «anonymous» stereotype, and is also given the name of the interface it imple-
ments.

Association classes

Associations with multiplicity tell us that the source is connected to many instances of the
target; but the diagram doesn’t tell us what kind of container class is used. This can be
depicted by using an association class as shown in Figure 3-23.

Association classes show how a particular association is implemented. On the dia-
gram they appear as a normal class connected to the association with a dashed line. As
Java programmers we interpret this to mean that the source class really contains a refer-
ence to the association class, which in turn contains references to the target.

Association classes can also be used to indicate special forms of references, such as
weak, soft, or phantom references. See Figure 3-24.

On the other hand, this notation is a bit cumbersome and is probably better done with
stereotypes as in Figure 3-25.

public class A {
private class B {

...
}

}

Figure 3-21

public class Window {
public void f() {

ActionListener l =
new ActionListener() {

// implementation
};

}
}

Figure 3-22

public class Address {
private Vector itsLines;

};

Figure 3-23
Association class.

A B

MyWindow ActionListener
«anonymous»

Address String
*

itsLines

Vector

38Conclusion

Association Qualifiers

Association qualifiers are used when the association is implemented through some kind of
key or token, instead of with a normal Java reference. The example in Figure 3-26 shows a
LoginServlet associated with an Employee. The association is mediated by a member
variable named empid which contains the database key for the Employee.

I find this notation useful in rare situations. Sometimes it’s convenient to show that an
object is associated to another through a database or dictionary key. It is important, how-
ever, that all the parties reading the diagram know how the qualifier is used to access the
actual object. This is not something that’s immediately evident from the notation.

Conclusion

There are lots of widgets, adornments, and whatchamajiggers in UML. There are so many
that you can spend a long time becoming an UML language lawyer enabling you to do
what all lawyers can -- write documents nobody can understand.

public class Logger {
private WeakReference itsLogs;

}

Figure 3-24

Figure 3-25

public class LoginServlet {
private String empid;
public String getName() {

Employee e = DB.getEmp(empid);
return e.getName();

}
}

Figure 3-26

Logger LogMessage
*

itsLogs

WeakReference

Logger LogMessage
*

itsLogs

«weak»

Login
Servelet

Employeeempid

39 Chapter : Class Diagrams

In this chapter I have avoided most of the arcanities and byzantine features of UML.
Rather I have showed you the parts of UML that I use. I hope that along with that knowl-
edge I have instilled within you the values of minimalism. Using too little of UML is
almost always better than using too much.

Bibliography

[Booch94]: Object Oriented Analysis and Design with Applications, Grady Booch, Ben-
jamin Cummings, 1994

[GOF94]: Design Patterns, Gamma, Helm, Vlissides, Johnson, Addison Wesley, 1994.

40Bibliography

41

4

Sequence Diagrams

Sequence diagrams are the most common of the dynamic models drawn by UML slingers.
As you might expect, UML provides lots and lots of goodies to help you draw truly
incomprehensible diagrams. In this chapter we’ll study those goodies, and try to convince
you to use them with great restraint.

I once consulted for a team that had decided to create sequence diagram for every
method of evey class. No, no, no, no, no! Don’t do this, it’s a terrible waste of time. Use
sequence diagrams when you have an immediate need to describe to someone how a
group of objects collaborate, or when you want to visualize that collaboration for yourself.
Use them as a tool that you occasionally use to hone your analytical skills, rather than as
necessary documentation.

The Basics

I first learned to draw sequence diagrams in 1978. James Grenning, a long time friend and
associate, showed them to me while we were working on a project that involved complex
communication protocols between computers connected by modems. What I am going to
show you here is just a little more complex than what he taught me then; and should suf-
fice for the vast majority of sequence diagrams that you will need to draw.

Objects, Lifelines, Messages, and other odds and ends.

Figure 4-1 shows a typical sequence diagram. The objects involved in the collaboration
are shown at the top. The stick figure (actor) at left represents an anonymous object. It is
the source and sink of all the messages entering and leaving the collaboration. Not all
sequence diagrams have such an anonymous actor, but many do.

42The Basics

The dashed lines hanging down from the objects and the actor are called lifelines. A
message being sent from one object to another is shown as an arrow between the two life-
lines. Each message is labeled with its name. Arguments appear either in the parenthesis
that follow the name, or next to data tokens (the little arrows with the circles on the end).
Time is in the vertical dimension, so the lower a message appears the later it is sent.

The skinny little rectangle on the lifeline of the LoginServlet object is called an
activation. Activations are optional; most diagrams don’t need them. They represent the
time that a function executes. In this case it shows how long the login function runs. The
two messages leaving the activation to the right were sent by the login method. The unla-
beled arrow shows the login function returning to the actor, and passing back a return
value.

Note the use of the e variable in the getEmployee message. This signifies the value
returned by getEmployee. Notice also that the Employee object is named e. You guessed
it, they’re one and the same. The value that getEmployee returns is a reference to the
Employee object.

Finally, notice that EmployeeDB is a class, not an object. This can only mean that
getEmployee is a static method. Thus, we’d expect EmployeeDB to be coded as in List-
ing 4-1.

Figure 4-1
Typical Sequence Diagram

Listing 4-1
EmployeeDB.java
public class EmployeeDB
{

public static Employee getEmployee(String empid)
{

...
}
...

}

:LoginServlet e:Employee EmployeeDB

login

passwordempid

e := getEmployee(empid)

validate(password)

result: boolean

Actually an
HTTPRequest
generated by an
HTML form.

One of two web
pages informing
the user whether
his login was
successful or not.

:HTTPResponse

43 Chapter : Sequence Diagrams

Creation and Destruction

We can show the creation of an object on a sequence diagram using the convention shown
in Figure 4-2. An unlabeled message terminates on the object to be created, not on it’s life-
line. We would expect ShapFactory to be implemented as shown in Listing 4-2.

In Java we don’t explicitly destroy objects. The garbage collector does all the explicit
destruction for us. However, there are times when we want to make it clear that we are
done with an object and that, as far as we are concerned, the garbage collector can have it.

Figure 4-3 shows how we denote this in UML. The lifeline of the object to be released
comes to a premature end at a large X. The message arrow terminating on the X represents
the act of releasing the object to the garbage collector.

Figure 4-2
Creating an object

Listing 4-2
ShapeFactory.java
public class ShapeFactory
{

public Shape makeSquare()
{

return new Square();
}

}

Figure 4-3
Releasing an object to the garbage collector

s:Square

ShapeFactory

makeSquare

s : Shape

topNode:
TreeNode

:TreeMap

clear

44The Basics

Listing 4-3 shows the implementation we might expect from this diagram. Notice that
the clear method sets the topNode variable to nil. Since the TreeMap is the only object
that holds a reference to that TreeNode instance, it will be released to the garbage collec-
tor.

Simple Loops

You can draw a simple loop in a UML diagram by drawing a box around the messages
that repeat. The loop condition can appear somewhere in the box, usually at the lower left.
See Figure 4-4.

This is a useful notational convention. However, it is not wise to try to capture algo-
rithms in sequence diagrams. Sequence diagrams should be used to expose the connec-
tions between objects not the nitty gritty details of an algorithm.

Cases and Scenarios

Rule: Don’t draw sequence diagrams like Figure 4-5 with lots of objects and scores of
messages. Nobody can read them. Nobody will read them. They’re a huge waste of time.

Listing 4-3
TreeMap.java
public class TreeMap
{

private TreeNode topNode;
public void clear()
{

topNode = nil;
}

}

Figure 4-4
A simple loop

: Payroll : PayrollDB e : Employee

getEmployeeList

idList : Vector

getEmployee(id)

e : Employee
pay

for each id in idList

45 Chapter : Sequence Diagrams

Rather, learn how to draw a few smaller sequence diagrams that capture the essense of
what you are trying to do. Each sequence diagram should fit on a single page, with plenty
of room left for explanatory text. You should not have to shrink the icons down to tiny
sizes to get them to fit on the page.

Also, don’t draw dozens or hundreds of sequence diagrams. If you have too many,
they won’t be read. Find out what’s common about all the scenarios and focus on that. In
the world of UML diagrams, commonalities are much more important than differences.
Use your diagrams to show common themes and common practices. Don’t use them to
document every little detail. If you really need to draw a sequence diagram to describe the

Figure 4-5
This sequence diagram is too complex

Payroll PayrollDB e : Employee
HourlyPay

Classification
TimeCard

getEmployeeList

e:=getEmployee(id)

IsPayDay

WeeklyPayment
Schedule

isPayDay

true
true

calculatePay
calculatePay

getDate

dateInPayPeriod

getHours

calcOvertime

pay

sendPayment

Union
Affiliation

calculateDeductions

pay

calculateTaxes

getDues

getServiceChargesdeductions

Payment
Disposition

payment

46The Basics

way messages flow, then do them succinctly, and sparingly. Draw as few of them as possi-
ble.

First of all, ask youself if the sequence diagram is necessary at all. Code is often more
communicative and economical. Listing 4-4, for example, shows what the code for the
Payroll class might look like. This code is very expressive, and stands on its own. We
don’t need the sequence diagram to understand it. So perhaps there’s no need to draw the
sequence diagram. Perhaps the code is good enough to stand on its own. When code can
stand on its own, then diagrams are redundant and wasteful.

Can code really be used to describe part of a system? In fact, this should be a goal of
the developers and designers. The team should strive to create code that is expressive and
readable. The more the code can describe itself, the fewer diagrams you will need, and the
better of the whole project will be.

Secondly, if you feel a sequence diagram is necessary, ask yourself if there is a way to
split it up into a small group of scenarios. For example, we could break the large sequence
diagram in Figure 4-5 into several much smaller sequence diagrams that would be much
easier to read. Consider how much easier the small scenario in Figure 4-6 is to understand.

Thirdly, think about what you are trying to depict. Are you trying to show the details
of a low level operation like Figure 4-6 shows how to calculate hourly pay? Or are you
trying to show a high level view of the overall flow of the system as in Figure 4-7? In gen-
eral, high level diagrams are more useful than low level ones. They help the reader tie the
system together in his mind. They expose commonalities more than differences.

Listing 4-4
Payroll.Java
public class Payroll
{

private PayrollDB itsPayrollDB;
private PayrollDisposition itsDisposition;
public void doPayroll()
{

List employeeList = itsPayrollDB.getEmployeeList();
for (Iterator iterator = employeeList.iterator();

iterator.hasNext();)
{

String id = (String) iterator.next();
Employee e = itsPayrollDB.getEmployee(id);
if (e.isPayDay())
{

double pay = e.calculatePay();
double deductions = e.calculateDeductions();
itsDisposition.sendPayment(pay - deductions);

}
}

}
}

47 Chapter : Sequence Diagrams

Figure 4-6
One small scenario

Figure 4-7
A high level view.

HourlyPay
Classification

TimeCard

calculatePay
getDate

dateInPayPeriod

getHours

calcOvertime

pay

Payroll PayrollDB e : Employee

getEmployeeList

e:=getEmployee(id)

IsPayDay

truecalculatePay

sendPayment

calculateDeductions
pay

deductions

Payment
Disposition

payment

48Advanced Concepts

Advanced Concepts

Loops and Conditions

It is possible to draw a sequence diagram that completely specifies an algorithm. In Figure
4-8 you can see the payroll algorithm, complete with well specified loops and if state-
ments.

The payEmployee message is prefixed with an recurrence expression that looks like
this:

*[while id := idList.next()]

The star tells us that this is an iteration; the message will be sent repeatedly until the
guard expression in the square brackets is false. UML does not specify a syntax for the
guard expression so I have used a java-like pseudo code that suggests the use of an itera-
tor.

The payEmployee message terminates on an activation that is touching, but offset
from, the first. This denotes that there are now two functions executing in the same object.
Since the payEmployee message is recurrent, the second activation will also be recurrent,
and so all the messages depending from it will be part of the loop.

Figure 4-8

: Payroll : PayrollDB e : Employee

getEmployeeList

idList : Vector

e : Employee payday := isPayDay

getEmployee(id)

[payday] calculatePay

calculateDeductions

: Payment
Disposition

sendPayment

*[while id = idList.next()]:payEmployee(id)

49 Chapter : Sequence Diagrams

Note the activation that is near the [payday] guard. This denotes an if statement.
The second activation only gets control if the guard condition is true. Thus, if isPayDay
returns true, then calculatePay, calculateDeductions, and sendPayment will be
executed. Otherwise they won’t.

The fact that it is possible to capture all the details of an algorithm in a sequence dia-
gram should not be construed as a license to capture all your algorithms in this manner.
The depiction of algorithms in UML is clunky at best. The code in Listing 4-4 is a much
better way of expressing the algorithm.

Messages that take time.

Usually we don’t consider the time it takes to send a message from one oject to another. In
most OO languages that time is virtually instantaneous. That’s why we draw the message
lines horizontally -- they don’t take any time. However, in some cases messages do take
time to send. We could be trying to send a message accross a network boundary, or in a
system where the thread of control can break between the sending and reception of a mes-
sage. When this is possible, we can denote it by using angled lines as shown in Figure 4-9

Figure 4-9
Normal Phone Call

caller telco callee

off hook

dial tone

dial

ring

ringback

off hook

connectconnect

"hello"

50Advanced Concepts

This figure shows a phone call being made. There are three objects in this sequence
diagram. The caller is the person making the call. The callee is the person being
called. The telco is the telephone company.

When the caller lifts the phone from the reciever it send the off hook message to the
telco. The telco responds with dial tone. Having recieved dial tone the caller dials the
phone number of the callee. The telco responds by ringing the callee and playing ringback
tone to the caller. The callee picks up the phone in response to the ring. The telco makes
the connection. The callee says “Hello”, and the phone call has succeeded.

However, there is another possibility that demonstrates the usefulness of these kinds
of diagrams. Look carefully at the diagram in Figure 4-10. Note that it starts exactly the
same. However, just before the callee’s phone rings, he picks it up to make a call himself.
The caller is now connected to the callee, but neither know it. The caller is waiting for
“Hello”, and the callee is waiting for dial tone. The callee eventually hangs up in frustra-
tion, and the caller hears dial tone.

The crossing of the two arrows in Figure 4-10 is called a race condition. Race condi-
tions occurr when two asychronous entities can simultaneously invoke incompatible oper-
ations. In our case the telco invoked ring, and the callee went off hook. At this point the
parties all had a different notion of the state of the system. The caller thought he was wait-

Figure 4-10
Failed Phone Call.

caller telco callee

off hook

dial tone

dial

ringringback off hook

connectconnect

on hook

Time passes.

Tries to
make a call.

race condition

gives up waiting
for dial tonedial tone

line goes dead.
Does he hear
breathing?

51 Chapter : Sequence Diagrams

ing for “Hello.”, the telco thought its job was done, and the callee thought he was waiting
for dial tone.

Race conditions in software systems can be remarkably difficult to discover and
debug. These diagrams can be helpful in finding and diagnosing them. Mostly they are
useful in explaining them to others, once discovered.

Asynchronous Messages.

Usually, when you send a message to an object you don’t expect to get control back until
the recieving object has finished executing. Messagse that behave this way are called syn-
chronous messages. However, in distributed or multi-threaded systems it is possible for
the sending object to get control back immediately, and for the recieving object to execute
in another thread of control. Such messages are called asynchronous messages.

Figure 4-11shows an asynchronous message. Note that the arrowhead is open instead
of filled. Look back at all the other sequence diagrams in this chapter. They were all
drawn with synchronous (filled arrowhead) messages. It is the elegance (or perversity,
take your pick) of UML that such a subtle difference in the arrowhead can have such a
profound difference in the represented behavior.

Listing 4-5 and Listing 4-6 show code that could correspond to Figure 4-11. Listing
4-5 show a unit test for the Log class in Listing 4-6. Note that the logMessage function
returns immediately after queueing the message. Note also that the message is actually
processed in a completely different thread that is started by the constructor. The LogTest
class makes sure that the logMessage method behaves asynchronously by first checking
to see if the message was logged but not processed, then yielding the processor to other
threads, and finally by verifying the the message was processed and removed from the
queue.

Figure 4-11
Asynchronous Message

Listing 4-5
TestLog.java
import junit.framework.TestCase;
import junit.swingui.TestRunner;

public class TestLog extends TestCase {

logger:Log

logMessage(msg)

52Advanced Concepts

public static void main(String[] args) {
TestRunner.main(new String[]{"TestLog"});

}

public TestLog(String name) {
super(name);

}

public void testSend() throws Exception {
Log l = new Log(System.out);
l.logMessage("the message");
assertEquals(1, l.messages());
assertEquals(0, l.logged());
Thread.yield();
assertEquals(1, l.logged());
assertEquals(0, l.messages());
l.stop();

}
}

Listing 4-6
Log.java
import java.util.Vector;
import java.io.PrintStream;

public class Log {
private Vector messages = new Vector();
private Thread t;
private boolean running = false;
private int logged = 0;
PrintStream logStream;

public Log(PrintStream stream) {
logStream = stream;
running = true;
t = new Thread(

new Runnable() {
public void run() {
while (running) {

if (messages() > 0) {
String msg;
synchronized (messages) {

msg = (String) messages.remove(0);
}
logStream.println(msg);
logged++;

}
}

}
}

);
t.start();

}

public void logMessage(String msg) {

Listing 4-5 (Continued)
TestLog.java

53 Chapter : Sequence Diagrams

This is just one possible implementation of an asychronous message. Other imple-
mentations are possible. In general, we denote a message to be asynchronous if the caller
can expect it to return before the desired operations are performed.

Multiple Threads

Asynchronous messages imply multiple threads of control. We can show several different
threads of control in a UML diagram by tagging the message name with a thread identifier
as shown in Figure 4-12.

synchronized (messages) {
messages.add(msg);

}
}

public int messages() {
return messages.size();

}

public int logged() {
return logged;

}

public void stop() throws InterruptedException {
running = false;
t.join();

}
}

Figure 4-12
Multiple Threads of Control

Listing 4-6 (Continued)
Log.java

logger:Log

T1:logMessage(msg)

T1:

T1:start

out : PrintStream

T2:println

running == true
T1:stop

54Advanced Concepts

Notice that the name of the message is prefixed with an identifier such as T1, fol-
lowed by a colon. This identifier names the thread that the messages was sent from. In the
diagram, the Log object was created and manipulated by thread T1. The thread that actu-
ally does the message logging, running inside the Log object, is named T2.

As you can see, the thread identifiers don’t necessarily correspond to names in the
code. Listing 4-6 above does not name the logging thread T2. Rather, the thread identifiers
are for the benefit of the diagram.

Active Objects

Sometimes we want to denote that an object has a seperate internal thread. Such objects
are known as active objects. They are shown with a bold outline as in Figure 4-13.

Active objects simply objects that instantiate and control their own thread. There are
no restrictions about their methods. Their methods may run in the object’s thread, or they
may run in the caller’s thread.

Sending Messages to Interfaces.

Our Log class is just one way to log messages. What if we wanted our application to be
able to use many different kinds of loggers. We’d probably create a Logger interface that
declared the logMessage method, and derive our Log class, and all the other implementa-
tions from that interface. See Figure 4-14.

The application is going to be sending messages to the Logger interface. It won’t
know that the object is an AsychronousLogger. How can we depict this in a sequence
diagram?

The diagram in Figure 4-15 is the obvious approach. You just name the object for the
interface and be done with it. This may seem to break the rules since it’s impossible to
have an instance of an interface. However, all we are saying here is that the logger object

Figure 4-13
Active Object

logger:Log

logMessage(msg)

55 Chapter : Sequence Diagrams

conforms to the Logger type. We aren’t saying that we somehow managed to instantiate
an interface.

Sometimes, however, know the type of the object and yet want to show the message
being sent to an interface. For example, we might know that we have created an Asynch-

ronousLogger, but we still want to show the application using only the Logger inter-
face. Figure 4-16 shows how this is depicted. We use the interface lollipop on the lifeline
of the object.

interface Logger {
void logMessage(String msg);

}

public class AsynchronousLogger
implements Logger {
// renamed from Log
...

}

Figure 4-14

Figure 4-15
Sending to an interface

Figure 4-16

+ logMessage

Logger
«interface»

Asynchronous
Logger

logger : Logger

logMessage(msg)

logger :
Asynchronous

Logger

Logger

logMessage(msg)

56Conclusion

Conclusion

As we have seen, sequence diagrams are a powerful way to communicate the flow of mes-
sages in an object oriented application. We’ve also hinted that the fact that they are easy to
abuse, and easy to overdo.

An occational sequence diagram on the whiteboard can be invaluable. A very short
paper with five or six sequence diagrams denoting the most common interactions in a sub-
system can be worth its weight in gold. On the other hand, a document filled with a thou-
sand sequence diagrams is not likely to be worth the paper it’s printed on.

One of the great fallacies of software development in the 1990s was the notion that
developers should draw sequence diagrams for all methods before writing the code. This
always proves to be a very expensive waste of time. Don’t do it.

Instead, use sequence diagrams as the tool they were intended to be. Use them at a
whiteboard to communicate with others in real time. Use them in a document to capture
the core salient collaborations of the system.

As far as sequence diagrams are concerned, too few is better than too many. You can
always draw one later if you find you need it.

57

5

Use Cases

Use cases are a wonderful idea that has been vastly overcomplicated. Over and over again
I have seen teams sitting and spinning in their attempts to write use cases. Typically they
thrash on issues of form rather than substance. They argue and debate over preconditions,
postconditions, actors, secondary actors, and a whole bevy of other things that just don’t
matter.

The real trick to doing use cases is to keep them simple. Don’t worry about use case
forms, just write them on blank paper, or on a blank page in a simple word processor, or on
blank index cards. Don’t worry about filling in all the details. Details aren’t important
until much latter. Don’t worry about capturing all the use cases, that’s an impossible task
anyway.

The one thing to remember about use cases is: tomorrow they are going to change. No
matter how dilligently you capture them, no matter how fastidiously you record the
details, no matter how thoroughly you think them through, no matter how much effort you
apply to exploring and analyzing the requirements, tomorrow they are going to change.

If something is going to change tomorrow, you don’t really need to capture its details
today. Indeed, you want to postpone the capture of the details until the very last possible
moment.

Think of use cases as: Just In Time Requirements.

Writing Use Cases

Notice the title of this section. We write use cases, we don’t draw them. Use cases are not
diagrams. Use cases are textual descriptions of behavioral requirements; written from a
certain point of view.

58Writing Use Cases

“Wait!”, you say. “I know UML has use case diagrams, I’ve seen them.”

Yes, UML does have use case diagrams, and we’ll study them in a few pages. How-
ever, those diagrams tell you nothing at all about the content of the use cases. They are
devoid of information regarding the behavioral requirements that use cases are meant to
capture. Use case diagrams in UML capture something else entirely. And we’ll discuss
them in due course.

What is a use case.

A use case is a description of the behavior of a system. That description is written from the
point of view of a user who has just told the system to do something particular. A use case
captures the visible sequence of events that a system goes through in response to a single
user stimulus.

A visible event is an event that the user can see. Use cases do not describe hidden
behavior at all. They don’t discuss the hidden mechanisms of the system. They only
describe those things that a user can see.

The Primary Course

Typically, a use case is broken up into two sections. The first is the primary course. This
section describes how the system responds to the stimulus of the user and assumes that
nothing goes wrong.

For example, here is a typical use case for a point of sale system:

Check Out Item:

1. Cashier swipes product over scanner, scanner reads UPC code.

2. Price and description of item, as well as current subtotal appear on the
display facing the customer. The price and description also appear on the
cashier’s screen.

3. Price and description are printed on reciept.

4. System emits an audible “acknowledgement” tone to tell the cashier that
the UPC code was correctly read.

That’s the primary course of a use case! Nothing more complex is necessary. Indeed,
even the tiny sequence above might be too much detail if the use case isn’t going to be
implemented for awhile. We wouldn’t want to record this kind of detail until the use cases
was within a few weeks of being implemented.

How can you estimate a use case if you don’t record it’s detail? You talk to the stake-
holders about the detail, without necessarily recording it. This will give you the informa-
tion you need to give a rough estimate. Why not record the detail if we’re going to talk to
the stakeholders about it? Because tomorrow the details are going to change. Won’t that

59 Chapter : Use Cases

chnage affect the estimate? Yes, but over many use cases those effects integrate out.
Recording the detail too early just isn’t cost effective.

If we aren’t going to record the details of the use case just yet, then what do we
record? How do we know that the use case even exists if we don’t write something down?
Write the name of the use case. Keep a list of them in a spreadsheet, or a word processor
document. Better yet, write the name of the use case on an index card and maintain a stack
of use case cards. Fill in the details as they get closer to implementation.

Alternate Courses

Some of those details are concerning things that can go wrong. During the conversations
with the stakeholders you’ll want to talk over failure scenarios. Later, it gets closer and
closer to the time when the use case will be implemented, you’ll want to think through
more and more of those alternative cases. They become addenda to the primary course of
the use case. They can be written as follows:

UPC Code Not Read:

If the scanner fails to capture the UPC code, the system should emit the
“reswipe” tone telling the cashier to try again. If after three tries the
scanner still does not capture the UPC code, the cashier should enter it
manually.

No UPC Code:

If the item does not have a UPC code, the cashier should enter the price
manually.

These alternate courses are interesting because they hint at other use cases that the
stakeholders might not have identified initially. In this case it is apparently necessary to be
able to enter the UPC or price manually.

What else?

What about actors, secondary actors, preconditions, postconditions, etc. etc. What about
all that stuff?

Don’t worry about it. For the vast majority of the systems you will work on, you
won’t need to know about all those other things. Should the time come that you need to
know more about use cases, then you can read Alistair Cockburn’s definitive work on the
topic: Writing Effective Use Cases, Addison Wesley, 2001. For now, learn to walk before
you learn to run. Get used to writing simple use cases as above. As you master them
(defined as having successfully used them in a project), you can ever so carefully and par-
simonously adopt some of the more sophisticated techniques. But remember, don’t sit and
spin.

60Use Cases Diagrams

Use Cases Diagrams

Of all the diagrams in UML, use case diagrams are the most confusing, and the least use-
ful. With the exception of the System Boundary Diagram, which I’ll describe in a minute,
I recommend that you avoid them entirely.

System Boundary Diagram

Figure 5-1 shows a System Boundary Diagram. The large rectangle is the system bound-
ary. Everything inside the rectangle is part of the system under development. Outside the
rectangle we see the actors that act upon the system. Actors are entities outside the system
that provide the stimuli for the system. Typically they are human users. They might also
be other systems, or even devices such as real-time clocks.

Inside the boundary rectangle we see the use cases. These are the ovals with names
inside. The lines connect the actors to the use cases that they stimulate. Avoid using
arrows, nobody really knows what the direction of the arrowheads means.

This diagram is almost, but not quite, useless. It contains very little information of use
to the Java programmier, but it makes a good cover page for a presentation to stakehold-
ers.

Figure 5-1
System Boundary Diagram

Check Out Item

Close Sale

Log in

Cashier

Supervisor

Refund

Customer

61 Chapter : Use Cases

Use Case Relationships

Use case relationships fall into the category of things that “seemed like a good idea at the
time”. I suggest that you actively ignore them. They’ll add no value to your use cases, or
to your understanding of the system, and they will be the source of many never ending
debates about whether or not to use «extends» or «generalization».

Conclusion

This was a short chapter. That’s fitting because the topic is simple. It is that simplicity that
must be your attitude concerning use cases. If once you proceed down the dark path of use
case complexity, forever will it dominate your destiny. Use the force, Luke, and keep your
use cases simple.

62Conclusion

63

6

Principles of OOD

Reading chapters about notation is like a box of chocolate candy. After eating a few you
start to crave meat. So lets dump the sugary notation for awhile and eat a nice, rare chees-
burger.

When we look at a UML diagram, what are we looking for? How do we evaluate it?
What are the principles of design that we should apply? In this chapter we will discuss five
such principles that will help us evaluate whether a set of UML diagrams, or a batch of
code, for that matter, are well designed.

Design Quality

What does it mean to be well designed? A system that is well designed is easy to under-
stand, easy to change, and easy to reuse. It presents no particular development difficulties,
is simple, terse, and economical. It is a pleasure to work with. Conversely, a bad design
stinks like rotting meat.

Design Smells.

You know when a programmer is working with a poor design by the state of his eyes
and nose while he’s looking at the code. If his or her facial expression reminds you of the
detectives who have just opened a body bag containing a 12 day old corpse, then the
design is probably pretty ripe. The smells of a poor design have many different compo-
nents.

1. Rigidity: The system is hard to change because every time you change one thing,
you have to change something else in a never ending succession of changes.

64The Single Reponsibility Principle (SRP)

2. Fragility: A change to one part of the system causes it to break in many other,
completely unrelated, parts.

3. Immobility: It is hard to disentangle the system into components that can be
reused in other systems.

4. Viscosity: The development environment is held together with scotch tape and
toothpaste. It takes forever to go around the edit, compile, test loop.

5. Needless Complexity: There are lots of very clever code structures that aren’t
acutally necessary right now, but could be very useful one day.

6. Needless Repetition: The code looks like it was written by two programmers
named Cut and Paste.

7. Opacity: Elucidation of the originator’s intent presents certain difficulties
related to convolution of expression.

It is our desire to rid the code of these smells. UML diagrams can often help with this
because many of the smells can be seen by examining the dependencies in the diagrams.

Dependency Management

Many of these smells are a result of mismanaged dependencies. Mismanaged dependen-
cies conjure the view of code that is a tangled mass of couplings. Indeed, it is this view of
entanglement that was the origin of the term “spaghetti code”.

Object oriented languages provide tools that aid in managing dependencies. Interfaces
can be created that break or invert the direction of certain dependencies. Polymorphism
allows modules to invoke functions without depending upon the modules that contain
them. Indeed, an OOPL gives us lots of power to shape the dependencies the way we
want.

So, how do we want them shaped? That’s where the following principles come in. I
have written a great deal about these principles. The definitive (and most long-winded)
treatment is [Martin2002]. There are also quite a number of papers describing these princi-
ples on www.objectmentor.com. What follows is a very brief summary.

The Single Reponsibility Principle (SRP)

A CLASS SHOULD HAVE ONLY ONE REASON TO CHANGE.

You’ve probably read the nonsense about objects needing to know how to draw them-
selves in a GUI, or save themselves to disk, or convert themselves to XML, right? Begin-
ning OO texts like to say things like that. Ridiculous! Classes should know about only one
thing. They should have a single responsibility. More to the point, there should only be
one reason for a class to change.

65 Chapter : Principles of OOD

Consider Figure 6-1. This class knows way too much. It knows how to calculate pay
and taxes, how to read and write itself on disk, how to convert itself to XML and back, and
how to print itself on various reports. Can you smell the Fragility? Change from SAX to
JDOM and you have to change Employee. Change from Access to Oracle, and you have t
change Employee. Change the format of the tax report and you have to change
Employee. This design is badly coupled.

In reality we want to separate all these concepts into their own classes so that each
class has one, and only one, reason to change. We’d like the Employee class to deal with
pay and taxes, an XML related class to deal with converting Employee instances to and
from XML, an EmployeeDatabase class to deal with reading and writing Employee
instances to and from the database, and individual classes for each of the various reports.
In short, we want a separation of concerns. A potential structure is shown in Figure 6-2

public class Employee {
public double calculatePay();
public double calculateTaxes();
public void writeToDisk();
public void readFromDisk();
public String createXML();
public void parseXML(String xml);
public void displayOnEmployeeReport(

PrintStream stream);
public void displayOnPayrollReport(

PrintStream stream);
public void displayOnTaxReport(

PrintStream stream);
}

Figure 6-1
Class knows too many things.

Figure 6-2
Separation of concerns.

+ calculatePay
+ calculateTaxes
+ writeToDisk
+ readFromDisk
+ createXML
+ parseXML
+ displayOnEmployeeReport
+ displayOnPayrollReport
+ displayOnTaxReport

Employee

+ calculatePay
+ calculateTaxes

Employee

+ EmployeeToXML
+ XMLToEmployee

Employee
XML

Converter

+ writeEmployee
+ readEmployee

Employee
Database

TaxReport EmployeeReport PayrollReport

66The Open Closed Principle (OCP)

Violation of this principle is pretty easy to spot in a UML diagram. Look for classes
that have dependencies on more than one topic area. A dead give-away is a class that
implements one or more interfaces that endow it with certain properties. Careless use of an
interface that endows an object with the ability to be stored on disk, for example, can lead
to classes that couple business rules with issues of persistence.

Consider the two diagrams in Figure 6-3. The one on the left couples Persistable
tighly into Employee. All users of Employee will transitively depend upon
Persistable. This dependence may not be great, but it will be there. Changes to the
Persistable interface will have the potential of affecting all users of Employee.

The diagram on the right side of Figure 6-3 leaves Employee independen of Pers-
istable, and yet allows for persistence just the same. Instances of Persis-

tableEmployee can be passed around the system as Employees, without the rest of the
system knowing about the coupling. The coupling exists, but is hidden to most of the sys-
tem.

The Open Closed Principle (OCP)

SOFTWARE ENTITIES (CLASSES, MODULES, FUNCTIONS, ETC.)
SHOULD BE OPEN FOR EXTENSION, BUT CLOSED FOR MODIFICA-
TION.

This principle has a high-falutin’ definition, but a simple meaning: You should be able to
change the environment surrounding a module without changing the module itself.

Consider, for example, Figure 6-4. It shows a simple application that deals with
Employee objects through a database facade named EmployeeDB. The facade deals
directly with API of the database. This violates the OCP because a change to the imple-
mentation of the EmployeeDB class can force a rebuild of the Employee class. The
Employee is transitively bound to the database API. Any system that contains the
Employee class must also contain TheDatabase API.

Unit tests are often the places where we want to make controlled changes to the envi-
ronment. Consider, for example, how we would test Employee. Employee objects make

Figure 6-3
Two ways to use Serializable

Employee

Persitable
«interface»

EmployeePersistable
«interface»

Persistable
Employee

67 Chapter : Principles of OOD

changes to the database. In a test environment we don’t want the real database to change.
We also don’t want to create dummy databases just for the purposes of unit testing.
Instead, we’d like to change the environment so that the test catches all the calls that
Employee makes to the database, and verifies that those calls are made correctly.

We can do this by converting EmployeeDB to an interface as in Figure 6-5. Then we
can create derivatives that either invoke the true database API, or that support our tests.
The interface separates Employee from the database API, and allows us the change the
database environment that surrounds Employee without affecting Employee at all.

Among the systems that are plauged by violations of OCP are GUIs. Despite the fact
that MODEL-VIEW-CONTROLLER has been known for nearly three decades, we often can’t
seem to get the design of GUI systems right. All too often the code that manipulates the
GUI API is inextricably bound to the code that manages and manipulates the data being
displayed.

Consider, for exaple, a very simple dialog box that displays a list of employees. The
user selects an employee from the list and then clicks the “Terminate” button. We expect
that if no employee is selected, then the “Teminate” button is disabled. On the other hand,
if we select an employee from the list, the “Terminate” button will be enabled. When the
user clicks the “Terminate” button, the terminated employee disappears from the list, none
of the remaining employees is shown as selected, and the terminate button is disabled.

Figure 6-4
Violation of OCP

Figure 6-5
Conforming to the OCP

Employee + readEmployee
+ writeEmployee

EmployeeDB

TheDatabase
«api»

Employee
+ readEmployee
+ writeEmployee

EmployeeDB

TheDatabase
«api»

«interface»

Employee
Database

Implementation

UnitTest
Database

68The Open Closed Principle (OCP)

Implementations that violate the OCP would put all this behavior in the class that
invokes the calls to the GUI API. OCP compliant systems would seperate the manipula-
tion of the GUI from the manipulation of the data.

Figure 6-6 shows the structure of an OCP compliant system. The Employee-

TerminatorModel manages the list of employees, and is informed when the user selects
or terminates an employee. The EmployeeTerminatorDialog manages the GUI. It is
given the list of employees to display, and informs its controller when a selection changes
or when the terminate button is pressed.

The EmployeeTerminatorModel is responsible for actually deleting the selected
employee from the list. It is also responsible for determining whether or not the terminate
control is enabled or disabled. It doesn’t know that this control is implemented with a but-
ton. It simply tells its associated view whether or not the user is allowed to terminate. Sim-
ilarly, even though the model doesn’t know anything about a listbox, it can tell its view to
clear the selection.

The EmployeeTerminatorDialog is brainless. It makes no decisions on its own,
and manages no data. The EmployeeTerminatorModel pulls its strings, and the dialog
reacts. If the user interacts with the dialog, it simply tells its controller what’s going on by
calling methods on the EmployeeTerminatorController interface. These messages
are passed to the model which then interprets and acts upon them1.

Figure 6-6
Isolating GUI from Data Manipulation

1. Readers who know MVC will recognize this as a variation. In more complex situations the con-
troller would be a true object rather than just being an interface for the model. In this case, how-
ever, the application is so simple that the controller simply acts as a pass through to the model.

+ selectionChanged(employee)
+ terminate()

EmployeeTerminatorController
«interface»

+ enableTerminate(boolean)
+ setEmployeeList(employees)
+ clearSelection()

EmployeeTerminatorView
«interface»

Employee
Terminator

Model

Employee
Terminator

Dialog

javax.swingString

0..* employees

69 Chapter : Principles of OOD

The Java implementation of this structure is shown in Listing 6-1 through Listing 6-4.
The two interfaces don’t hold any surprises. One might ask why terminate and
selectionChanged are separate functions of EmployeeTerminatorController.
Why not just have terminate take the employee argument? I did this because I didn’t
want the EmployeeTerminatorDialog making assumptions about what it means when
the user clicks the terminate button.

EmployeeTerminatorModel is very straighforward. Upon construction it sends the list
of employees to the view, clears the selection, and disables the terminate command. When
the dialog reports a change in selection by calling selectionChanged, then the model
appropriately enables the terminate button and saves the selection. When the dialog calls
terminate then the selected employee is removed from the list, the modified list is sent
back to the view, the selection is cleared, and the terminate button is disabled.

Listing 6-1
EmployeeTerminatorView.java
import java.util.Vector;

public interface EmployeeTerminatorView {
void enableTerminate(boolean enable);
void setEmployeeList(Vector employees);
void clearSelection();

}

Listing 6-2
EmployeeTerminatorController.java
public interface EmployeeTerminatorController {

public void selectionChanged(String employee);
public void terminate();

}

Listing 6-3
EmployeeTerminatorModel.java
import java.util.Vector;

public class EmployeeTerminatorModel
implements EmployeeTerminatorController {

private EmployeeTerminatorView view;
private Vector employees;
private String selectedEmployee;

public void initialize(Vector employees,
EmployeeTerminatorView view) {

this.employees = employees;
this.view = view;
view.setEmployeeList(employees);
view.clearSelection();
view.enableTerminate(false);

}

// EmployeeTerminatorController interface

public void selectionChanged(String employee) {

70The Open Closed Principle (OCP)

The EmployeeTerminatorDialog class is the most complex of the set. Fortunately
that complexity is related only to managing the GUI widgets and has nothing to do with
the business rules of the system. It simply builds the terminate button and list box, wires
them up appropriately and then gets them ready for display. The implementation of the
EmployeeTerminatorView are all trivial and unsurprising.

view.enableTerminate(employee != null);
selectedEmployee = employee;

}

public void terminate() {
if (selectedEmployee != null)

employees.remove(selectedEmployee);
view.setEmployeeList(employees);
view.clearSelection();
view.enableTerminate(false);

}
}

Listing 6-4
EmployeeTerminatorDialog.java
import javax.swing.*;
import javax.swing.event.ListSelectionEvent;
import javax.swing.event.ListSelectionListener;
import java.awt.*;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.util.Vector;

public class EmployeeTerminatorDialog
implements EmployeeTerminatorView {

private JFrame frame;
private JList listBox;
private JButton terminateButton;
private EmployeeTerminatorController controller;
private Vector employees;

public static final String
EMPLOYEE_LIST_NAME = "Employee List";

public static final String
TERMINATE_BUTTON_NAME = "Terminate";

public void
initialize(EmployeeTerminatorController controller) {

this.controller = controller;
initializeEmployeeListBox();
initializeTerminateButton();
initializeContentPane();

}

private void initializeEmployeeListBox() {
listBox = new JList();
listBox.setName(EMPLOYEE_LIST_NAME);
listBox.addListSelectionListener(

Listing 6-3 (Continued)
EmployeeTerminatorModel.java

71 Chapter : Principles of OOD

new ListSelectionListener() {
public void valueChanged(ListSelectionEvent e) {
if (!e.getValueIsAdjusting())

controller.selectionChanged(
(String) listBox.getSelectedValue());

}
}

);
}

private void initializeTerminateButton() {
terminateButton = new JButton(TERMINATE_BUTTON_NAME);
terminateButton.disable();
terminateButton.setName(TERMINATE_BUTTON_NAME);
terminateButton.addActionListener(

new ActionListener() {
public void actionPerformed(ActionEvent e) {
controller.terminate();

}
}

);
}

private void initializeContentPane() {
frame = new JFrame("Employee List");
frame.getContentPane().setLayout(new FlowLayout());
frame.getContentPane().add(listBox);
frame.getContentPane().add(terminateButton);
frame.getContentPane().setSize(300, 600);
frame.pack();

}

public Container getContentPane() {
return frame.getContentPane();

}

public JFrame getFrame() {
return frame;

}

// functions for EmployeeTerminatorView interface

public void enableTerminate(boolean enable) {
terminateButton.setEnabled(enable);

}

public void setEmployeeList(Vector employees) {
this.employees = employees;
listBox.setListData(employees);
frame.pack();

}

public void clearSelection() {
listBox.clearSelection();

Listing 6-4 (Continued)
EmployeeTerminatorDialog.java

72The Open Closed Principle (OCP)

The model and dialog objects interact in an interesting way when it comes to selec-
tion. The dialog reports all changes in selection to the model by way of the
controller interface. This includes changes caused when the model calls clear-

Selection. As you can see in Figure 6-7, when the model calls clearSelection on the
dialog, the dialog responds by calling setSelection on the model.

The conformance to the OCP can be seen most clearly when you look at the unit tests
for the model (Listing 6-5) and the dialog (Listing 6-6). These unit test work without the
tested modules knowing about their existence. The TestEmployeeTerminatorModel

class tests the functionality of the model. The test pretends to be an Employee-

TerminatorView and catches the messages that the model sends to the view, checking
to be sure that they are called at the correct times and carry the appropriate information.
This is known as the SELF SHUNT pattern2 for unit testing.

}
}

Figure 6-7
Interaction between the Model and Dialog

Listing 6-5
TestEmployeeTerminatorModel.java
import junit.framework.TestCase;
import junit.swingui.TestRunner;

import java.util.Vector;

public class TestEmployeeTerminatorModel extends TestCase
implements EmployeeTerminatorView {

private boolean terminateEnabled = true;

2. [Feathers2001]

Listing 6-4 (Continued)
EmployeeTerminatorDialog.java

Employee
Terminator

Model

Employee
Terminator

Dialog

initialize
Employee

Terminator
View

Employee
Terminator
Controller

setEmployeeList

clearSelection

enableTerminate(false)

setSelection(null)

73 Chapter : Principles of OOD

private String selectedEmployee;
private Vector noEmployees = new Vector();
private Vector threeEmployees = new Vector();
private Vector employees = null;
private EmployeeTerminatorModel m;

public static void main(String[] args) {
TestRunner.main(

new String[]{"TestEmployeeTerminatorModel"});
}

public TestEmployeeTerminatorModel(String name) {
super(name);

}

public void setUp() throws Exception {
m = new EmployeeTerminatorModel();

threeEmployees.add("Bob");
threeEmployees.add("Bill");
threeEmployees.add("Robert");

}

public void tearDown() throws Exception {
}

public void testNoEmployees() throws Exception {
m.initialize(noEmployees, this);
assertEquals(0, employees.size());
assertEquals(false, terminateEnabled);
assertEquals(null, selectedEmployee);

}

public void testThreeEmployees() throws Exception {
m.initialize(threeEmployees, this);
assertEquals(3, employees.size());
assertEquals(false, terminateEnabled);
assertEquals(null, selectedEmployee);

}

public void testSelection() throws Exception {
m.initialize(threeEmployees, this);
m.selectionChanged("Bob");
assertEquals(true, terminateEnabled);
m.selectionChanged(null);
assertEquals(false, terminateEnabled);

}

public void testTerminate() throws Exception {
m.initialize(threeEmployees, this);
assertEquals(3, employees.size());
selectedEmployee = "Bob";
m.selectionChanged("Bob");
m.terminate();
assertEquals(2, employees.size());

Listing 6-5 (Continued)
TestEmployeeTerminatorModel.java

74The Open Closed Principle (OCP)

The TestEmployeeTerminatorDialog class also uses the SELF-SHUNT pattern,
pretending to be a TestTerminatorController. It catches the messages sent from the
dialog to the controller, and verifies that they are called at the right times and contain
the appropriate data. Most of this test just checks the wiring of the dialog box. It checks to
make sure that the listbox and button are created properly and that they function as they
are supposed to.

assertEquals(null, selectedEmployee);
assertEquals(false, terminateEnabled);
assert(employees.contains("Bill"));
assert(employees.contains("Robert"));
assert(!employees.contains("Bob"));

}

// EmployeeTerminatorView interface
public void enableTerminate(boolean enable) {

terminateEnabled = enable;
}

public void setEmployeeList(Vector employees) {
this.employees = (Vector) employees.clone();

}

public void clearSelection() {
selectedEmployee = null;

}
}

Listing 6-6
TestEmployeeTerminatorDialog.java
import junit.framework.TestCase;
import junit.swingui.TestRunner;

import javax.swing.*;
import java.awt.*;
import java.util.HashMap;
import java.util.Vector;

public class TestEmployeeTerminatorDialog
extends TestCase
implements EmployeeTerminatorController

{
private EmployeeTerminatorDialog terminator;
private JList list;
private JButton button;
private Container contentPane;
private String selectedValue = null;
private int selectionCount = 0;
private int terminations = 0;

public static void main(String[] args) {
TestRunner.main(

new String[]{"TestEmployeeTerminatorDialog"});
}

Listing 6-5 (Continued)
TestEmployeeTerminatorModel.java

75 Chapter : Principles of OOD

public TestEmployeeTerminatorDialog(String name) {
super(name);

}

public void setUp() throws Exception {
terminator = new EmployeeTerminatorDialog();
terminator.initialize(this);
putComponentsIntoMemberVariables();

}

private void putComponentsIntoMemberVariables() {
contentPane = terminator.getContentPane();
HashMap map = new HashMap();
for (int i = 0; i < contentPane.getComponentCount(); i++) {

Component c = contentPane.getComponent(i);
map.put(c.getName(), c);

}
list = (JList) map.get(

EmployeeTerminatorDialog.EMPLOYEE_LIST_NAME);
button = (JButton) map.get(

EmployeeTerminatorDialog.TERMINATE_BUTTON_NAME);
}

private void putThreeEmployeesIntoTerminator() {
Vector v = new Vector();
v.add("Bob");
v.add("Bill");
v.add("Boris");
terminator.setEmployeeList(v);

}

public void testCreate() throws Exception {
assertNotNull(contentPane);
assertEquals(2, contentPane.getComponentCount());
assertNotNull(list);
assertNotNull(button);
assertEquals(false, button.isEnabled());

}

public void testAddOneName() throws Exception {
Vector v = new Vector();
v.add("Bob");
terminator.setEmployeeList(v);
ListModel m = list.getModel();
assertEquals(1, m.getSize());
assertEquals("Bob", m.getElementAt(0));

}

public void testAddManyNames() throws Exception {
putThreeEmployeesIntoTerminator();
ListModel m = list.getModel();
assertEquals(3, m.getSize());
assertEquals("Bob", m.getElementAt(0));
assertEquals("Bill", m.getElementAt(1));
assertEquals("Boris", m.getElementAt(2));

Listing 6-6 (Continued)
TestEmployeeTerminatorDialog.java

76The Open Closed Principle (OCP)

The tests demonstrate conformance to the OCP because it is possible to change the
environment surrounding both the dialog and the model to a test environment without
the dialog or model knowing it. Consider what this means in terms of the flexibility of
the modules. We could easily replace the dialog with a command line UI, or a text menu
UI. The model would never know the difference. We can put the model and dialog on
different machines using RMI. We can change the environment of each module without
affecting the other.

It’s easy to see the mechanism of OCP conformance. Look again at Figure 6-6. We
see the familiar FLIP-FLOP pattern3 of modules implementing one interface and communi-

}

public void testEnableTerminate() throws Exception {
terminator.enableTerminate(true);
assertEquals(true, button.isEnabled());
terminator.enableTerminate(false);
assertEquals(false, button.isEnabled());

}

public void testClearSelection() throws Exception {
putThreeEmployeesIntoTerminator();
list.setSelectedIndex(1);
assertNotNull(list.getSelectedValue());
terminator.clearSelection();
assertEquals(null, list.getSelectedValue());

}

public void testSelectionChangedCallback() throws Exception {
putThreeEmployeesIntoTerminator();
list.setSelectedIndex(1);
assertEquals("Bill", selectedValue);
assertEquals(1, selectionCount);
list.setSelectedIndex(2);
assertEquals("Boris", selectedValue);
assertEquals(2, selectionCount);

}

public void testTerminateButtonCallback() throws Exception {
button.doClick();
assertEquals(1, terminations);

}

// implement EmployeeTerminatorController
public void selectionChanged(String employee) {

selectedValue = employee;
selectionCount++;

}

public void terminate() {
terminations++;

}
}

Listing 6-6 (Continued)
TestEmployeeTerminatorDialog.java

77 Chapter : Principles of OOD

cating with another. Clearly we are free to change the environment surrounding the mod-
ules because of their use of abstract interfaces. Indeed, abstraction is the key to OCP
conformance.

How do we identify the abstractions that help us to conform to the OCP? Most often I
achieve OCP compliance simply by writing the unit tests before I write the actual code.
Both of the preceeding unit tests were written using the test-first method. Each of the test
functions were written first, followed by just enough code in the module to make the test
function pass.

For the sake of completeness, Listing 6-7 shows code that binds the dialog and model
together and displays the dialog I used this module as a final, manual, test. It allowed me
to verify the (admittedly sparse) look and feel of the dialog. This is the only code I wrote
that actually displays the dialog. The dialog unit test above simply checks the wiring and
function of the dialog, and does not actually display it.

3. So named because of it’s resemblance to the circuit diagram of an Eccles-Jordan flip-flop. I know
of no written description of this pattern, yet I run into it all the time.

Listing 6-7
ShowEmployeeTerminator.java
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.util.Vector;

public class ShowEmployeeTerminator {
static Vector employees = new Vector();
static EmployeeTerminatorDialog dialog;

public static void main(String[] args) {
initializeEmployeeVector();
initializeDialog();
runDialog();

}

private static void initializeEmployeeVector() {
employees.add("Bob");
employees.add("Bill");
employees.add("Robert");

}

private static void initializeDialog() {
EmployeeTerminatorModel model = new

EmployeeTerminatorModel();
dialog = new EmployeeTerminatorDialog();
dialog.initialize(model);
model.initialize(employees, dialog);

}

private static void runDialog() {
dialog.getFrame().addWindowListener(

new WindowAdapter() {
public void windowClosing(WindowEvent e) {
for (int i = 0; i < employees.size(); i++) {

78The Liskov Substitution Principle (LSP)

The Liskov Substitution Principle (LSP)

SUBTYPES MUST BE SUBSTITUTABLE FOR THEIR BASE TYPES.

Have you ever seen code that has lots of instanceof expressions in the clauses of if
statements. Though there are some legitimate uses for expressions like this, they are few
and far between. Usually they are a result of violating the LSP, and are themselves a viola-
tion of the OCP.

The LSP says that the users of base classes should not have to do anything special in
order to use derivatives. Specifically, they should not have to use instanceof, or down-
casts. Indeed, they should know nothing about the derivatives at all. Not even that they
exist.

Consider the payroll application shown in Figure 6-8. The Employee class is abstract
and has an abstract method named calcPay. It’s pretty clear that SalariedEmployee
will implement this to return the employee’s salary. It’s also pretty clear that Hourly-
Employee will implement it to return the hourly rate times the sum of the hours on this
week’s time cards.

String s = (String) employees.elementAt(i);
System.out.println(s);

}
System.exit(0);

}
}

);
dialog.getFrame().setVisible(true);

}
}

Figure 6-8
Simple Payroll Example

Listing 6-7 (Continued)
ShowEmployeeTerminator.java

+ calcPay {A}

Employee

Salaried
Employee

Hourly
Employee

Timecard
0,,*

{A}

79 Chapter : Principles of OOD

What would happen if we decided to add a VolunteerEmployee? How would we
implement calcPay? At first this may seem obvious. We’d implement calcPay to return
zero as shown below.

public class VolunteerEmployee extends Employee {
public double calcPay() {

return 0;
}

}
But is this right? Does it make any sense to even call calcPay on a Volunteer-

Employee? After all, by returning zero we are implying that calcPay is a reasonable
function to call, and payment is possible. We might find ourselves in the embarrasing situ-
ation of printing and mailing a paycheck with a gross pay of zero, or some other similar
non-sequitur.

So maybe the best thing to do is to throw an exception, indicating that this function
really shouldn’t have been called.

public class VolunteerEmployee extends Employee {
public double calcPay() {

throw new UnpayableEmployeeException();
}

}

At first this seems like a reasonable thing to do. After all, it’s illegal to call calcPay
on a VolunteerEmployee. Exceptions are meant to be thrown for illegal situations like
this.

Unfortunately, now, every call to calcPay can throw an UnpayableEmployee-

Exception, so either the exception must be caught or declared by the caller. Thus, a con-
straint upon a derivative has impacted the users of the base class.

To make matters worse, the following code is now illegal.
for (int i = 0; i < employees.size(); i++) {

Employee e = (Employee) employees.elementAt(i);
totalPay += e.calcPay();

}

To make it legal we have to wrap the call to calcPay in a try/catch block.

for (int i = 0; i < employees.size(); i++) {
Employee e = (Employee) employees.elementAt(i);
try {

totalPay += e.calcPay();
}
catch (UnpayableEmployeeException e1) {
}

}
return totalPay;

}

This is ugly, complicated, and distracting. We might easily be tempted to change it to

for (int i = 0; i < employees.size(); i++) {
Employee e = (Employee) employees.elementAt(i);
if (!(e instanceof VolunteerEmployee))

totalPay += e.calcPay();
}

80The Dependency Inversion Principle (DIP)

But this is even worse because now code that was supposed to operate on the
Employee base class makes explicit reference to one of its derivatives.

All this confusion has come about because we have violated the LSP. Volunteer-
Employee is not substitutable for Employee. Users of Employee are impacted by the
very presence of VolunteerEmployee. And this results in strange exceptions and odd
instanceof clauses in if statements, all of which violate the OCP.

You know you are violating the LSP whenever you try to make it illegal to invoke a
function on a derivative. You may also be violating the LSP if you make a derivative
method degenerate, i.e. implemented with nothing. In both cases you are saying that this
function makes no sense in this derivative. And that’s a violation of LSP that can eventu-
ally lead to nasty exceptions and instanceof tests.

What’s the solution to the VolunteerEmployee problem? Volunteers are not
employees. It makes no sense to call calcPay on them, so they should not derive from
Employee, and they should not be passed to functions that need to call calcPay.

The Dependency Inversion Principle (DIP)

A. HIGH LEVEL MODULES SHOULD NOT DEPEND UPON LOW LEVEL
MODULES. BOTH SHOULD DEPEND UPON ABSTRACTIONS.
B. ABSTRACTIONS SHOULD NOT DEPEND UPON DETAILS. DETAILS
SHOULD DEPEND UPON ABSTRACTIONS.

Better still: Don’t depend upon volatile concrete classes. If you inherit from a class, make
it an abstract class. If you hold a reference to a class, make it an abstract class. If you call a
function, make it an abstract function.

In general, abstract classes and interfaces change far less often than their concrete
derivatives. Therefore we would rather depend upon the abstractions than the concretions.
Following this principle reduces the impact that a change can have upon the system.

Does this mean we can’t use Vector, or String? After all, they are concrete classes.
Does using them constitute a violation of DIP? No. It is perfectly safe to depend upon con-
crete classes that are not going to change. Vector and String are not going to change
(much) in the next decade, so we can feel relatively safe using them.

It’s the volatile concrete classes that we want to avoid depending upon. These are the
concrete classes that are under active development, and that capture business rules that are
likely to change. We want to create interfaces for these classes and depend upon those
interfaces.

From a UML standpoint, this principle is very easy to check. Follow every arrow in a
UML diagram and check to make sure the target of the arrowhead is an interface or an
abstract class. If not, and if the concrete class is volatile, then the DIP has been violated,
and the system will be sensitive to change.

81 Chapter : Principles of OOD

The Interface Segregation Principle

CLIENTS SHOULD NOT DEPEND UPON METHODS THAT THEY DO
NOT USE.

Have you ever seen a fat class? A fat class is a class that has dozens or hundreds of meth-
ods. Typically we don’t want to have such classes in our systems; but sometimes they are
unavoidable.

The problem with fat classes, other than the fact that they are big and ugly, is that their
users seldom use all their methods. That is, a user might call just two or three methods on
a class that declares dozens. Unfortunately those users are impacted when changes are
made to the methods they don’t call.

For example, consider the course enrollment system depicted in Figure 6-9. The dia-
gram shows two clients of a class named StudentEnrollment. Clearly the Enroll-

mentReportGenerator does not invoke methods like prepareInvoice or
postPayment. Lets also suppose that AccountsReceivable does not invoke the meth-
ods getName and getDate.

Now, lets assume that the requirements change in a way that forces us to add a new
argument to the postPayment method. This change to the declaration of Student-

Enrollment may4 force us to recompile and redeploy EnrollmentReportGenerator.
This is unfortunate because EnrollmentReportGenerator does not care at all about the
postPayment method.

We can prevent this unfortunate dependency by following a simple rule. Protect users
from methods they don’t need by giving them interfaces with just the methods they do
need. Figure 6-10 shows how this rule can be applied.

Figure 6-9
Unsegregated Enrollment System

4. Some IDEs are smart enough to avoid such a recompile, but most are not.

Enrollment
Report

Generator
+ getName
+ getDate
+ prepareInvoice
+ postPayment

Student
Enrollment

Course

0..*

«parameter» Accounts
Receivable

«parameter»

82Conclusion

Each user of a StudentEnrollment object is given an interface that provides just
the methods that it is interested in. This protects the user from changes in methods that
don’t concern it. It also protects the user from knowing too much about the implementa-
tion of the object it is using.

Conclusion

So, five simple principles:

1. SRP -- A class should have one and only one reason to change.

2. OCP -- It should be possible to change the environment of a class without chang-
ing the class.

3. LSP -- Avoid making methods of derivatives illegal or degenerate. Users of base
classes should not need to know about the derivatives.

4. DIP -- Depend on interfaces and abstract classes instead of volatile concrete
classes.

5. ISP -- Give each user of an object an interface that has just the methods that user
needs.

When should these principles be applied? At the first hint of pain. It is not wise to try
to make all systems conform to all principles all the time, every time. You’ll spend an eter-
nity trying to imagine all the different environments to apply to the OCP, or all the differ-
ent sources of change to apply to the SRP. You’ll cook up dozens or hundreds of little
interfaces for the ISP, and create lots of worthless abstractions for the DIP.

Figure 6-10
Segregated Enrollment System

Enrollment
Report

Generator
+ getName
+ getDate
+ prepareInvoice
+ postPayment

Student
Enrollment

Course

0..*

«parameter»

Accounts
Receivable

«parameter»

+ getName
+ getDate

Enrollment
Reporter

+ prepareInvoice
+ postPayment

Enrollment
Accounting

«interface» «interface»

83 Chapter : Principles of OOD

The best way to apply these principle is reactively as opposed to proactively. When
you first detect that there is a structural problem with the code, or when you first realize
that a module is being impacted by changes in another, then you should see whether one or
more of these principles can be brought to bear to address the problem.

Of course if you take a reactive approach to applying the principles, then you also
need to take a proactive approach to putting the kinds of pressure on the system that will
create pain early. If you are going to react to pain, then you need to diligently find the sore
spots.

One of the best ways to hunt for sore spots is to write lots and lots of unit tests. It
works even better if you write the tests first, before you write the code that passes them.
But that’s a topic for the next chapter.

Bibliography

[Feathers2001]: The 'Self'-Shunt Unit Testing Pattern, Michael Feathers, May, 2001,
http://www.objectmentor.com/resources/articles/SelfShunPtrn.pdf

[Martin2002]: The Principles, Patterns, and Practices of Agile Software Development,
Robert C. Martin, Prentice Hall, 2002

84Bibliography

85

7

The Practices: dX

Now we’re going to put all this together into a set of practices that a team can use to get
projects done. A group of practices like this is sometimes called a process. However, what
I describe below is too lightweight to be called a process. It’s just a set of simple rules that
a team of developers can use to get a lot of work done in a short amount of time. I call this
set of rules: dX1.

Iterative Development

The key dX practice is to do everything in short iterations. By everything I mean require-
ments, analysis, design, implementation, testing, documentation, etc. Everything. By short
I mean two weeks. We do everything in two week cycles. Each cycle begins with a plan,
and ends with deliverables. After the initial exploration, the chief deliverable of each
cycle, even the earliest of cycles, is working code.

The Initial Exploration

Our first dX iteration begins with an exploration of the requirements. This is the only
iteration that does not end in code, and is the only iteration that may be shorter than two
weeks. Typically exploration is a few days. Sometimes it is a week. On rare occasions it is
two weeks.

First we need someone who will be responsible for requirements and priorities. Call
this person “the Customer”. In many projects this person may, in fact, be the real cus-

1. A visual pun on XP that I adopted in the paper: [Martin1999]

86Iterative Development

tomer. In other projects the role of “the Customer” may be played by a team of business
analysts.

We sit down with the customer and talk over what the system has to do. For the first
few days of the project we are just discussing how the system works and what behaviors it
must have. We aren’t necessarily writing much down. We are not trying to capture require-
ments at this time, we are just trying to get an idea of the scope of the system.

As we discuss the system we identify use-cases. We write the name of each use-case
down on an index card. We call these cards user stories. They don’t contain the details of
the use-case, they contain only the name. You might write down a few other salient bits of
information on the card, but we aren’t trying to be complete or thorough just yet. We’re
just trying to get our arms around the overall system.

This exploration process never ends. Even when we are in the depths of implementa-
tion, even after the Nth release of the system has been shipped, we are still going to be sit-
ting down with the customer and regularly discussing new needs and features.

Estimating the features

We write an estimate on each user story card. This estimate is a dimensionless number. We
don’t care what the units are at this point. All we care about is that the estimates are pro-
portional to each other. That is, a story with an estimate of eight will take twice as long as
a story with an estimate of four.

The best way to estimate is to base the estimate for a story on a previously imple-
mented story. If you’ve done a story like the one you are currently estimating, and you
know that the estimate on the previous story was six, you can make the estimate on the
new story five, six, or seven depending upon how much simpler or harder the new story is.

If you don’t have older stories to base your estimates on, then you can start estimating
by using perfect programming days. Perfect programming days are days in which you
went to bed on time the previous night, ate a hearty breakfast this morning, there was no
traffic on the way to work, the phone never rings all day, there are no meeting, your com-
puter never crashes, the network seems infinitely fast, and your co-workers are intelligent,
patient, and considerate. How much could you get done on a day like that? How many
days like that would it take to get the story you are estimating done. Write down that num-
ber and then forget that it had anything to do with days -- because, in reality, it doesn’t.

Stories that are too long should be split. Stories that are too short should be merged. A
story should never be longer than three or four days worth of effort for the whole team.
They should never be shorter than about half a day’s effort. Stories that are too short tend
to be over-estimated. Stories that are too long tend to be under-estimated. So we merge
and join stories until they sit near the sweet spot of accurate estimation2.

2. Accurate Estimation. Now there’s an oxymoron for you.

87 Chapter : The Practices: dX

Spikes

As our last act of the initial exploration we will spend two or three days doing a quick and
dirty implementation of two or three interesting stories. We are going to throw this imple-
mentation away. The goal is simply to calibrate our estimates. Say, for example, that it
took five man days to implement a story with a seven on it. That would imply that for
quick and dirty implementations we can do seven points in five days. Perhaps it will take
three times longer to do the same implementation in production quality. So we’ll reduce
our calibration to seven points in fifteen days. We’ll round that down to half a point per
day. This number is our initial velocity.

Planning

Now that we have stories, estimates, and and velocity, we can start planning our iterations.
Planning is simply a matter of using the current velocity to figure out which stories will be
done each iteration.

Planning Releases

We begin by planning the first release. A release is typically six iterations or about three
months. Lets say we have five people on our team. That means we can do about fifty man
days per iteration. In six iterations we can get 300 man days of work done. At our current
velocity of .5, we can get 150 story points done. So the customer picks stories with esti-
mates that add up to 150. The customer picks the stories that are most important and cost
effective. This batch of stories becomes the release plan.

Planning Iterations

On the first day of each iteration we create a plan for that iteration. An iteration contains
fifty man days. At our current velocity that means we can do about 25 story points. So the
customer selects stories from the release plan that add up to 25. This is the initial iteration
plan.

We take the stories that the customer selected and break them down into tasks. A task
is much smaller than a story. It is a unit of work on the order of four to ten man hours in
size. A task is a simple unit of work that a single developer can take reponsibility for. It’s a
single dialog box, or a single database transaction, or something along those lines.

The customer helps us do the task breakdown, talking us through the details of the
requirements. The customer also helps us make priority tradeoffs. He points out which
parts of a feature are important and which are not. He helps us identify whether a glitzy UI
is important or not. He helps us keep the business value of the iteration high.

88Planning

Usually it will take us two or three hours to break the stories down into tasks. During
that time we write the tasks on a whiteboard or a flip chart of something. Next we sign up
to take responsibility for tasks.

Signup is a simple process. Each developer keeps a budget in the back of his or her
head. This budget it the number of man hours the developer will spend actually working
on tasks during this iteration. As the developer signs up for a task, he estimates that task,
and then subtracts that esimate from his budget. A developer can continue to sign up for
tasks until his budget is zero.

We don’t assign tasks to developers, we let them sign. We find that the developers can
usually work out the best distribution of tasks in this manner. We also let each developer
estimate the tasks they are signing up for.

Ideally, at the end of the signup, every task will have an owner, and every developer’s
budget will be at zero. This seldom happens. Usually, especially during the first iterations,
there are lots of tasks left on the board, and all the developer’s budgets are at zero.

When this happens, the developers try to work out another way to divvy up the tasks.
Perhaps someone signed up for a task that doesn’t play to their strengths. Maybe that task
should be done by someone else. The developers hash this out for a while in an effort to
get more tasks signed up.

If there are still tasks left on the board, then the developers tell the customer that they
can’t get all 25 stories points done. The customer removes stories from the iteration until
all the tasks can be signed up.

Ideally, the plan is finalized at about noon.

The midpoint.

Lets say that we finally settled on 20 story points for the iteration. Now we start analyzing,
designing, and implementing those stories. We’ll talk about how to do that in the next few
sections. Right now I want to jump forward to Monday morning -- the midpoint of the iter-
ation.

On Monday morning we should have 10 story points done. We calculate the com-
pleted story points by adding up the estimates of the stories that are complete. This pre-
vents us from getting all the stories half done. What we want is to get half the stories done.

If we don’t have 10 story points done, then we aren’t going as fast as we thought. Lets
say we only got 8 story points done. Then we need to tell the customer that it’s not likely
that we’ll get more than 16 story points done for the whole iteration. We ask the customer
to remove a story or two so that the total is 16.

By the same token, if we are more than half done, then we ask the customer to add
extra stories to the iteration. For example, if we have 15 story points done, then it looks
like we might get a total of 30 done for the iteration. So we ask the customer to add more
stories.

89 Chapter : The Practices: dX

Velocity Feedback.

We stop the iteration on Friday afternoon whether we have completed all the stories or not.
Then we recompute our velocity. If we completed 23 story points then our velocity is 23
story points per iteration. The following Monday, when we do the plan for the next itera-
tion, the customer will select stories that add up to 23.

This is how we continuously calibrate our estimates. We measure how many story
points we got done each iteration and sign up only for that many in the next iteration. We
measure how many story points we got done during the previous release, and sign up only
for that many for the next release. Individually we measure how many man hours worth of
tasks we completed in the last iteration and only sign up for that many tasks in the next
iteration.

Organizing the Iterations into Management Phases

The Unified Process3 suggests that projects go through four management phases. During
the Inception phase we are trying to determine the feasibility and business case for the sys-
tem. During the Elaboration phase we determine the architecture of the system and create
a reliable plan for implementation. During the Construction phase we carry out the imple-
mentation of the system. Finally, during the Transition phase we install the system and
work with the users to tune it.

Each of these phases of the Unified Process consists of one or more iterations; and
each produces working code. From the programmer’s point of view, there is no difference
between the phases. Each is simply comprised of iterations, all of roughly the same struc-
ture. Each is a matter of identifying stories, estimating them, selecting them for implemen-
tation, and then implementing them.

What’s in an Iteration?

During the two weeks of the iteration we carry out all the traditional tasks of software
development. We analyze the requirements, design a solution, and implement that solu-
tion. However, we restrict our scope to only the stories selected for the current iteration.
We do not consider any other stories that might be selected in future iterations. Our focus
is on this iteration and only this iteration.

One might complain that this leads to poor architectures, inflexible designs, or lots of
rework. On the contrary it leads to the best architectures, very flexible designs, and very
little rework. The reason is simple, we are always working on the most important features.
The customer selects the features to be developed in each iteration based upon business

3. [Kruchten1998]

90What’s in an Iteration?

value. Any feature scheduled for a later iteration is, by definition, not as important as the
feature we are currently working on. Therefore our attention is always on the most impor-
tant thing it can be one.

There are a set of practices that we like to follow while implementing stories. They
help us to write clean flexible code. They help us keep our defect rate down and create
flexible and easy to understand designs. They help us communicate with the customer, and
eliminate surprises.

Developing in Pairs

Firstly, when using dX, we develop all software in pairs. Two developers work together at
a single workstation implementing a task that one of them signed up for. Both program-
mers are fully engaged in writing the code. Both have their eyes locked on the screen. One
may control the keyboard, but both know exactly what is about to happen. Indeed, the key-
board moves rapdily back and forth between them. I’ve even seen instances where one
developer uses the keyboard while another uses the mouse.

We changes partners once per day. The owner of the task stays with his task, and
recruits others to work with him. On average each programmer will spend about half his
time working on the tasks he signed up for. The other half of his time will be spend help-
ing other people with their tasks.

You might think this cuts productivity in half. After all, the owner of each task is only
spending half his time on that task. However, the loss of productivity does not seem to
happen. It turns out that pairing is a very efficient way to write software.

Acceptance Tests

At the start of each dX iteration, once the customer has selected the stories to be imple-
mented, the customer and QA folks work together to flesh the user stories into use-cases
and to write executable acceptance tests for the stories. These tests delivered to the pro-
grammers before the iteration is half over4. These tests are the true requirements docu-
ment. It is in these tests that the details of the requirements are truly documented.

Once the developers recieve the tests, they know what their stories and tasks must
accomplish. They run the tests continuously throughout development making sure that
they never break any that have passed. A good iteration ends in a kind of anti-climax with
everybody going home early Friday afternoon, all acceptance tests passing.

4. At least one QA manager I know of made it his goal to deliver the acceptance tests during the iter-
ation planning meeting. He worked with the customer a few days before the iteration began to get
an idea of which stories were most imporant. He then developed acceptance tests for those stories
“on spec”.

91 Chapter : The Practices: dX

Unit Tests

In a dX project we write unit tests. Lots and lots of unit tests. Moreover we write them
first, before we write the code that passes them. Indeed, the rule is that we will not write
any production code until we have a unit tests that is failing. Every line of production code
is written to make a particular failing unit test pass.

The technique is extremely iterative. We write a tiny fragment of a unit test, no more
than five or ten lines of code. Then we compile it. Usually it won’t compile because it uses
code that hasn’t been written yet. So we write just enough of the production code to get the
test to compile. Typically this will be less than half a dozen lines of code. Then we run the
test. It will fail because we did not finish writing the production code. Seeing it fail we
then write just enough production code to make that one fragment of the test pass. Once it
passes we add another fragment to the test and start over.

This cycle lasts between one and ten minutes depending upon the language or the
environment. The faster you can go round the loop the better. And each time around the
loop you run all the tests you have written for that module. This means that, no matter
what is going on at the moment, the code was working a just a few minutes ago. We don’t
have dozens of windows open with dozens of modules torn to shreds hoping we can wire
them all back together again. A minute or so ago all our tests passed.

As we work from day to day we continue to add more and more tests to the growing
body of unit tests. Dozens per day, hundreds per week, thousands per month. We organize
them into a body that is convenient to run. We run them all the time. We are confident in
the state of our code.

The tests are a form of documentation. If you want to know how to invoke a particular
API function, there is a test that does it. If you want to know how to create a certain object,
there is a test that does it. The tests act as a set of examples for nearly every programming
task in the system. This kind of documentation is unambiguous, accurate, compilable, and
executable.

Refactoring5

The ability to run some or all of the suite of unit and acceptance tests, provides a simple
way to determine if we’ve done something to break the system. If we desire to make a
change, we can make it fearlessly, because the tests will tell us if we’ve broken anything
important.

This means that we can make changes to the code with near impunity. If we see a
variable that could have a better name, we can rename it. If we see a class that has too
many methods, we can split it. If we see a method that is in the wrong class we can move
it. Indeed, so long as we are supported by a bevy of unit and acceptance tests, we can fear-
lessly make any change we like.

5. [Fowler1999]

92Conclusion

Thus, we incorporate refactoring, the act of improving a program’s structure without
changing it’s behavior, into the practices of dX. Every hour or so of active programming is
followed by a period of refactoring. We look at the code we’ve written and improve it. We
make these improvements in tiny steps, each just a few minutes long, running the tests
after each step. We gradually improve the structure of the system, never letting it degrade.
The rule is: never let the sun set on bad code.

Open Office

The best environment for dX is an open office, or laboratory. We put tables in the middle
with workstations for pairs. We all work together in the same room, including the cus-
tomer. Our goal is to work together as a team, frequently interacting with each other, able
to ask quick questions of each other, get quick advice, lean over and look at some code.

Continuous Integration

The source code control system used in dX is non blocking. That means that anyone can
check out a module, no matter who else might have it checked out. First one to check in
wins. Second one to check in merges.

The possibility of merging creates an interesting tension. The longer you have a mod-
ule checked out the greater the likelihood of having to do a merge. Nobody likes to merge,
no matter how good the tools support is, therefore there is a pressure to check in early and
often. This is a good thing.

However, dX has a rule about checking in. When you check in code you must first
demonstrate that all of the unit and acceptance tests pass. That means you have to fully
integrate your changes into the system, build the system, and test the system before you
finish the check in.

In a dX project, this happens many times per day per pair. Therefore integration is
happening continuously. There is never a big final integration to be performed.

Conclusion

Gosh, did I forget to mention UML? No, I didn’t forget. I also didn’t mention Java. That’s
because these tools are irrelevant to the practices. UML is not a method, UML is a nota-
tion. Java is not a method, Java is a programming language. We use these notations and
langauges only when we need them. They are tools to be used, not methods to be fol-
lowed.

Well what about documentation? Don’t we need to use UML to create useful docu-
ments? Yes, we do. However, we don’t need to make them as part of a process. Documen-
tation produced by default is amost always useless. There is a rule in dX known as
Martin’s first law of documentation. It says: produce only those documents for which you

93 Chapter : The Practices: dX

have a significant and immediate need. This means that we do not draw UML diagrams as
a matter of course. We do not specifically capture all requirements in class diagrams. We
do not capture all use cases in sequence diagrams. We use these tools when there is an
immediate and significant need, otherwise we don’t use them.

In a dX project you will see people using UML. You’ll see them at whiteboards
scratching diagrams while debating different design options with each other. You’ll see
them producing hardcopy diagrams as roadmaps for others to follow. What you wont see
are people producing diagrams because a process told them to. The only diagrams they
produce are the ones they know for sure that they need right now.

The practices I described above as part of dX are drawn from the practices of Extreme
Programming6 (XP). Indeed, if you look closely you’ll see that dX is just XP turned upsid-
edown.

Bibliography

[Kruchten1998]: The Rational Unified Process, Philippe Kruchten, Addison Wesley,
Reading, MA, 1998.

[Fowler1999]: Refactoring, Martin Fowler, Addison Wesley, Reading, MA, 1999

[Martin1999]: RUP vs. XP, Robert C. Martin, 1999,
http://www.objectmentor.com/resources/articles/RUPvsXP.pdf

[Beck1999]: Extreme Programming Explained, Kent Beck, Addison Wesley, Reading,
MA, 1999

[Jeffries2000]: Extreme Programming Installed, Ron Jeffries, et. al, Addison Wesley,
Upper Saddle River, NJ, 2000

6. [Beck1999], [Jeffries2000]

94Bibliography

95

8

Packages

There are two different kinds of packages that are important to Java programmers. The
first is the source code package represented by the Java package keyword. The second is
the binary component represented by a .jar file.

Java Packages

Java packages are namespaces. They allow programmers to create small private areas in
which to declare classes. The names of those classes will not collide with identically
named classes in different packages.

Java compilation systems often keep the generated binary .class files in directory
structures that mimic the package structure of the source code. Thus, the .class file for
the class A.B.C will likely be stored on disk in a file whose path is something like: A/B/
C.class. Since Java compilers read foreign declarations from .class file instead of
.java files, it is critical that both the compiler and runtime system know the appropriate
classpaths for the packages included in the application.

Because of these issues it is important to give due consideration to the package struc-
ture of the system. UML has notational tools that can help with that consideration.

Packages

There are several ways to denote a package in UML. Figure 8-1 shows the simplest. The
package icon is simply a rectangle with a tab on the top to make it look a bit like a file
folder. The fully qualified name of the package is shown within the rectangle.

96Java Packages

If you so desire, you can put the name of the package in the tab of the rectangle. This
leaves the large rectangle free so that you can list some or all of the classes within the
package. Figure 8-2 shows what this looks like.

Finally, you can show package nesting structure using the contains relationship as
shown in Figure 8-3..

Dependencies

The code within a package often depends upon the code within another. In Java we see this
when we import a class, or a group of classes, into our source code. We also see it if we
use the qualified name of a class. In UML we depict this dependency by using the depen-
dency relationship as shown in Figure 8-4.

Figure 8-1
Simple UML Package

Figure 8-2
UML package showing contents.

Figure 8-3

package consultantScheduler;
import calendarUtilities.*;

public class ConsultantCalendar
implements Calendar
{...}

Figure 8-4
Package Dependency

com.objectmentor.website.
consultantScheduler

com.objectmentor.website.
consultantScheduler

+ LoginServlet
+ MainMenuServlet
+ MonthlyCalendarServlet
+ WeeklyCalendarServlet

com objectmentor Website
consultant
Scheduler

consultant
Scheduler

calendar
Utilities

97 Chapter : Packages

Note that the dependency is not the result of the import statement. Rather it is the
result of the actual use of calendarUtilities.Calendar from within consultant-

Scheduler.ConsultantCalendar. In Java, import statements do not create a true
dependency, though compilers are within their rights to complain if the imported class or
package does not exist.

Binary Components -- .jar files.

While packages are convenient groupings for source code, they do not always make con-
venient groupings for binary code. Often we want to bundle larger chunks of binary code
together into components in the form of a .jar file. Such a component can be conve-
niently deployed to the systems in which it will execute.

Components are depicted in UML as shown in Figure 8-5. The interface icon shown
on the top is optional. It denotes that one of the interfaces available within the
CalendarRenderer component is named Calendar.

As with packages, components can also be related with dependency relationships.
Indeed, usually a component contains one or more whole packages, so the dependencies
between the components will usually be a subset of the dependencies between the pack-
ages.

Principles of Package Design

Over the years I’ve come to depend upon a simple set of principles to help me organize the
large scale structure of a software application. These principles are not rules, and they are
not “the right way”. Rather, they are simple heuristics that help me make the tradeoffs nec-
essary to partition a system.

You will find that these principles do not lead you to a functional decomposition. The
packages that these principles lead you to create are meant to gather volatile classes
together, and keep apart those classes that change for different reasons. They try to isolate
those classes that change frequently from those that don’t. They try to separate the high

Figure 8-5
A component -- possibly a .jar file.

Calendar
Renderer

Calendar

98Principles of Package Design

level architecture of the system from the low level details, and keep the high level archi-
tecture independent.

These principles are discussed in great detail in [PPP2002]1. I cover them very briefly
here.

The Release/Reuse Equivalency Principle (REP)

People don’t usually reuse classes. Usually they reuse groups of classes together. Such
reusable groupings should be placed into a package. That package should then be tracked
and released for the benefit of those who would reuse it.

This principle says that one of the criteria for placing classes into a package is to cre-
ate a package that is convenient for others to reuse.

A package that is being reused by others must be treated with a certain care and
respect by the author. Reusers must be notified, in advance, of changes the author intends
to make to the package. The author should consider whether or not to maintain older ver-
sions of the package for a time, to give the reusers opportunity to make incorporate
changes gradually. This implies a certain clerical overhead and logistics that is hard to
apply on a per-class basis. Thus, creating reusable classes is convenient for both the author
and the reuser.

In the end, the smallest things you can reuse is the smallest thing that someone else is
willing to put the effort into releasing and tracking. The granule of reuse is the granule of
release.

The Common Closure Principle (CCP)

The Single Reponsibility Principle (SRP) told us to give each class one and only one rea-
son to change. The CCP extends this to packages. We want all the classes in a package
closed against the same kinds of changes. We want changes to be focussed into single
packages.

Most systems are built from many, perhaps dozens or even hundreds, of packages.
Those packages depend upon each other creating a large graph of dependencies. The goal
of the CCP is to group classes together by their susceptability to change. Those classes
that change for the same reason are placed in the same package. Thus, when a particular
change occurrs, very few of the packages in the dependency structure will have to be
changed.

1. Principles, Patterns, and Practices of Agile Software Development, Robert C. Martin, Prentice
Hall, 2002.

99 Chapter : Packages

The Common Reuse Principle (CRP)

The Interface Segregation Principle (ISP) told us to create specific interfaces for each cli-
ent of a class. The CRP does the same for packages. A package that has many clients is
responsible to all those packages. A change in that package can have a very large impact
upon all the packages that depend upon it. Therefore, as much as is possible, we want to
seperate those classes that are used by a client, from those that are used by a different cli-
ent.

When a package contains classes that are used by different clients, changes to one
class in the package can have an impact even upon those packages that don’t use the
changed class. The fact that the package has changed is enough to cause the client pack-
ages to be re-released and re-deployed.

The Acyclic Dependencies Principle (ADP)

Cycles in the package dependency graph can lead to build problems and developability
problems. When there are cycles, it is impossible to determine which classes and which
packages should be built first, and which should be built next.

Dependencies are transitive. If package A depends upon package B, and package B
depends upon package C, then package A transitively depends upon package C. This
means that when there is a cycle in the package dependency graph, every package in the
cycle depends upon every other package in the cycle. Such fully connected dependency
graphs can make it very hard to keep the packages isolated from each other so that the
developers can work on them without impacting other developers.

The solution is to keep the dependency cycles out of the package dependency graph.
This can be done manually, or you can use a tool like JDepend (see www.clarkware.com)
to help.

The Stable Dependencies Principle (SDP)

Some packages are meant to be easy to change. Other packages are meant to have many
incomming dependencies, making them hard to change. If a package that has many
incomming dependencies hangs a dependency of its own upon a package that was meant
to be easy to change, then it will make that package hard to change. See Figure 8-6.

The Stable Dependencies Principle says that packages should not depend on packages
that are less stable (easier to change) than themselves. The target of every package depen-
dency will be harder to change than the depending package.

There are some simple metrics discussed in [PPP2002] that allow teams to calculate
the stability of each package, and then evaluate whether or not dependencies flow in the
direction of stability.

100Conclusion

The Stable Abstractions Principle (SAP)

Since stable packages are hard to change, we need a way to keep them flexible. The OCP
told us that a module could be extended without modifying it. Stable packages are hard to
modify, but they need not be hard to extend. Thus, the SAP says that in order to keep sta-
ble packages easy to extend, stable packages should be abstract. The more stable a pack-
age is, the more abstract it should be.

The abstractness of a package is related to the number of abstract classes and inter-
faces it contains. The higher the ratio of abstract classes and interfaces, the more abstract
the package is. According to the SAP, a package with many incomming dependencies is
very stable, and should therefore also be very abstract.

The SDP and SAP combined are the package version of the DIP. The DIP told us that
class relationships should point at abstract classes or interfaces. The SDP/SAP combina-
tion says that stability increases with incomming dependencies, and that abstraction
should increase with stability. Therefore the abstraction of a package should increase with
incomming dependencies.

Again [PPP2002] presents a set of metrics to measure the abstractness of a package,
and to manage the relationship between stability and abstractness.

Conclusion

How important is it to draw package and component diagrams? It turns out that they are
reasonably useful diagrams. The ADP showed us that dependency cycles between pack-

Figure 8-6
A violation of the SDP.

DesignedToBe
EasyToChange

HardToChange

A bad
dependency.

101 Chapter : Packages

ages and components are problematic and need to be resolved. Drawing a picture of the
current structure is often very useful for resolving such cycles.

Package dependency diagrams are also reasonably useful for showing the order in
which packages should be compiled. Compiling packages in the wrong order can lead to
bizarre build problems. The dependency diagram tells you which packages depend upon
which others, and therefore which should be compiled first.

Of course the best way to create these diagrams is to generate them from the code.
Diagrams of the package structure that don’t contain every dependency that exists within
the code are not particularly useful for resolving cycles or determining build order. Thus,
it is not a bad idea to employ a tool that detects the dependencies and either create the
dependency diagrams, or at least provides a list of the dependencies so you can make your
own diagram.2

2. see www.clarkware.com for just such a tool.

102Conclusion

103

9

Object Diagrams

Sometimes it can be useful to show the state of the system at a particular point in time.
Like a snapshot of a running system, a UML Object Diagram shows the objects, relation-
ships, and attribute values that obtain at a given instant.

A Snapshot in Time.

Some time ago I was involved with an application that allowed users to draw the floorplan
of a building on a GUI. The program captured the rooms, doors, windows, and wall open-
ings in the data structure shown in Figure 9-1. While this diagram shows you what kinds
of data structures are possible, it does not tell you exactly what objects and relationships
are instantiated at any given instant of time.

Lets assume that a user of our program draws two rooms, a kitchen, and a lunch room,
connected by a wall opening. Both the kitchen and the lunch room have a window to the
outside. The lunchroom also has a door to the outside, and it opens out. This scenario is
depicted by the object diagram in Figure 9-2.

This diagram shows the objects that are currently in the system, and what other
objects they are connected to. It shows kitchen and the lunchRoom as seperate instances
of Space. It shows how these two rooms are connected by a wall opening. It shows that
the outside is actually represented by another instance of space. And it shows all the other
objects and relationships that must exist.

Object diagrams like this are useful when you need to show what the internal struc-
ture of a system looks like at a particular point in time, or when the system is in a particu-
lar state. An object diagram shows the intent of the designer. It shows the way that certain

104A Snapshot in Time.

classes and relatioships are actually going to be used. It can help to show how the system
will change as different inputs are given to it.

Figure 9-1
Floorplan

Figure 9-2
Lunch room and Kitchen

Floor Space
*

Portal
*

2

HumanPortal Window

Door WallOpening

opensInto

firstFloor : floor

kitchen : Space

lunchRoom :
Space

: WallOpening outside : Space

: window

: window

: Door

opensInto

105 Chapter : Object Diagrams

But be careful, it is easy to get carried away. In the last decade I think I have draws
less than a dozen object diagrams of this kind. The need for them simply has not arisen
very frequently. When they are needed, they are indispensable, and that’s why I’m includ-
ing them in this book. However, you aren’t going to need them very often, and should def-
initely not assume that you need to draw them for every scenario in the system, or even for
every system.

Active Objects

Another place where object diagrams are useful is in multi-threaded systems. Consider,
for example, the SocketService code in Listing 9-1. This program implements a simple
framework that allows you to write socket servers without having to deal with all the nasty
threading and synchronization issues that accompany sockets.

Listing 9-1
SocketService.java
import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.LinkedList;

public class SocketService {
private ServerSocket serverSocket = null;
private Thread serviceThread = null;
private boolean running = false;
private SocketServer itsService = null;
private LinkedList threads = new LinkedList();

public SocketService(
int port, SocketServer service) throws Exception {

itsService = service;
serverSocket = new ServerSocket(port);
serviceThread = new Thread(

new Runnable() {
public void run() {
serviceThread();

}
}

);
serviceThread.start();

}

public void close() throws Exception {
running = false;
serviceThread.interrupt();
serverSocket.close();
serviceThread.join();
waitForServerThreads();

}

private void serviceThread() {

106Active Objects

The class diagram for this code is shown in Figure 9-3. It’s not very inspiring. It is
difficult to see what the intent of this code is from the class diagram. It shows all the
classes and relationships allright, but somehow the big picture doesn’t come through.

running = true;
while (running) {

try {
Socket s = serverSocket.accept();
startServerThread(s);

}
catch (IOException e) {
}

}
}

private void startServerThread(Socket s) {
Thread serverThread = new Thread(new ServerRunner(s));
synchronized (threads) {

threads.add(serverThread);
}
serverThread.start();

}

private void
waitForServerThreads() throws InterruptedException {

while (threads.size() > 0) {
Thread t;
synchronized (threads) {

t = (Thread) threads.getFirst();
}
t.join();

}
}

private class ServerRunner implements Runnable {
private Socket itsSocket;

ServerRunner(Socket s) {
itsSocket = s;

}

public void run() {
try {

itsService.serve(itsSocket);
synchronized (threads) {
threads.remove(Thread.currentThread());

}
itsSocket.close();

}
catch (IOException e) {
}

}
}

}

Listing 9-1 (Continued)
SocketService.java

107 Chapter : Object Diagrams

However, look at the object diagram in Figure 9-4. This shows the structure much
better than the class diagram. It shows that the SocketService holds onto the
serviceThread, and that the serviceThread runs in an anonymous inner class. It
shows that the serviceThread is responsible for creating all the ServerRunner

instances.

Figure 9-3
SocketService class diagram.

Figure 9-4
SocketService Object Diagram

+ serve(port, server)

SocketService

+ serve(Socket s)

SocketServer
«interface»

Thread

serviceThread

Thread
*

threads

ServerRunner

Runnable
«interface» «creates»

: SocketService

serviceThread :
Thread

: Runnable
«anonymous»

serverThread :
Thread

: ServerRunner

«creates»

«creates»

threads :
LinkedList

*

: SocketServer

108Conclusion

Note the heavy bold lines around the Thread instances. Objects with heavy bold bor-
ders are knows as active objects. Active objects act as the head of a thread of control. They
contain the methods that control the thread, such as start, stop, setPriority, etc. In
this diagram all the active objects are instances of Thread because all the processing is
done in derivatives of Runnable that the Thread instances hold references to. The
Runnable derivatives aren’t active, because they don’t control the thread. Rather, the
thread invokes them.

Why is the object diagram more expressive than the class diagram? Because the struc-
ture of this application is built at runtime. The structure is more about objects than it is
about classes.

Conclusion

Object diagrams show you a snapshot of the state of the system at a particular instant of
time. This can be a useful way to depict a system, especially when the system’s structure is
built dynamically instead of imposed by the static structure of its classes. However, one
should be leary of drawing many object diagrams. Most of them can be inferred directly
from corresponding class diagrams, and therefore serve little purpose.

109

10

State Diagrams

UML has a very rich set of notations for describing finite state machines (FSMs). We’ll
look at the most useful bits of that notation in this chapter. FSMs are an enormously useful
tool for writing all kinds of software. I use them for GUIs, communication protocols, and
any other event based system. Unfortunately, I find that too many developers are unfamil-
iar with the concepts of FSMs and are therefore missing many simplifying opportunities.
I’ll do my small part to correct that in this chapter.

The Basics

Figure 10-1 shows a simple State Transition Diagram (STD) that describes a finite state
machine that controls the way a user logs in to a system. The round rectangles represent
states. The name of each state is in its upper compartment. In the lower compartment are
special actions that tell us what to do when the state is entered or exited. For example, as
we enter the Prompting for Login state, we invoke the showLoginScreen action.
When we exit that state, we invoke the hideLoginScreen action.

The arrows between the states are called transitions. Each is labeled with the name of
the event that triggers the transition. Some are also labeled with an action to be performed
when the transition is triggered. For example, if we are in the Prompting for Login

state, and we get a login event, then we transition to the Validating User state and
invoke the validateUser action.

The black circle in the upper left of the diagram is called an initial pseudo state. A
finite state machine begins it’s life following the transition out of this pseudo state. Thus,
our state machine starts out transitioning into the Prompting for Login state.

110The Basics

I drew a superstate around the Sending Password Failed and Sending

Password Succeeded states because both states react to the OK event by transitioning to
the Prompting for Login state. I didn’t want to draw two identical arrows, so I used the
convenience of a superstate.

This finite state machine makes it clear how the login process works. It also breaks
the process down into nice compact little functions. If we implement all the action func-
tions like showLoginScreen, validateUser, and sendPassword, and wire them up
with the logic shown in the diagram, then we can be sure that the login process will work.

Special Events

The lower compartment of a state contains event / action pairs. The entry and exit

events are standard, but as you can see from Figure 10-2 you can supply your own events
if you like. If one of these special events occurrs while the FSM is in that state, then the
corresponding action is invoked.

Before UML, I used to respresent a special event like this as a transition arrow that
looped around back to the same state as in Figure 10-3. However, in UML this has a

Figure 10-1
Simple Login State Machine

entry / showLoginScreen
exit / hideLoginScreen

Prompting for Login
H

Validating
User

login / validateUser

ValidUser

valid

logout

entry / showLoginFailureScreen
exit / hideLoginFailureScreen

Login Failed

retry

failed

entry / sendPassword

Sending Password
forgotPassword

forgotPassword

entry / showSendFailureScreen
exit / hideSendFailureScreen

Sending Password Failed

failed

entry / showSendSuccessScreen
exit / hideSendSuccessScreen

Sending Password Succeeded

sent

OK

111 Chapter : State Diagrams

slightly different meaning. Any transition that exits a state will invoke the exit action (if
any). Likewise any transition that enters a state will inoke the entry action (if any). Thus,
in UML, a reflexive transition like Figure 10-3 invokes not only myAction, but also the
exit and entry actions.

Super States

As you saw in the login FSM in Figure 10-1, super states are convenient when you have
many states that respond to some of the same events in the same way. You can draw a
super state around those similar states and simply draw the transition arrows leaving the
super state instead of leaving the individual states. Thus, the two diagrams in Figure 10-4
are equivalent.

Figure 10-2
States in UML

Figure 10-3
Reflexive Transition

Figure 10-4

entry / entryAction
exit / exitAction
myEvent1 / myAction1
myEvent2 / myAction2

State

state

myEvent / myAction

S1

S2

S3

Home

cancel / restart

cancel / restart

cancel / restart

S1

S2

S3

Home
cancel / restart

112The Basics

Super state transitions can be overridden by drawing explicit transition from the sub-
states. Thus, in Figure 10-5, the pause transition for S3 overrides the default pause tran-
sition for the Cancelable superstate. In this sense, a superstate is rather like a base class.
Substates and override their superstate transitions the same way that derived classes can
override their base class methods. However, it is inadvisable to push this metaphor too far.
The relationship between superstates and substates is not really equivalent to inheritance.

Superstates can have entry, exit, and special events the same way that normal
states can have them. Figure 10-6 shows an FSM in which there are exit and entry

actions in both super states and sub states. As the FSM transitions from Some State into
Sub it first invokes the enterSuper action, followed by the enterSub action. Likewise,
if the FSM transitions out of Sub2 back to Some State, it first invokes exitSub2 and
then exitSuper. However, since the e2 transition from Sub to Sub2 does not exit the
superstate, it simply invokes exitSub and enterSub2.

Figure 10-5
Overriding superstate transitions

Figure 10-6
Hierarchical invocation of Entry and Exit actions.

S1

S2

S3

Home
cancel / restart

Paused
pause / hold

special
pause

pause / checkX

OK / hold

failed / beep

Cancelable

entry / enterSuper
exit / exitSuper

entry / enterSub
exit / exitSub

Sub

Super

e1
Some State entry / enterSub2

exit / exitSub2

Sub2
e2

e3

113 Chapter : State Diagrams

Initial and Final Pseudo States

Figure 10-7 shows two pseudo states that are commonly used in UML. FSMs come into
existence in the process of transitioning out of the initial pseudo state. The transition lead-
ing out of the initial pseudo state cannot have an event, since the event is the creation of
the state machine. It can, however, have an action. This action will be the first action
invoked after the creation of the FSM.

Similarly, a FSM dies in the process of transitioning into the final pseudo state. The
final pseudo state is never actually reached. If there is an action on the transition into the
final pseudo state, it will be the last action invoked by the FSM.

Using FSM Diagrams

I find diagrams like this to be immensely useful for figuring out state machines for sub-
systems whose behavior is well known. On the other hand, most systems that are amena-
ble to FSMs do not have behaviors that are well known in advance. Rather the behaviors
of most systems grow, and evolve over time. Diagrams aren’t a conducive medium for
systems that must change frequently. Issues of layout and space intrude upon the content
of the diagrams. This intrusion can sometimes prevent designers from making needed
changes to a design. The spectre of reformatting the diagram prevents them from adding a
needed class, or state and causes them to use a substandard solution that doesn’t impact
the diagram layout.

Text, on the other hand, is a very flexible medium for dealing with change. Layout
issues are at a minimum, and there is always room to add lines of text. Therefore, for sys-
tems that evolve, I create State Transition Tables (STTs) in text files rather than STDs.
Consider the STD of the subway turnstile in Figure 10-8. This can be easily represented as
an STT as shown in Figure 10-9.

The STT is a simple table with four columns. Each row of the table represents a tran-
sition. Look at each transition arrow on the diagram. You’ll see that the table row contains
the two endpoints of the arrow, and the event and action of the arrow. You read the STT

Figure 10-7
Initial and Final Pseudo states

ProcessingH
/ initialize

H
exit / cleanup

intput / processInput

114Using FSM Diagrams

using the following sentence template: “If we are in the Locked state, and we get a coin
event, then we go to the Unlocked state and invoke the Unlock function.”

This table can be converted into a text file very simply:
Locked coin Unlocked Unlock
Locked pass Locked Alarm
Unlocked coin Unlocked Refund
Unlocked pass Locked Lock

These sixteen words contain all the logic of the finite state machine. It should be pos-
sible to write a simple compiler that reads the text file and generates code that implements
that logic.

SMC

So, about 15 years ago, I wrote a simple compiler, named SMC, that reads STTs and gen-
erated C++ code to implement the logic. Since then SMC has grown and changed to emit
code for different languages. SMC is freely available from the resources section of
www.objectmentor.com.

The input to SMC for the turnstile is shown in Listing 10-1. Most of this syntax is
pretty easy to understand. The details are explained in the smc.txt document that you
can download from the previously mentioned URL. The FSMName header supplies the
name of the class that SMC will generate. The Context header tells SMC the name of a
class that the FSM should inherit from.

The code generated from this input is shown in Listing 10-2. It makes use of the
STATE pattern. One generated, this code never needs to be editted, or even examined. It

Figure 10-8
Subway Turnstile STD

Current State Event New State Action

Locked coin Unlocked Unlock

Locked pass Locked Alarm

Unlocked coin Unlocked Refund

Unlocked pass Locked Lock

Figure 10-9
Subway Turnstile STT

Locked

Unlocked

coin / Unlock

pass / Lock
coin / Refund

pass / Alarm

115 Chapter : State Diagrams

simply implements the logic, allowing the action functions to be implemented in the
Context class.

Listing 10-1
Turnstile.sm
Context TurnStileContext
FSMName TurnStile
Initial Locked
{

Locked
{

Coin Unlocked Unlock
Pass Locked Alarm

}
Unlocked
{
Coin Unlocked Thankyou
Pass Locked Lock

}
}

Listing 10-2
TurnStile.java (Generated)
public class TurnStile extends TurnStileContext {

private State itsState;
private static String itsVersion = "";
private static Locked itsLockedState;
private static Unlocked itsUnlockedState;

public TurnStile() {
itsLockedState = new Locked();
itsUnlockedState = new Unlocked();
itsState = itsLockedState;

}

public String getVersion() {
return itsVersion;

}

public String getCurrentStateName() {
return itsState.stateName();

}

public void Pass() {
itsState.pass();

}

public void Coin() {
itsState.coin();

}

private abstract class State {
public abstract String stateName();

public void pass() {
FSMError("Pass", itsState.stateName());

116Using FSM Diagrams

Creating and maintaining finite state machines in this form is much eaiser than trying
to maintain diagrams, and generating the code saves lots of time. So, though diagrams can
be very useful to help you think through or present a FSM to others, the text form is much
more convenient for development.

ICE: A Case Study

Several years ago I was involved in a workstation project named ICE. Users sat at GUIs
and worked through a sequence of screens using a fairly simple workflow. The logic of the
GUI is shown in Figure 10-10. This diagram was never drawn while the project was being
developed; I just drew it here to show you how a complex FSM would be drawn in UML.

}

public void coin() {
FSMError("Coin", itsState.stateName());

}

}

private class Locked extends State {
public String stateName() {

return "Locked";
}

public void pass() {
Alarm();
itsState = itsLockedState;

}

public void coin() {
Unlock();
itsState = itsUnlockedState;

}
}

private class Unlocked extends State {
public String stateName() {

return "Unlocked";
}

public void pass() {
Lock();
itsState = itsLockedState;

}

public void coin() {
Thankyou();
itsState = itsUnlockedState;

}
}

}

Listing 10-2 (Continued)
TurnStile.java (Generated)

117 Chapter : State Diagrams

Figure 10-10
ICE FSM

init entry / DisplayLoginScreen
exit / hideLoginScreen

login

init
cancel

entry / checkUserState

determiningUserMode

login

entry / isBatchAvailable

gettingManualbatch

manual / createSelector

entry / displayThumbnailAuto
itemChanged / workTypeItemChanged
redisplay / displayThumbnailAuto

autoBatch

auto

manual /
createSelector

entry / getNextAutoBatch

gettingAutoBatch

select / createSelector

exit

batchSplashAuto

nextBatchFound

noBatchFound / noBatchDialog

noBatchesFound

entry / displayThumbnailManual
redisplay / displayThumbnailManual

manualBatch

batchesFound

refresh

batchSplashManual

select / selectManualBatch

H

H

H

H
exit

entry / displayBatchSplashScreen
exit / hideBatchSplashScreen

batchSplash

redisplay /
displayAutoThumbnailProcessing

processingAutoBatch

ok / allMode, initBatch,
displayAutoThumbnailProcessing

redisplay /
displayManualThumbnailProcessing

processingManualBatch

ok / allMode, initBatch,
dislayManualThumbnailProcessing

processingBatch

co
m

pl
et

e
/c

om
pl

et
eB

at
ch

,c
le

an
up

B
at

ch

co
m

pl
et

e
/c

om
pl

et
eB

at
ch

,h
id

eT
hu

m
bn

ai
lS

cr
ee

n

re
qu

eu
e

/r
eq

ue
ue

B
at

ch
,c

le
an

up
B

at
ch

re
je

ct
/r

ej
ec

tB
at

ch
,c

le
an

up
B

at
ch

assign / assignPage

H
exit /
requeueBatch

redisplay /
displayAutoThumbnailProcessing

processingAutoBatchStopped

stop

co
m

pl
et

e
/c

om
pl

et
eB

at
ch

,c
le

an
up

B
at

ch

co
m

pl
et

e
/

co
m

pl
et

eB
at

ch
,

hi
de

T
hu

m
bn

ai
lS

cr
ee

n

re
je

ct
/r

ej
ec

tB
at

ch
,c

le
an

up
B

at
ch

pageAutoBatch

op
en

P
ag

e

pageAutoBatchStopped

op
en

P
ag

e

stop

pageManualBatch

op
en

P
ag

e

page

entry / displayPageScreen
exit / hidePageScreen

goBack /
displayAuto

ThumbnailProcessing

goBack /
displayAuto

ThumbnailProcessing

goBack /
displayManual
ThumbnailProcessing

assign / assignPage, redisplayPageScreen
setZone / assignZone, redisplayPageScreen

118Using FSM Diagrams

The SMC input for this diagram is shown in Listing 10-3. This source file grew from
humble beginings to the full description you see now. This file was easy to create, easy to
maintain, and fit very nicely into our build procedure.

Listing 10-3
ice.sm
Context RootFSM
Initial init
FSMName RootFSMGen
Version 042399 1528 rcm
FSMGenerator smc.generator.java.SMJavaGenerator
Pragma Package root
{

init
{

init login {}
}

login <displayLoginScreen >hideLoginScreen
{

login determiningUserMode {}
cancel end {}

}

determiningUserMode < { cleanupThumbnails checkUserState }
{

auto autoBatch {}
manual gettingManualBatch { createSelector }

}

autoBatch < { setUserAuto displayThumbnailAuto }
{

manual gettingManualBatch { createSelector }
select gettingAutoBatch { createSelector }
itemChanged * workTypeItemChanged
redisplay * displayThumbnailAuto
exit end {}

}

gettingAutoBatch <getNextAutoBatch
{

nextBatchFound batchSplashAuto {}
noBatchFound determiningUserMode { noBatchDialog }

}

gettingManualBatch <isBatchAvailable
{

batchesFound manualBatch {}
noBatchFound autoBatch {}

}

manualBatch < { setUserManual displayThumbnailManual }
{

119 Chapter : State Diagrams

auto autoBatch {}
refresh gettingManualBatch {}
select batchSplashManual selectManualBatch
redisplay * displayThumbnailManual
exit end {}

}

(processingBatch) >hideThumbnailScreen
{

ok * {}
cancel * {}

complete determiningUserMode { completeBatch
cleanupBatch }

requeue determiningUserMode { requeueBatch
cleanupBatch }

reject determiningUserMode { rejectBatch
cleanupBatch }

assign * assignPage
exit end requeueBatch

}

processingAutoBatch : processingBatch
{

stop processingAutoBatchStopped {}
complete gettingAutoBatch { completeBatch

cleanupBatch }
reject gettingAutoBatch { rejectBatch

cleanupBatch }
openPage pageAutoBatch {}
redisplay *

displayAutoThumbnailProcessing
}

processingAutoBatchStopped : processingBatch
{

complete determiningUserMode { completeBatch
cleanupBatch }

reject determiningUserMode { rejectBatch
cleanupBatch }

openPage pageAutoBatchStopped {}
stop processingAutoBatch {}
redisplay *

displayAutoThumbnailProcessing
}

processingManualBatch : processingBatch
{

openPage pageManualBatch {}
redisplay *

displayManualThumbnailProcessing
}

Listing 10-3
ice.sm

120Using FSM Diagrams

(batchSplash) <displayBatchSplashScreen
>hideBatchSplashScreen

{
}

batchSplashAuto : batchSplash
{

ok processingAutoBatch {allMode initBatch
displayAutoThumbnailProcessi

ng}
complete gettingAutoBatch {completeBatch

hideThumbnailScreen}
}

batchSplashManual : batchSplash
{

ok processingManualBatch {allMode initBatch
displayManualThumbnailProcessi

ng}
complete determiningUserMode {completeBatch

hideThumbnailScree
n}

}

(page) <displayPageScreen >hidePageScreen
{

assign * {assignPage redisplayPageScreen}
setZone * {assignZone redisplayPageScreen}

}

pageAutoBatch : page
{

goBack processingAutoBatch
displayAutoThumbnailProcessing

}

pageAutoBatchStopped : page
{

goBack processingAutoBatchStopped
displayAutoThumbnailProcess

ing
}

pageManualBatch : page
{

goBack processingManualBatch
displayManualThumbnailProcessing

}

end <exitProgram
{
}

}

Listing 10-3
ice.sm

121 Chapter : State Diagrams

Conclusion

Finite state machines are a powerful concept for structuring software. UML provides a
very powerful notation for visualizing FSMs. However, it is easier to develop and main-
tain an FSM using a textual language than as a diagram.

122Conclusion

123

11

Heuristics and Coffee

Over the past dozen years I have taught, and continue to teach, OO design to professional
software developers. My courses are divided into morning lectures and afternoon exer-
cizes. For the exercizes I will divide the class up into teams and have them solve a design
problem using UML. The next morning we choose one or two teams to present their solu-
tions on a whiteboard, and we critique their designs.

I have taught these courses hundreds of times and have notice that there are a group of
design mistakes that are commonly made by the students. This chapter presents a few of
the most common errors, shows why they are errors, and addresses how they can be cor-
rected. Then it goes on to solve the problem in a way that I think resolves all the design
forces nicely.

The Mark IV Special Coffee Maker

During the first morning of an OOD class I present the basic definitions of classes,
objects, relationships, methods, polymorphism, etc. At the same time I present the basics
of UML. Thus, the students learn the fundemental concepts, vocabulary, and tools of
object oriented design.

During the afternoon I give the class the following exersize to work on. I ask them to
design the software that controls a simple coffee maker. Here is the specification I give
them.1

The Mark IV Special Coffee Maker

1. This problem comes from my first book: Designing Object Oriented C++ Applications using the
Booch Method, Robert C. Martin, Prentice Hall, 1995.

124The Mark IV Special Coffee Maker

The Mark IV special makes up to 12 cups of coffee at a time. The user places a filter
in the filter holder, fills the filter with coffee grounds, and slides the filter holder into its
receptacle. The user then pours up to 12 cups of water into the water strainer and presses
the “Brew” button. The water is heated until boiling. The pressure of the evolving steam
forces the water to be sprayed over the coffee grounds, and coffee drips through the filter
into the pot. The pot is kept warm for extended periods by a warmer plate, which only
turns on if there is coffee in the pot. If the pot is removed from the warmer plate while cof-
fee is being sprayed over the grounds, the flow of water is stopped, so that brewed coffee
does not spill on the warmer plate. The following hardware needs to be monitored or con-
trolled:

• The heating element for the boiler. It can be turned on or off.

• The heating element for the warmer plate. It can be turned on or off.

• The sensor for the warmer plate. It has three states: warmerEmpty, potEmpty,
potNotEmpty.

• A sensor for the boiler, which determines if there is water present or not. It has
two states: boilerEmpty or boilerNotEmpty.

• The brew button. This is a momentary button that starts the brewing cycle. It has
an indicator that lights up when the brewing cycle is over and the coffee is ready.

• A pressure-relief valve that opens to reduce the pressure in the boiler. The drop in
pressure stops the flow of water to the filter. It can be opened or closed.

The hardware for the Mark IV has been designed and is currently under development.
The hardware engineers have even provided a low-level API for us to use, so we don’t
have to write any bit-twiddling I/O driver code. The code for these interface functions is in
Listing 11-1. If this code looks strange to you, just keep in mind that it was written by
hardware engineers.

Listing 11-1
CofeeMakerAPI.java
public interface CoffeeMakerAPI {

public static CoffeeMakerAPI api = null; // set by main.

/**
* This function returns the status of the warmer-plate
* sensor. This sensor detects the presence of the pot
* and whether it has coffee in it.
*/
public int getWarmerPlateStatus();

public static final int WARMER_EMPTY = 0;
public static final int POT_EMPTY = 1;
public static final int POT_NOT_EMPTY = 2;

/**
* This function returns the status of the boiler switch.
* The boiler switch is a float switch that detects if
* there is more than 1/2 cup of water in the boiler.

125 Chapter : Heuristics and Coffee

*/
public int getBoilerStatus();

public static final int BOILER_EMPTY = 0;
public static final int BOILER_NOT_EMPTY = 1;

/**
* This function returns the status of the brew button.
* The brew button is a momentary switch that remembers
* its state. Each call to this function returns the
* remembered state and then resets that state to
* BREW_BUTTON_NOT_PUSHED.
*
* Thus, even if this function is polled at a very slow
* rate, it will still detect when the brew button is
* pushed.
*/
public int getBrewButtonStatus();

public static final int BREW_BUTTON_PUSHED = 0;
public static final int BREW_BUTTON_NOT_PUSHED = 1;

/**
* This function turns the heating element in the boiler
* on or off.
*/
public void setBoilerState(int boilerStatus);

public static final int BOILER_ON = 0;
public static final int BOILER_OFF = 1;

/**
* This function turns the heating element in the warmer
* plate on or off.
*/
public void setWarmerState(int warmerState);

public static final int WARMER_ON = 0;
public static final int WARMER_OFF = 1;

/**
* This function turns the indicator light on or off.
* The indicator light should be turned on at the end
* of the brewing cycle. It should be turned off when
* the user presses the brew button.
*/
public void setIndicatorState(int indicatorState);

public static final int INDICATOR_ON = 0;
public static final int INDICATOR_OFF = 1;

/**
* This function opens and closes the pressure-relief
* valve. When this valve is closed, steam pressure in
* the boiler will force hot water to spray out over

Listing 11-1 (Continued)
CofeeMakerAPI.java

126The Mark IV Special Coffee Maker

A Challenge.

If you want a challenge, stop reading here and try to design this software yourself.
Remember that you are designing the software for an simple embedded real-time system.
What I expect of my students is a set of class diagrams, sequence diagrams, and state
machines.

A Common, but Hideous, Coffee Maker Solution

By far the most common solution that my students present is the one in Figure 11-1. In this
diagram we see the central CoffeeMaker class surrounded by minions that control the
various devices. The CoffeeMaker contains a Boiler, a WarmerPlate, a Button, and a
Light. The Boiler contains a BoilerSensor and a BoilerHeater. The
WarmerPlate contains a PlateSensor and a PlateHeater. Finally there are two base
classes, Sensor and Heater, that act as parents to the Boiler and WarmerPlate ele-
ments.

It is hard for beginners to appreciate just how hideous this structure is. There are quite
a few rather serious errors lurking in this diagram. Many of these errors would not be
noticed until you actually tried to code this design and found that the code was absurd.

But before we get to the problems with the design itself, lets look at the problems with
the way the UML is created.

MissingMethods.

The biggest problem that Figure 11-1 exhibits is a complete lack of methods. We are writ-
ing a program here; and programs are about behavior! Where is the behavior in this dia-
gram?

When designers create diagrams without methods they may be partitioning the soft-
ware on something other than behavior. Partitionings that are not based upon behavior are
almost always significant errors. It is the behavior of a system that is the first clue to how
the software should be partitioned.

* the coffee filter. When the valve is open, the steam
* in the boiler escapes into the environment, and the
* water in the boiler will not spray out over the filter.
*/
public void setReliefValveState(int reliefValveState);

public static final int VALVE_OPEN = 0;
public static final int VALVE_CLOSED = 1;

}

Listing 11-1 (Continued)
CofeeMakerAPI.java

127 Chapter : Heuristics and Coffee

Vapor Classes

We can see how poorly partitioned this particular design is, if we consider the meth-
ods we might put in the class Light. Clearly the Light object just wants to be turned on
or turned off. Thus we might put an on() and off() method in class Light. What would
the implementation of those function look like? See Listing 11-2.

Figure 11-1
Hyper-Concrete Coffee Maker

Listing 11-2
Light.java
public class Light {

public void on() {
CoffeeMakerAPI.api.

setIndicatorState(CoffeeMakerAPI.INDICATOR_ON);
}

public void off() {
CoffeeMakerAPI.api.

setIndicatorState(CoffeeMakerAPI.INDICATOR_OFF);
}

}

CoffeeMaker

Sensor Heater

BoilerSensor PlateSensorBoilerHeater

Boiler WarmerPlate

PlateHeater

Button Light

128The Mark IV Special Coffee Maker

There are some peculiar things about class Light. First, it has no variables. This is odd
since an object usually has some kind of state that it manipulates. What’s more, the on()
and off() methods simply delegate to the setIndicatorState method of the
CoffeeMakerAPI. So apparently the Light class is nothing more than a call translator.
It’s not really doing anything useful.

This same reasoning can be applied to the Button, Boiler, and WarmerPlate

classes. They are nothing more than adapters that translate a function call in one form to
another. Indeed, they could be removed from the design altogether without changing any
of the logic in the CoffeeMaker class. That class would simply have to call the
CoffeeMakerAPI directly instead of through the adapters.

By considering the methods, and then the code, we have demoted these classes from
the prominent position the hold in Figure 11-1, to mere place holders without much reason
to exist. For this reason, I call them Vapor Classes.

Imaginary Abstraction

Notice the Sensor and Heater base classes in Figure 11-1. The previous section should
have convinced you that their derivatives were mere vapor; but what about base classes
themselves? On the surface they seem to make a lot of sense. And yet, there doesn’t seem
to be any place for them.

Abstractions are tricky things. We humans see them everywhere, but many are not
appropriate to be turned into base classes. These, in particular, have no place in this
design. We can see this by asking ourselves who uses them.

No class in the system actually makes use of the Sensor or Heater class. If nobody
uses them, what reason do they have to exist? Sometimes we might tolerate a base class
that nobody uses if it supplied some common code to the derivatives; but these bases have
no code in them at all. At best their methods are abstract. Consider, for example, the
Heater interface in Listing 11-3. A class with nothing but abstract functions and that no
other class uses is officially useless.

The Sesor class (Listing 11-4) is worse! Like Heater, it has abstract methods and no
users. What’s worse is that the return value of its sole method is ambiguous. What does
the sense() return? In the BoilerSensor it returns two possible values, But in
WarmerPlateSensor it returns three possible values. In short, we cannot specify the
contract of the Sensor in the interface. The best we can do is say that sensors may return
ints. This is pretty weak.

Listing 11-3
Heater.java
public interface Heater {

public void turnOn();
public void turnOff();

}

129 Chapter : Heuristics and Coffee

What really happened here is that we read through the specification, found a bunch of
likely nouns, made some inferrences about their relationships, and then created a UML
diagram based on that reasoning. If we accepted these decisions as an architecture and
implemented them the way they stand, then we’d wind up with an all powerful Coffee-
Maker class surrounded by vaporous minions. We might as well program it in C!

God Classes

Everybody knows that god classes are a bad idea. We don’t want to concentrate all the
intelligence of a system into a single object, or a single function. One of the goals of OOD
is the partitioning and distribution of behavior into many classes and many functions. It
turns out, however, that many object models that appear to be distributed are really the
abode of gods in disguise. Figure 11-1 is a prime example. At first glance it looks like
there are lots of classes with interesting behavior. But as we drill down into the code that
would implement those classes we find that only one of those classes, CoffeeMaker, has
any interesting behavior, and the rest are all imaginary abstractions or vapor classes.

A Coffee Maker Solution

Solving the coffee maker problem is an interesting exercize in abstraction. Most develop-
ers new to OO find themselves quite surprized by the result.

The trick to solving this problem is to step back from the problem and separate the
details from the essential nature of the problem. Forget about boilers, valves, heaters, sen-
sors, and all the little details of the problem and concentrate on the underlying problem.
What is that problem? The problem is: How do you make coffee?

How do you make cofee? The simplest, and most common solution to this problem, is
to pour hot water over coffee grounds, and to collect the resulting infusion in some kind of
vessel. Where do we get the hot water from? Let’s call it a HotWaterSource. Where do
we collect the coffee? Lets call it a ContainmentVessel2.

Are these two abstractions really classes? Does a HotWaterSource have behavior
that could be captured in software? Does a ContainmentVessel do something that soft-
ware could control? If we think about the Mark IV unit, we could imagine the boiler,
valve, and boiler sensor playing the role of the HotWaterSource. The HotWaterSource
would be responsible for heating the water and delivering over the coffee grounds to drip

Listing 11-4
Sensor.java
public interface Sensor {

public int sense();
}

2. That name is particularly appropriate for the kind of coffee that I like to make.

130A Coffee Maker Solution

into the ContainmentVessel. We could also imagine the warmer plate and its sensor
playing the role of the ContainmentVessel. It would be responsible for keeping the con-
tained coffee warm, and also for letting us know whether there was any coffee left in the
vessel.

Crossed Wires

How would you capture the previous discussion in a UML diagram? Figure 11-2 shows
one possible schema. HotWaterSource and ContainmentVessel are both represented
as classes, and are associated by the flow of coffee.

The association shows an error that OO novices commonly make. The association is
associated with something physical about the problem instead of with the control of soft-
ware behavior. The fact that coffee flows from the HotWaterSource to the
ContainmentVessel is completely irrelevant to the association between those two
classes.

For example, what if the software in the ContainmentVessel told the
HotWaterSource when to start and stop the flow of hot water into the vessel. This might
be depicted as shown in Figure 11-3. Notice that the ContainmentVessel is sending the
start message to the HotWaterSource. This means that the association in Figure 11-2 is
backwards. HotWaterSource does not depend upon the ContainmentVessel at all.
Rather, the ContainmentVessel depends upon the HotWaterSource.

The lesson here is simply this: Associations are the pathways through which mes-
sages are sent between objects. They have nothing to do with the flow of physical objects.
The fact that hot water flows from the boiler to the pot does not mean that there should be
an association from the HotWaterSource to the ContainmentVessel.

I call this particular mistake, “Crossed Wires” because the wiring between the classes
has gotten crossed between the logical and physical domains.

Figure 11-2
Crossed Wires.

Figure 11-3
Starting the flow of hot water

Hot Water
Source

Containment
Vessel

Coffee Flow

HotWater
Source

Containment
Vessel

start

131 Chapter : Heuristics and Coffee

The Coffee Maker User Interface

It should be clear that something is missing from our coffee maker model. We have a Hot-
WaterSource and a ContainmentVessel, but we don’t have any way for a human to interact
with the system. Somewhere our system has to listen for commands from a human. Like-
wise the system must be able to report status to its human owners. Certainly the Mark IV
had hardware dedicated to this purpose. The button and the light served as the user inter-
face.

Thus, we’ll add a UserInterface class to our coffee maker model. This gives us a
triad of classes interacting to create coffee under the direction of a user.

Use Case 1: User pushes brew button.

OK, given these three classes, how to their instance communicate? Lets look at several use
cases to see if we can find out what the behavior of these classes is.

Which one of our objects detects the fact that the user has pressed the brew button?
Clearly it must be the UserInterface object. What should this object do when the brew
button is pushed?

Our goal is to start the flow of hot water. However, before we can do that, we’d better
make sure that the ContainmentVessel is ready to accept coffee. We’d also better make
sure that the HotWaterSource is ready. If we think about the MarkIV, we’re making sure
that the boiler is full, and that the pot is empty and in place on the warmer.

So the first thing our UserInterface object does is to send message to the
HotWaterSource and the ContainmentVessel to see if they are ready. This is shown
in Figure 11-4.

If either of these queries returns false, then we refuse to start brewing coffee. The
UserInterface object can take care of letting the user know that his request was denied.
In the MarkIV case, we might flash the light a few times.

Figure 11-4
Brew Button Pressed, Checking for ready.

HotWater
Source

Containment
Vessel

User
Interface

IsReady

IsReady

132A Coffee Maker Solution

If both queries return true, then we need to start the flow of hot water. Probably the
UserInterface object should send a Start message to the HotWaterSource. The
HotWaterSource will then start doing whatever it needs to do to get hot water flowing. In
the case of the MarkIV, it will close the valve and turn on the boiler. Figure 11-5 shows
the completed scenario.

Use Case 2: Containment Vessel not Ready.

In the Mark IV we know that the user can take the pot off the warmer while coffee is flow-
ing. Which one of our objects would detect the fact that the pot had been removed? Cer-
tainly it would be the ContainmentVessel. The requirements for the MarkIV tell us that
we need to stop the flow of coffee when this happens. Thus the ContainmentVessel

must be able to tell the HotWaterSource to stop sending hot water. Likewise, it needs to
be able to tell it to start again when the pot is replaced. Figure 11-6 adds the new methods.

Use Case 3: Brewing Complete.

At some point we will be done brewing coffee, and we’ll have to turn off the flow of hot
water. Which one of our objects knows when brewing is complete? In the MarkIV case the

Figure 11-5
Brew Button Pushed, complete.

Figure 11-6
Pausing and Resuming the flow of hot water.

HotWater
Source

Containment
Vessel

User
Interface

1:IsReady

2:IsReady

3:Start

HotWater
Source

Containment
Vessel

User
Interface

1a:IsReady

2a:IsReady

3a:Start

1b: Pause
2b: Resume

133 Chapter : Heuristics and Coffee

sensor in the boiler tells us that the boiler is empty. So our HotWaterSource would
detect this. However, it’s not hard to envision a coffee maker in which the Containment-
Vessel would be the one to detect that brewing was done. For example, what if our cof-
fee maker was plumbed into the water mains and therefore had an infinite supply of water.
What if the water was heated by an intense microwave generator3 as it flowed through the
pipes into into a thermally isolated vessel. What if that vessel had a spigot from which
users got their coffee. In this case it would be a sensor in the vessel that would know that it
was full, and that hot water should be shut off.

The point is that in the abstract domain of the HotWaterSource and Containment-
Vessel, neither is a particular compelling candidate for detecting completion of the brew.
My solution to that is to ignore the issue. I’ll assume that either object can tell the others
that brewing is complete.

Which objects in our model need to know that brewing is complete? Certainly the
UserInterface needs to know since, in the Mark IV case, it must turn the light on. It
should also be clear that the HotWaterSource needs to know that brewing is over,
because it’ll need to stop the flow of hot water. In the Mark IV case it’ll shut down the
boiler and open the valve. Does the ContainmentVessel need to know that brewing is
complete? Is there anything special that the ContainmentVessel needs to do, or to keep
track of, once the brewing is complete? In the Mark IV case it’s going to detect an empty
pot being put back on the plate, signalling that the user has poured all the coffee. This
causes the Mark IV to turn the light out. So, yes, the ContainmentVessel needs to know
that brewing is complete. Indeed, the same argument can be used to say that the
UserInterface should send the Start message to the ContainmentVessel when
brewing starts. Figure 11-7 shows the new messages. Note that I’ve shown that either
HotWaterSource or ContainmentVesslel can send the Done message.

3. OK...I’m having a bit of fun. But..what if?

Figure 11-7
Detecting when Brewing is Complete

HotWater
Source

Containment
Vessel

User
Interface

1a:IsReady

2a:IsReady

3a:Start

1b: Pause
2b: Resume1c: Done

2c: Done

2d: Done

1d: Done

134A Coffee Maker Solution

Use Case 4: Coffee all gone.

The Mark IV shuts off the light when brewing is complete and an empty pot is placed on
the plate. Clearly, in our object model, it is the ContainmentVessel that should detect
this. It will have to send a Complete message to the UserInterface. Figure 11-8 shows
the completed collaboration diagram.

From this diagram we can draw a class diagram with all the associations intact. This
diagram holds no surprises. You can see it in Figure 11-9.

Implementing the Abstract Model.

Our object model is reasonably well partitioned. We have three distinct areas of responsi-
bility, and each seems to be sending and receiving messages in a balanced way. There
does not appear to be a god object anywhere. Nor do there appear to be any vapor classes.

So far, so good; but how do we implement the Mark IV in this structure? Do we just
implement the methods of these three classes to invoke the CoffeeMakerAPI? This

Figure 11-8
Coffee all gone.

Figure 11-9

HotWater
Source

Containment
Vessel

User
Interface

1a:IsReady

2a:IsReady

3a:Start

1b: Pause
2b: Resume

1c: Done

2c: Done

2d: Done

1d: Done

1e: Complete

4a:Start

Hot Water
Source

Containment
Vessel

User Interface

135 Chapter : Heuristics and Coffee

would be a real shame! We’ve captured the essense of what it takes to make coffee. It
would be pitifully poor design if we were to now tie that essense to the Mark IV.

In fact, I’m going to make a rule right now. None of the three classes we have created
must ever know anything about the Mark IV. This is the Dependency Inversion Principle
(DIP). We are not going to allow the high level coffee making policy of this system to
depend upon the low level implementation.

OK, then how will we create the Mark IV implementation? Lets look at all the use
cases again; but this time, lets look at them from the Mark IV point of view.

Use Case 1. User pushes Brew Button (Mark IV)

Looking at our model, how does the UserInterface know that the brew button has been
pushed? Clearly it must call the CoffeeMakerAPI.getBrewButtonStatus() function.
Where should it call this function? We’ve already decreed that the UserInterface class
itself cannot know about the CoffeeMakerAPI. So where does this call go?

We’ll apply the DIP and put the call in a derivative of UserInterface. See Figure
11-10 for details.

We’ve derived M4UserInterface from UserInterface, and we’ve put a check-
Button() method in M4UserInterface. When this function is called, it will call the
CoffeeMakerAPI.getBrewButtonStatus() function. If the button has been pressed,
it will invoke the protected startBrewing() method of UserInterface. Listing 11-5
and Listing 11-6 show how this would be coded.

Figure 11-10
Detecting the brew button

Listing 11-5
M4UserInterface.java
public class M4UserInterface extends UserInterface {

private void checkButton() {
int buttonStatus =

CoffeeMakerAPI.api.getBrewButtonStatus();
if (buttonStatus == CoffeeMakerAPI.BREW_BUTTON_PUSHED) {

startBrewing();

Hot Water
Source

Containment
Vessel

startBrewing

User Interface

+ checkButton

M4UserInterface

136A Coffee Maker Solution

You might be wondering why I created the protected startBrewing() method at
all. Why didn’t I just call the start() functions from M4UserInterface. The reason is
simple, but significant. The isReady() tests, and the consequential calls to the start()
methods of the HotWaterSource and the ContainmentVessel are high level policy
that the UserInterface class should posess. That code is valid irrespective of whether
or not we are implementing a Mark IVand should therefore not be coupled to the Mark IV
derivative. You will see me make this same distinction over and over again in this exam-
ple. I keep as much code as I can in the high level classes. The only code I put into the
derivatives is code that is directly, and inextricably, associated with the Mark IV.

Implementing the isReady() functions.

How are the isReady() method of HotWaterSource and ContainmentVessel imple-
mented? It should be clear that these are really just abstract methods, and that these classes
are therefore abstract classes. The corresponding derivatives M4HotWaterSource and
M4ContainmentVessel will implement them by calling the appropriate CoffeeMaker-
API functions. Figure 11-11 shows the new structure, and Listing 11-7 and Listing 11-8
show the implementation of the two derivatives.

Notice that in the UML of Figure 11-11 I am using a shorthand to represent abstract
classes and methods. I place the symbol: {A} near the entity that I am denoting as abstract.
This is my own shorthand convention. It’s much more convenient than having to write out
{abstract} all the time.

}
}

}

Listing 11-6
UserInterface.java
public class UserInterface {

private HotWaterSource hws;
private ContainmentVessel cv;

public void done() {}
public void complete() {}
protected void startBrewing() {

if (hws.isReady() && cv.isReady()) {
hws.start();
cv.start();

}
}

}

Listing 11-5 (Continued)
M4UserInterface.java

137 Chapter : Heuristics and Coffee

Implementing the start() functions.

The start() method of HotWaterSource is just an abstract method that is implemented
by M4HotWaterSource to invoke the CoffeeMakerAPI functions that close the valve
and turn on the boiler. As I wrote these functions I begain to get tired of all the Coffee-
MakerAPI.api.XXX structures I was writing, so I did a little refactoring at the same time.
The result is in Listing 11-9.

Figure 11-11
Implementing the isReady methods

Listing 11-7
M4HotWaterSource.java
public class M4HotWaterSource extends HotWaterSource {

public boolean isReady() {
int boilerStatus =

CoffeeMakerAPI.api.getBoilerStatus();
return boilerStatus == CoffeeMakerAPI.BOILER_NOT_EMPTY;

}
}

Listing 11-8
M4ContainmentVessel.java
public class M4ContainmentVessel extends ContainmentVessel {

public boolean isReady() {
int plateStatus =

CoffeeMakerAPI.api.getWarmerPlateStatus();
return plateStatus == CoffeeMakerAPI.POT_EMPTY;

}
}

+ {A} isReady()

Hot Water
Source

+ {A} isReady()

Containment
Vessel

startBrewing

User Interface

+ checkButton

M4UserInterface

{A}

{A}

M4HotWater
Source

M4Containment
Vessel

138A Coffee Maker Solution

The start() method for the ContainmentVessel is a little more interesting. The
only action that the M4ContainmentVessel needs to take is to remember the brewing
state of the system. As we’ll see later, this will allow it to respond correctly when pots are
placed on, or removed from, the plate. Listing 11-10 shows the code.

How does M4UserInterface.checkButton get called?

This is an interesting point. How does the flow of control ever get to a place at which the
CoffeeMakerAPI.getBrewButtonStatus() function can be called. For that matter,
how does the flow of control get to where any of the sensors can be detected?

Many of the teams who try to solve this problem get completely hung up on this
point. Some don’t want to assume that there’s a multi-threading operating system in the

Listing 11-9
M4HotWaterSource.java
public class M4HotWaterSource extends HotWaterSource {

CoffeeMakerAPI api;

public M4HotWaterSource(CoffeeMakerAPI api) {
this.api = api;

}

public boolean isReady() {
int boilerStatus = api.getBoilerStatus();
return boilerStatus == api.BOILER_NOT_EMPTY;

}

public void start() {
api.setReliefValveState(api.VALVE_CLOSED);
api.setBoilerState(api.BOILER_ON);

}
}

Listing 11-10
M4ContainmentVessel.java
public class M4ContainmentVessel extends ContainmentVessel {

private CoffeeMakerAPI api;
private boolean isBrewing;

public M4ContainmentVessel(CoffeeMakerAPI api) {
this.api = api;
isBrewing = false;

}

public boolean isReady() {
int plateStatus = api.getWarmerPlateStatus();
return plateStatus == api.POT_EMPTY;

}

public void start() {
isBrewing = true;

}
}

139 Chapter : Heuristics and Coffee

coffee maker, and so they want to use a polling approach to the sensors. Others want to put
multi-threading in so that they don’t have to worry about polling. I’ve seen this particular
argument go back and forth for an hour or more in some teams.

The mistake that these teams are making (which I eventually point out to them after
letting them sweat a bit) is that the choice between threading and polling is completely
irrelevant. This decision can be made at the very last minute without harm to the design.
Therefore it is always best to assume that messages can be sent asynchronously, as though
there were independent threads, and then put the polling or threading in at the last minute.

The design so far has assumed that somehow the flow of control will asynchronously
get into the M4UserInterface object so that it can call CoffeeMakerAPI.getBrew-
ButtonStatus(). Now lets assume that we are working in a very minimal JVM that
does not support threading. This means we’re going to have to poll. How can we make this
work?

Consider the Pollable interface in Listing 11-11. This interface has nothing but a
poll() method. Now, what if M4UserInterface implemented this interrface? What if
the main() program hung in a hard loop just calling this method over and over again?
Then the flow of control would continuously be reentering M4UserInterface and we
could detect the brew button.

Indeed, we can repeat this pattern for all three of the M4 derivatives. Each has its own
sensors it needs to check. So, as shown in Figure 11-12, we can derive all of the M4 deriv-
atives from Pollable and call them all from main().

Listing 11-12 shows what the main function might look like. It is placed in a class
called CoffeeMaker. The main() function creates the implemented version of the api,
and then creates the three M4 components. It calls init() functions to wire the compo-
nents up to each other. Finally it hangs in an infinite loop calling poll() on each of the
components in turn.

Now it should be clear how the M4UserInterface.checkButton() function gets
called. Indeed, it should be clear that this function is really not called checkButton(). It
is called poll(). Listing 11-13 shows what M4UserInterface look like now.

Completing the Coffee Maker

The reasoning used in the previous sections can be repeated for each of the other compo-
nents of the coffee maker. The result is shown in Listing 11-14 through Listing 11-21.

Listing 11-11
Pollable.java
public interface Pollable {

public void poll();
}

140A Coffee Maker Solution

Figure 11-12
Pollable Coffee Maker

Listing 11-12
CoffeeMaker.java
public class CoffeeMaker {

public static void main(String[] args) {
CoffeeMakerAPI api = new M4CoffeeMakerAPIImplementation();

M4UserInterface ui = new M4UserInterface(api);
M4HotWaterSource hws = new M4HotWaterSource(api);
M4ContainmentVessel cv = new M4ContainmentVessel(api);

ui.init(hws,cv);
hws.init(ui,cv);
cv.init(ui,hws);

while(true) {
ui.poll();
hws.poll();
cv.poll();

}
}

}

+ {A} isReady()

Hot Water
Source

+ {A} isReady()

Containment
Vessel

startBrewing

User Interface

+ checkButton

M4UserInterface

{A}

{A}

M4HotWater
Source

M4Containment
Vessel

+ poll()

Pollable
«interface»

141 Chapter : Heuristics and Coffee

The Benefits of this design.

Despite the trivial nature of the problem, this design shows some very nice characteristics.
Figure 11-13 shows the structure. I have drawn a line around the three abstract classes.
These are the classes that hold the high level policy of the coffee maker. Notice that all
dependencies that cross the line point inwards. Noting inside the line depends upon any-
thing outside. Thus, the abstractions are completely separated from the details.

The abstract classes know nothing of buttons, lights, valves, sensors, nor any other of
the detailed elements of the coffee maker. By the same token, the derivatives are domi-
nated by those details.

Note that the three abstract classes could be reused to make many different kinds of
coffee machines. We could easily use them in a coffee machine that is connected to the
water mains and uses a tank and spigot. It seems likely that we could also use them for a
coffee vending machine. Indeed, I think we could use it in an automatic tea brewer or even
a chicken soup maker. This segregation between high level policy and detail is the essense
of object oriented design.

How did I really come up with this design?

I did not just sit down one day and develop this design in a nice straightfoward manner.
Indeed, my very first design for the coffee maker looked much more like Figure 11-1.
However, I have written about this problem many times, and have used it as an exercize
while teaching class after class. So this design has been refined over time.

Listing 11-13
M4UserInterface.java
public class M4UserInterface extends UserInterface

implements Pollable {
private CoffeeMakerAPI api;
private HotWaterSource hws;
private ContainmentVessel cv;

public void init(HotWaterSource hws, ContainmentVessel cv) {
this.hws = hws;
this.cv = cv;

}

public M4UserInterface(CoffeeMakerAPI api) {
this.api = api;

}

private void poll() {
int buttonStatus = api.getBrewButtonStatus();
if (buttonStatus == api.BREW_BUTTON_PUSHED) {

startBrewing();
}

}
}

142A Coffee Maker Solution

The code you see below was created, test first, using unit tests in Listing 11-22. I cre-
ated the code based upon the structure in Figure 11-13, but put it together incrementally,
one failing test case at a time.4

I am not convince that the test cases are complete. If this were more than an example
program, I’d do a more exhaustive analysis on the test cases. However, I felt that such an
analysis would have been overkill for this book.

Figure 11-13
Coffee Maker Components

4. See Test Driven Development, Kent Beck, Addison Wesley, 2002

Listing 11-14
UserInterface.java
public abstract class UserInterface {

private HotWaterSource hws;
private ContainmentVessel cv;
protected boolean isComplete;

public UserInterface() {
isComplete = true;

}

public void init(HotWaterSource hws, ContainmentVessel cv) {
this.hws = hws;
this.cv = cv;

}

Hot Water
Source

Containment
Vessel

User Interface

+ checkButton

M4UserInterface

{A}

{A}

M4HotWater
Source

M4Containment
Vessel

Pollable
«interface»

{A}

143 Chapter : Heuristics and Coffee

public void complete() {
isComplete = true;
completeCycle();

}

protected void startBrewing() {
if (hws.isReady() && cv.isReady()) {

isComplete = false;
hws.start();
cv.start();

}
}

public abstract void done();
public abstract void completeCycle();

}

Listing 11-15
M4UserInterface.java
public class M4UserInterface extends UserInterface

implements Pollable {
private CoffeeMakerAPI api;

public M4UserInterface(CoffeeMakerAPI api) {
this.api = api;

}

public void poll() {
int buttonStatus = api.getBrewButtonStatus();
if (buttonStatus == api.BREW_BUTTON_PUSHED) {

startBrewing();
}

}

public void done() {
api.setIndicatorState(api.INDICATOR_ON);

}

public void completeCycle() {
api.setIndicatorState(api.INDICATOR_OFF);

}
}

Listing 11-16
HotWaterSource.java
public abstract class HotWaterSource {

private UserInterface ui;
private ContainmentVessel cv;
protected boolean isBrewing;

public HotWaterSource() {
isBrewing = false;

}

Listing 11-14 (Continued)
UserInterface.java

144A Coffee Maker Solution

public void init(UserInterface ui, ContainmentVessel cv) {
this.ui = ui;
this.cv = cv;

}

public void start() {
isBrewing = true;
startBrewing();

}

public void done() {
isBrewing = false;

}

protected void declareDone() {
ui.done();
cv.done();
isBrewing = false;

}

public abstract boolean isReady();
public abstract void startBrewing();
public abstract void pause();
public abstract void resume();

}

Listing 11-17
M4HotWaterSource.java
public class M4HotWaterSource extends HotWaterSource

implements Pollable {
private CoffeeMakerAPI api;

public M4HotWaterSource(CoffeeMakerAPI api) {
this.api = api;

}

public boolean isReady() {
int boilerStatus = api.getBoilerStatus();
return boilerStatus == api.BOILER_NOT_EMPTY;

}

public void startBrewing() {
api.setReliefValveState(api.VALVE_CLOSED);
api.setBoilerState(api.BOILER_ON);

}

public void poll() {
int boilerStatus = api.getBoilerStatus();
if (isBrewing) {

if (boilerStatus == api.BOILER_EMPTY) {
api.setBoilerState(api.BOILER_OFF);
api.setReliefValveState(api.VALVE_CLOSED);
declareDone();

}

Listing 11-16 (Continued)
HotWaterSource.java

145 Chapter : Heuristics and Coffee

}
}

public void pause() {
api.setBoilerState(api.BOILER_OFF);
api.setReliefValveState(api.VALVE_OPEN);

}

public void resume() {
api.setBoilerState(api.BOILER_ON);
api.setReliefValveState(api.VALVE_CLOSED);

}
}

Listing 11-18
ContainmentVessel.java
public abstract class ContainmentVessel {

private UserInterface ui;
private HotWaterSource hws;
protected boolean isBrewing;
protected boolean isComplete;

public ContainmentVessel() {
isBrewing = false;
isComplete = true;

}

public void init(UserInterface ui, HotWaterSource hws) {
this.ui = ui;
this.hws = hws;

}

public void start() {
isBrewing = true;
isComplete = false;

}

public void done() {
isBrewing = false;

}

protected void declareComplete() {
isComplete = true;
ui.complete();

}

protected void containerAvailable() {
hws.resume();

}

protected void containerUnavailable() {
hws.pause();

}

public abstract boolean isReady();

Listing 11-17 (Continued)
M4HotWaterSource.java

146A Coffee Maker Solution

}

Listing 11-19
M4ContainmentVessel.java
public class M4ContainmentVessel extends ContainmentVessel

implements Pollable {
private CoffeeMakerAPI api;
private int lastPotStatus;

public M4ContainmentVessel(CoffeeMakerAPI api) {
this.api = api;
lastPotStatus = api.POT_EMPTY;

}

public boolean isReady() {
int plateStatus = api.getWarmerPlateStatus();
return plateStatus == api.POT_EMPTY;

}

public void poll() {
int potStatus = api.getWarmerPlateStatus();
if (potStatus != lastPotStatus) {

if (isBrewing) {
handleBrewingEvent(potStatus);

} else if (isComplete == false) {
handleIncompleteEvent(potStatus);

}
lastPotStatus = potStatus;

}
}

private void handleBrewingEvent(int potStatus) {
if (potStatus == api.POT_NOT_EMPTY) {

containerAvailable();
api.setWarmerState(api.WARMER_ON);

} else if (potStatus == api.WARMER_EMPTY) {
containerUnavailable();
api.setWarmerState(api.WARMER_OFF);

} else { // potStatus == api.POT_EMPTY
containerAvailable();
api.setWarmerState(api.WARMER_OFF);

}
}

private void handleIncompleteEvent(int potStatus) {
if (potStatus == api.POT_NOT_EMPTY) {

api.setWarmerState(api.WARMER_ON);
} else if (potStatus == api.WARMER_EMPTY) {

api.setWarmerState(api.WARMER_OFF);
} else { // potStatus == api.POT_EMPTY

api.setWarmerState(api.WARMER_OFF);
declareComplete();

}

Listing 11-18 (Continued)
ContainmentVessel.java

147 Chapter : Heuristics and Coffee

}
}

Listing 11-20
Pollable.java
public interface Pollable {

public void poll();
}

Listing 11-21
CoffeeMaker.java
public class CoffeeMaker {

public static void main(String[] args) {
CoffeeMakerAPI api = new M4CoffeeMakerAPIImplementation();

M4UserInterface ui = new M4UserInterface(api);
M4HotWaterSource hws = new M4HotWaterSource(api);
M4ContainmentVessel cv = new M4ContainmentVessel(api);

ui.init(hws,cv);
hws.init(ui,cv);
cv.init(ui,hws);

while(true) {
ui.poll();
hws.poll();
cv.poll();

}
}

}

Listing 11-22
TestCoffeeMaker.java
import junit.framework.TestCase;
import junit.swingui.TestRunner;

class CoffeeMakerStub implements CoffeeMakerAPI {
public boolean buttonPressed;
public boolean lightOn;
public boolean boilerOn;
public boolean valveClosed;
public boolean plateOn;
public boolean boilerEmpty;
public boolean potPresent;
public boolean potNotEmpty;

public CoffeeMakerStub() {
buttonPressed = false;
lightOn = false;
boilerOn = false;
valveClosed = true;
plateOn = false;
boilerEmpty = true;
potPresent = true;

Listing 11-19 (Continued)
M4ContainmentVessel.java

148A Coffee Maker Solution

potNotEmpty = false;
}

public int getWarmerPlateStatus() {
if (!potPresent)

return WARMER_EMPTY;
else if (potNotEmpty)

return POT_NOT_EMPTY;
else

return POT_EMPTY;
}

public int getBoilerStatus() {
return boilerEmpty ? BOILER_EMPTY : BOILER_NOT_EMPTY;

}

public int getBrewButtonStatus() {
if (buttonPressed) {

buttonPressed = false;
return BREW_BUTTON_PUSHED;

} else {
return BREW_BUTTON_NOT_PUSHED;

}
}

public void setBoilerState(int boilerStatus) {
boilerOn = boilerStatus == BOILER_ON;

}

public void setWarmerState(int warmerState) {
plateOn = warmerState == WARMER_ON;

}

public void setIndicatorState(int indicatorState) {
lightOn = indicatorState == INDICATOR_ON;

}

public void setReliefValveState(int reliefValveState) {
valveClosed = reliefValveState == VALVE_CLOSED;

}
}

public class TestCoffeeMaker extends TestCase {
public static void main(String[] args) {

TestRunner.main(new String[]{"TestCoffeeMaker"});
}

public TestCoffeeMaker(String name) {
super(name);

}

private M4UserInterface ui;
private M4HotWaterSource hws;
private M4ContainmentVessel cv;
private CoffeeMakerStub api;

Listing 11-22 (Continued)
TestCoffeeMaker.java

149 Chapter : Heuristics and Coffee

public void setUp() throws Exception {
api = new CoffeeMakerStub();
ui = new M4UserInterface(api);
hws = new M4HotWaterSource(api);
cv = new M4ContainmentVessel(api);
ui.init(hws, cv);
hws.init(ui, cv);
cv.init(ui, hws);

}

private void poll() {
ui.poll();
hws.poll();
cv.poll();

}

public void tearDown() throws Exception {
}

public void testInitialConditions() throws Exception {
poll();
assert(api.boilerOn == false);
assert(api.lightOn == false);
assert(api.plateOn == false);
assert(api.valveClosed == true);

}

public void testStartNoPot() throws Exception {
poll();
api.buttonPressed = true;
api.potPresent = false;
poll();
assert(api.boilerOn == false);
assert(api.lightOn == false);
assert(api.plateOn == false);
assert(api.valveClosed == true);

}

public void testStartNoWater() throws Exception {
poll();
api.buttonPressed = true;
api.boilerEmpty = true;
poll();
assert(api.boilerOn == false);
assert(api.lightOn == false);
assert(api.plateOn == false);
assert(api.valveClosed == true);

}

public void testGoodStart() throws Exception {
normalStart();
assert(api.boilerOn == true);
assert(api.lightOn == false);
assert(api.plateOn == false);

Listing 11-22 (Continued)
TestCoffeeMaker.java

150A Coffee Maker Solution

assert(api.valveClosed == true);
}

private void normalStart() {
poll();
api.boilerEmpty = false;
api.buttonPressed = true;
poll();

}

public void testStartedPotNotEmpty() throws Exception {
normalStart();
api.potNotEmpty = true;
poll();
assert(api.boilerOn == true);
assert(api.lightOn == false);
assert(api.plateOn == true);
assert(api.valveClosed == true);

}

public void testPotRemovedAndReplacedWhileEmpty()
throws Exception {

normalStart();
api.potPresent = false;
poll();
assert(api.boilerOn == false);
assert(api.lightOn == false);
assert(api.plateOn == false);
assert(api.valveClosed == false);
api.potPresent = true;
poll();
assert(api.boilerOn == true);
assert(api.lightOn == false);
assert(api.plateOn == false);
assert(api.valveClosed == true);

}

public void testPotRemovedWhileNotEmptyAndReplacedEmpty()
throws Exception {

normalFill();
api.potPresent = false;
poll();
assert(api.boilerOn == false);
assert(api.lightOn == false);
assert(api.plateOn == false);
assert(api.valveClosed == false);
api.potPresent = true;
api.potNotEmpty = false;
poll();
assert(api.boilerOn == true);
assert(api.lightOn == false);
assert(api.plateOn == false);
assert(api.valveClosed == true);

}

private void normalFill() {

Listing 11-22 (Continued)
TestCoffeeMaker.java

151 Chapter : Heuristics and Coffee

normalStart();
api.potNotEmpty = true;
poll();

}

public void testPotRemovedWhileNotEmptyAndReplacedNotEmpty()
throws Exception {

normalFill();
api.potPresent = false;
poll();
api.potPresent = true;
poll();
assert(api.boilerOn == true);
assert(api.lightOn == false);
assert(api.plateOn == true);
assert(api.valveClosed == true);

}

public void testBoilerEmptyPotNotEmpty() throws Exception {
normalBrew();
assert(api.boilerOn == false);
assert(api.lightOn == true);
assert(api.plateOn == true);
assert(api.valveClosed == true);

}

private void normalBrew() {
normalFill();
api.boilerEmpty = true;
poll();

}

public void testBoilerEmptiesWhilePotRemoved()
throws Exception {

normalFill();
api.potPresent = false;
poll();
api.boilerEmpty = true;
poll();
assert(api.boilerOn == false);
assert(api.lightOn == true);
assert(api.plateOn == false);
assert(api.valveClosed == true);
api.potPresent = true;
poll();
assert(api.boilerOn == false);
assert(api.lightOn == true);
assert(api.plateOn == true);
assert(api.valveClosed == true);

}

public void testEmptyPotReturnedAfter() throws Exception {
normalBrew();
api.potNotEmpty = false;
poll();
assert(api.boilerOn == false);

Listing 11-22 (Continued)
TestCoffeeMaker.java

152A Coffee Maker Solution

assert(api.lightOn == false);
assert(api.plateOn == false);
assert(api.valveClosed == true);

}
}

Listing 11-22 (Continued)
TestCoffeeMaker.java

153

12

SMC Remote Service: Case Study

Some time ago I decided to write a pair of programs that would allow users to compile
SMC1 input files remotely. On the client side the program would be invoked just like
SMC. However, instead of compiling a state map file it would take the file and ship it
across the interet to a central server. This server would compile the state map file into Java
or C++ and then ship the resulting files back to the client. Except for the network delay,
the remote user would not see much difference between compiling locally and compiling
remotely.

The reason to do this is to get some idea of how many people are using SMC, and
how often they are using it. Another reason is to make sure that all SMC users are using
the most current version of the compiler.

Caveat Emptor

In this chapter I describe these programs using text, UML, and code. I do this to show
you how UML and code are related, and the many options for documenting a system using
UML. However, you should not take this chapter as a recommendation for how systems
should be documented. Indeed I am purposely over-documenting this software so that I
can show you all the various UML diagrams in a well controlled context.

Please know that these programs were designed without the use of any UML at all.
They started from very humble beginnings and were refactored through no less than 20
revisions to get to where they are in this book.2 At no point did I need or want a UML dia-
gram to help me with that design. Nor do I think that the use of UML diagrams would
have made the development more efficient or resulted in a superior design.

1. See “SMC” on page 114
2. I am thinking about publishing a book that chronicles that development. It would have one chap-

ter for each revision of the system, showing how it evolved from state to state.

154The SMCRemote System.

If I were documenting this software for other developers to maintain, I would cer-
tainly create some UML diagrams to show them. However, I would not create anywhere
near the amount of UML diagrams I am going to show here. Again, what you see here is
severely over documented.

You have been warned.

Unit Tests.

Among the best documents for describing a software system are the unit tests for that sys-
tem3. Usually I would show you the unit tests first, before showing you the production
code. However, in this case I am trying to expose UML, not the system itself. So I have
put the tests at the end of the chapter, instead of giving them the prominence that they
deserve. Still, you’ll likely find that you’ll understand the code much better if you read
through those tests, so I strongly recommend looking through them.

The SMCRemote System.

Figure 12-1 shows the physical deployment of the system. There are two executable
programs, each contained within its own node. The two programs communicate using a
socket connection.

SMCRemoteClient

First, lets look at the client side of the program. The next several pages will present text,
diagrams, and code that show how the SMCRemoteClient works, and how it is struc-
tured.

3. [TDD2002], p???

Figure 12-1
Deployment

SMCRemote
Client

«executable»
SMCRemote

Service

«executable»
«socket»

Client Node Server Node

155 Chapter : SMC Remote Service: Case Study

SMCRemoteClient Command Line

Users invoke the SMCRemoteClient for one of two purposes.

• To register to use the SMCRemote system.

• To use the SMCRemote system to compile a .sm file.

The difference between the two is specified on the command line. To register to use
SMCRemote the user types the following:

SMCRemote -r <email-address>

The SMCRemote registers the email address, calculates a password, and emails that
password back to the email address. From then on, the user will use that email address and
password in order to run compiles.

To run a compile the user types the following:

SMCRemote -u <email-address> -w <password> <file>

This command sends the file to the remote compiler. The remote compiler verifies
that the email and password are valid. Then it compiles the file. The compiled file(s) are
then sent back to the client and written in the user’s directory. Any stdout or stderr
messages produced by the compiler are also sent back to the client and will appear on the
user’s console.

There are other command line options as well.

• -p <port> - specifies the port number of the remote server

• -h <host> - specifies the hostname of the remote server

• -g <generator> - for a compile, specifies the code generator to use.
<generator> may be either java or C++.

• -v - Verbose output. Prints lots of messages on the console to tell you what kind
of progress and errors the SMCRemoteClient has encountered.

SMCRemote Communication Protocols

The two different functions of the SMCRemoteClient use two different communications
protocols. The protocol for registration is shown in Figure 12-2, and the protocol for com-
pilation is shown in Figure 12-3.

Both protocols begin with the client creating a connection to the server. The server
responds with a simple identification string that includes the SMCRemoteServer’s ver-
sion number. Then it sends a message-of-the-day, if one exists. The client will print that
message on its console.

156SMCRemoteClient

Registration is simply a matter of sending the email address from the client to the
server. In the normal case the server generates a password for the user, creates a user
record, and then emails the password to the email address. The server sends a response
back to the client telling the user that he’ll find his password in an email message.

Compilation is a bit more complex. After the initial connection, the client collects the
email and password from the command line and issues a login request to the server. The
server validates the email and password and sends a login response back. If the response if
positive, then the client gathers up the file to compile and sends it to the server. The server
runs the compiler, gathers up the output files and the stdout and stderr streams, and
sends them back to the client. The client writes the output files in the user’s directory and
emits the stdout and stderr streams on his console.4

Figure 12-2
Registration Protocol

4. Readers experienced with distributed systems should be shaking their heads in frustration. By cre-
ating a separate transaction for login, I have violated the old maxim “Round trips are the enemy.”
It would be much more efficient to piggyback the login protocol on top of the compile protocol.
The compileFile message could carry the email and password, and the compileResults messsage
could carry back a login failure response. I didn’t do this for two reasons. First, none of my trials
indicated that the round trip time was significant. Second, this program was written for teaching
purposes, and I wanted a two stage protocol in the example.

: SMCRemote
Client

: SMCRemote
Server

Connect

SMCR + version

message of the day

registrationRequest(emailaddress)

registrationResponse(status)

: EmailSender

send(emailaddress,password)

157 Chapter : SMC Remote Service: Case Study

SMCRemoteClient

The structure of the SMCRemote client program is shown in Figure 12-4.
SMCRemoteClient has the main program. It holds a referece to ClientCommandLine

and MessageLogger. ClientCommandLine knows how to parse the command line
arguments. MessageLogger knows how to format and dispose of the various status mes-
sages that come from the different parts of the client program.

Figure 12-5 shows what happens when the clients boots up. First it constructs an
instance of the SMCRemoteClient and passes the command line arguments to it. The
SMCRemoteClient constructor creates the ClientCommandLine object and directs it to
parse the arguments. It then asks the ClientCommandLine to set the generic parameters
like host, port, and verbose. The ClientCommandLine calls back to the
SMCRemoteClient instance through the ClientCommandLineProcessor interface.
Next the SMCRemoteClient creates the appropriate derivative of the MessageLogger,
depending upon the state of the verbose flag. Finally, the SMCRemoteClient constructor
returns, and main calls run upon the newly created SMCRemoteClient object.

The run method of SMCRemoteClient checks the validity of the command line. If
the command line is malformed, it prints a usage message and exits. Otherwise it sends the
processCommand message to the ClientCommandLine object. The ClientCommand-

Line responds by inspecting the command line arguments in order to determine whether
they represent a registration or a compilation. Then, as shown in Figure 12-6 and Figure
12-7 the ClientCommandLine sends a message back to the SMCRemoteClient through

Figure 12-3
Compile protocol

SMCRemote
Client

SMCRemote
Server

Connect

SMCR + version

message of the day

login(emai + password)

loginResponse(accepted, count)

compileFile(file, generator)

compilerResults(files, stdout, stderr, status)

158SMCRemoteClient

the ClientCommandLineProcessor interface. The message it sends is either register
or compile.

The code for SMCRemoteClient, ClientCommandLine, and ClientCommand-

LineProcessor is in Listing 12-1, Listing 12-2, and Listing 12-3 respectively. You
should be able to match the interaction diagram in Figure 12-5 to the code in those listings.

Figure 12-4
SMCRemoteClient Static Structure

SMCRemote
Client

+ parseCommandLine

ClientCommand
Line

+ setGenericParameters
+ compile
+ register

ClientCommand
LineProcessor

«interface»

«parameter»

+ logMessage

MessageLogger
«interface»

Console
MessageLogger

Null
MessageLogger

+ compile

Remote
Compiler

+ register

Remote
Registrar

«local»

«local»

+ connect
+ login
+ sendTrnsaction
+ readServerObj

RemoteSession
Base

Socket

InputStream

OutputStream

ObjectInput
Stream

ObjectOutput
Stream

+ main(...)

159 Chapter : SMC Remote Service: Case Study

Figure 12-5
SMCRemoteClient.main()

Figure 12-6
Registration

SMCRemote
Client.main()

SMCRemote
Client

args ClientCommand
Line

args

parseCommandLine

setGenericParameters

setGenericParameters

ClientCommand
LineProcessor (host, port,

verbose)

ConsoleMessage
Logger

NullMessage
Logger

[verbose]

[!verbose]

run

processCommand(this)

ClientCommand
Line

SMCRemote
Client

register(email)

ClientCommand
LineProcessor

Remote
Registrar

connectAndRegister

host,port,logger

email

160SMCRemoteClient

Figure 12-7
compilation

Listing 12-1
SMCRemoteClient.java
package com.objectmentor.SMCRemote.client;

public class SMCRemoteClient implements ClientCommandLineProcessor {
public static final String VERSION = "Id";

private ClientCommandLine commandLine;
private String itsHost;
private int itsPort;
private boolean isVerbose = false;
private MessageLogger itsLogger;

public static void main(String[] args) {
SMCRemoteClient client = new SMCRemoteClient(args);
client.run();

}

public SMCRemoteClient(String[] args) {
commandLine = new ClientCommandLine(args);
commandLine.setGenericParameters(this);
if (isVerbose)
itsLogger = new ConsoleMessageLogger();

else
itsLogger = new NullMessageLogger();

}

private void run() {
if (commandLine.isValid()) {
logHeader();
commandLine.processCommand(this);

} else {
System.out.println("usage: ");
System.out.println(

" to compile: java SMCRemoteClient -u <emailaddress> -w <password> <filename>");
System.out.println(" to register: java SMCRemoteClient -r <emailaddress>");
System.out.println("options: -h <hostname> override default hostname.");

ClientCommand
Line

SMCRemote
Client

compile

ClientCommand
LineProcessor

Remote
Compiler

compile

host,port,logger

user, password,
generator, filename

user, password
generator, filename

161 Chapter : SMC Remote Service: Case Study

System.out.println(" -p <port> override default port");
System.out.println(" -v verbose console output");

}
}

public void setGenericParameters(String host, int port, boolean verbose) {
itsHost = host;
itsPort = port;
isVerbose = verbose;

}

public void compile(String username, String password,
String generator, String filename) {

RemoteCompiler compiler = new RemoteCompiler(itsHost, itsPort, itsLogger);
compiler.compile(username, password, generator, filename);

}

public void register(String registrant) {
RemoteRegistrar registrar = new RemoteRegistrar(itsHost, itsPort, itsLogger);
registrar.connectAndRegister(registrant);

}

private void logHeader() {
logMessage("SMCRemoteClient-------------------------------------");
logMessage(VERSION);
logMessage("host = " + itsHost);
logMessage("port = " + itsPort);
logMessage("--");

}

private void logMessage(String msg) {
itsLogger.logMessage(msg);

}
}

Listing 12-2 (Continued)
ClientCommandLine.java
package com.objectmentor.SMCRemote.client;

import com.neoworks.util.Getopts;

public class ClientCommandLine {
public static final String DEFAULT_HOST = "localhost";
public static final String DEFAULT_PORT = "9000";
public static final String DEFAULT_GENERATOR = "java";

private String itsFilename = null;
private String itsHost = DEFAULT_HOST;
private int itsPort = Integer.parseInt(DEFAULT_PORT);
private String itsGenerator = DEFAULT_GENERATOR;
private boolean isVerbose = false;
private String itsRegistrant;
private String itsUsername;
private String itsPassword;
private boolean isValid = false;

Listing 12-1
SMCRemoteClient.java

162SMCRemoteClient

private Getopts opts;

public ClientCommandLine(String[] args) {
isValid = parseCommandLine(args);

}

public boolean isValid() {
return isValid;

}

public boolean parseCommandLine(String[] args) {
opts = new Getopts("r:h:p:g:u:w:v", args);
if (opts.error()) return false;

try {
itsFilename = opts.argv(0);
itsHost = opts.option('h', DEFAULT_HOST);
itsPort = Integer.parseInt(opts.option('p', DEFAULT_PORT));
itsGenerator = opts.option('g', DEFAULT_GENERATOR);
itsRegistrant = opts.option('r', null);
itsUsername = opts.option('u', null);
itsPassword = opts.option('w', null);
isVerbose = opts.hasOption('v');

} catch (NumberFormatException e) {
return false;

}

return isCompileCommand() || isRegistrationCommand();
}

public void setGenericParameters(ClientCommandLineProcessor processor) {
processor.setGenericParameters(itsHost, itsPort, isVerbose);

}

public void processCommand(ClientCommandLineProcessor processor) {
if (isCompileCommand()) {
processor.compile(itsUsername, itsPassword, itsGenerator, itsFilename);

} else if (isRegistrationCommand()) {
processor.register(itsRegistrant);

}
}

private boolean hasFileName() {
return opts.argc() == 1;

}

private boolean isCompileCommand() {
return opts.hasOption('u') &&
opts.hasOption('w') &&
!opts.hasOption('r') &&
hasFileName();

}

private boolean isRegistrationCommand() {
return opts.hasOption('r') &&

Listing 12-2 (Continued)
ClientCommandLine.java

163 Chapter : SMC Remote Service: Case Study

(itsRegistrant != null) &&
!opts.hasOption('u') &&
!opts.hasOption('w') &&
!opts.hasOption('g') &&
!hasFileName();

}

public boolean isVerbose() {
return isVerbose;

}

public String getHost() {
return itsHost;

}

public String getFilename() {
return itsFilename;

}

public int getPort() {
return itsPort;

}

public String getGenerator() {
return itsGenerator;

}

public String getUsername() {
return itsUsername;

}

public String getPassword() {
return itsPassword;

}
}

Listing 12-3
ClientCommandLineProcessor.java
package com.objectmentor.SMCRemote.client;

public interface ClientCommandLineProcessor {
public void setGenericParameters(String host, int port, boolean verbose);
public void compile(String username, String password, String generator, String filename);
public void register(String registrant);

}

Listing 12-2 (Continued)
ClientCommandLine.java

164SMCRemoteClient

The Loggers

You can see the implementation of the logger files in Listing 12-4 through Listing 12-6.
The MessageLogger interface allows the SMCRemoteClient and all its minions to log
message. NullMessageLogger simply ignores those messages, whereas Console-

MessageLogger prints the messages on standard out, along with time and date informa-
tion.

Listing 12-4
MessageLogger.java
package com.objectmentor.SMCRemote.client;

public interface MessageLogger {
public void logMessage(String msg);

}

Listing 12-5
NullMessageLogger.java
package com.objectmentor.SMCRemote.client;

public class NullMessageLogger implements MessageLogger {
public void logMessage(String msg) {
}

}

Listing 12-6
ConsoleMessageLogger.java
package com.objectmentor.SMCRemote.client;

import java.text.SimpleDateFormat;
import java.util.Date;

public class ConsoleMessageLogger implements MessageLogger {
public void logMessage(String msg) {

Date logTime = new Date();
SimpleDateFormat fmt = new SimpleDateFormat("yyyy.MM.dd hh:mm:ss");
String logTimeString = fmt.format(logTime);
System.out.println(logTimeString + " | " + msg);

}
}

165 Chapter : SMC Remote Service: Case Study

The Remote Sessions.

Figure 12-8 shows more of the static structure of the RemoteRegistrar and
RemoteCompiler. Both derive from the base class RemoteSessionBase which sup-
plies them with some common utilities. These classes use the DATA TRANSFER OBJECT5

pattern in order to communicate with the server. The LoginTransaction, Login-

ResponseTransaction, RegistrationTransaction, RegistrationResponse-

Transaction, CompileFileTransaction, and CompilerResultsTransaction are
the data transfer objects used by the remote sessions. These objects are data packets that
are sent back and forth between the client and server. Indeed, you can see that these names
are very similar to those used to name the messages in the protocol sequence diagrams in
Figure 12-2 and Figure 12-3.

5. [PEAA2002], page 401

Figure 12-8
Remote Sessions.

RemoteSession
Base

Remote
Compiler

Remote
Registrar

Login
Transaction

LoginResponse
Transaction

CompileFile
Transaction

CompilerResults
Transaction

Registration
Transaction

Registration
Response

Transaction

«local»

«local» «local»

166SMCRemoteClient

RemoteSessionBase

The code for the RemoteSessionBase, and the two login transactions is shown in
Listing 12-7, through Listing 12-9. RemoteSessionBase contains a set of utility func-
tions that RemoteRegistrar and RemoteCompiler both use. It also contains the func-
tions that perform the login protocol used by the RemoteCompiler.

Listing 12-7
RemoteSessionBase.java
package com.objectmentor.SMCRemote.client;

import com.objectmentor.SMCRemote.transactions.*;

import java.io.*;
import java.net.Socket;

public class RemoteSessionBase {
private String itsHost;
private int itsPort;
private MessageLogger itsLogger;
private Socket smcrSocket;
private ObjectInputStream is;
private ObjectOutputStream os;

public RemoteSessionBase(String itsHost, int itsPort, MessageLogger logger) {
this.itsHost = itsHost;
this.itsPort = itsPort;
this.itsLogger = logger;

}

public String getHost() {
return itsHost;

}

public int getPort() {
return itsPort;

}

protected void logMessage(String msg) {
itsLogger.logMessage(msg);

}

protected boolean connect() {
logMessage("Trying to connect to: " + getHost() + ":" + getPort() + "...");
boolean connectionStatus = false;
try {
smcrSocket = new Socket(getHost(), getPort());
is = new ObjectInputStream(smcrSocket.getInputStream());
os = new ObjectOutputStream(smcrSocket.getOutputStream());
String headerLine = (String) readServerObject();
connectionStatus = headerLine != null && headerLine.startsWith("SMCR");
String message = (String) readServerObject();
if (message != null) {

System.out.println(message);
}

167 Chapter : SMC Remote Service: Case Study

if (connectionStatus)
logMessage("Connection acknowledged: " + headerLine);

else
logMessage("Bad Acknowledgement: " + headerLine);

} catch (Exception e) {
connectionStatus = false;
logMessage("Connection failed: " + e.getMessage());

}
return connectionStatus;

}

public void close() {
if (is != null || os != null || smcrSocket != null) {
logMessage("Closing Connection.");
try {

if (is != null) is.close();
if (os != null) os.close();
if (smcrSocket != null) smcrSocket.close();

} catch (IOException e) {
logMessage("Couldn't close : " + e.getMessage());

}
}

}

protected boolean login(String username, String password) {
try {
LoginTransaction lt = new LoginTransaction(username, password);
sendTransaction(lt);
LoginResponseTransaction lrt = (LoginResponseTransaction) readServerObject();
if (lrt.isAccepted()) {

logMessage("login (" + lrt.getLoginCount() + ") accepted.");
return true;

} else {
logMessage("Login Rejected");
return false;

}
} catch (Exception e) {
logMessage("login failed: " + e);
return false;

}
}

protected boolean sendTransaction(SocketTransaction t) {
boolean sent = false;
try {
os.writeObject(t);
os.flush();
sent = true;

} catch (IOException e) {
sent = false;

}
return sent;

}

Listing 12-7
RemoteSessionBase.java

168SMCRemoteClient

protected Object readServerObject() throws Exception {
return is.readObject();

}
}

Listing 12-8
LoginTransaction.java
package com.objectmentor.SMCRemote.transactions;

public class LoginTransaction implements SocketTransaction {
private String itsUserName;
private String itsPassword;

public LoginTransaction(String itsUserName, String itsPassword) {
this.itsUserName = itsUserName;
this.itsPassword = itsPassword;

}

public String getUserName() {
return itsUserName;

}

public String getPassword() {
return itsPassword;

}

public void accept(SocketTransactionProcessor processor) throws Exception {
processor.process(this);

}
}

Listing 12-9
LoginResponseTransaction.java
package com.objectmentor.SMCRemote.transactions;

public class LoginResponseTransaction implements SocketTransaction {
private boolean isAccepted;
private int loginCount;

public LoginResponseTransaction(boolean accepted, int loginCount) {
this.loginCount = loginCount;
this.isAccepted = accepted;

}

public boolean isAccepted() {
return isAccepted;

}

public int getLoginCount() {
return loginCount;

}

public void accept(SocketTransactionProcessor processor) throws Exception {
processor.process(this);

Listing 12-7
RemoteSessionBase.java

169 Chapter : SMC Remote Service: Case Study

The first three lines of the RemoteSesionBase.login() function are particularly
illustrative.

LoginTransaction lt = new LoginTransaction(username, password);
sendTransaction(lt);
LoginResponseTransaction lrt = (LoginResponseTransaction) readServerObject();

These lines show how all the communication accross the sockets is achieved. As you
can see from Listing 12-10, all the transactions are serializable, so it is absurdly simple to
write them to, and read them from, a socket.

Listing 12-10 shows one other thing. There is the hint of a VISITOR6 pattern lurking in
the SocketTransaction class. We won’t see why until we study the SMCRemote-

Server later on in this chapter.

The Remote Registrar

The RemoteRegistar, and the two registration transactions are shown in Listing 12-11
through Listing 12-13. The process is very simple. It simply connects to the server and
sends the RegistrationTransaction. Then it recieves the Registration-

ResponseTransaction and makes sure that it was accepted by the server.

}
}

Listing 12-10
SocketTransaction.java
package com.objectmentor.SMCRemote.transactions;

import java.io.Serializable;

public interface SocketTransaction extends Serializable {
public void accept(SocketTransactionProcessor processor) throws Exception;

}

6. [GOF95], p 331

Listing 12-11
RemoteRegistrar.java
package com.objectmentor.SMCRemote.client;

import com.objectmentor.SMCRemote.transactions.*;

public class RemoteRegistrar extends RemoteSessionBase {

public RemoteRegistrar(String itsHost, int itsPort, MessageLogger logger) {
super(itsHost, itsPort, logger);

}

public void connectAndRegister(String registrant) {

Listing 12-9
LoginResponseTransaction.java

170SMCRemoteClient

if (connect()) {
RegistrationResponseTransaction rrt;
if ((rrt = register(registrant)) != null) {

if (rrt.isConfirmed()) {
logMessage(registrant + " was registered");
System.out.println("User: " + registrant + " registered. Email sent.");

} else {
logMessage(registrant + " was NOT registered: " + rrt.getFailureReason());
System.out.println(

registrant + " was NOT registered: " + rrt.getFailureReason());
}

} else { // rrt == null
System.out.println("Something bad happened. Sorry.");

}
close();

} else { // conect
System.out.println("failed to connect to " + getHost() + ":" + getPort());

}
}

RegistrationResponseTransaction register(String registrant) {
logMessage("Attempting to register " + registrant);
RegistrationTransaction t = new RegistrationTransaction(registrant);
sendTransaction(t);
RegistrationResponseTransaction rrt = null;
try {
rrt = (RegistrationResponseTransaction) readServerObject();

} catch (Exception e) {
logMessage("Could not send registration response: " + e.getMessage());
return null;

}
return rrt;

}
}

Listing 12-12
RegistrationTransaction.java
package com.objectmentor.SMCRemote.transactions;

public class RegistrationTransaction implements SocketTransaction {
private String username;

public String getUsername() {
return username;

}

public RegistrationTransaction(String username) {
this.username = username;

}

public void accept(SocketTransactionProcessor processor) throws Exception {
processor.process(this);

}
}

Listing 12-11 (Continued)
RemoteRegistrar.java

171 Chapter : SMC Remote Service: Case Study

The Remote Compiler

The RemoteCompiler (Listing 12-14) is a bit more complicated than the Remote-

Registrar; though the idea is the same. Figure 12-9 is a rough model of the sequence.
The diagram does not completely conform to the code, but it’s pretty close. Making it con-
form to completely to the code would have made the diagram more cluttered than it shoudl
have been. By the same token, making the code correpond to the diagram would have
made the code more cluttered than it should have been. This kind of mismatch between the
code and diagram is not uncommon. The clarity of each is satisfied in different ways.

In the code, compilation begins when the ClientCommandLine instance calls the
compile() method of SMCRemoteCompiler; which in turn creates the Remote-

Compiler and calls its compile() method.

The compile() method of RemoteCompiler logs a header message and then calls
connectAndRequestCompile(). This method makes sure that the file to be compiled
exists, connects to the server, and then invoke the login() method. The login()

method executes the login protocol. If the login succeeds, the compileFile() method is
invoked. This method builds the CompileFileTransaction (Listing 12-15) object and
sends it to the server. It then reads the CompilerResultsTransaction (Listing 12-16)
from the server and writes any files it contains onto the local filesystem.

Listing 12-13
RegistrationResponseTransaction.java
package com.objectmentor.SMCRemote.transactions;

public class RegistrationResponseTransaction implements SocketTransaction {
private boolean confirmed;
private String failureReason;

public RegistrationResponseTransaction(boolean confirmed) {
this.confirmed = confirmed;

}

public String getFailureReason() {
return failureReason;

}

public void setFailureReason(String failureReason) {
this.failureReason = failureReason;

}

public boolean isConfirmed() {
return confirmed;

}

public void accept(SocketTransactionProcessor processor) throws Exception {
processor.process(this);

}
}

172SMCRemoteClient

Figure 12-9
Compile Process

Listing 12-14
RemoteCompiler.java
package com.objectmentor.SMCRemote.client;

import com.objectmentor.SMCRemote.transactions.*;

import java.io.*;
import java.util.Vector;

public class RemoteCompiler extends RemoteSessionBase {

private String itsFilename = null;
private String itsGenerator = ClientCommandLine.DEFAULT_GENERATOR;

: ClientCommand
Line

: SMCRemote
Client

processCommand

compile

: RemoteCompiler

compile(filename)

connectAndRequestCompile(filename)

login

compileFile(filename)

cft : CompileFile
Transaction

: FileCarrier

filename

filename
sendTransaction(cft)

crt := readServerObject

crt : Compiler
Results

Transaction

write

: FileCarrier

0..*

*:write

173 Chapter : SMC Remote Service: Case Study

private String itsRegistrant;

public RemoteCompiler(String itsHost, int itsPort, MessageLogger itsLogger) {
super(itsHost, itsPort, itsLogger);

}

public void compile(String username, String password,
String generator, String filename) {

itsFilename = filename;
itsGenerator = generator;
logCompileHeader();
connectAndRequestCompile(username, password);

}

private void connectAndRequestCompile(String username, String password) {
if (prepareFile()) {
if (connect()) {

if (login(username, password)) {
if (compile() == false) {
System.out.println("Internal error, something awful. Sorry.");

}
} else { // login
System.out.println("failed to log in.");

}
close();

} else { // connect
System.out.println("failed to connect to " + getHost() + ":" + getPort());

}
} else { // prepareFile
System.out.println("could not open: " + itsFilename);

} // prepareFile
}

private boolean compile() {
CompilerResultsTransaction crt = compileFile();
if (crt == null)
return false;

writeCompilerOutputLines(crt);
return true;

}

public void setFilename(String itsFilename) {
this.itsFilename = itsFilename;

}

public boolean prepareFile() {
File f = new File(itsFilename);
return f.exists();

}

public CompilerResultsTransaction compileFile() {
CompilerResultsTransaction crt = null;
logMessage("Sending file and requesting compilation.");
try {
CompileFileTransaction t = new CompileFileTransaction(itsFilename, itsGenerator);
if (sendTransaction(t) == true) {

Listing 12-14 (Continued)
RemoteCompiler.java

174SMCRemoteClient

crt = (CompilerResultsTransaction) readServerObject();
logCompilerResultsMessage(crt);
crt.write();

}
} catch (Exception e) {
logMessage("Compilation process failed: " + e.getMessage());

}

return crt;
}

private static void writeCompilerOutputLines(CompilerResultsTransaction crt) {
Vector stdout = crt.getStdoutLines();
writeLineVector(System.out, crt.getStdoutLines());
writeLineVector(System.err, crt.getStderrLines());

}

private static void writeLineVector(PrintStream ps, Vector stdout) {
for (int i = 0; i < stdout.size(); i++) {
String s = (String) stdout.elementAt(i);
ps.println(s);

}
}

private void logCompileHeader() {
logMessage("Compiling...");
logMessage("file = " + itsFilename);
logMessage("generator = " + itsGenerator);

}

private void logCompilerResultsMessage(CompilerResultsTransaction crt) {
logMessage("Compilation results received.");
String filenames[] = crt.getFilenames();
for (int i = 0; i < filenames.length; i++) {
String s = (String) filenames[i];
logMessage("..file: " + s + " received.");

}
}

}

Listing 12-15
CompileFileTransaction.java
package com.objectmentor.SMCRemote.transactions;

import com.objectmentor.SocketUtilities.FileCarrier;

import java.io.File;

public class CompileFileTransaction implements SocketTransaction {
private FileCarrier itsCarrier;
private String itsGenerator;

public CompileFileTransaction(String filename, String generator) {
itsCarrier = new FileCarrier(null, filename);
itsGenerator = generator;

Listing 12-14 (Continued)
RemoteCompiler.java

175 Chapter : SMC Remote Service: Case Study

}

public String getFilename() {
return itsCarrier.getFilename();

}

public String getGenerator() {
return itsGenerator;

}

public void write(File subDirectory) {
itsCarrier.write(subDirectory);

}

public void accept(SocketTransactionProcessor processor) throws Exception {
processor.process(this);

}
}

Listing 12-16
CompilerResultsTransaction.java
package com.objectmentor.SMCRemote.transactions;

import com.objectmentor.SocketUtilities.FileCarrier;

import java.io.File;
import java.util.Vector;

public class CompilerResultsTransaction implements SocketTransaction {
public static final int OK = 0;
public static final int NOT_LOGGED_IN = 1;

private FileCarrier[] files;
private String[] filenames;
private Vector stdout;
private Vector stderr;
private int status;

public int getStatus() {
return status;

}

public void setStatus(int status) {
this.status = status;

}

public Vector getStdoutLines() {
return stdout;

}

public Vector getStderrLines() {
return stderr;

}

public String[] getFilenames() {

Listing 12-15 (Continued)
CompileFileTransaction.java

176SMCRemoteClient

FileCarrier

Both the CompileFileTransaction and the CompilerResultsTransaction need to
carry text files accross the client/server boundary. They do this by using a helper class
called FileCarrier. FileCarrier holds the name of the file being carried, and a list of
strings which correspond to the lines of text in the file. It contains methods for loading the
FileCarrier from a file, and for creating a new file from the FileCarrier.

return filenames;
}

public CompilerResultsTransaction() {
stdout = new Vector();
stderr = new Vector();

}

public void loadFiles(File subDirectory, String[] filenames) {
this.filenames = filenames;
files = new FileCarrier[filenames.length];
for (int fileIndex = 0; fileIndex < filenames.length; fileIndex++) {
files[fileIndex] = new FileCarrier(subDirectory, filenames[fileIndex]);

}
}

public void write() {
for (int fileIndex = 0; fileIndex < files.length; fileIndex++) {
FileCarrier carrier = files[fileIndex];
carrier.write();

}
}

public void accept(SocketTransactionProcessor processor) throws Exception {
processor.process(this);

}
}

Listing 12-17
FileCarrier.java
package com.objectmentor.SocketUtilities;

import java.io.*;
import java.util.*;

public class FileCarrier implements Serializable {
private String itsFilename;
private LinkedList itsLines = new LinkedList();
private boolean loaded = false;
private boolean error = false;

public FileCarrier(File subDirectory, String filename) {
File inputFile = new File(subDirectory, filename);
itsFilename = new String(filename);

Listing 12-16 (Continued)
CompilerResultsTransaction.java

177 Chapter : SMC Remote Service: Case Study

SMCRemoteClient Conclusion

That’s pretty much all there is to say about the SMCRemoteClient. It’s a pretty simple
process. It reads its command line arguments, figures out whether to perform a registration
or a compilation, builds the appropriate transactions and sends them to the server, and
reads the response transactions back. Not rocket science.

BufferedReader br = null;
try {
br = new BufferedReader(new InputStreamReader(new FileInputStream(inputFile)));
String line;
while ((line = br.readLine()) != null) {

itsLines.add(line);
}
br.close();
loaded = true;

} catch (Exception e) {
error = true;

}
}

public void write() {
write(null);

}

public void write(File subDirectory) {
File f = new File(subDirectory, itsFilename);
if (f.exists()) f.delete();
try {
PrintStream w = new PrintStream(new FileOutputStream(f));
for (Iterator i = itsLines.iterator(); i.hasNext();) {

String line = (String) i.next();
w.println(line);

}
w.close();

} catch (IOException e) {
error = true;

}
}

public boolean isLoaded() {
return loaded;

}

public boolean isError() {
return error;

}

public String getFilename() {
return itsFilename;

}
}

Listing 12-17
FileCarrier.java

178SMCRemoteServer

SMCRemoteServer

The server is a bit more complex than the client. It must run continuously, accepting con-
nections and responding to them. It must also be able to deal with many concurrent trans-
actions. It must maintain a database of registrations, and must know how to invoke,
control and capture the output of the SMC compiler.

The story of the server begins with a bit of framework that I, and my son Micah, put
together some months back.

SocketService

While we were working on a Ruby web server named ROPE, Micah and I wrote a
simple Ruby framework to accept incomming socket requests. It worked very nicely and
was so generic that I later translated it into a simple Java framework for socket servers7.
This framework creates the server socket, waits for connections on that socket, and
spawns a new thread for each incoming connection. Figure 12-1 shows it’s structure.

The idea is pretty simple. If you want to write a program that serves incoming socket
connections, you derive your program from SocketServer. Then you create an instance
of the SocketService and pass your derivative into the constructor, along with the num-
ber of the port that you want your server to listen at. From then on, whenever a connection
comes into that port, a new thread will be created and the serve method of your deriva-
tive will be invoked in that new thread.

For example, HelloService in Listing 12-18 is a simple socket service that
responds to an incomming connection by sending “Hello” and then closing the connec-
tion. The program in Listing 12-19 tests that HelloService does what it is supposed to.

7. Yes, this is the same framework that I’ve been using for fodder in my “Craftsman” column in
Software Development Magazine.

Figure 12-10
SocketService

Listing 12-18
Socket service that says “Hello”.
class HelloService implements SocketServer {
public void serve(Socket s) {

+ SocketService(port: int, SocketServer)
+ close()

SocketService

+ serve(s:Socket)

SocketServer
«interface»

179 Chapter : SMC Remote Service: Case Study

The complete implementation of the SocketService framework is shown in Listing
12-20 through Listing 12-21. The jist of its operation is shown below in Figure 12-11. The
SocketService begins it’s life by spawning the serviceThread and then returning.
The serviceThread hangs in a loop calling accept on the serverSocket. The call to
accept returns with a new socket each time there is an incomming connection. The
serviceThread then spawns a new serverThread and loops back to call accept on
the ServerSocket again. The serverThread calls serve on the SocketServer deriv-
ative supplied by the user.

As an aside, the diagram in Figure 12-11 shows how rapidly message sequence num-
bers can become unworkable in UML collaboration diagrams. This particular sequence of
messages is much better shown as a collaboration diagram than as a sequence diagram,
since exposing the topology of the relationships is more imortant than exposing the
sequence of events. Unfortunately, even mildly complex scenarios lead to sequence num-
bers that look more like organic chemistry than software.

try {
OutputStream os = s.getOutputStream();
PrintStream ps = new PrintStream(os);
ps.println("Hello");

} catch (IOException e) {
}

}
}

Listing 12-19
A client that tests the HelloService.
public void testSendMessage() throws Exception {

ss = new SocketService(999, new HelloService());
Socket s = new Socket("localhost", 999);
BufferedReader br = TestUtility.GetBufferedReader(s);
String answer = br.readLine();
s.close();
ss.close();
assertEquals("Hello", answer);

}

Listing 12-18
Socket service that says “Hello”.

180SMCRemoteServer

Figure 12-11
SocketService Object Diagram

Listing 12-20
SocketServer.java
package com.objectmentor.SocketService;

import java.net.Socket;

public interface SocketServer
{
public void serve(Socket s);

}

Listing 12-21
SocketService.java
package com.objectmentor.SocketService;

import java.io.IOException;
import java.net.*;
import java.util.LinkedList;

public class SocketService {
private ServerSocket serverSocket = null;
private Thread serviceThread = null;
private boolean running = false;
private SocketServer itsService = null;
private LinkedList threads = new LinkedList();

public SocketService(int port, SocketServer service)
throws Exception {

itsService = service;
serverSocket = new ServerSocket(port);
serviceThread = new Thread(
new Runnable() {

: SocketService
serviceThread

: Thread
: ServerSocket

: ServerRunnerRunnable
serverThread

: Thread

: Socket: SocketServer

1:start

1.1a.1* : accept

1.1a.2 : start

1.
1a

.2
.1

b.
1

: s
er

ve

1.1a.2.1b: run

: Runnable

1.1a : start

181 Chapter : SMC Remote Service: Case Study

public void run() {
serviceThread();

}
}

);
serviceThread.start();

}

public void close() throws Exception {
waitForServiceThreadToStart();
running = false;
serverSocket.close();
serviceThread.join();
waitForServerThreads();

}

private void waitForServiceThreadToStart() {
while (running == false) Thread.yield();

}

private void serviceThread() {
running = true;
while (running) {
try {

Socket s = serverSocket.accept();
startServerThread(s);

} catch (IOException e) {
}

}
}

private void startServerThread(Socket s) {
Thread serverThread = new Thread(new ServerRunner(s));
synchronized (threads) {
threads.add(serverThread);

}
serverThread.start();

}

private void waitForServerThreads()
throws InterruptedException {

while (threads.size() > 0) {
Thread t;
synchronized (threads) {

t = (Thread) threads.getFirst();
}
t.join();

}
}

private class ServerRunner implements Runnable {
private Socket itsSocket;

ServerRunner(Socket s) {
itsSocket = s;

Listing 12-21 (Continued)
SocketService.java

182SMCRemoteServer

}

public void run() {
try {

itsService.serve(itsSocket);
synchronized (threads) {
threads.remove(Thread.currentThread());

}
itsSocket.close();

} catch (IOException e) {
}

}
}

}

Listing 12-21 (Continued)
SocketService.java

183 Chapter : SMC Remote Service: Case Study

SMCRemoteService

Clearly we can build upon the SocketService framework to create the SMCRemote-

Service program. The diagram in Figure 12-12 shows the structure. SMCRemote-

Service has a SocketService instance which it initializes with an anonymous inner
class that implements the SocketServer interface. This class delegates to SMCRemote-

Server which handles the protocols for each connection.

SMCRemoteService also holds a reference to a UserDirectory and an
EmailSender. These two classes have two derivatives each; one is a NULLOBJECT8 and
the other provides a functional implementation. The functional implementation of User-
Directory is named UserRepository. This class manages the user database. It allows
users to be added to the database. It also provides methods for checking the password of a
user. The functional implementation of EmailSender is OReillyEmailSender. This
class makes use of a third party SMTP agent to send email.

Figure 12-12
High level structure of SMCRemoteService

8. See the NullObject pattern in [PPP2002], p 189

SMCRemote
Service

SocketService

+ serve(Socket)

SocketService

«anonymous»

+ serve(Socket)

SMCRemote
Server+ isValid(name, pw)

+ add(name, pw)

UserDirectory

+ send(email, subj, text)

EmailSender

«static»

«interface» «interface»

Null
UserDirectory

Null
EmailSender

«delegates»

UserRepository
OReilly

EmailSender

184SMCRemoteServer

The listings for SMCRemoteService and the two interfaces are in Listing 12-22
through Listing 12-24. For the most part SMCRemoteService contains a set of utilities
that SMCRemoteServer uses.

Listing 12-22
SMCRemoteService.java
package com.objectmentor.SMCRemote.server;

import com.objectmentor.SocketService.*;

import com.neoworks.util.Getopts;

import java.io.*;
import java.text.SimpleDateFormat;
import java.util.*;
import java.net.Socket;

class NullUserDirectory implements UserDirectory {
public boolean isValid(String username, String password) {

return true;
}

public String getPassword(String username) {
return null;

}

public int incrementLoginCount(String username) {
return 0;

}

public boolean add(String username, String password) {
return true;

}
}

class NullEmailSender implements EmailSender {
public boolean send(String emailAddress, String subject, String text) {

return true;
}

}

public class SMCRemoteService {
public static final String DEFAULT_PORT = "9000";
public static final String VERSION = "0.99";
public static final String COMPILE_COMMAND = "java -cp c:\\SMC\\smc.jar smc.Smc -f";

static boolean isVerbose = false;
static boolean isEmailQuiet = false;
static int servicePort;
static String messageFile;

private static UserDirectory userDirectory = new NullUserDirectory();
private static EmailSender emailSender = new NullEmailSender();
private SocketService service;

SocketServer server = new SocketServer() {

185 Chapter : SMC Remote Service: Case Study

public void serve(Socket socket) {
new SMCRemoteServer().serve(socket);

}
};

public SMCRemoteService(int port) throws Exception {
service = new SocketService(port, server);

}

public void close() throws Exception {
service.close();

}

static void setUserDirectory(UserDirectory userDirectory) {
SMCRemoteService.userDirectory = userDirectory;

}

public static void setEmailSender(EmailSender emailSender) {
SMCRemoteService.emailSender = emailSender;

}

public static void main(String[] args) {
if (parseCommandLine(args)) {
verboseHeader();
setUserDirectory(new UserRepository("users"));
if (!isEmailQuiet) setEmailSender(new OReillyEmailSender());
try {

SMCRemoteService service = new SMCRemoteService(servicePort);
} catch (Exception e) {

System.err.println("Could not connect");
}

} else {
System.out.println("usage: java SMCRemoteService -p <port> -v");

}
}

static boolean validate(String username, String password) {
return userDirectory.isValid(username, password);

}

static boolean addUser(String username, String password) throws Exception {
return userDirectory.add(username, password);

}

static String getPassword(String username) {
return userDirectory.getPassword(username);

}

static int incrementLoginCount(String username) throws Exception {
return userDirectory.incrementLoginCount(username);

}

static boolean sendEmail(String emailAddress, String subject, String text) {
return emailSender.send(emailAddress, subject, text);

}

Listing 12-22 (Continued)
SMCRemoteService.java

186SMCRemoteServer

static boolean parseCommandLine(String[] args) {
Getopts opts = new Getopts("m:p:ve", args);
if (opts.error())
return false;

try {
servicePort = Integer.parseInt(opts.option('p', DEFAULT_PORT));
isVerbose = opts.hasOption('v');
messageFile = opts.option('m', null);
isEmailQuiet = opts.hasOption('e');

} catch (NumberFormatException e) {
return false;

}

return true;
}

static String buildCommand(String filename, String generator) {
String generatorClass;

if (generator.equals("java"))
generatorClass = "smc.generator.java.SMJavaGenerator";

else if (generator.equals("C++"))
generatorClass = "smc.generator.cpp.SMCppGenerator";

else
return "echo bad generator " + generator;

return COMPILE_COMMAND + " -g " + generatorClass + " " + filename;
}

static int executeCommand(String command, Vector stdout, Vector stderr)
throws Exception {

Runtime rt = Runtime.getRuntime();
Process p = rt.exec(command);
flushProcessOutputs(p, stdout, stderr);
p.waitFor();

return p.exitValue();
}

private static void flushProcessOutputs(Process p, Vector stdout, Vector stderr)
throws IOException {

BufferedReader stdoutReader =
new BufferedReader(new InputStreamReader(p.getInputStream()));

BufferedReader stderrReader =
new BufferedReader(new InputStreamReader(p.getErrorStream()));

String line;

while ((line = stdoutReader.readLine()) != null)
stdout.add(line);

while ((line = stderrReader.readLine()) != null)
stderr.add(line);

}

Listing 12-22 (Continued)
SMCRemoteService.java

187 Chapter : SMC Remote Service: Case Study

SMCRemoteServer

SMCRemoteServer is a simple class. It hangs in a loop reading SocketTransaction

objects from the socket. It uses the VISITOR9 pattern to decode the transactions it reads.

static File makeTempDirectory() {
File tmpDirectory;
do {
long millis = System.currentTimeMillis();
tmpDirectory = new File("smcTempDirectory" + millis);

} while (tmpDirectory.exists());
tmpDirectory.mkdir();
return tmpDirectory;

}

private static void verboseHeader() {
verboseMessage("SMCRemoteService---------------------------------");
verboseMessage(VERSION);
verboseMessage("port = " + servicePort);
if (isEmailQuiet) verboseMessage("email is disabled");
verboseMessage("---");

}

static void verboseMessage(String msg) {
if (isVerbose) {
Date logTime = new Date();
SimpleDateFormat fmt = new SimpleDateFormat("yyyy.MM.dd hh:mm:ss");
String logTimeString = fmt.format(logTime);

System.out.println(logTimeString + " | " + msg);
}

}
}

Listing 12-23
UserDirectory.java
package com.objectmentor.SMCRemote.server;

public interface UserDirectory {
public boolean isValid(String username, String password);
public boolean add(String username, String password) throws Exception;
public String getPassword(String username);
public int incrementLoginCount(String username) throws Exception;

}

Listing 12-24
EmailSender.java
package com.objectmentor.SMCRemote.server;

public interface EmailSender {
public boolean send(String emailAddress, String subject, String text);

}

Listing 12-22 (Continued)
SMCRemoteService.java

188SMCRemoteServer

Once the transaction is decoded, SMCRemoteServer sends the appropriate event to the
ServerSession instance. See Figure 12-13 and Figure 12-14.

9. The Visitor pattern is descriped in [GOF95], p331, and there are significant examples in
[PPP2002] p. 388

Figure 12-13
SMCRemoteServer structure. The Transaction Visitor Pattern.

Figure 12-14
SMCRemoteServer Transaction Decoding

SMCRemote
Server

+ process(CompileFileTransaction)
+ process(CompilerResultsTransaction)
+ process(LoginTransaction)
+ process(LoginResponseTransaction)
+ process(RegistrationTransaction)
+ process(RegistrationResponseTransaction)

Socket
TransactionProcessor

+ initializeSession
+ compileEvent
+ loginEvent
+ registerEvent

ServerSession

«interface»

+ accept(SocketTransactionProcessor)

SocketTransaction
«interface»

all the
transactions

sv:
SMCRemote

Server

serve

t := readObject

t:
Socket

Transaction

accept(sv)

process(t : CompileFileTransaction)
or

process(t : LoginTransaction)
or

process(t : RegistrationTransaction)

ServerSession

compileEvent(t : CompileFileTransaction)
or

loginEvent(t : LoginTransaction)
or

registerEvent(t : RegistrationEvent)

initializeSession

while socket is open

189 Chapter : SMC Remote Service: Case Study

Each time the SMCRemoteServer reads a SocketTransaction from the socket, it
passes itself to the accept function of that transaction. This works because SMCRemote-
Server implements the SocketTransactionProcessor interface. The transaction
calls back through this interface to the appropriate process function. That function, in
turn, sends the appropiate event to the ServerSession object. Listing 12-25 and Listing
12-26 show the SMCRemoteServer and SocketTransactionProcessor classes.

Listing 12-25
SMCRemoteServer.java
package com.objectmentor.SMCRemote.server;

import com.objectmentor.SMCRemote.transactions.*;
import com.objectmentor.SocketService.SocketServer;

import java.io.ObjectInputStream;
import java.net.Socket;

class SMCRemoteServer extends SocketTransactionProcessor {
private ObjectInputStream serverInput;
private boolean isOpen = false;
private ServerSession session;

public void serve(Socket socket) {
isOpen = true;

try {
session = new ServerSession(this, socket);
session.verboseMessage("Connected");
serverInput = session.initializeSession(socket);
while (isOpen) {

SocketTransaction st = (SocketTransaction) serverInput.readObject();
st.accept(this);

}
} catch (Exception e) {
SMCRemoteService.verboseMessage("Connection torn down:" + e);
return;

}
SMCRemoteService.verboseMessage("Connection closed normally.");

}

public void process(CompileFileTransaction t) throws Exception {
session.compileEvent(t);

}

public void process(LoginTransaction t) throws Exception {
session.loginEvent(t);

}

public void process(RegistrationTransaction t) throws Exception {
session.registerEvent(t);

}

public void close() {
isOpen = false;

190SMCRemoteServer

ServerSession

The ServerSession class is a finite state machine that controls the communication proto-
cols between the client and the server. The state transition diagram that shows this logic is
in Figure 12-15. Note that registrations can take place right from the Idle state, but in
order to do a compile you must login first.

This finite state machine was translated into SMC code, and compiled into Java. The
SMC input is shown in Listing 12-27. If you are interested the generated output is shown
at the end of the chapter in Listing 12-46.

}
}

Listing 12-26
SocketTransactionProcessor.java
package com.objectmentor.SMCRemote.transactions;

public class SocketTransactionProcessor {
public void process(CompileFileTransaction t) throws Exception {

throw new NoProcessorException("CompileFileTransaction");
}

public void process(CompilerResultsTransaction t) throws Exception {
throw new NoProcessorException("CompilerResultsTransaction");

}

public void process(LoginTransaction t) throws Exception {
throw new NoProcessorException("LoginTransaction");

}

public void process(LoginResponseTransaction t) throws Exception {
throw new NoProcessorException("LoginResponseTransaction");

}

public void process(RegistrationTransaction t) throws Exception {
throw new NoProcessorException("RegistrationTransaction");

}

public void process(RegistrationResponseTransaction t) throws Exception {
throw new NoProcessorException("RegistrationResponseTransaction");

}

}

Listing 12-25 (Continued)
SMCRemoteServer.java

191 Chapter : SMC Remote Service: Case Study

Figure 12-15
ServerSession Finite State Machine.

Listing 12-27
server.sm
Context ServerControllerContext
FSMName ServerController
Pragma Package com.objectmentor.SMCRemote.server
Initial Idle
{
Idle {

loginEvent LoggingIn {}
compileEvent Idle sendCompileRejection
registerEvent StoringUser {}
abortEvent * reportError

}

StoringUser <storeUserAndSendPassword {
userStoredEvent Idle confirmRegistration
userNotStoredEvent Idle denyRegistration
sendFailedEvent Idle denyRegistration
abortEvent Idle {reportError denyRegistration}

}

LoggingIn <checkValidUser {
validUserEvent LoggedIn acknowledgeLogin
invalidUserEvent Idle rejectLogin
abortEvent Idle reportError

}

Idle

H

compileEvent / sendCompileRejection
abortEvent / reportError

entry / checkValidUser

LoggingInloginEvent

entry / storeUserAndSendPassword

StoringUser registerEvent

userStoredEvent / confirmRegistration
userNotStoredEvent / denyRegistration
sendFailedEvent / denyRegistration
abortEvent / |reportError denyRegistration}

LoggedIn

validUserEvent
/ acknowledgeLogin

invalidUserEvent / rejectLogin
abortEvent / reportError

entry / doCompile

Compiling

compileEvent

abortEvent / reportError

entry / close

Closing

goodCompileEvent / sendCompileResults
badCompileEvent / sendCompileError

abortEvent / reportError

H
closeEvent

192SMCRemoteServer

Three Level FSM

The ServerSession class is part of a design pattern called Three Level FSM10. Using
this pattern we split the finite state machine into three levels as shown in Figure 12-16.
The first level is ServerControllerContext. This class contains one degenerate
method for every action of the finite state machine. If you examine the code in Listing 12-
28, you’ll see all the empty methods. They are empty, instead of abstract, because SMC
presumes that the context class is not abstract. In this class you’ll also see the FSMError
method. This method is called by the generated code whenever an event occurrs in a state
that did not expect it.

The generated code (Listing 12-46) creates the ServerController that derives
from SeverControllerContext. It also creates State and all its derivatives. Finally, I
wrote ServerSession to derive from ServerController. ServerSession implements
all the degenerate methods of ServerControllerContext. As such it contains all of
the detailed code that implements the behavior of the server. The code for this class is a bit
long, but it’s also quite simple. You’ll find it in Listing 12-29.

UserRepository

I chose a very simple implementation for the UserRepository (See Listing 12-30). This
class implements the UserDirectory interface and provides the means whereby the reg-
istration data is stored. I could have used a database for this, but the need was so simple
that it didn’t seem to make sense. So, instead, I create a directory named users. Inside
this directory I create a file for each user. The name of the file is the email address of the
user. The contents of the file are a simple XML record that contains the user’s email

LoggedIn {
compileEvent Compiling {}
abortEvent Idle reportError

}

Compiling <doCompile {
goodCompileEvent Closing sendCompileResults
badCompileEvent Closing sendCompileError
abortEvent Idle reportError

}

Closing < close{
closeEvent Closed {}

}

Closed {}
}

10. [PLOP95], Discovering Patterns in Existing Applications, Robert C. Martin, p383

Listing 12-27 (Continued)
server.sm

193 Chapter : SMC Remote Service: Case Study

Figure 12-16
Three Level Finite State Machine.

Listing 12-28
ServerControllerContext.java
package com.objectmentor.SMCRemote.server;

public class ServerControllerContext {
public void FSMError(String event, String state) {

SMCRemoteService.verboseMessage("Transition Error. Event:" + event + " in state:" +
state);
}

public void checkValidUser() {
}

public void close() {
}

public void acknowledgeLogin() {
}

public void rejectLogin() {
}

ServerController
Context

ServerController

ServerSession

«generated»
State

«generated»

LoggedIn

StoringUser

Idle

Closing

Compiling

LoggingIn

Closed

«generated»

«generated»

«generated»

«generated»

«generated»

«generated»

«generated»

194SMCRemoteServer

public void doCompile() {
}

public void sendCompileResults() {
}

public void sendCompileRejection() {
}

public void sendCompileError() {
}

public void reportError() {
}

public void confirmRegistration() {
}

public void denyRegistration() {
}

public void storeUserAndSendPassword() {
}

}

Listing 12-29
ServerSession.java
package com.objectmentor.SMCRemote.server;

import com.objectmentor.SMCRemote.transactions.*;

import java.io.*;
import java.net.*;

class ServerSession extends ServerController {
private ObjectOutputStream serverOutput;
private ObjectInputStream serverInput;
private String itsSessionID;
private Socket itsSocket;
private Exception itsException;
private SMCRemoteServer itsParent;

private String registrationFailureReason = null;

private CompileFileTransaction cft;
private File tempDirectory;
private CompilerResultsTransaction crt;
private LoginTransaction lt;
private RegistrationTransaction rt;

public ServerSession(SMCRemoteServer parent, Socket socket) throws IOException {
itsParent = parent;
itsSocket = socket;
buildSessionID();
serverOutput = new ObjectOutputStream(itsSocket.getOutputStream());

Listing 12-28 (Continued)
ServerControllerContext.java

195 Chapter : SMC Remote Service: Case Study

serverInput = new ObjectInputStream(itsSocket.getInputStream());
}

public ObjectInputStream initializeSession(Socket socket) throws IOException {
serverOutput.writeObject("SMCR Server. " + SMCRemoteService.VERSION);
writeMessageFile();
serverOutput.flush();
return serverInput;

}

private void writeMessageFile() throws IOException {
if (SMCRemoteService.messageFile == null) {
serverOutput.writeObject(null);

} else {
StringBuffer b = new StringBuffer();
BufferedReader br = new BufferedReader(new FileReader(SMCRemoteService.messageFile));
String line;
while ((line = br.readLine()) != null)

b.append(line + "\n");
serverOutput.writeObject(b.toString());

}
}

public void compileEvent(CompileFileTransaction cft) {
this.cft = cft;
compileEvent();

}

public void loginEvent(LoginTransaction lt) {
this.lt = lt;
loginEvent();

}

public void registerEvent(RegistrationTransaction rt) {
this.rt = rt;
verboseMessage(rt.getUsername() + " requests registration.");
registerEvent();

}

public String generatePassword() {
verboseMessage("Generating password.");
return PasswordGenerator.generatePassword();

}

public void storeUserAndSendPassword() {
String password = generatePassword();
String username = rt.getUsername();
try {
boolean stored = SMCRemoteService.addUser(username, password);
if (stored) {

verboseMessage("User stored. Sending password email.");
boolean emailSent = sendPasswordEmail(username, password);
if (emailSent)
userStoredEvent();

else {

Listing 12-29 (Continued)
ServerSession.java

196SMCRemoteServer

verboseMessage("could not send email.");
registrationFailureReason = "could not send email.";
sendFailedEvent();

}
} else {

verboseMessage("Duplicate Registration");
password = SMCRemoteService.getPassword(username);
resendPasswordEmail(username, password);
registrationFailureReason = "already a member. Email resent.";
userNotStoredEvent();

}
} catch (Exception e) {
abort(e);

}
}

private boolean resendPasswordEmail(String username, String password) {
return SMCRemoteService.sendEmail(username,

"SMCRemote Resending password",
"Your SMCRemote password is: " + password);

}

private boolean sendPasswordEmail(String username, String password) {
return SMCRemoteService.sendEmail(username,

"SMCRemote Registration Confirmation",
"Your password is: " + password);

}

public void confirmRegistration() {
verboseMessage("Confirming registration.");
try {
RegistrationResponseTransaction rrt = new RegistrationResponseTransaction(true);
sendToClient(rrt);

} catch (Exception e) {
abort(e);

}
}

public void denyRegistration() {
verboseMessage("Registration Denied: " + registrationFailureReason);
try {
RegistrationResponseTransaction rrt = new RegistrationResponseTransaction(false);
rrt.setFailureReason(registrationFailureReason);
sendToClient(rrt);

} catch (IOException e) {
abort(e);

}
}

public void checkValidUser() {
String userName = lt.getUserName();
String password = lt.getPassword();
if (SMCRemoteService.validate(userName, password))
validUserEvent();

else

Listing 12-29 (Continued)
ServerSession.java

197 Chapter : SMC Remote Service: Case Study

invalidUserEvent();
}

public void close() {
itsParent.close();
closeEvent();

}

public void acknowledgeLogin() {
try {
int logins = SMCRemoteService.incrementLoginCount(lt.getUserName());
verboseMessage("Login(" + logins + "): " + lt.getUserName() + " accepted.");
LoginResponseTransaction lrt = new LoginResponseTransaction(true, logins);
sendToClient(lrt);

} catch (Exception e) {
abort(e);

}
}

public void rejectLogin() {
verboseMessage("Login: " + lt.getUserName() + " rejected.");
try {
LoginResponseTransaction lrt = new LoginResponseTransaction(false, 0);
sendToClient(lrt);

} catch (IOException e) {
abort(e);

}
}

public void doCompile() {
verboseMessage("Compiling: " + cft.getFilename() + " using " + cft.getGenerator() + "

generator.");

try {
tempDirectory = SMCRemoteService.makeTempDirectory();
cft.write(tempDirectory);

compile();
goodCompileEvent();

} catch (Exception e) {
abort(e);

}
}

public void sendCompileResults() {
try {
sendCompilerResultsToClient();
tempDirectory.delete();

} catch (IOException e) {
abort(e);

}
}

public void sendCompileRejection() {
verboseMessage("Not logged in, can't compile.");

Listing 12-29 (Continued)
ServerSession.java

198SMCRemoteServer

CompilerResultsTransaction crt = new CompilerResultsTransaction();
crt.setStatus(CompilerResultsTransaction.NOT_LOGGED_IN);
try {
sendToClient(crt);

} catch (IOException e) {
abort(e);

}
}

public void sendCompileError() {

}

public void reportError() {
System.out.println("Aborting: " + itsException);

}

private void abort(Exception e) {
itsException = e;
abortEvent();

}

private void buildSessionID() {
InetAddress addr = itsSocket.getInetAddress();
String connectedHostName = addr.getHostName();
String connectedIP = addr.getHostAddress();
if (connectedHostName.equals(connectedIP)) {
itsSessionID = connectedHostName + ":" + itsSocket.getPort();

} else {
itsSessionID =

connectedHostName + ":" + itsSocket.getPort() + "(" + connectedIP + ")";
}

}

private void compile() throws Exception {
String filename = cft.getFilename();
crt = new CompilerResultsTransaction();
File batFile = writeCompileScript();

SMCRemoteService.executeCommand(tempDirectory + "\\smc.bat", crt.getStdoutLines(),
crt.getStderrLines());

batFile.delete();
File sourceFile = new File(tempDirectory, filename);
sourceFile.delete();

}

private File writeCompileScript() throws IOException {
File batFile = new File(tempDirectory, "smc.bat");
PrintWriter bat = new PrintWriter(new FileWriter(batFile));
bat.println("cd " + tempDirectory);
bat.println(SMCRemoteService.buildCommand(cft.getFilename(), cft.getGenerator()));
bat.close();
return batFile;

}

Listing 12-29 (Continued)
ServerSession.java

199 Chapter : SMC Remote Service: Case Study

address, password, and a count of the number of times the user has logged in.This file is
created upon registration, and is referenced every time the user logs in.

You might wonder why I didn’t use a database, or some other more traditional
scheme. The answer is simply that a database wasn’t necessary. The kind of data I am
storing is very simple; and does not require SQL or any of the other features of a database.

You might also ask why I chose to use XML. It turns out that JDOM is very simple to
use, and it allowed me to create user records that were flexible. I could add new fields or
change existing fields without a lot of fuss.

private void sendCompilerResultsToClient() throws IOException {
String[] filenames = tempDirectory.list();
crt.loadFiles(tempDirectory, filenames);
crt.setStatus(CompilerResultsTransaction.OK);
verboseSendFileReport(filenames);
sendToClient(crt);
deleteCompiledFiles(filenames);

}

private void sendToClient(SocketTransaction t) throws IOException {
serverOutput.writeObject(t);
serverOutput.flush();

}

private void deleteCompiledFiles(String[] filenames) {
for (int i = 0; i < filenames.length; i++) {
File f = new File(tempDirectory, filenames[i]);
f.delete();

}
}

private void verboseSendFileReport(String[] filenames) {
for (int i = 0; i < filenames.length; i++) {
String filename = filenames[i];
verboseMessage("Sending: " + filename);

}
}

public void verboseMessage(String msg) {
SMCRemoteService.verboseMessage("<" + itsSessionID + "> " + msg);

}

}

Listing 12-30
UserRepository.java
package com.objectmentor.SMCRemote.server;

import org.jdom.*;
import org.jdom.input.SAXBuilder;
import org.jdom.output.XMLOutputter;

import java.io.*;

Listing 12-29 (Continued)
ServerSession.java

200SMCRemoteServer

public class UserRepository implements UserDirectory {

class User {
public User() {
}

public User(String username, String password, int loginCount) {
this.username = username;
this.password = password;
this.loginCount = loginCount;

}

String username;
String password;
int loginCount;

}

private File userDirectory;

public UserRepository(String userDirectoryName) {
userDirectory = makeUserDirectory(userDirectoryName);

}

private File makeUserDirectory(String userDirectoryName) {
File directory = new File(userDirectoryName);
if (!directory.exists())
directory.mkdir();

return directory;
}

public boolean isValid(String username, String password) {
return password.equals(getPassword(username));

}

public String getPassword(String username) {
User user = readUser(username);
return user.password;

}

private User readUser(String username) {
User user = new User();
try {
File userFile = new File(userDirectory, username);
if (userFile.canRead()) {

SAXBuilder builder = new SAXBuilder("org.apache.xerces.parsers.SAXParser");
Document userDoc = builder.build(userFile);
Element userElement = userDoc.getRootElement();
user.username = userElement.getChild("name").getTextTrim();
user.password = userElement.getChild("password").getTextTrim();
user.loginCount =
Integer.parseInt(userElement.getChild("loginCount").getTextTrim());

}
} catch (JDOMException e) {
System.out.println("e = " + e);

Listing 12-30 (Continued)
UserRepository.java

201 Chapter : SMC Remote Service: Case Study

return null;
}
return user;

}

public boolean add(String username, String password) throws Exception {
File userFile = new File(userDirectory, username);
if (userFile.exists() == false) {
User user = new User(username, password, 0);
writeUser(user);
return true;

} else {
return false;

}
}

private void writeUser(User user) throws IOException {
File userFile = new File(userDirectory, user.username);
FileOutputStream os = new FileOutputStream(userFile);
Document userDoc = createUserDocument(user);
XMLOutputter xmlOut = new XMLOutputter();
xmlOut.output(userDoc, os);
os.close();

}

private Document createUserDocument(User user) {
Element userElement = new Element("user");
userElement.addContent(new Element("name").setText(user.username));
userElement.addContent(new Element("password").setText(user.password));
userElement.addContent(
new Element("loginCount").setText(Integer.toString(user.loginCount)));

Document userDoc = new Document(userElement);
return userDoc;

}

public boolean clearUserRepository() {
boolean cleared = true;
File files[] = userDirectory.listFiles();
for (int i = 0; i < files.length; i++) {
File file = files[i];
if (file.delete() == false)

cleared = false;
}
if (userDirectory.delete() == false)
cleared = false;

return cleared;
}

public int incrementLoginCount(String username) throws Exception {
User user = readUser(username);
user.loginCount++;
writeUser(user);
return user.loginCount;

}
}

Listing 12-30 (Continued)
UserRepository.java

202SMCRemoteServer

OReillyEmailSender

The OReillyEmailSender is a very simple FACADE11 that gives the server access to
email facilities. I chose to use the OReilly engine simply because I’ve used it before, and it
seems to work just fine. See Listing 12-31.

PasswordGenerator

The PasswordGenerator class is also very simple and straightforward. This class is
used to generate a password for a newly registered user. See Listing 12-32.

11. The Facade design pattern is explained in [GOF95] p. 185. There is a nice example and explana-
tion of Facade in [PPP2002] p. 173

Listing 12-31
OReillyEmailSender.java
package com.objectmentor.SMCRemote.server;

import com.oreilly.servlet.MailMessage;

import java.io.*;

public class OReillyEmailSender implements EmailSender {
public boolean send(String emailAddress, String subject, String text) {

try {
MailMessage msg = new MailMessage("cvs.objectmentor.com");
msg.from("info@objectmentor.com");
msg.to(emailAddress);
msg.setSubject(subject);
PrintStream body = msg.getPrintStream();
body.println(text);
msg.sendAndClose();
return true;

} catch (IOException e) {
System.err.println("Couldn't send email: " + e.getMessage());
return false;

}
}

}

Listing 12-32
PasswordGenerator.java
package com.objectmentor.SMCRemote.server;

public class PasswordGenerator {
public static String generatePassword() {

StringBuffer password = new StringBuffer();
for (int i = 0; i < 8; i++) {
password.append(generateRandomCharacter());

}
return password.toString();

}

203 Chapter : SMC Remote Service: Case Study

Conclusion.

That’s all there is to the SMCRemote system. All-in-all, including tests, the system is
around 3,000 lines of code with an average cyclomatic complexity of 1.48.

The UML diagrams in this chapter are examples of the kinds of diagrams one might
draw in order to explain an existing system to someone else. I kept my diagrams terse, and
I tried not to inundate you with them. Mostly they are just there to help you read the code.

private static char generateRandomCharacter() {
double x = Math.random();
x *= 26;
return (char) ('a' + x);

}
}

Listing 12-32 (Continued)
PasswordGenerator.java

204Tests for SMCRemoteClient

Tests for SMCRemoteClient

Listing 12-33
TestClientBase.java
package com.objectmentor.SMCRemote.client;

import junit.framework.TestCase;

import com.objectmentor.SMCRemote.transactions.*;
import com.objectmentor.SocketService.SocketServer;

import java.io.*;
import java.net.Socket;

abstract class MockServerBase implements SocketServer {
private ObjectOutputStream os;
private ObjectInputStream is;

public abstract SocketTransactionProcessor getProcessor();

public void sendTransaction(SocketTransaction t) throws Exception {
os.writeObject(t);
os.flush();

}

public void serve(Socket socket) {
try {
os = new ObjectOutputStream(socket.getOutputStream());
is = new ObjectInputStream(socket.getInputStream());
os.writeObject("SMCR Test Server");
os.writeObject(null);
os.flush();
while (true) {

SocketTransaction t = (SocketTransaction) is.readObject();
t.accept(getProcessor());

}
} catch (Exception e) {
}

}
}

public class TestClientBase extends TestCase {
public static final int SMCPORT = 9000;

private ByteArrayOutputStream stdoutBuffer;
private ByteArrayOutputStream stderrBuffer;

public TestClientBase(String s) {
super(s);

}

protected void setUp() throws Exception {
stdoutBuffer = new ByteArrayOutputStream();
stderrBuffer = new ByteArrayOutputStream();

}

205 Chapter : SMC Remote Service: Case Study

protected String getStderr() {
return stderrBuffer.toString();

}

protected String getStdout() {
return stdoutBuffer.toString();

}

protected void runMain(String[] args) throws IOException {
PrintStream sysout = System.out;
PrintStream syserr = System.err;

System.setOut(new PrintStream(stdoutBuffer));
System.setErr(new PrintStream(stderrBuffer));

SMCRemoteClient.main(args);
System.setOut(sysout);
System.setErr(syserr);

stdoutBuffer.close();
stderrBuffer.close();

Thread.yield();
}

}

Listing 12-34
TestClientCommandLine.java
package com.objectmentor.SMCRemote.client;

import junit.framework.TestCase;
import junit.swingui.TestRunner;

public class TestClientCommandLine extends TestCase {
public static void main(String[] args) {

TestRunner.main(new String[]{"TestClientCommandLine"});
}

public TestClientCommandLine(String name) {
super(name);

}

public void setUp() throws Exception {
}

public void tearDown() throws Exception {
}

public void testParseSimpleCompileCommandLine() throws Exception {
ClientCommandLine c = new ClientCommandLine(new String[]{"-u", "user", "-w",

"password", "filename"});
assertEquals("filename", c.getFilename());
assertEquals(ClientCommandLine.DEFAULT_HOST, c.getHost());
assertEquals(Integer.parseInt(ClientCommandLine.DEFAULT_PORT), c.getPort());

Listing 12-33 (Continued)
TestClientBase.java

206Tests for SMCRemoteClient

assertEquals(ClientCommandLine.DEFAULT_GENERATOR, c.getGenerator());
assert(!c.isVerbose());
assert("simple compile", c.isValid());

}

public void testParseComplexCompileCommandLine() throws Exception {
ClientCommandLine c = new ClientCommandLine(new String[]{
"-p", "999", "-h", "objectmentor.com", "-v", "-u", "user", "-w", "password",
"-g", "C++", "f.sm"});

assert(c.isValid());
assertEquals("f.sm", c.getFilename());
assertEquals("bad host", "objectmentor.com", c.getHost());
assertEquals("bad port", 999, c.getPort());
assertEquals("bad generator", "C++", c.getGenerator());
assert("verbose", c.isVerbose());

}

public void testRegistrationCommandLine() throws Exception {
ClientCommandLine c = new ClientCommandLine(new String[]{"-r", "user"});
assert("registration commandline", c.isValid());

}

public void testParseInvalidCommandLine() {
assert("no arguments", !checkCommandLine(new String[0]));
assert("no filename", !checkCommandLine(new String[]{"-h", "dodah.com"}));
assert("too many files", !checkCommandLine(new String[]{"file1", "file2"}));
assert("Bad Argument", !checkCommandLine(new String[]{"-x", "file1"}));
assert("Bad Port", !checkCommandLine(new String[]{"-p", "bad port"}));
assert("generator but no file name", !checkCommandLine(new String[]{"-g", "C++"}));
assert("filename but no user or password", !checkCommandLine(new String[]{"myFile"}));
assert("filename but no user", !checkCommandLine(new String[]{"-w", "password",

"myFile"}));
assert("filename but no password",

!checkCommandLine(new String[]{"-u", "user", "myFile"}));
assert("registration with user",

!checkCommandLine(new String[]{"-r", "user", "-u", "user"}));
assert("registration with password",

!checkCommandLine(new String[]{"-r", "user", "-p", "password"}));
assert("registration with generator",

!checkCommandLine(new String[]{"-r", "user", "-g", "gen"}));
assert("registration with file",

!checkCommandLine(new String[]{"-r", "user", "myFile"}));
}

private boolean checkCommandLine(String[] args) {
ClientCommandLine c = new ClientCommandLine(args);
return c.isValid();

}
}

Listing 12-35
TestRemoteCompiler.java
package com.objectmentor.SMCRemote.client;

import junit.swingui.TestRunner;

Listing 12-34 (Continued)
TestClientCommandLine.java

207 Chapter : SMC Remote Service: Case Study

import com.objectmentor.SMCRemote.transactions.*;
import com.objectmentor.SocketService.SocketService;

import java.io.*;

class MockRemoteCompilerServer extends MockServerBase {
public String filename = "noFileName";
public boolean fileReceived = false;
public String generator;
public boolean isLoggedIn = false;

class RemoteCompilerTransactionProcessor extends SocketTransactionProcessor {
public void process(CompileFileTransaction t) throws Exception {
try {

File f1 = TestRemoteCompiler.createTestFile("myFile.java", "wow");
File f2 = TestRemoteCompiler.createTestFile("file2.java", "ick");
filename = t.getFilename();
generator = t.getGenerator();

CompilerResultsTransaction crt = new CompilerResultsTransaction();
crt.loadFiles(null, new String[]{"myFile.java", "file2.java"});

f1.delete();
f2.delete();
crt.getStdoutLines().add("compile diagnostics");
crt.getStderrLines().add("stderr message");
sendTransaction(crt);

fileReceived = true;
} catch (IOException e) {
}

}

public void process(LoginTransaction t) throws Exception {
LoginResponseTransaction lrt = new LoginResponseTransaction(true, 0);
sendTransaction(lrt);
isLoggedIn = true;

}
}

public SocketTransactionProcessor getProcessor() {
return new RemoteCompilerTransactionProcessor();

}
}

public class TestRemoteCompiler extends TestClientBase {
public static void main(String[] args) {

TestRunner.main(new String[]{"com.objectmentor.SMCRemote.client.TestRemoteCompiler"});
}

public TestRemoteCompiler(String name) {
super(name);

}

private RemoteCompiler c;

Listing 12-35 (Continued)
TestRemoteCompiler.java

208Tests for SMCRemoteClient

private MockRemoteCompilerServer server;
private SocketService smc;

public void setUp() throws Exception {
super.setUp();
c = new RemoteCompiler("localhost", SMCPORT, new NullMessageLogger());
server = new MockRemoteCompilerServer();
smc = new SocketService(SMCPORT, server);

}

public void tearDown() throws Exception {
c.close();
smc.close();

}

static File createTestFile(String name, String content) throws IOException {
File f = new File(name);
FileOutputStream stream = new FileOutputStream(f);
stream.write(content.getBytes());
stream.close();
return f;

}

public void testFileDoesNotExist() throws Exception {
c.setFilename("thisFileDoesNotExist");
boolean prepared = c.prepareFile();
assertEquals(false, prepared);

}

public void testConnectToSMCRemoteServer() throws Exception {
boolean connection = c.connect();
assert(connection);

}

public void testCompileFile() throws Exception {
String filename = "testSendFile";
File f = createTestFile(filename, "I am sending this file.");
c.setFilename(filename);
assert(c.connect());
assert(c.prepareFile());
assert(c.compileFile() != null);
Thread.sleep(50);
assert(server.fileReceived);
assertEquals(filename, server.filename);
assertEquals("Bad Generator", "java", server.generator);
f.delete();

}

public void testMainCompileFile() throws Exception {
File f = createTestFile("myFile.sm", "the content");
runMain(new String[]{"-u", "user", "-w", "pw", "-g", "C++", "myFile.sm"});

f.delete();
File file1 = new File("myFile.java");
File file2 = new File("file2.java");

Listing 12-35 (Continued)
TestRemoteCompiler.java

209 Chapter : SMC Remote Service: Case Study

boolean file1Exists = file1.exists();
boolean file2Exists = file2.exists();
boolean exists = file1Exists && file2Exists;

int file1Len = (int) file1.length();
int file2Len = (int) file2.length();

if (file1Exists) file1.delete();
if (file2Exists) file2.delete();

assert("Not logged in", server.isLoggedIn);
assert("not received", server.fileReceived);
assertEquals("bad generator", "C++", server.generator);
assert("One or more files doesn't exist", exists);
assert("f1 zero", file1Len > 0);
assert("f2 zero", file2Len > 0);

assert("consoleMessage", getStdout().startsWith("compile diagnostics"));
assert("Stderr Message", getStderr().startsWith("stderr message"));

}
}

Listing 12-36
TestRemoteRegistration.java
package com.objectmentor.SMCRemote.client;

import junit.swingui.TestRunner;

import com.objectmentor.SMCRemote.transactions.*;
import com.objectmentor.SocketService.SocketService;

class MockRemoteRegistrationServer extends MockServerBase {
public String user;

class RemoteRegistrationServerTransactionProcessor extends SocketTransactionProcessor {
public void process(RegistrationTransaction t) throws Exception {
user = t.getUsername();
RegistrationResponseTransaction rrt;
if (user.equals("goodUser")) {

rrt = new RegistrationResponseTransaction(true);
} else {

rrt = new RegistrationResponseTransaction(false);
}
sendTransaction(rrt);

}
}

public SocketTransactionProcessor getProcessor() {
return new RemoteRegistrationServerTransactionProcessor();

}
}

public class TestRemoteRegistration extends TestClientBase {
public TestRemoteRegistration(String s) {

Listing 12-35 (Continued)
TestRemoteCompiler.java

210Tests for SMCRemoteClient

super(s);
}

public static void main(String[] args) {
TestRunner.main(new

String[]{"com.objectmentor.SMCRemote.client.TestRemoteRegistration"});
}

private RemoteRegistrar r;
private MockRemoteRegistrationServer server;
private SocketService smc;

public void setUp() throws Exception {
super.setUp();
r = new RemoteRegistrar("localhost", SMCPORT, new NullMessageLogger());
server = new MockRemoteRegistrationServer();
smc = new SocketService(SMCPORT, server);

}

public void tearDown() throws Exception {
r.close();
smc.close();

}

public void testRegistration() throws Exception {
RegistrationResponseTransaction rrt;
assert(r.connect());
rrt = r.register("goodUser");
assert("rrt not null", rrt != null);
assert("registration passed", rrt.isConfirmed());
Thread.sleep(50);
assertEquals("Registration", "goodUser", server.user);

}

public void testRegistrationMain() throws Exception {
runMain(new String[]{"-r", "goodUser"});
assert("Registration message",

getStdout().startsWith("User: goodUser registered. Email sent."));
}

}

Listing 12-36 (Continued)
TestRemoteRegistration.java

211 Chapter : SMC Remote Service: Case Study

Tests for SocketService

Listing 12-37
TestSocketService.java
package com.objectmentor.SocketService;

import junit.framework.TestCase;
import junit.swingui.TestRunner;

import java.io.*;
import java.net.Socket;

public class TestSocketService extends TestCase {
private int connections = 0;
private SocketServer connectionCounter;
private SocketService ss;

public static void main(String[] args) {
TestRunner.main(new String[] {

"com.objectmentor.SocketService.TestSocketService"
});

}

public TestSocketService(String name) {
super(name);
connectionCounter = new SocketServer() {
public void serve(Socket s) {

connections++;
}

};
}

public void setUp() throws Exception {
connections = 0;

}

public void tearDown() throws Exception {
}

public void testNoConnections() throws Exception {
ss = new SocketService(999, connectionCounter);
ss.close();
assertEquals(0, connections);

}

public void testOneConnection() throws Exception {
ss = new SocketService(999, connectionCounter);
connect(999);
ss.close();
assertEquals(1, connections);

}

public void testManyConnections() throws Exception {
ss = new SocketService(999, connectionCounter);
for (int i = 0; i < 10; i++)
connect(999);

212Tests for SocketService

ss.close();
assertEquals(10, connections);

}

public void testSendMessage() throws Exception {
ss = new SocketService(999, new HelloService());
Socket s = new Socket("localhost", 999);
BufferedReader br = TestUtility.GetBufferedReader(s);
String answer = br.readLine();
s.close();
ss.close();
assertEquals("Hello", answer);

}

public void testReceiveMessage() throws Exception {
ss = new SocketService(999, new EchoService());
Socket s = new Socket("localhost", 999);
BufferedReader br = TestUtility.GetBufferedReader(s);
PrintStream ps = TestUtility.GetPrintStream(s);
ps.println("MyMessage");
String answer = br.readLine();
s.close();
ss.close();
assertEquals("MyMessage", answer);

}

public void testMultiThreaded() throws Exception {
ss = new SocketService(999, new EchoService());
Socket s = new Socket("localhost", 999);
BufferedReader br = TestUtility.GetBufferedReader(s);
PrintStream ps = TestUtility.GetPrintStream(s);

Socket s2 = new Socket("localhost", 999);
BufferedReader br2 = TestUtility.GetBufferedReader(s2);
PrintStream ps2 = TestUtility.GetPrintStream(s2);

ps2.println("MyMessage");
String answer2 = br2.readLine();
s2.close();

ps.println("MyMessage");
String answer = br.readLine();
s.close();

ss.close();
assertEquals("MyMessage", answer2);
assertEquals("MyMessage", answer);

}

private void connect(int port) {
try {
Socket s = new Socket("localhost", port);
try {

Thread.sleep(10);
} catch (InterruptedException e) {

Listing 12-37
TestSocketService.java

213 Chapter : SMC Remote Service: Case Study

}
s.close();

} catch (IOException e) {
fail("could not connect");

}
}

}

class TestUtility {
public static PrintStream GetPrintStream(Socket s)
throws IOException {

OutputStream os = s.getOutputStream();
PrintStream ps = new PrintStream(os);
return ps;

}

public static BufferedReader GetBufferedReader(Socket s)
throws IOException {
InputStream is = s.getInputStream();
InputStreamReader isr = new InputStreamReader(is);
BufferedReader br = new BufferedReader(isr);
return br;

}
}

class HelloService implements SocketServer {
public void serve(Socket s) {

try {
PrintStream ps = TestUtility.GetPrintStream(s);
ps.println("Hello");

} catch (IOException e) {
}

}
}

class EchoService implements SocketServer {
public void serve(Socket s) {

try {
PrintStream ps = TestUtility.GetPrintStream(s);
BufferedReader br = TestUtility.GetBufferedReader(s);
String token = br.readLine();
ps.println(token);

} catch (IOException e) {
}

}
}

Listing 12-37
TestSocketService.java

214Tests for SMCRemoteServer

Tests for SMCRemoteServer

Listing 12-38
TestBase.java
package com.objectmentor.SMCRemote.server;

import junit.framework.TestCase;

import com.objectmentor.SMCRemote.transactions.*;

import java.io.*;
import java.net.Socket;

class MockUserDirectory implements UserDirectory {
public int incrementLoginCount(String username) {

return 0;
}

public boolean isValid(String username, String password) {
return true;

}

public String getPassword(String username) {
return null;

}

public boolean add(String username, String password) {
return true;

}
}

public class TestBase extends TestCase {
protected ObjectInputStream is;
protected ObjectOutputStream os;
protected SMCRemoteService service;
protected Socket client;

protected UserDirectory mockUserDirectory = new MockUserDirectory();

protected UserDirectory mockUserInvalidator = new MockUserDirectory() {
public boolean isValid(String username, String password) {
return false;

}
};

public TestBase(String name) {
super(name);

}

public void setUp() throws Exception {
SMCRemoteService.isVerbose = false;

}

public void tearDown() throws Exception {
}

215 Chapter : SMC Remote Service: Case Study

protected boolean login() throws IOException, ClassNotFoundException {
LoginTransaction lt = new LoginTransaction("name", "password");
sendToServer(lt);
LoginResponseTransaction ltr = (LoginResponseTransaction) is.readObject();
return ltr.isAccepted();

}

protected void sendToServer(SocketTransaction t) throws IOException {
os.writeObject(t);
os.flush();

}

protected void disconnectClientFromServer() throws Exception {
Thread.sleep(500);
client.close();
service.close();

}

protected void connectClientToServer() throws Exception {
service = new SMCRemoteService(999);
client = new Socket("localhost", 999);
is = new ObjectInputStream(client.getInputStream());
os = new ObjectOutputStream(client.getOutputStream());

String headerLine = (String) is.readObject();
assert("headerline", headerLine.startsWith("SMCR Server"));
assertEquals("discard message", null, is.readObject()); // discard message

}
}

Listing 12-39
TestCommandLine.java
package com.objectmentor.SMCRemote.server;

public class TestCommandLine extends TestBase {
public TestCommandLine(String name) {

super(name);
}

public void tearDown() throws Exception {
super.tearDown();
SMCRemoteService.messageFile = null;
SMCRemoteService.isVerbose = false;
SMCRemoteService.servicePort = Integer.parseInt(SMCRemoteService.DEFAULT_PORT);

}

public void setUp() throws Exception {
super.setUp();

}

public void testValidCommandLine() throws Exception {
assert("Null Command Line", SMCRemoteService.parseCommandLine(new String[0]));
assertEquals("default port",

Integer.parseInt(SMCRemoteService.DEFAULT_PORT),
SMCRemoteService.servicePort);

Listing 12-38 (Continued)
TestBase.java

216Tests for SMCRemoteServer

assert("default verbose", SMCRemoteService.isVerbose == false);

assert("Parametric Command Line",
SMCRemoteService.parseCommandLine(

new String[]{"-p", "999", "-v", "-m", "message.txt", "-e"}));
assertEquals("port", 999, SMCRemoteService.servicePort);
assert("verbose", SMCRemoteService.isVerbose == true);
assertEquals("message", "message.txt", SMCRemoteService.messageFile);
assertEquals("email", true, SMCRemoteService.isEmailQuiet);

}

public void testInvalidCommandLine() throws Exception {
assertEquals("Invalid Command Line",

false, SMCRemoteService.parseCommandLine(new String[]{"-x"}));
assertEquals("Bad Port",

false, SMCRemoteService.parseCommandLine(new String[]{"-p", "badport"}));
}

}

Listing 12-40
TestCompilation.java
package com.objectmentor.SMCRemote.server;

import junit.swingui.TestRunner;

import com.objectmentor.SMCRemote.transactions.*;

import java.io.*;
import java.net.Socket;
import java.util.*;

public class TestCompilation extends TestBase {

public static void main(String[] args) {
TestRunner.main(new String[]{"TestCompilation"});

}

public TestCompilation(String name) {
super(name);

}

public void setUp() throws Exception {
}

public void tearDown() throws Exception {
}

public void testBuildCommand() throws Exception {
assertEquals("Build Java Command",

SMCRemoteService.COMPILE_COMMAND +
" -g smc.generator.java.SMJavaGenerator myFile",

SMCRemoteService.buildCommand("myFile", "java"));

assertEquals("Build C++ Command",
SMCRemoteService.COMPILE_COMMAND +

" -g smc.generator.cpp.SMCppGenerator myFile",

Listing 12-39 (Continued)
TestCommandLine.java

217 Chapter : SMC Remote Service: Case Study

SMCRemoteService.buildCommand("myFile", "C++"));
}

public void testExecuteCommand() throws Exception {
File smFile = new File("myFile.sm");
File javaFile = new File("F.java");

writeSourceFile(smFile);
Vector stdout = new Vector();
Vector stderr = new Vector();
String command = SMCRemoteService.COMPILE_COMMAND + " myFile.sm";
assertEquals("exitValue", 0, SMCRemoteService.executeCommand(command, stdout, stderr));
assertEquals("fileExists", true, javaFile.exists());
assert("javaFile", javaFile.delete());
assert("smFile", smFile.delete());
checkCompilerOutputStreams(stdout, stderr);

}

public void testMakeTempDirectory() throws Exception {
File f1 = SMCRemoteService.makeTempDirectory();
File f2 = SMCRemoteService.makeTempDirectory();
assertEquals("MakeTempDirectory", false, f1.getName().equals(f2.getName()));
assert("f1", f1.delete());
assert("f2", f2.delete());

}

public void testCompileJava() throws Exception {
connectClientToServer();
service.setUserDirectory(mockUserDirectory);
login();
CompilerResultsTransaction crt = invokeRemoteCompiler("java");
assertEquals("Compiler Status", CompilerResultsTransaction.OK, crt.getStatus());
checkCompiledJavaFile(crt);
checkCompilerOutputStreams(crt.getStdoutLines(), crt.getStderrLines());
disconnectClientFromServer();

}

public void testCompileCPP() throws Exception {
connectClientToServer();
service.setUserDirectory(mockUserDirectory);
login();
CompilerResultsTransaction crt = invokeRemoteCompiler("C++");
assertEquals("Compiler Status", CompilerResultsTransaction.OK, crt.getStatus());
checkCompiledCPPFile(crt);
checkCompilerOutputStreams(crt.getStdoutLines(), crt.getStderrLines());
disconnectClientFromServer();

}

public void testCompileNoLogin() throws Exception {
connectClientToServer();
service.setUserDirectory(mockUserDirectory);
CompilerResultsTransaction crt = invokeRemoteCompiler("java");
disconnectClientFromServer();
assertEquals("Compiler Status", CompilerResultsTransaction.NOT_LOGGED_IN,

crt.getStatus());

Listing 12-40 (Continued)
TestCompilation.java

218Tests for SMCRemoteServer

}

public void testTwoCompilesInARowNotAllowed() throws Exception {
connectClientToServer();
service.setUserDirectory(mockUserDirectory);
login();
CompilerResultsTransaction crt = invokeRemoteCompiler("java");
try {
crt = invokeRemoteCompiler("java");
fail("Two Compiles in a row");

} catch (Exception e) {
} finally {
disconnectClientFromServer();

}
}

public void testCloseServer() throws Exception {
try {
service = new SMCRemoteService(999);
client = new Socket("localhost", 999);
client.close();
service.close();

} catch (Exception e) {
fail("couldn't connect" + e.getMessage());

}
try {
client = new Socket("localhost", 999);
fail("connected to closed server");

} catch (Exception e) {
}

}

protected CompilerResultsTransaction
invokeRemoteCompiler(String generator) throws Exception {

CompileFileTransaction cft = buildCompileFileTransaction(generator);
sendToServer(cft);
CompilerResultsTransaction crt = (CompilerResultsTransaction) is.readObject();
return crt;

}

protected CompileFileTransaction
buildCompileFileTransaction(String generator) throws IOException {

File sourceFile = new File("myFile.sm");
writeSourceFile(sourceFile);
CompileFileTransaction cft = new CompileFileTransaction("myFile.sm", generator);
sourceFile.delete();
return cft;

}

protected void writeSourceFile(File smFile) throws IOException {
PrintWriter w = new PrintWriter(new FileWriter(smFile));
w.println("Context C");
w.println("FSMName F");
w.println("Initial I");
w.println("{I{E I A}}");
w.close();

Listing 12-40 (Continued)
TestCompilation.java

219 Chapter : SMC Remote Service: Case Study

}

protected void checkCompilerOutputStreams(Vector stdout, Vector stderr) {
assert("stdout empty", stdout.size() > 0);
assert("stderr not empty", stderr.size() == 0);

}

protected void checkCompiledJavaFile(CompilerResultsTransaction crt) {
String filenames[] = crt.getFilenames();
assertEquals("filenames", 1, filenames.length);
assertEquals("F.java", "F.java", filenames[0]);

crt.write();

File javaFile = new File("F.java");
assertEquals("Compile", true, javaFile.exists());
javaFile.delete();

}

protected void checkCompiledCPPFile(CompilerResultsTransaction crt) {
String filenames[] = crt.getFilenames();
Arrays.sort(filenames);
assertEquals("filenames", 2, filenames.length);
assertEquals("myFile.cpp", "myFile.cpp", filenames[0]);
assertEquals("myFile.h", "myFile.h", filenames[1]);

crt.write();

File cppHFile = new File("myFile.h");
File cppCFile = new File("myFile.cpp");
assertEquals("Compile", true, cppHFile.exists() && cppCFile.exists());
cppHFile.delete();
cppCFile.delete();

}
}

Listing 12-41
TestOReillyEmail.java
package com.objectmentor.SMCRemote.server;

import junit.framework.TestCase;
import junit.swingui.TestRunner;

public class TestOReillyEmail extends TestCase {
public static void main(String[] args) {

TestRunner.main(new String[]{"TestOReillyEmail"});
}

public TestOReillyEmail(String name) {
super(name);

}

public void setUp() throws Exception {
}

Listing 12-40 (Continued)
TestCompilation.java

220Tests for SMCRemoteServer

public void tearDown() throws Exception {
}

public void testSendEmail() throws Exception {
boolean emailStatus = false;
OReillyEmailSender sender = new OReillyEmailSender();
emailStatus = sender.send("unclebob@objectmentor.com", "hi bob", "oh boy, email!");
assertEquals("SendEmail", true, emailStatus);

}
}

Listing 12-42
TestRegistration.java
package com.objectmentor.SMCRemote.server;

import com.objectmentor.SMCRemote.transactions.*;

public class TestRegistration extends TestBase {
private String emailAddress;
private String mailSubject;
private String mailText;
private int emailMessagesSent = 0;

private EmailSender mockEmailSender = new EmailSender() {
public boolean send(String emailAddress, String subject, String text) {
TestRegistration.this.emailAddress = emailAddress;
TestRegistration.this.mailSubject = subject;
TestRegistration.this.mailText = text;
emailMessagesSent++;
return true;

}
};

private EmailSender mockBadEmailSender = new EmailSender() {
public boolean send(String emailAddress, String subject, String text) {
return false;

}
};
private RegistrationResponseTransaction rrt;
private UserRepository userRepository;
private String userRepositoryName = "testUsers";

public TestRegistration(String name) {
super(name);

}

public void tearDown() throws Exception {
super.tearDown();
userRepository.clearUserRepository();

}

public void setUp() throws Exception {
super.setUp();
userRepository = new UserRepository(userRepositoryName);

}

Listing 12-41 (Continued)
TestOReillyEmail.java

221 Chapter : SMC Remote Service: Case Study

public void testRegistration() throws Exception {
sendRegistration(mockEmailSender);
assertEquals("emailAddress", "rmartin@oma.com", emailAddress);
assertEquals("mailSubject", "SMCRemote Registration Confirmation", mailSubject);
assert("Mail Text", mailText.startsWith("Your password is: "));
assertEquals("Mail Text Length", 26, mailText.length());
assertEquals("Registration", true, rrt.isConfirmed());
String password = mailText.substring(18);
assertEquals("User Registered",

true, SMCRemoteService.validate("rmartin@oma.com", password));
assertEquals("email count", 1, emailMessagesSent);

}

public void testBadEmail() throws Exception {
sendRegistration(mockBadEmailSender);
assertEquals("Registration", false, rrt.isConfirmed());
assertEquals("Reason", "could not send email.", rrt.getFailureReason());

}

public void testDoubleRegistration() throws Exception {
sendRegistration(mockEmailSender);
sendRegistration(mockEmailSender);
assertEquals("second registration", false, rrt.isConfirmed());
assertEquals("second registration reason",

"already a member. Email resent.", rrt.getFailureReason());
assertEquals("emailAddress", "rmartin@oma.com", emailAddress);
assertEquals("emailSubject", "SMCRemote Resending password", mailSubject);
assert("emailText", mailText.startsWith("Your SMCRemote password is: "));
assertEquals("emailTextLength", 36, mailText.length());
assertEquals("emailCount", 2, emailMessagesSent);

}

private void sendRegistration(EmailSender emailSender) throws Exception {
connectClientToServer();
service.setEmailSender(emailSender);
service.setUserDirectory(userRepository);
try {
RegistrationTransaction rt = new RegistrationTransaction("rmartin@oma.com");
sendToServer(rt);
rrt = (RegistrationResponseTransaction) is.readObject();

} finally {
disconnectClientFromServer();

}
}

}

Listing 12-43
TestServerLogin.java
package com.objectmentor.SMCRemote.server;

public class TestServerLogin extends TestBase {
public TestServerLogin(String name) {

super(name);

Listing 12-42 (Continued)
TestRegistration.java

222Tests for SMCRemoteServer

}

public void setUp() throws Exception {
super.setUp();

}

public void tearDown() throws Exception {
super.tearDown();

}

public void testAcceptedLoginTransaction() throws Exception {
boolean loggedIn = false;
try {
connectClientToServer();
service.setUserDirectory(mockUserDirectory);
loggedIn = login();
disconnectClientFromServer();

} catch (Exception e) {
}

assertEquals("LoginTransaction", true, loggedIn);
}

public void testRejectedLoginTransaction() throws Exception {
boolean loggedIn = false;
try {
connectClientToServer();
service.setUserDirectory(mockUserInvalidator);
loggedIn = login();
disconnectClientFromServer();

} catch (Exception e) {
}

assertEquals("LoginTransaction", false, loggedIn);
}

}

Listing 12-44
TestUserRepository.java
package com.objectmentor.SMCRemote.server;

import junit.framework.TestCase;
import junit.swingui.TestRunner;

public class TestUserRepository extends TestCase {
private UserRepository repository;

public static void main(String[] args) {
TestRunner.main(new String[]{"TestUserRepository"});

}

public TestUserRepository(String name) {
super(name);

}

Listing 12-43 (Continued)
TestServerLogin.java

223 Chapter : SMC Remote Service: Case Study

public void setUp() throws Exception {
repository = new UserRepository("testUsers");

}

public void tearDown() throws Exception {
assert("Repository not cleared", repository.clearUserRepository());

}

public void testEmptyRepository() throws Exception {
assertEquals("EmptyRepository", false, repository.isValid("rmartin@oma.com",

"password"));
}

public void testAdd() throws Exception {
repository.add("rmartin@oma.com", "password");
assertEquals("Add", true, repository.isValid("rmartin@oma.com", "password"));

}

public void testwrongPassword() throws Exception {
assertEquals("addFailed", true, repository.add("rmartin@oma.com", "password"));
assertEquals("wrongPassword", false, repository.isValid("rmartin@oma.com", "xyzzy"));

}

public void testDuplicateAdd() throws Exception {
assertEquals("FirstAdd", true, repository.add("rmartin@oma.com", "password"));
assertEquals("DuplicateAdd", false, repository.add("rmartin@oma.com", "password"));

}

public void testIncrement() throws Exception {
int logins = 0;
repository.add("rmartin@oma.com", "password");
logins = repository.incrementLoginCount("rmartin@oma.com");
assertEquals("Increment", 1, logins);
logins = repository.incrementLoginCount("rmartin@oma.com");
assertEquals("Increment2", 2, logins);

}
}

Listing 12-44 (Continued)
TestUserRepository.java

224Other Tests

Other Tests

Listing 12-45
TestFileCarrier.java
package com.objectmentor.SocketUtilities;

import junit.framework.TestCase;
import junit.swingui.TestRunner;

import java.io.*;

public class TestFileCarrier extends TestCase {
public static void main(String[] args) {

TestRunner.main(new String[]{"TestFileCarrier"});
}

public TestFileCarrier(String name) {
super(name);

}

public void setUp() throws Exception {
}

public void tearDown() throws Exception {
}

private abstract class FileComparator {
File f1;
File f2;

abstract void writeFirstFile(PrintWriter w);

abstract void writeSecondFile(PrintWriter w);

void compare(boolean expected) throws Exception {
f1 = new File("f1");
f2 = new File("f2");
PrintWriter w1 = new PrintWriter(new FileWriter(f1));
PrintWriter w2 = new PrintWriter(new FileWriter(f2));
writeFirstFile(w1);
writeSecondFile(w2);
w1.close();
w2.close();
assertEquals("(f1,f2)", expected, filesAreTheSame(f1, f2));
assertEquals("(f2,f1)", expected, filesAreTheSame(f2, f1));
f1.delete();
f2.delete();

}
}

public void testOneFileLongerThanTheOther() throws Exception {
FileComparator c = new FileComparator() {
void writeFirstFile(PrintWriter w) {

w.println("hi there");
}

225 Chapter : SMC Remote Service: Case Study

void writeSecondFile(PrintWriter w) {
w.println("hi there you");

}
};
c.compare(false);

}

public void testFilesAreDifferentInTheMiddle() throws Exception {
FileComparator c = new FileComparator() {
void writeFirstFile(PrintWriter w) {

w.println("hi there");
}

void writeSecondFile(PrintWriter w) {
w.println("hi their");

}
};
c.compare(false);

}

public void testSecondLineDifferent() throws Exception {
FileComparator c = new FileComparator() {
void writeFirstFile(PrintWriter w) {

w.println("hi there");
w.println("This is fun");

}

void writeSecondFile(PrintWriter w) {
w.println("hi there");
w.println("This isn't fun");

}
};
c.compare(false);

}

public void testFilesSame() throws Exception {
FileComparator c = new FileComparator() {
void writeFirstFile(PrintWriter w) {

w.println("hi there");
}

void writeSecondFile(PrintWriter w) {
w.println("hi there");

}
};
c.compare(true);

}

public void testMultipleLinesSame() throws Exception {
FileComparator c = new FileComparator() {
void writeFirstFile(PrintWriter w) {

w.println("hi there");
w.println("this is fun");
w.println("Lots of fun");

}

Listing 12-45 (Continued)
TestFileCarrier.java

226Other Tests

void writeSecondFile(PrintWriter w) {
w.println("hi there");
w.println("this is fun");
w.println("Lots of fun");

}
};
c.compare(true);

}

public void testFileCarrier() throws Exception {
File sourceFile = new File("testFileCarrier.txt");
PrintWriter w = new PrintWriter(new FileWriter(sourceFile));
w.println("line one");
w.println("line two");
w.println("line three");
w.close();

FileCarrier fc = new FileCarrier(null, "testFileCarrier.txt");
assert(fc.isError() == false);
assert(fc.isLoaded() == true);

File tmpDirectory = new File("tmpDirectory");
tmpDirectory.mkdir();

File newFile = new File("tmpDirectory/testFileCarrier.txt");

fc.write(tmpDirectory);

assert("file wasn't written", newFile.exists());
assert("files aren't the same.", filesAreTheSame(newFile, sourceFile));

assert("newfile", newFile.delete());
assert("oldFile", sourceFile.delete());
assert("directory", tmpDirectory.delete());

}

boolean filesAreTheSame(File f1, File f2) throws Exception {
FileInputStream r1 = new FileInputStream(f1);
FileInputStream r2 = new FileInputStream(f2);
try {
int c;
while ((c = r1.read()) != -1) {

if (r2.read() != c) {
return false;

}
}
if (r2.read() != -1)

return false;
else

return true;
} finally {
r1.close();
r2.close();

}

Listing 12-45 (Continued)
TestFileCarrier.java

227 Chapter : SMC Remote Service: Case Study

ServerController (SMC Generated)

}
}

Listing 12-46
ServerController.java
//--
//
// FSM: ServerController
// Context: ServerControllerContext
// Err Func: FSMError
// Version:
// Generated: Wednesday 11/13/2002 at 20:32:13 CST
//
//--

package com.objectmentor.SMCRemote.server;

//--
//
// class ServerController
// This is the Finite State Machine class
//

public class ServerController extends ServerControllerContext {
private State itsState;
private static String itsVersion = "";

// instance variables for each state
private LoggedIn itsLoggedInState;
private StoringUser itsStoringUserState;
private Idle itsIdleState;
private Closing itsClosingState;
private Compiling itsCompilingState;
private LoggingIn itsLoggingInState;
private Closed itsClosedState;

// constructor
public ServerController() {

itsLoggedInState = new LoggedIn();
itsStoringUserState = new StoringUser();
itsIdleState = new Idle();
itsClosingState = new Closing();
itsCompilingState = new Compiling();
itsLoggingInState = new LoggingIn();
itsClosedState = new Closed();

itsState = itsIdleState;

// Entry functions for: Idle
}

Listing 12-45 (Continued)
TestFileCarrier.java

228ServerController (SMC Generated)

// accessor functions

public String getVersion() {
return itsVersion;

}

public String getCurrentStateName() {
return itsState.stateName();

}

// event functions - forward to the current State

public void userStoredEvent() {
itsState.userStoredEvent();

}

public void badCompileEvent() {
itsState.badCompileEvent();

}

public void invalidUserEvent() {
itsState.invalidUserEvent();

}

public void compileEvent() {
itsState.compileEvent();

}

public void loginEvent() {
itsState.loginEvent();

}

public void abortEvent() {
itsState.abortEvent();

}

public void registerEvent() {
itsState.registerEvent();

}

public void closeEvent() {
itsState.closeEvent();

}

public void userNotStoredEvent() {
itsState.userNotStoredEvent();

}

public void sendFailedEvent() {
itsState.sendFailedEvent();

}

public void goodCompileEvent() {
itsState.goodCompileEvent();

Listing 12-46 (Continued)
ServerController.java

229 Chapter : SMC Remote Service: Case Study

}

public void validUserEvent() {
itsState.validUserEvent();

}

//--
//
// private class State
// This is the base State class
//
private abstract class State {

public abstract String stateName();

// default event functions

public void userStoredEvent() {
FSMError("userStoredEvent", itsState.stateName());

}

public void badCompileEvent() {
FSMError("badCompileEvent", itsState.stateName());

}

public void invalidUserEvent() {
FSMError("invalidUserEvent", itsState.stateName());

}

public void compileEvent() {
FSMError("compileEvent", itsState.stateName());

}

public void loginEvent() {
FSMError("loginEvent", itsState.stateName());

}

public void abortEvent() {
FSMError("abortEvent", itsState.stateName());

}

public void registerEvent() {
FSMError("registerEvent", itsState.stateName());

}

public void closeEvent() {
FSMError("closeEvent", itsState.stateName());

}

public void userNotStoredEvent() {
FSMError("userNotStoredEvent", itsState.stateName());

}

public void sendFailedEvent() {
FSMError("sendFailedEvent", itsState.stateName());

}

Listing 12-46 (Continued)
ServerController.java

230ServerController (SMC Generated)

public void goodCompileEvent() {
FSMError("goodCompileEvent", itsState.stateName());

}

public void validUserEvent() {
FSMError("validUserEvent", itsState.stateName());

}

}

//--
//
// class LoggedIn
// handles the LoggedIn State and its events
//
private class LoggedIn extends State {

public String stateName() {
return "LoggedIn";

}

//
// responds to abortEvent event
//
public void abortEvent() {
reportError();

// change the state
itsState = itsIdleState;

}

//
// responds to compileEvent event
//
public void compileEvent() {
// change the state
itsState = itsCompilingState;

// Entry functions for: Compiling
doCompile();

}
}

//--
//
// class StoringUser
// handles the StoringUser State and its events
//
private class StoringUser extends State {

public String stateName() {
return "StoringUser";

}

//
// responds to userNotStoredEvent event

Listing 12-46 (Continued)
ServerController.java

231 Chapter : SMC Remote Service: Case Study

//
public void userNotStoredEvent() {
denyRegistration();

// change the state
itsState = itsIdleState;

}

//
// responds to userStoredEvent event
//
public void userStoredEvent() {
confirmRegistration();

// change the state
itsState = itsIdleState;

}

//
// responds to abortEvent event
//
public void abortEvent() {
reportError();
denyRegistration();

// change the state
itsState = itsIdleState;

}

//
// responds to sendFailedEvent event
//
public void sendFailedEvent() {
denyRegistration();

// change the state
itsState = itsIdleState;

}
}

//--
//
// class Idle
// handles the Idle State and its events
//
private class Idle extends State {

public String stateName() {
return "Idle";

}

//
// responds to abortEvent event
//
public void abortEvent() {
reportError();

Listing 12-46 (Continued)
ServerController.java

232ServerController (SMC Generated)

}

//
// responds to registerEvent event
//
public void registerEvent() {
// change the state
itsState = itsStoringUserState;

// Entry functions for: StoringUser
storeUserAndSendPassword();

}

//
// responds to compileEvent event
//
public void compileEvent() {
sendCompileRejection();

// change the state
itsState = itsIdleState;

}

//
// responds to loginEvent event
//
public void loginEvent() {
// change the state
itsState = itsLoggingInState;

// Entry functions for: LoggingIn
checkValidUser();

}
}

//--
//
// class Closing
// handles the Closing State and its events
//
private class Closing extends State {

public String stateName() {
return "Closing";

}

//
// responds to closeEvent event
//
public void closeEvent() {
// change the state
itsState = itsClosedState;

}
}

//--

Listing 12-46 (Continued)
ServerController.java

233 Chapter : SMC Remote Service: Case Study

//
// class Compiling
// handles the Compiling State and its events
//
private class Compiling extends State {

public String stateName() {
return "Compiling";

}

//
// responds to abortEvent event
//
public void abortEvent() {
reportError();

// change the state
itsState = itsIdleState;

}

//
// responds to goodCompileEvent event
//
public void goodCompileEvent() {
sendCompileResults();

// change the state
itsState = itsClosingState;

// Entry functions for: Closing
close();

}

//
// responds to badCompileEvent event
//
public void badCompileEvent() {
sendCompileError();

// change the state
itsState = itsClosingState;

// Entry functions for: Closing
close();

}
}

//--
//
// class LoggingIn
// handles the LoggingIn State and its events
//
private class LoggingIn extends State {

public String stateName() {
return "LoggingIn";

}

Listing 12-46 (Continued)
ServerController.java

234ServerController (SMC Generated)

//
// responds to abortEvent event
//
public void abortEvent() {
reportError();

// change the state
itsState = itsIdleState;

}

//
// responds to validUserEvent event
//
public void validUserEvent() {
acknowledgeLogin();

// change the state
itsState = itsLoggedInState;

}

//
// responds to invalidUserEvent event
//
public void invalidUserEvent() {
rejectLogin();

// change the state
itsState = itsIdleState;

}
}

//--
//
// class Closed
// handles the Closed State and its events
//
private class Closed extends State {

public String stateName() {
return "Closed";

}
}

}

Listing 12-46 (Continued)
ServerController.java

235 Chapter : SMC Remote Service: Case Study

Bibliography

[PEAA2002]: Patterns of Enterprise Application Architecture, Martin Fowler, Addison
Wesley, 2002

[GOF95]: Design Patterns, Gamma, et. al., Addison Wesley, 1995

[TDD2002]: Test Driven Development, Kent Beck, Addison Wesley, 2002.

[PPP2002]: Agile Software Development: Principles, Patterns, and Practices, Robert C.
Martin, Prentice Hall, 2002.

[PLOP95]: Pattern Languages of Program Design, Volume I, Coplien and Schmidt,
Addison Wesley, 1995

236Bibliography

	Overview of UML for Java Programmers
	Diagram Types
	Class Diagrams
	Object Diagrams
	Sequence Diagrams
	Collaboration Diagrams
	State Diagrams

	Conclusion
	Bibliography

	Working with Diagrams
	Why Model?
	Why build models of software?
	Why should we build comprehensive designs before coding?

	Making Effective use of UML
	Communicating with Others.
	Back end Documentation
	What to keep, and What to throw away.

	Iterative Refinement
	Behavior first.
	Check the structure
	Envisioning the code.
	Iterative Refinement

	Minimalism
	When and how to draw diagrams.
	When to draw diagrams, and when to stop.
	CASE Tools.
	But what about documentation?
	And Javadocs?

	Conclusion

	Class Diagrams
	The Basics
	Classes
	Association
	Multiplicity
	Inheritance

	An Example Class Diagram
	The Details
	Class Stereotypes
	Abstract classes
	Properties
	Aggregation
	Composition
	Multiplicity
	Association Stereotypes
	Inner Classes
	Anonymous Inner Classes
	Association classes
	Association Qualifiers

	Conclusion
	Bibliography

	Sequence Diagrams
	The Basics
	Objects, Lifelines, Messages, and other odds and ends.
	Creation and Destruction
	Simple Loops
	Cases and Scenarios

	Advanced Concepts
	Loops and Conditions
	Messages that take time.
	Asynchronous Messages.
	Multiple Threads
	Active Objects
	Sending Messages to Interfaces.

	Conclusion

	Use Cases
	Writing Use Cases
	What is a use case.
	The Primary Course
	Alternate Courses
	What else?

	Use Cases Diagrams
	System Boundary Diagram
	Use Case Relationships

	Conclusion

	Principles of OOD
	Design Quality
	Design Smells.
	Dependency Management

	The Single Reponsibility Principle (SRP)
	The Open Closed Principle (OCP)
	The Liskov Substitution Principle (LSP)
	The Dependency Inversion Principle (DIP)
	The Interface Segregation Principle
	Conclusion
	Bibliography

	The Practices: dX
	Iterative Development
	The Initial Exploration
	Estimating the features
	Spikes

	Planning
	Planning Releases
	Planning Iterations
	The midpoint.
	Velocity Feedback.

	Organizing the Iterations into Management Phases
	What’s in an Iteration?
	Developing in Pairs
	Acceptance Tests
	Unit Tests
	Refactoring
	Open Office
	Continuous Integration

	Conclusion
	Bibliography

	Packages
	Java Packages
	Packages
	Dependencies

	Binary Components -- .jar files.
	Principles of Package Design
	The Release/Reuse Equivalency Principle (REP)
	The Common Closure Principle (CCP)
	The Common Reuse Principle (CRP)
	The Acyclic Dependencies Principle (ADP)
	The Stable Dependencies Principle (SDP)
	The Stable Abstractions Principle (SAP)

	Conclusion

	Object Diagrams
	A Snapshot in Time.
	Active Objects
	Conclusion

	State Diagrams
	The Basics
	Special Events
	Super States
	Initial and Final Pseudo States

	Using FSM Diagrams
	SMC
	ICE: A Case Study

	Conclusion

	Heuristics and Coffee
	The Mark IV Special Coffee Maker
	A Challenge.
	A Common, but Hideous, Coffee Maker Solution
	MissingMethods.
	Vapor Classes
	Imaginary Abstraction
	God Classes

	A Coffee Maker Solution
	Crossed Wires
	The Coffee Maker User Interface
	Use Case 1: User pushes brew button.
	Use Case 2: Containment Vessel not Ready.
	Use Case 3: Brewing Complete.
	Use Case 4: Coffee all gone.
	Implementing the Abstract Model.
	Use Case 1. User pushes Brew Button (Mark IV)
	Implementing the isReady() functions.
	Implementing the start() functions.
	How does M4UserInterface.checkButton get called?
	Completing the Coffee Maker
	The Benefits of this design.
	How did I really come up with this design?

	SMC Remote Service: Case Study
	Caveat Emptor
	Unit Tests.
	The SMCRemote System.
	SMCRemoteClient
	SMCRemoteClient Command Line
	SMCRemote Communication Protocols
	SMCRemoteClient
	The Loggers
	The Remote Sessions.
	RemoteSessionBase
	The Remote Registrar
	The Remote Compiler
	FileCarrier
	SMCRemoteClient Conclusion

	SMCRemoteServer
	SocketService
	SMCRemoteService
	SMCRemoteServer
	ServerSession
	Three Level FSM
	UserRepository
	OReillyEmailSender
	PasswordGenerator

	Conclusion.
	Tests for SMCRemoteClient��
	Tests for SocketService
	Tests for SMCRemoteServer���
	Other Tests
	ServerController (SMC Generated)
	Bibliography

