UML

for

Java
Programmers

Robert Cecil Martin

Object Mentor Inc.

Prentice Hall, Englewood Cliffs, New Jersey 07632

Martin, Robert Cecil.
The Principles, Practices, & Patterns of Agile Software Development
/Robert Cecil Martin.
p. cm.
“An Alan R. Apt Book.”
Includes index.
| SBNXXXXXXXXX

Publisher: Alan Apt
Production Editor:
Cover Designer:
Copy Editor:

© 2002 by Prentice-Hall, Inc.
A Simon & Schuster Company

The author and publisher of this book have used their best efforts in preparing this
book. These efforts include the devel opment, research, and testing of the theories and pro-
grams to determine their effectiveness. The author and publisher shall not be liable in any
event for incidental or consequential damages in connection with, or arising out of, the
furnishing, performance, or use of these programs.

All rights reserved. No part of this book may be reproduced, in any form or by any
means, without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-203837-4

PrenTice-HALL INTERNATIONAL (UK) Limited, London
PRENTICE-HALL OF AUSTRALIA Prv. LimiTeD, Sydney
PRENTICE-HALL CANADA, INC., TOronto

PRENTICE-HALL HisPANOAMERICANA, S.A., Mexico
PRENTICE-HALL OF INDIA PRIVATE LimiTED, New Delhi
PRENTICE-HALL OF JAPAN, INC., TOkyO

SIMON & SCHUSTER AsiA PTE. LTp., Singapore

EDITORA PRENTICE-HALL DO BRASIL, LTDA., Ri0 de Janeiro

This book is dedicated to my grandchildren:
XXX: the son of Micah and Angelique.
Alexis. the daughter of Angela and Matt.

It has been said that grandchildren are the desert of life.
If that’s so, what am | supposed to do with all the many
main courses I’ m not done with yet?

Source Code and Contact I nformation:

Much of the source code presented in this book can be obtained from the
Object Mentor Inc. web site. wwv. obj ect ment or. conf UMLFJP

Robert C. Martin: uncl ebob@bj ectnmentor.com

Cbj ect Mentor Inc.: info@bjectmentor.com
www. obj ect ment or. com

i Chapter :

Chapter 1.
Overview of UML for Java Programmers........ccccoeevecrrinnee. 1
DIagram TYPES ...ooeeeeceie ettt ettt et ae e e enes 2
ClasS DIGQIaIMS.........ccuiiiiiiiiee ettt esbe e e sraeenae s 4
ODJECt DIAgramS.......ceeiuie et nes 5
SEgUENCE DIAQIaMS....c.veecvie ettt et st 6
Collaboration DIiagramsS.........ccueeieeieeiieie e 6
StALE DIBGIAIMS ..ottt et et e et eraeerens 7
CONCIUSION. ...ttt ettt n e e enes 8
Bibliographycee oo 8

Chapter 2:
Working with DiagramsSccccceeeivciiceeeccssieesees e 9
WHY MOGEI ...t e sr e 9
Why build models of softwar€?ccccceeeeeveeieeseceee e, 10
Why should we build comprehensive designs before coding? 10
Making Effective use of UMLcccocoeiieiieiieeeece e 10
Communicating with Others.ccccoeceiiciecece e 11
Back end DOCUMENLELIONccceverieiereiie et 13
What to keep, and What to throw away.cccceeevivvceeieccieciene, 14
[terative REfINEMENT ..o e 15
BENAVIOF FIFSl. .o e 15
Check the SITUCTUNE........cveieieceeee e 17
EnvisSioning the COdE.ccoviieiece e 19
Iterative REFINEMENT ... 20
MINIMEITSM L. e 21
When and how to draw diagrams...........ccceeceeeeveeceesiecceesece e, 21
When to draw diagrams, and when to Stop.cccceeeveeeiecieceieeneen, 21
CASE TOOIS. ...ttt s st st enee e 22
But what about documentation?...........ccoceveviererieeinrnieeee e 23
AN JAVAOOCS?.......ooieeieieiie sttt 23
CONCIUSION. ...ttt e st r et 24

Chapter 3:

ClassS DIagramsS ...t 25

TREBASICS ...ttt b e e 25
ClBSSES. ...ttt et 25
ASSOCIBEION ...ttt sttt sne e sae e 26
MUITPIICITY ..o e 26
INNEITEANCE. ...t e s 27

An Example Class Diagramcccceecueeiieiieeeiie e e see e 28

THEDELAIIS ... e e 30
Class SEErEOLYPES. ...cveeeeeeeie ettt ettt ettt eneeenn 30
ADSITACE ClASSES ..o 31
PrOPEITIES. ...ttt et 31
P00 = 0 = (0] o OSSR 32
(@091 010 1 (o o IS 33
YU T o] Yo Y TSSOSO 34
ASSOCIaliON SEEFEOLYPESecvvecveeeieeeie ettt 35
INNEEN ClLASSES ...ttt et 36
ANONYMOUS INNEX ClaSSES......ccveceieeciecie et 36
ASSOCILION ClASSES......cveiverieetireetie ettt et e 37
ASSOCIAtioN QUAIITIENS......ccvecieiceeectee et 38

CONCIUSION. ...ttt et r e nes 38

Bibliographycue o e 39

Chapter 4:
Sequence DIiagrams ..., 41

B] STz 1S 41
Objects, Lifelines, Messages, and other odds and ends. 41
Creation and DESLIUCTION........ccuveeirreeie et 43
SIMPIE LOOPS.o cuieetiectieseieeece ettt et enee 44
CaseS AN SCENAMOScoueiuerierrireetiereee et 44

AdVanNCed CONCEPLS........coeeieciecrie et 48
Loops and ConditioNnsS...........ccecceeieeiesee s 48
Messages that take time...........occveeeeie e 49
ASYNChIONOUS MESSAJES.vecuveerieriieieeieeiieeiestee st e seesre e e seeaeenee s 51
MUIIPIE THrEadS ..o e 53
ACHVE ODJECES......oiieciecte et se s 54
Sending Messages to INterfaces.oovveeeeee e 54

CONCIUSION... et e e e e e e e e e e e e e e e ee e eneanee s 56

iii Chapter :

Chapter 5:
USB CASES ...ttt sttt 57
WItING USE CASES.....ciiiiie ettt sttt st ns 57
WHhat IS @ USE CASE.....c.eeieieiieeie ettt sttt 58
The Primary COUISEccuviiie ettt st s e 58
AREINALE COUISES.......coiiieie ettt s 59
WHEE ESE? ...ttt s 59
USe CaseS DiagramsS.......ccccceeeeiecie et 60
System Boundary Diagramcccceceeveeieciesie e 60
Use Case RE@ioNSNiPS........cceiveiiecie e s 61
CONCIUSION. ...ttt e et r e neas 61

Chapter 6:
PrinCiples of OOD ... 63
DeSigN QUALITY ..ot e 63
DeSigN SMENIS.....coeoeeeeee e e 63
Dependency Managementcceeueeeeveeveecceese e s 64
The Single Reponsibility Principle (SRP) ..o, 64
The Open Closed Principle (OCP)ooveeciececeeeeceeeece e, 66
The Liskov Substitution Principle (LSP)ccccovvevevieeceeiece e, 78
The Dependency Inversion Principle (DIP).....cccecevvveceececcieciee, 80
The Interface Segregation Principle........cccccoeoveviiveiieeceesecce e, 81
CONCIUSION. ...ttt e e er et sre e ne e 82
Bibliography ..o e 83

Chapter 7:
The PractiCes: dX ...t 85
[terative DevElOPMENT.........cceicieece e 85
The Initial EXPlOrationcccoveiceeiecie e 85
Estimating the features............cocevveee e 86
S o] S SRS 87
PlLANNINGvecieceeceeee e sr e e n e 87
Planning REIEESES.........ccccoviiiiie e ste st s 87
Planning IErations...........cccceeueeieceeieecceese ettt 87

The MIdPOINE.cceeeee e e e 88

Velocity Feedback. ... 89
Organizing the Iterationsinto Management Phases............c.cc.c...... 89
What'sin an [teration?.........cccoieeierieneee e e 89

Developing iN PairS........ooviiiece e 90

ACCEPLANCE TESES. ... 90

UNIE TESES ..ttt et s s 91

REFACLONING ... e e 91

(@] 01C 1 1O 1T TSRS 92

ContiNUOUS INLEGIatioN.........cccueeeeeeieceeeeece et 92
CONCIUSION. ...ttt sttt sre e ne e neas 92
Bibliographyccue o e 93

Chapter 8:

PACKAJES ... 95
JaAVA PACKAgES.ot et 95

PACKAGES.....ceeeeeee ettt ettt nr e n e 95

DEPENTENCIES ...ttt e s 96
Binary Components-- .jar files.......ccccoevevieiieieenece e 97
Principles of Package DeSIgNcccccieeieiieveeeieesece e 97

The Release/Reuse Equivaency Principle (REP)..........ccccccveeveenee. 98

The Common Closure Principle (CCP)........coveveeceeieeeee e, 98

The Common Reuse PrinCiple (CRP)ccoeveeveveeieseee e, 99

The Acyclic Dependencies Principle (ADP)........oovveevveceevececnee 99

The Stable Dependencies Principle (SDP)cocvvcevvvceeiecie e, 99

The Stable Abstractions Principle (SAP)ccccooveeiicie s 100
CONCIUSION. ...ttt et ene e e 100

Chapter 9:

ODbjJECt DIAQrams ..ot 103
A SNAPSNOL iN TIME. ..o e e 103
ACLIVE ODJECES. ...t 105
CONCIUSION. ...ttt 108

Chapter 10:

State DIAgramsSccocueeeeeecee et 109

TREBASICS ...ttt e e e s 109
SPECIAl EVENLSoiiiieiie ettt 110
SUPEN SEALES...ccveeiectie ettt et s e 111
Initial and Final Pseudo SEates..........cccevveinvievieeeeeeee e 113

USING FSM Diagrams........ccccveiiiiiie e eseee e ssee e s nns 113
SIMIC et e et 114
[CE: A CaSE SIUAYoovvieciie ettt s 116

CONCIUSION. ...ttt sttt ene e s et 121

Chapter 11:
Heuristicsand Coffee ... 123

TheMark IV Special Coffee Makercccccveeveveececeeceeeee 123
A ChalleNgE. ... 126
A Common, but Hideous, Coffee Maker Solution............ccccceuuene.. 126
MiSSINGMELNOUS.coceeeieceieeee e 126
VAPON ClASSES......cciiiieciecriesteesee e e esee st e st se e s eaeesaenaeeraesneeneennes 127
Imaginary ADSIFaCtioN..........cceeveeiiiece e 128
GO ClBSSES.....cvirieeiieieie ettt e r st ene et neas 129

A Coffee Maker SOIULIONcoceiieiiieie e 129
CrOSSEA WITES ...ttt st 130
The Coffee Maker User INterfaCe........coovvererieeinneeininiecienesie s 131
Use Case 1: User pushes brew button.cccceevveeeeieccecienee, 131
Use Case 2: Containment Vessel not Ready.ccccecevievieenee. 132
Use Case 3: Brewing COmplete.ccceveeveveieececie e 132
Use Case 4: Coffeeall gone.cccveceeieiieiieceeeececeee e, 134
Implementing the Abstract Model...........ccccoveeeievieie v 134
Use Case 1. User pushes Brew Button (Mark IV)cccccvevieneee. 135
Implementing the isReady() functions.c.ccccevveveveeceececee 136
Implementing the start() functions.cccceeoe e 137
How does M4Userlnterface.checkButton get called?.................... 138
Completing the Coffee MaKerccocoeeievievicceece e, 139
The Benefits of thisdesign.ccccooveecececcecc e 141
How did | really come up with thisdesign?..........cccccevveiecienenn. 141

Chapter 12:

SMC Remote Service: Case Studyccoooeevevevicceiieeeeeeene, 153

Vi

Caveat EMPLONcuiiiiiiec ettt 153
[] 1 1= £ 154
The SMCREMOLE SYSLEM. ...ccveiieeie e 154
SMCREMOLECTENT ... 154
SMCRemoteClient Command Line........cccccueeeeeeiveeiciiieee e 155
SMCRemote Communication Protocols...........ccccceeveeecveeeceiveeeenns 155
SMCREMOLECHENL ...ttt s 157
TRELOQUETS.uecuiectiectiete ettt sttt et e enee 164
The REMOLE SESSIONS.oeeiuveiiciieiecteeecte ettt s srae e ree s 165
REMOLESESSIONBASE ... e s 166
The Remote REGISLIAr.........ccveviieeeceeece e e 169
The Remote COMPILEScc.ooeeece e 171
1O = G 176
SMCRemoteClient CONCIUSION........ccueeeveeeiiee e e 177
SM CREMOLESEN VEL oottt s 178
00 (= < AV T 178
SMCREMOLESENVICE.....ccicvieeecte ettt et e s 183
SMCREMOIESEIVET ...ttt 187
S VS S = L) 1 [190
THrEE LEVE FSM ...ttt 192
(USRS 00 1S 1 (o] SR 192
OREIIYEMaIlSENEN.......cce e 202
PaSSWOrAGENEIALONccuvee et 202
(70 To: 11 15T 0] o FU R 203
Testsfor SMCRemMOoteClient ... 204
TeStSTOr SOCKELSEN VICE.....cceie e e 211
Testsfor SMCREMOESENVEr e 214
(@1 1< G 1= £ 224
ServerController (SMC Generated)cccceeeevveveevecceecece e, 227

Bibliographycuo oo 235

1

Overview of UML for Java
Programmers

The Unified Modeling Language (UML) is a graphical notation for drawing diagrams of
software concepts. One can use it for drawing diagrams of a problem domain, a proposed
software design, or an already completed software implementation. Fowler' describes
these three different levels as Conceptual, Specification, and Implementation. This deals
with the last two.

Specification and Implementation level diagrams have a strong connection to source
code. Indeed it isthe intent for a Specification level diagram to be turned into source code.
Likewise it is the intent for an Implementation level diagram to describe existing source
code. As such there are rules and semantics that diagrams at these levels must follow.
Such diagrams have very little ambiguity, and a great deal of formality.

On the other hand, diagrams at the Conceptual level are not strongly related to source
code. Rather they are related to human language. They are a shorthand used describe con-
cepts and abstractions that exist in the human problem domain. They don’t follow strong
semantic rules and therefore their meaning can be ambiguous and subject to interpretation.

Consider, for example, the following sentence: A dog is an animal. We can create a
Conceptual UML diagram that respresents this sentence. (See Figure 1-1.)

This diagram depicts two entities named Animal and Dog connected by generaliza-
tion relationship. An Animal is a generalization of aDog. A Dog is a special case of an
Animal. That's all the diagram means. Nothing more can be inferred from it. We might be
asserting that our pet dog, Sparky, is an animal; or we might be asserting that dogs, as a

1. [Fowler0Q], p??

Diagram Types 2

Animal

Dog

Figure1-1
A Dog is an Animal

biological species, belong to the animal kingdom. Thus, the diagram is subject to interpre-
tation.

However, the same diagram at the Specification or Implementation level has a much
more precise meaning:

public class Animal {}

public class Dog extends Animal {}

This source code defines Ani nal and Dog as classes connected by an inheritance
relationship. Whereas the Conceptual model says nothing at all about computers, data pro-
cessing, or programs, the Specification model describes part of a program.

It is unfortunate that the diagrams themselves don’t communicate what level they are
drawn at. Failure to recognize the level of a diagram is the source of significant miscom-
munication between programmers and analysts. A Conceptual level diagram does not
define source code, nor should it. A Specification level diagram that descibes the solution
to a problem does not have to look anything like the Conceptual level diagram that
describes that problem.

All the rest of the diagrams in this book will be at the Specification/| mplementation
level, and will be accompanied by corresponding source code where feasible. We have
seen our last Conceptual level diagram.

Diagram Types

Below is avery quick tour of the primary diagrams used in UML. Once you read through
it, you will be able to read and write most of the UML diagrams you will usually need.
What remains, and what subsquent chapters address, are the details and formalisms that
you will need to become proficientin UML.

UML has three main kinds of diagrams. Static diagrams describe the unchanging log-
ica structure of software elements by depicting classes, objects, and data structures; and
the relationships that exist between them. Dynamic diagrams show how software entities
change during execution by depicting the flow of execution, or the way entities change

3 Chapter : Overview of UML for Java Programmers

state. Physical diagrams show the unchanging physical structure of software entities by
depicting physical entities such as source files, libraries, binary files, data files, etc., and
the relationships that exist between them.

Consider the code in Listing 1-1. This program implements a map based upon a sim-

ple binary tree algorithm. Familiarize yourself with the code before you consider the dia-
grams that follow.

Listing 1-1
TreeMap.java

public class Treevap {
Tr eeMapNode t opNode = null;

public void add(Conparabl e key, Object value) {
if (topNode == null)
t opNode = new TreeMapNode(key, val ue);
el se
t opNode. add(key, val ue);

public Object get(Conparable key)
return topNode == null ? null : topNode.find(key);

}

}

cl ass TreeMapNode {
private final static int LESS = 0;
private final static int GREATER = 1;
privat e Conparabl e itsKey;

private Object itsVal ue;
private TreeMapNode nodes[] = new TreeMapNode[2] ;

public TreeMapNode(Conpar abl e key, Object val ue) {
itsKey = key;
i tsVal ue = val ue;

}

public Object find(Conparable key) {
if (key.conpareTo(itsKey) == 0) return itsVal ue;
return findSubNodeFor Key(sel ect SubNode(key), key);

private int sel ect SubNode(Conpar abl e key)
return (key.conpareTo(itsKey) < 0) ? LESS : GREATER;

private Object findSubNodeForKey(int node, Conparable key) {
return nodes[node] == null ? null : nodes[node].find(key);

public void add(Conparabl e key, bject value) {
if (key.conpareTo(itsKey) == 0)
itsValue = val ue;
el se
addSubNode(sel ect SubNode(key), key, val ue);

Diagram Types 4

Listing 1-1 (Continued)
TreeMap.java

private void addSubNode(int node, Conparable key,
Obj ect val ue) {

i f (nodes[node] == null)
nodes[node] = new TreeMapNode(key, val ue);
el se

nodes[node] . add(key, val ue);

}
}

Class Diagrams

The Class Diagram in Figure 1-2 shows the mgjor classes and relationships in the
program. It shows that there is a Tr eeMap class that has public methods named add and
get . It shows that TreeMap holds a reference to a Tr eeMapNode in a variable named
t opNode. It showsthat each Tr eeMapNode holds areference to two other Tr eeMapNode
instances in some kind of container named nodes. And it shows that each Tr eeMapNode
instance holds references to two other instances in variables named itsKey and
i t sVal ue. Thei t sKey variable holds a reference to some instance that implements the
Conpar abl e interface. Thei t sVal ue variable simply holds a reference to some object.

2 |, nodes
TreeMap topNode TreeMapNode
+ add(key, value) + add(key, value)
+ get(key) + find(key)
itsKkey «interface»
Comparable
itsValue
Object
Figure 1-2

Class Diagram of TreeMap

We'll go over the nuances of class diagrams in a subsequent chapter. For now, there
are only afew things you need to know.

» Rectangles represent classes, and arrows represent rel ationships.

* Inthisdiagram all therel ationshil[))s are associations. Associations are simple

datarelationships in which one object holds a reference to, and invokes methods

Chapter : Overview of UML for Java Programmers

upon, the other.

The name on an association maps to the name of the variable that holds the refer-
ence.

A number next to an arrowhead typically shows the number of instances held by
the relationship. If that number is greater than one then some kind of container,
usually an array, isimplied.

Class icons can have more than one compartment. The top compartment always
ggll ds the name of the class. The other compartments describe functions and vari-
€s.

The «i nt er f ace» notation meansthat Conpar abl e isan interface.
Most of the notations shown are optional.

Look carefully at this diagram and relate it to the codein Listing 1-1. Notice how the
association relationships correspond to instance variables. For example, the association
from TreeMap to Tr eeMapNode is named t opNode and corresponds to the t opNode
variable within Tr eeMap.

Object Diagrams

Figure 1-3 is an Object Diagram. It shows a set of objects and relationships at a par-
ticular moment in the execution of the system. You can view it as a snapshot of memory.

:TreeMap topNodeJ/
:TreeMapNode
- itsKey = "Martin"
nodes[LESS] nodes[GREATER]
:TreeMapNode :TreeMapNode
- itsKey = "Bob" - itsKey = "Robin"
I | I I
nodes[LESS] nodes[GREATER] nodes[LESS] nodes[GREATER]
Y Y
:TreeMapNode :TreeMapNode :TreeMapNode :TreeMapNode
- itsKey = "Alan" - itsKey = "Don" - itsKey = "Paul" - itsKey = "Sam"
Figure 1-3

TreeMap Object Diagram

Diagram Types 6

In this diagram the rectangle icons represent objects. You can tell that they are objects
because their names are underlined. The the name after the colon is the name of the class
that the object belongs to. Note that the lower compartment of each object shows the value
of that object’si t skey variable.

The relationships between the objects are called links, and are derived from the asso-
ciations in Figure 1-3. Note that the links are named for the two array cells in the nodes
array.

Sequence Diagrams

Figure 1-4 is a Sequence Diagram. It describes how the Tr eeMap. add method is imple-

mented.
% .

| add(key, value) ‘

’—b value key
- : o topNode:
| [topNode == null] TreeMapNode
‘ add(key, value) ‘
| | [topNode != null] "l
Figure 1-4

TreeMap.add

The stick figure represents an unknown caller. This caller invokes the add method on
aTreeMap object. If thet opNode variableisnul | , then Tr eeMap responds by creating a
new Tr eeMapNode and assigning it to t opNode. Otherwise the Tr eeMap sends the add
message to t opNode.

The boolean expressions inside square brackets are called guards. They show which
path is taken. The message arrow that terminates on the Tr eeMapNode icon represents
construction. The little arrows with circles are called data tokens. In this case they depict
the construction arguments. The skinny rectangle below Tr eeMap is called an activation.
It depicts how much time the add method executes.

Collaboration Diagrams

The diagram in Figure 1-5 is a Collaboration Diagram depicting the case of
Tr eeMap. add where t reeNode is not nul | . Collaboration diagrams contain the same
information that sequence diagrams contain. However whereas sequence diagrams make
the order of the messages clear, collaboration diagrams make the relationships between the
objects clear.

7 Chapter : Overview of UML for Java Programmers

1: add(key, value)
—
:TreeMap

[topNode != null]
1.1:add(key, value)

topNode
TreeMapNode

Figure 1-5
Collaboration Diagram of one case of TreeMap.add

The objects are connected by relationships called links. A link exists wherever one
object can send a message to another. Traveling over those links are the messages them-
selves. They are depicted as the smaller arrows. The messages are labeled with the name
of the message, its sequence number, and any guards that apply.

The dot structure of the sequence number shows the calling hierarchy. The
Tr eeMap. add function (message 1) invokes the Tr eeMapNode. add function (message
1.1). Thusmessage 1.1 isthe first message sent by the function invoked by message 1.
Sate Diagrams

UML has a very comprehensive notation for finite state machines. Figure 1-6 shows just
the barest subset of that notation.

coin / Unlock

pass / Alarm Locked

Unlocked coin / Thankyou
pass / Lock

Figure 1-6
State Machine of a Subway Turnstile

Figure 1-6 shows the state machine for a subway turnstile. There are two states
named Locked and Unl ocked. Two events may be sent to the machine. The coi n event
means that the user has dropped a coin into the turnstyle. The pass event means that the
user has passed through the turnstile.

The arrows are called transitions. They are labeled with the the event that triggers the
transition, and the action that the transition performs. When a transition is triggered it
causes the state of the system to change.

Conclusion 8

We can translate Figure 1-6 to english as follows:

 If weareinthe Locked state, and we get a coi n event, then we transition to the
Unl ocked state and we invoke the Unl ock function.

« IfweareintheUnl ocked state and we get apass event then we transition to the
Locked state and we invoke the Lock function.

+ If weareintheUnl ocked state and we get acoi n event, then we stay in the
Unl ocked state and we call the Thankyou function.

» If weareinthe Locked state and we get apass event then we stay in the
Locked state and we call the Al ar mfunction.

Diagrams like this are extremely useful for figuring out the way a system behaves.
They give us the opportunity to explore what the system should do in unexpected cases,
like when a user drops a coin, and then drops another coin for no good reason.

Conclusion

The diagrams shown in this chapter are enough for most purposes. Most programmers
could live without any more knowledge of UML that what is shown here.

Bibliography

[Fowler00]: UML Distilled, 2d. ed. Martin Fowler, Addison Wesley, 199?

2

Working with Diagrams

“Before we explore the details of UML, it would be wise to talk about when and why we
use it. Much harm has been done to software projects through the misuse and overuse of
UML.

Why Model?

Why do engineers build models? Why do aerospace engineers build models of aircraft?
Why do structural engineers build models of bridges? What purposes do these models
serve?

These engineers build models to find out if their designs will work. Aerospace engi-
neers build models of aircraft and then put them into wind tunnels to see if they will fly.
Structural engineers build models of bridges to see if they will stand. Architects build
models of buildings to see if their clients will like the way they look. Models are built to
find out if something will work.

Thisimpliesthat models must be testable. It does no good to build amode if there are
no criteria you can apply to that model in order to test it. If you can’'t evaluate the model,
the model has no value.

Why don’t aerospace engineersjust build the plane and try to fly it? Why don’t struc-
tural engineers just build the bridge and then see if it stands? Because airplanes and
bridges are a lot more expensive than the models. We investigate designs with models
when the models are much cheaper than the real thing we are building.

Making Effective use of UML 10

Why build models of software?

Can a UML diagram be tested? Is it much cheaper to create and test than the software it
represents? In both cases the answer is nowhere near as clear asit is for aerospace engi-
neers and structural engineers. There are no firm criteria for testing a UML diagram. We
can look at it, and evaluate it, and apply principles and patterns to it; but in the end the
evaluation is still very subjective. UML diagrams are less expensive to draw than software
is to write; but not by a huge factor. Indeed, there are times when it's easier to change
source code than it is to change a diagram. So then, does it make sense to use UML?

I wouldn’t be writing this book if UML didn’t make senseto use. However, the above
illustratesjust how easy UML isto misuse. We make use of UML when we have something
definitive we need to test, and when using UML to test it is cheaper than using code to test
it.

For example, lets say | have an idea for a certain design. | need to test whether the
other developers on my team think it is a good idea. So | write a UML diagram on the
whiteboard and ask my teammates for their feedback.

Why should we build comprehensive designs before coding?

Architects, aerospace engineers, and structural engineers all draw blueprints. Why?
Because one person can draw the blueprints for a home that will require five or more peo-
pleto build. A few dozen aerospace engineers can draw blueprints for an airplane that will
require thousands of people to build. Blueprints can be drawn without digging founda-
tions, pouring concrete, or hanging windows. In short, it is much cheaper to plan a build-
ing up front, than it isto try to build it without a plan. It doesn’t cost much to throw away
afaulty blueprint, but it costs alot to tear down afaulty building.

Once again things are not so clear cut in software. It is not at all clear that drawing
UML diagramsis much cheaper than writing code. Indeed, many project teams have spent
more on their diagrams than they have on the code itself. It is aso not clear that throwing
away adiagram is much cheaper than throwing away code. Therefore, it isnot at al clear
that creating a comprehensive UML design before writing code is a cost effective option.

Making Effective use of UML

Apparently neither architecture, nor aerospace engineering, nor structural engineering pro-
vide a clear metaphor for software development. We cannot blithely use UML the way
those other disciplines use blueprints and models. So when and why should we use UML?

11 Chapter 2: Working with Diagrams

Communicating with Others.

UML is enormously convenient for communicating design concepts between software
developers. A lot can be done with a small group of developers at a whiteboard. If you
have some ideas that you need to communicate to others, UML can be a big benefit.

UML is very good for communicating focussed design ideas. For example, the dia-
gram in Figure 2-1 is very clear. We see the Logi nSer vl et implementing the Ser vl et
interface and using the User Dat abase. Apparently the classes HTTPRequest and
HTTPResponse are needed by the Logi nSer vl et . One could easily imagine a group of
devel opers standing around awhiteboard debating a diagram like this. Indeed, the diagram
makes it very clear what the code structure would look like.

«interface»
Servlet HTTPRequest
HTTPResponse
User Login
Database Servlet
+ getUser() + processRequest()
Figure 2-1

Login Servlet

On the other hand, UML is not particularly good for communicating agorithmic
detail. Consider the simple bubble sort code in Listing 2-1. Expressing this simple module
in UML is not very satisfying..

Listing 2-1
Bubble Sort

public class BubbleSorter

static int operations = 0
public static int sort(int [] array)

operations = 0
if (array.length <= 1)
return operations;

for (int nextTolLast = array.|ength-2;
next ToLast >= 0; next TolLast--)
for (int index = 0; index <= nextTolLast; index++)
conpar eAndSwap(array, index);

return operations;

}

Making Effective use of UML 12

Listing 2-1 (Continued)
Bubble Sort

private static void swap(int[] array, int index)

int temp = array[index];
array[index] = array[index+1];
array[index+1] = tenp;

private static void conpareAndSwap(int[] array, int index)

if (array[index] > array[index+1])
swap(array, index);
oper ati ons++;
}
}

The diagram in Figure 2-2 gives us arough structure, but is combersome and reflects
none of the interesting details. The diagram in Figure 2-3 is no eaiser to read than the code
and is substantially more difficult to create. UML for these purposes leaves much to be
desired.

BubbleSorter

+ sort(array: int[]) : int
- swap(array : int[], index : int)
- compareAndSwap(array : int[], index : int)

Figure 2-2
Bubble Sorter

> |
>

sort

1
compareAndSwap(array, index)

[for (int index = 0; index <= nextToLast; index++)

for (int nextToLast = array.length-2; nextToLast >= 0; nextToLast--)

BubbleSorter
\
\ |
\
\
\
\
\
\

H

Figure 2-3
Bubble Sort Sequence Diagram

13 Chapter 2: Working with Diagrams

UML can be useful for creating roadmaps of large software structures. Such road-
maps give developers a quick way to find out which classes depend upon which others and
provide areference to the structure of the whole system.

For example, in Figure 2-4 it is easy to seethat Space objects have aPol yl i ne con-
structed of many Li nes which are derived from Li near Obj ect which contains two
Poi nt s. Finding this structure in code would be tedious. Finding it in a roadmap diagram
istrivial.

Geometric
Object

Iy

itsOutline

PolyLine Space

Authored
Space

Point LinearObject

‘ Portal

Human
Portal

Hﬁ

‘ Door ‘

Ray InfiniteLine Line

Window

WallOpening

Figure 2-4
Roadmap

Such roadmaps can be useful teaching tools. However, any team member ought to be
ableto throw such adiagram up on the whiteboard at a moments notice. Indeed, | drew the
one above from my memory of a system | was working on five years ago. Such diagrams
capture the knowledge that al the developers must keep in their heads in order to work
effectively in the system. So, for the most part, there is not much point is going to alot of
trouble to create and archive such documents. Their best use is, once again, at the white-
board.

Back end Documentation
When isthe best time to create a design document? At the end of the project as the last act

of the team. Such a document will accurately reflect the state of the design as the team | ft
it, and could certainly be useful to an incomming team.

Making Effective use of UML 14

However, there are some pitfalls. UML diagrams need to be carefully considered. We
don’t want a thousand pages of sequence diagrams! Rather, we want a few very salient
diagrams that describe the magjor issuesin the system. No UML diagram isworse than one
that is cluttered with so many lines and boxes that you get lost in the tangle (See Figure 2-
5). Don’t do this.

fravitz j fradle fivvle gazatch

/= 5

parpangle gabaduchi turnatls

tolanomatine
gilmaso
coriadon
‘ Kobe

teliadora bisotias Sobe
dorasifus castigamator ‘
‘ \l/ ‘ quidatle J Kaastor
J zelsofus
\[/7 sagatock
’/—‘ freedle meek J denar
garmatos ‘ /F ‘ ‘
r Gorsage]
Gossage %‘
Figure 2-5

What to keep, and What to throw away.

Get into the habit of throwing UML diagrams away. Better yet, get into the habit of not
creating them on a persistent medium. Write them on a whiteboard, or on scraps of paper.
Erase the whiteboard frequently, and throw the scraps of paper away. Don’t use a case tool
or adrawing program as arule. There isatime and place for such tools, but most of your
UML should be short-lived.

Some diagrams, however, are useful to save. There are diagrams that express a com-
mon design solution in your system. There are diagrams that record complex protocols
that are hard to see in the code. There are diagrams that provide roadmaps for areas of the

15 Chapter 2: Working with Diagrams

system that aren’t touched very often. There are diagrams that record designer intent in a
way that is better than code can expressit.

There is no point in hunting for these diagrams; you'll know them when you see
them. There's no point in trying to create these diagrams up front. You' |l be guessing, and
you'll guess wrong. The real useful diagrams will keep showing up over and over again.
They’ll show up on whiteboards or scraps of paper in design session after design session.
Eventually someone will make a persistent copy of the diagram just so it doesn’t have to
be drawn again. That is the time to place the diagram in some common area that everyone
has access to.

It isimportant to keep common areas convenient and uncluttered. Putting useful dia-
grams on a web server, or a networked knowledge base, is a good idea. However, don’t
allow hundreds or thousands of diagrams to accumulate there. Be judicious about what
diagrams are truly useful, and which could be recreated by anybody on the team at a
moments notice. K eep only those whose long term survival has lots of value.

Iter ative Refinement

How do we create UML diagrams? Do we draw them in one brilliant flash of insight? Do
we draw the class diagrams first and then the sequence diagrams? Should we scaffold the
whol e structure of the system first before we flesh in any of the details?

The answer to all these questionsis aresounding NO. Anything humans do well they
do by taking tiny little steps and then evaluating what they have done. The things that
humans do not do well are thingsthat they do in great leaps. We desire to create useful uml
diagrams. Therefore we will create them in tiny little steps.

Behavior first.

I liketo start with behavior. For those problems where | think UML will help me think the
problem through, I’ll start by drawing a simple sequence diagram of the problem. Condis-
der, for example, the software that controls acellular phone. How does this software make
the phone call?

We might imagine that the software detects each button press and sends a message to
some object that controls dialing. So we'll draw a But t on object and aDi al | er object
and show the But t on sending the di gi t messagetotheDi al | er.

1*.digit(n)
—
: Button :Dialler

Iter ative Refinement 16

What will the Di al | er dowhen it recievesthedi gi t message? Well, it needs to get
the digit displayed on the screen. So perhaps it'll send di spl ayDi gi t to the Screen
object.

1*.digit(n)
—
: Button :Dialler

l 1.1 : displayDigit(n)

LScreen

Next the Di al | er had better cause a tone to be emitted from the speaker. So we'll
have it send thet one message to the Speaker object.

1*.digit(n)
—
: Button :Dialler
1.2: tone(n)
— |
J/ l 1.1 : displayDigit(n)
- Speaker . Screen

At some point the user will pressthe“send” button indicating that he wants the call to
go through. At that point we'll have to tell the cellular radio to connect to the cellular net-
work and pass along the phone number that was dialled.

2:Send
—
send : Button
1*.digit(n) 2.1: connect(pno)
: Button ‘Dialler :Radio
1.2: tone(n)
— |
J/ i 1.1 : displayDigit(n)
: Speaker : Screen

Once the connection has been established, the Radi o can tell the Scr een to light up
the “in use” indicator. This message will almost certainly be sent in a different thread of
control (which is denoted by the letter in front of the sequence number). Thefinal collabo-
ration diagram is shown in Figure 2-6.

17 Chapter 2: Working with Diagrams
2:Send
—
send : Button
1*.digit(n) 2.1 : connect(pno)
—» —»
:Button ‘Dialler :Radio
1.2: tone(n)
—
¢ i 1.1 : displayDigit(n)
_ Speaker . Screen
-
Al :inUse
Figure 2-6
Cell Phone Collaboration Diagram
Check thestructure

This little exersize has shown how we build a collaboration from nothing. Notice how we
invented obj ects along the way. We didn’t know these objects were going to be there ahead
of time, we just knew we needed certain things to happen, so we invented objects to do
them.

But now, before we go much further, we need to examine what this collaboration
means to the structure of the code. So we'll create a class diagram that supports the collab-
oration. This class diagram will have a class for each object in the collaboration, and an
association for each link in the collaboration.

Radio

Button Dialler

|

Speaker

Screen

Figure 2-7
Cell Phone Class Diagram

Those of you who are familiar with UML will note that | have ignored aggregation
and composition. That's intentional. There'll be plenty of time to consider whether any of
those relationships apply nor not.

Iter ative Refinement 18

What's important to me right now is an analysis of the dependencies. Why should
But t on depend upon Di al | er ? If you think about this, it's pretty hideous. Consider the
implied code:

public class Button

{
private Dialler itsDialler;
public Button(Dialler dialler)
{itsDialler = dialler;}

}

| don’t want the source code of Butt on mentioning the source code of Di al | er.
But t on isaclassthat | can usein many different contexts. For example, I'd like to use the
But t on classto control the on/off switch, or the menu button, or the other control buttons
on the phone. If | bind the Butt on to the Di al | er, then | won't be able to reuse the
But t on code for other purposes.

| can fix this by inserting an interface between Butt on and Di al | er as shown in
Figure 2-8. Here we see that each But t on is given a token that identifies it. When the
Button class detects that the real button has been pressed, it invokes the
butt onPressed method of the Butt onLi st ener interface, passing the token. This
breaks the dependence of But t on upon Di al | er and allows But t on to be used virtually
anywhere that needs to recieve button presses..

«interface»
Button ButtonListener

- token

+ buttonPressed(token)

1

Dialler Radio
Speaker Screen
Figure 2-8

Isolating Button from Dialler

Notice that this change has had no effect upon the dynamic diagram in Figure 2-6.
The objects are all the same, it's just the classes that have changed.

Unfortunately now we've made Di al | er know something about Butt on. Why
should Di al | er expect to get its input from But t onLi st ener ? Why should it have a

19 Chapter 2: Working with Diagrams

method within it named butt onPressed? What has the Di al | er got to do with
Butt on?

We can solve this problem, and get rid of all the token nonsense, by using a batch of
little adapters. The But t onDi al | er Adapt er implements the But t onLi st ener inter-
face. It receives the butt onPressed method and sends a di gi t (n) message to the
Di al l er. Thedi gi t passedtotheDi al | er isheldin the adapter.

«interface»

ButtonListener
Button
+ buttonPressed()
ButtonDialler -
Adapter Dialler
Radio
- digit + digit(n)
Speaker Screen
Figure 2-9

Adapting Buttons to Diallers

Envisioning the code.

We can easily envision the code for the ButtonDiallerAdapter. It appearsin Listing 2-
2. Being able to envision the code s critically important when working with diagrams. We
use the diagrams as a shortcut for code, not a replacement for it. If you are drawing dia-
grams and cannot envision the code that they represent, then you are building castlesin the
air. Stop what you are doing, and figure out how to trandlate it to code. Never let the dia-
grams become an end unto themselves. You must always be sure you know what code you
are representing.

Listing 2-2
ButtonDiallerAdapter.java

public class ButtonD allerAdapter inplemenis ButtonLi Stener
{

private int digit;

private Dialler dialler;

public ButtonDi al |l erAdapter(int digit, Dialler dialler)

this.digit = digit;
this.dialler = dialler;

}

Iter ative Refinement 20

Listing 2-2
ButtonDiallerAdapter.java
publ'ic void buttonPressed()

dialler.digit(digit);

}

|terative Refinement

Note that the last change we made in Figure 2-9 has invalidated the dynamic model back
in Figure 2-6. The dynamic mode knows nothing of the adapters. We'll change that now.
See Figure 2-10.

2:buttonPressed
—

ﬂ ButtonListener
2.1:Send
:SendButton
—
DiallerAdapter

:Button — 1.1digit(n) 2.1.1: connect(pno)
X J—— —-
+ButtonDialler ‘Dialler

Adapter

1.1.2: tone(n)
-—
%L 11.1: o
, ButtonList ld' layDigi :Radio
uttonListener isplayDigit(n)
1*:buttonPressed
s - Screen =

-—
Al :inUse

Figure 2-10
Adding Adapters to the Dynamic Model

This shows how the diagrams evolve together in an iterative fashion. You start with a
little bit of dynamics. Then you explore what those dynamic imply to the static relation-
ships. You alter the static relationships according to the principles of good design. Then
you go back and improve the dynamic diagrams.

Each of these stepsin tiny. We don’t want to invest any more than 5 minutes into a
dynamic diagram before exploring the static structure implied. We don’t want to spend
any more than 5 minutes refining that static structure before we consider the impact on the
dynamic behavior. Rather, we want to evolve the two diagrams together using very short
cycles.

Remember, we're probably doing this at a whiteboard, and we are probably not
recording what we are doing for posterity. We aren’t trying to be very formal or very pre-
cise. Indeed, the diagrams | have included in the figures above are a bit more precise and

21 Chapter 2: Working with Diagrams

formal than you would normally haveto be. The goal at the whiteboard is not to get all the
dots right on your sequence numbers. The goal isto get everybody standing at the board to
understand the discussion. The goal isto stop working at the board and start writing code.

Minimalism

This book will show you all the various widgets and icons you can adorn a UML diagram
with. Using these adornments you can make your diagrams very complex. It is possible to
represent an amazing amount of detail in a UML diagram. However, | advise against this.

Aswe'll discuss below, diagrams are most useful for communicating with other, and
for helping you work out design problems. It isimportant that you only use the amount of
detail necessary to accomplish your goal. Loading a diagram up with lots of adornmentsis
possible, but counter-productive. Keep your diagrams simple and clean. UML diagrams
are not source code and should not be treated as the place to declare every method, vari-
able, and relationship.

When and how to draw diagrams.

Drawing UML diagrams can be a very useful activity. It can also be a horrible waste of
time. A decision to use UML can be a very good thing, or it can be a very bad thing. It
depends upon how, and how much, you choose to useiit.

When to draw diagrams, and when to stop.

Don’t make arule that everything must be diagrammed. Such rules are worse than usel ess.
Enormous amounts of project time and energy can be wasted in pursuit of diagrams that
no one will ever read.

When to draw diagrams:

» Draw diagrams when several people need to understand the structure of a partic-
ular part of the design because they are all going to be working on it simulta-
neously. Stop when everyone agrees that they understand.

» Draw diagrams when two or more people disagree on how a particular element
should be designed, and you want team consensus. Put the discussion into atime-
box choose a means for deciding, like avote, or an impartial judge. Stop at the
end of the timebox, or when the decision can be made. Then erase the diagram.

» Draw diagrams when you just want to play with a design idea, and the diagrams
can help you think it through. Stop when you’ ve gotten to the point that you can
finish your thinking in code. Discard the diagrams.

When and how to draw diagrams. 22

Draw diagrams when you need to explain the structure of some part of the code
to someone else, or to yourself. Stop when the explanation would be better done
by looking at code.

Draw diagrams when it’s close to the end of the project and your customer has
requested them as part of a documentation stream for others.

When not to draw diagrams:

Don’'t draw diagrams because the process tells you to.

Don’'t draw diagrams because you feel guilty not drawing them or because you
think that's what good designers do. Good designers write code and draw dia-
grams only when necessary.

Don’'t draw diagrams to create comprehensive documetation of the design phase
prior to coding. Such documents are almost never worth anything and consume
immense amounts of time.

Don’'t draw diagrams for other people to code. True software architects partici-
patein the coding of their designs, so that they can lay in the bed they have made.

CASE Tools.

UML CASE tools can be beneficial, but they can also be expensive dust collectors. Be
very careful about making a decision to purchase and deploy a UML CA SE toal.

Don’t UML CASE tools makeit easier to draw diagrams?

No, they make it significantly harder. Thereis along learning curve to get profi-
cient; and even then the tools are more cumbersome than whiteboards. White-
boards are very easy to use. Developers are usually already familiar with them. If
not, thereis virtually no learning curve.

Don’'t UML CASE tools makeit easier for large teams to collaborate on dia-
grams?

In some cases. However, the vast mgjority of developer and devel opment
projects do not need to be producing diagrams in such quantities and complexi-
ties that they require an automated collaborative system to coordinate their activ-
ities. In any case, the best time to purchase a system to coordinate the preparation
of UML diagramsiswhen amanua system hasfirst been put in place, is starting
to show the strain, and there is no other choice but to automate.

Don’t UML CASE tools makeit easier to generate code?

The sum tota effort involved in creating the diagrams, generating the code, and
then using the generated code is not likely to be less then the cost of just writing
the codein thefirst place. If thereisagain, it is not an order of magnitude, or
even afactor of two. Developers know how to edit text file and use IDEs. Gener-

23 Chapter 2: Working with Diagrams

ating code from diagrams may sound like a good idea; but | stronly urge you to
measure the productivity increase before you spend alot of money.

* What about these CASE tools that are also | DEs and show the code and dia-
grams together?
These tools are definitely cool. However, | don’t think the constant presence of
UML isimportant. The fact that the diagram changes as | modify the code, or
that the code changes as | modify the diagram, does not really help me much.
Frankly, I'd rather buy an IDE that has put its effort on figuring out how to help
me manipulate my programs than my diagrams. Again, measure productivity
improvement before making a huge monetary committment.

In short, look before you leap, and look very hard. There may be a benefit to outfitting
your team with an expensive CASE tool; but verify that benefit with your own experi-
ments before buying something that could very well turn into shelfware.

But what about documentation?

Good documentation is essential to any project. Without it the team will get lost is a sea of
code. On the other hand, too much documentation of the wrong kind is worse; because
then you have all this distracting and misleading paper, and you still have the sea of code.

Documentation must be created, but it must be created prudently. Often the choice not
to document is just as important as the choice to document. A complex communication
protocol needs to be documented. A complex relatoinal schema needs to be documented.
A complex reusable framework needs to be documented.

However, none of these things needs a hundred pages of UML. Software documenta-
tion should be short, and to the point. The value of a software document is inversely pro-
portional to its size.

For a project team of 12 people working on a project of a million lines of Java, |
would have a total of 25 to 200 pages of persistent documentation, with my preference
being for the smaller. These documents would include UML diagrams of the high level
structure of the important modules, ER diagrams of the relational schema, a page or two
about how to build the system, testing instructions, source code control instructions, etc.

I would put this documentation into a wiki, or some collaborative authoring tool so
that anyone on the team can have access to it on their screens and search it, and anyone
can change it as need be.

It takes a lot of work to make a document small, but that work is worth it. People will
read small documents. They won't read 1,000 pages tomes.

And Javadocs?

Javadocs are excellent tools. Create them. But keep them small and focussed. Those that
describe functions that others will use, should be written with care, and should contain

Conclusion 24

enough information to help the user understand. Javadocs that describe private utility
functions or methods that aren’t for wide distribution can be much smaller.

Conclusion

A few folks at a whiteboard can use UML to help them think through a design problem.
Such diagrams should be created iteratively, in very short cycles. It is best to explore
dynamic scenarios first, and then determine their implications on static structure. It is
important to evolve the dynamic and static diagrams together using very short iterative
cycleson the order of 5 minutes or less.

UML CASE tools can be beneficial in certain cases; but for the normal development
team they are likely to be more of a hindrance than a help. If you think you need a UML
CASE tool; even one integrated with an IDE, run some productivity experiments first.
Look before you leap.

UML is atool, not an end in itself. As atoal, it can help you think through your

designs and communicate them to others. Use it sparingly and it will give you great bene-
fit. Overuse it and it will waste alot of your time. When using UML, think small.

3

Class Diagrams

UML class diagrams allow us to denote the static contents of, and relationships between
classes. In aclass diagram we can show the member variables, and member functions of a
class. We can also show whether one class inherits from another, or whether it holds a ref-
erence to another. In short, we can depict all the source code dependencies between
classes.

This can be vauable. It can be much eaiser to evauate the dependency structure of a
system from a diagram than from source code. Diagrams make certain dependency struc-
tures visible. We can see dependency cycles, and determine how best to break them. We
can see when abstract classes depend upon concrete classes, and determine a strategy for
rerouting such dependencies. .

The Basics

Classes

Figure 3-1 shows the simplest form of class diagram. The class named Di al | er isrepre-
sented as asimple rectangle. This diagram represents nothing more than the code shown to
itsright.

public class Dialler

{

Dialler }

Figure 3-1
Class Icon

25

TheBasics 26

This is the most common way you will represent a class. The classes on most dia-
gramd don’t need any more than their name to make clear what is going on.

A class icon can be subdivided into compartments. The top compartment is for the
name of the class, the second is for the variables of the class, and the third is for the meth-
ods of the class. Figure 3-2 shows these compartments and how they translate into code.

public class Dialler
Dialler . L.
private Vector digits;
—diglitsl:Vf.-ctor int nD gi ts;
- NDigits - int public void digit(int n);
+ digit(n - int) protected bool ean recordDigit(int n);
recordDigit(n : int) : boolean }

Figure 3-2

Notice the character in front of the variables and functions in the class icon. A dash
(-) denotespri vat e, hash (#) denotespr ot ect ed, and plus (+) denotespubl i c.

The type of avariable, or afunction argument is shown after the colon following the
variable or argument name. Similarly, the return value of a function is shows after the
colon following the function.

Thiskind of detail is sometimes useful; but should not be used very often. UML dia-
grams are not the place to declare variables and function. Such declarations are better done
in source code. Use these adornments only when they are essential to the purpose of the
diagram.

Association

Associations between classes most often represent instance variables that hold references
to other objects. For example, in Figure 3-3 we see an association between Phone and
But t on. The direction of the arrow tells us that Phone holds a reference to But t on. The
name near the arrowhead is the name of the instance variable. The number near the arrow-
head tells us how many references are held.

public class Phone

15 . .
Phone Button private Button itsButtons[15];
itsButtons }

Figure 3-3
Multiplicity

The number near the arrowhead represents the number of objects that connected to the
other associate. In Figure 3-3 above we saw that fifteen But t on objects were connected to

27 Chapter : Class Diagrams

the Phone object. Below, in Figure 3-4, we see what happens when there is no limit. A
Phonebook is connected to many PhoneNunber objects. The star means many. In Java
thisis most commonly implemented with aVect or, aLi st , or some other container type.

public class Phonebook
* . .
Phonebook NPhOQe private Vector itsPnos;
itsPnos umber
Figure 3-4

Why didn’t | use HASA? You may have noticed that | avoided using the word
“has’. | could have said: “A Phonebook has many PhoneNunbers.” This was inten-
tional. The common OO verbs HASA and I SA have lead to a number of unfortunate mis-
understandings. We'll explore some of them later in Chapter 6. For now, don’t expect me
to use the common terms. Rather, 1’1l use terms that are descriptive of what actually hap-
pensin software.

Inheritance

You have to be very careful with your arrowheads in UML. Figure 3-5 shows why. The
little arrowhead pointing at Enpl oyee denotes inheritance'. If you draw your arrowheads
carelessly, it may be hard to tell whether you mean inheritance or association. To make it
clearer, | often make inheritance relationships vertical and associations horizontal.

public class Enpl oyee
{
Employee
}
Z% public class Sal ari edEnpl oyee extends Enpl oyee
Salaried {
Employee }

Figure 3-5

In UML all arrowheads point in the direction of source code dependency. Since it is
the Sal ari edEnpl oyee class that mentions the name of Enpl oyee, the arrowhead
points a Enpl oyee. So, in UML, inheritance arrows point at the base class.

UML has a specia notation for the kind of inheritance used between a Java class and
aJavainterface. It is shown, in Figure 3-6, as a dashed inheritance arrow? In the diagrams
to come, you'll probably catch me forgetting to dash the arrows that point to interfaces. |

1. Actually, it denotes Generalization, but as far as a Java programmer is concerned, the difference
is moot.

2. Thisiscalled aRealizes relationship. There's more to it than just inheritance of interface, but the
difference is beyond the scope of this book.

An Example Class Diagram 28

suggest you forget to dash the arrows that you draw on whiteboards too. Life’s too short to
be dashing arrows.

interface ButtonListener

«interface» {
ButtonListener

public class ButtonDi al | er Adapter
i mpl ement s ButtonLi stener

ButtonDialler
Adapter }

Figure 3-6

Figure 3-7 shows another way to convey the same information. Interfaces can be
drawn as little lollipops on the classes that implement them. We often see this kind of
notation in COM designs.

ButtonListener

I

DiallerButton
Adapter

Figure 3-7

An Example Class Diagram

Figure 3-8 shows a simple class diagram of part of an ATM system. Thisdiagram isinter-
esting both for what it shows, and for what it does not show. Note that | have taken pains
to mark all the interfaces. | consider it crucia to make sure my readers know what classes
| intend to be interfaces and which | intend to be implemented. For example, the diagram
immediately tellsyou that W t hdr awTr ansact i on talksto a CashDi spenser interface.
Clearly some class in the system will have to implement the CashDi spenser, but in this
diagram we don’t care which classit is.

Note that | have not been particularly thorough in documenting the methods of the
various Ul interfaces. Certainly W t hdr awl Ul will need more than just the two methods
shown there. What about pr onpt For Account or i nf or nCashDi spenser Enpt y? Put-
ting those methods in the diagram would just clutter it. By providing a representative
batch of methods, I’ ve given the reader the idea. That's all that's really necessary.

29 Chapter : Class Diagrams

«interface»
Transaction

+ execute()

«interface»
Withdrawl|UI

«interface»

CashDispenser thdrayvl
Transaction

] + promptForWithdrawlAmount
+ informInsufficientFunds

«interface»
DepositUI

«interface»

) Deposit
DepositAccepter Transaction

+ promptForDepositAmount
+ promptForEnvelope

«interface»
TransferUl

Transfer
Transaction + promptForTransferAmount
——> + promptForFromAccount
+ promptForToAccount

«interface»
Screen Ul MessagelLog
+ displayMessage + logMessage
+ displayMessage Z}
SpanishUl EnglishUl
Figure 3-8

ATM Class Diagram

Again note the convention of horizontal association and vertical inheritance. This
really helpsto differentiate these vastly different kinds of relationships. Without a conven-
tion like thisit can be hard to tease the meaning out of the tangle.

Notice how |’ ve separated the diagram into three distinct zones. The transactions and
their actions are on the left, the various Ul interfaces are all on the right, and the Ul imple-
mentation is on the bottom. Note al so that the connections between the groupings are min-
ima and regular. In one case it isthree associations, al pointing the same way. In the other
case it is three inheritance relationships al merged into a single line. The grouping, and
the way they are connected help the reader to see the diagram in coherent pieces.

You should be able to see the code as you look at the diagram. Is Listing 3-1 close to
what you expected for the implementation of Ul?

The Details 30

Listing 3-1
Ul.java

public class U inplements
Wthdraw U, DepositU, TransferU

private Screen itsScreen;
private Messagelog itsMessagelog;

public void displayMessage(String nessage)

it sMessagelLog. | ogMessage(nmessage) ;
i tsScreen. di spl ayMessage(nessage) ;
}
}

The Details

There are a vast number of details and adornments that can be added to UML class dia-
grams. Most of the time these details and adornments should not be added. But there are
times when they can be helpful.

Class Sereotypes

Class stereotypes appear between guilmette® characters, usually above the name of the
class. We have seen them before. The «inter face» denotation in Figure 3-8 is a class ste-
reotype. «interface» is one of two standard stereotypes that can be used by java program-
mers. The other is «utility».

«interface». All the methods of classes marked with this stereotype are abstract. None
of the methods can be implemented. Morevover, «interface» classes can have no instance
variables. The only variables they can have are static variables. This corresponds exactly
to javainterfaces. See Figure 3-9.

«interface» interface Transaction
Transaction))
public void execute();

+ execute()

Figure 3-9

«utility». All the methods and variables of a «utility» class are static. Booch® used to
call these class utilities. See Figure 3-10.

3. Thequotation marksthat |ook like double angle brackets « ». These are not two less-than, and two
greater-than signs. If you use doubled inequality operators instead of the appropriate and proper
guilmette characters, the UML police will find you.

4. [Booch94], p. 186

31 Chapter : Class Diagrams

public class Math

«utility»

Math public static final double Pl =
3.14159265358979323;
:Spi'n:odoume public static double sin(double theta){...}
+cos() public static double cos(double theta){...}

Figure 3-10

You can make your own stereotypes if you like. | often use stereotypes like «persis-
tent», «C-API», «struct», or «function». You just have to make sure that the people who
are reading your diagrams know what your stereotype means.

Abstract classes
In UML there are two ways to denote that a class, or a method, is abstract. You can write

the namein italics, or you can use the { abstract} property. Both options are shown in Fig-
ure 3-11.

Shape

- itsAnchorPoint

+ draw() public abstract class Shape

private Point itsAnchorPoint;
public abstract void draw);

Shape }
{abstract}

- itsAnchorPoint

+ draw() {abstract}

Figure 3-11

It's a little difficult to write italics at a whiteboard, and the {abstract} property is
wordy. So at the whiteboard, if |1 need to denote a class or method as abstract, | use the
convention shown in Figure 3-12. Thisisn't lega UML, but at the whiteboard it is a lot
more convenient®.

Properties

Properties, like {abstract} can be added to any class. They represent extra information
that’s not usually part of aclass. You can create your own properties at any time.

5. Some of you may remember the Booch notation. One of the nice things about that notation was
it's convenience. It was truly awhiteboard notation.

The Details 32

{A}—
Shape

+draw() {A}

Figure 3-12

Properties are written in acomma separated list of name value pairslike this:

{aut hor=Martin, date=20020429, fil e=shape.java, private}
The properties in the above example are not part of UML. The { abstract} property is
the only defined property of UML that java programmres would find useful.

If a property does not have avalue, it is assumed to take the boolean value true. Thus
{abstract} and {abstract = true} are synonyms.

Properties are written below and to the right of the name of the class as shown in Fig-
ure 3-13.

Shape

{author=Martin,
date=20020429,
file=shape.java,
private}

Figure 3-13

Other than the {abstract} property, | don’t know when you'd this useful. Personaly,
in the many years that |'ve been writing UML diagrams, |I've never had occasion to use
class properties for anything.

Aggregation
Aggregation is a special form of association that connotes a “whole/part” relationship.

Figure 3-14 shows how it is drawn and implemented. Notice that the implementation
shown in Figure 3-14 is indistinguishable from association. That's a hint.

public class Wol e

Whole — Part private Part itsPart;

Figure3-14

Unfortunately, UML does not provide a strong definition for this relationship. This
leads to confusion because various programmers and analysts adopt their own pet defini-

33 Chapter : Class Diagrams

tions for the relationship. For that reason, | don't use the relationship at all; and | recom-
mend that you avoid it as well.

The one hard rule that UML gives us regarding aggregations is simply this. A whole
cannot be its own part. Therefore instances cannot form cycles of aggregations. A single
object cannot be an aggregate of itself; two objects cannot be aggregates of each other;
three objects cannot form aring of aggregation, etc. See Figure 3-15

x]
Q
—=
Y z P S R
e
Figure 3-15
Cycles of aggregation between instances.

| don't find thisto be a particularly useful definition. How often am | concerned about
making sure that instances form a directed acyclic graph? Not very often. Therefore | find
thisrelationship useless in the kinds of diagrams | draw.

Composition

Composition is a special form of aggregation shown in Figure 3-16. Again, notice that the
implementation is indistinguishable from association. However, this time the reason is not
due to alack of definition; thistime it's because the relationship does not have alot of use
in aJava program. C++ programmers, on the other hand, find a lot of use for it.

public class Oaner
{

Owner *>—= Ward private Ward itsWard;
}

Figure 3-16

The same rule applies to Composition that applied to aggregation. There can be no
cycles of instances. An owner cannot be its own ward. However UML provides quite a bit
more definition.

* Aninstance of award cannot be simultaneously owned by two owners. The
object diagram in Figure 3-17 isillegal. Note, however, that the corresponding
classdiagram isnot illegal. An owner can transfer ownership of award to
another owner.

The Details 34

N/

Figure 3-17
lllegal composition.

» Theowner isreponsible for the lifetime of the ward. If the owner is destroyed,
}23 wﬁrr(]ji?ﬂust be destroyed with it. If the owner is copied, the ward must be cop-
In Java destruction happens behind the scenes by the garbage collector, so thereis sel-
dom a need to manage the lifetime of an object. Deep copies are not unheard of, but the
need to show deep copy semantics on a diagram is rare. So, though | have used composi-
tion relationships to describe some Java programs, such use is infrequent.

Figure 3-18 shows how composition is used to denote deep copy. We have a class
named Addr ess which holds many St ri ngs. Each string holds one line of the address.
Clearly, when you make a copy of the Addr ess, you want the copy to change indepen-
dently of the original. Thus, we need to make a deep copy. The composition relationship
between the Addr ess and the St ri ngsindicates that copies need to be deep®.

Multiplicity

Objects can hold arrays or vectors of other objects; or they can hold many of the same
kind of object in seperate instance variables. In UML this can be shown by placing a mul-
tiplicity expression on the far end of the association. Multiplicity expressions can be sim-
ple numbers, ranges, or a combination of both. For example Figure 3-19 shows a
Bi naryTr eeNode, using amultiplicity of 2.

Here are the allowable forms:

* Digit. The exact number of elements

e *or0.* zero to many.

« 0.1 Zero or one. In Javathisis often implemented with areference that
canbenul | .

e 1.7 One to many.

« 3.5 Threeto five.

« 0,2.59.*% Sily, butlegal.

6. Exercize: Why wasit enough to clone the itsLines vector? Why didn’t | have to clone the actual
String instance?

35 Chapter : Class Diagrams

«interface»
Cloneable
Address *
String
+setLine(n,line) itsLines

i mport java.util.Vector;

public class Address inplenents Cloneabl e{
private Vector itsLines = new Vector();

public void setLine(int n, String line) {
if (n >= itsLines.size())
itsLines.setSize(n+l);
i tsLines.setElementAt(line, n);

public Object clone() throws C oneNot SupportedException
Addr ess cl one = (Address) super. cl one();

clone.itsLines = (Vector)itsLines.clone();
return cl one;

}

}
Figure 3-18
DeepCopy is implied by Composition

) public class Bi naryTreeNode

\ {

private BinaryTreeNode | eft Node;
BinaryTreeNode private BinaryTreeNode right Node;

Figure 3-19
Simple multiplicity

Association Sereotypes

Associations can be labeled with stereotypes that change their meaning. Figure 3-20
shows the ones that | use most often. All but the last are standard UML.

The «creates» sterotype indicates that the target of the association is created by the
source. The implication is that the source creates the target and then passes it around to
other parts of the system. In the example I’ ve shown atypical factory.

The «local» stereotype is used when the source class creates an instance of the target
and holds it in alocal variable. The implication is that the created instance does not sur-

The Details 36

public class A {
public B makeB(

)
A B return new B();
«creates»
}

public class A {

{

public void f() {
A B B b = new B();
«local» /] use b
}
}

public class A {
public void f(B b) {

A B /'l use b;
«parameter» }

public class
private B
A B public voi
«delegates» itsB.f()
}
}

Figure 3-20

A {
t sB;
f() {

i
d

vive the member function that creates it. Thus, it is not held by any instance variable nor
passed around the system in any way.

The «parameter » stereotype shows that the source class gains access to the target
instance though the parameter of one of its member functions. Again, the implication is
that the source forgets all about this object once the member function returns. Thetargetis
not saved in an instance variable.

The «delegates» stereotypeis not a standard part of UML, it is one of my own. How-
ever, | find | useit so often that | thought I'd include it here. | use it when the source class
forwards a member function invocation to the target. There are a number of design pat-
terns where this technique is applied, such as PRoxy, DECORATOR, and COMPOSITE'.
Since | use these patternsalot, | find the notation helpful.

Inner Classes

Inner (nested) classes are represented in UML with an association adorned with a crossed
circle.

Anonymous Inner Classes

One of Java’'s most interesting features is anonymous inner classes. While UML does not
have an official stance on these, | find the notation in Figure 3-22 works well for me. It is

7. [GOF94] p207, 175, 163

37 Chapter : Class Diagrams

public class A {
private class B {

}
}

Figure 3-21

concise and descriptive. The anonymous inner class is shown as a nested class that is
given the «anonymous» stereotype, and is also given the name of the interface it imple-
ments.

public class Wndow {

«anonymous» public void f() {
MyWindow ActionListener ActionListener | =

new ActionListener() {
/1 inplenentation

)

}
}

Figure 3-22

Association classes

Associations with multiplicity tell us that the source is connected to many instances of the
target; but the diagram doesn't tell us what kind of container class is used. This can be
depicted by using an association class as shown in Figure 3-23.

Address T String)
| itsLines public class Address {
| private Vector itsLines;
| .
| ;
Vector
Figure 3-23

Association class.

Association classes show how a particular association is implemented. On the dia-
gram they appear as a normal class connected to the association with a dashed line. As
Java programmers we interpret this to mean that the source class really contains a refer-
ence to the association class, which in turn contains references to the target.

Association classes can aso be used to indicate special forms of references, such as
weak, soft, or phantom references. See Figure 3-24.

On the other hand, this notation is a bit cumbersome and is probably better done with
stereotypes asin Figure 3-25.

Conclusion 38

Logger T LogMessage .
| itsLogs public class Logger {
I private WeakReference itsLogs;
|
|
WeakReference
Figure3-24
«weak» *
Logger LogMessage
itsLogs
Figure 3-25

Association Qualifiers

Association qualifiers are used when the association is implemented through some kind of
key or token, instead of with anormal Javareference. The examplein Figure 3-26 showsa
Logi nSer vl et associated with an Enpl oyee. The association is mediated by a member
variable named enpi d which contains the database key for the Enpl oyee.

public class LoginServlet {
) private String enpid;
o % Employee public String get Name() {
Enpl oyee e = DB. get Enp(enpi d);
return e.getName();
}
}

Figure 3-26

| find this notation useful in rare situations. Sometimes it's convenient to show that an
object is associated to another through a database or dictionary key. It is important, how-
ever, that al the parties reading the diagram know how the qualifier is used to access the
actual object. Thisis not something that'simmediately evident from the notation.

Conclusion

There are lots of widgets, adornments, and whatchamajiggersin UML. There are so many
that you can spend a long time becoming an UML language lawyer enabling you to do
what all lawyers can -- write documents nobody can understand.

39 Chapter : Class Diagrams

In this chapter | have avoided most of the arcanities and byzantine features of UML.
Rather | have showed you the parts of UML that | use. | hope that along with that know!-
edge | have instilled within you the values of minimalism. Using too little of UML is
amost always better than using too much.

Bibliography

[Booch94]: Object Oriented Analysis and Design with Applications, Grady Booch, Ben-
jamin Cummings, 1994

[GOF94]: Design Patterns, Gamma, Helm, Vlissides, Johnson, Addison Wesley, 1994,

Bibliography

40

A

Sequence Diagrams

Sequence diagrams are the most common of the dynamic models drawn by UML slingers.
As you might expect, UML provides lots and lots of goodies to help you draw truly
incomprehensible diagrams. In this chapter we'll study those goodies, and try to convince
you to use them with great restraint.

I once consulted for a team that had decided to create sequence diagram for every
method of evey class. No, no, no, no, no! Don’'t do this, it's a terrible waste of time. Use
sequence diagrams when you have an immediate need to describe to someone how a
group of objects collaborate, or when you want to visualize that collaboration for yourself.
Use them as atool that you occasionally use to hone your analytical skills, rather than as
necessary documentation.

The Basics

| first learned to draw sequence diagramsin 1978. James Grenning, along time friend and
associate, showed them to me while we were working on a project that involved complex
communication protocols between computers connected by modems. What | am going to
show you hereisjust alittle more complex than what he taught me then; and should suf-
fice for the vast mgjority of sequence diagrams that you will need to draw.

Objects, Lifelines, Messages, and other odds and ends.
Figure 4-1 shows a typical sequence diagram. The objects involved in the collaboration
are shown at the top. The stick figure (actor) at |eft represents an anonymous object. Itis

the source and sink of al the messages entering and leaving the collaboration. Not all
sequence diagrams have such an anonymous actor, but many do.

4

TheBasics 42

:LoginServlet e:Employee EmployeeDB
Actually an AN loai I I I
HTTPRequest ogin
generated by an =
HTML form. -

empid password [

\
i > e = getEmployee(empid)
L
| validate(password) |
P
\ | \
\

One of two web AN
pages informing
the user whether |- [-G=—o
his login was ‘HTTPResponse
successful or not.

=0
‘ result: boolean [

Figure4-1
Typical Sequence Diagram

The dashed lines hanging down from the objects and the actor are called lifelines. A
message being sent from one object to another is shown as an arrow between the two life-
lines. Each message is labeled with its name. Arguments appear either in the parenthesis
that follow the name, or next to data tokens (the little arrows with the circles on the end).
Timeisin the vertical dimension, so the lower a message appears the later it is sent.

The skinny little rectangle on the lifeline of the Logi nServl et object is called an
activation. Activations are optional; most diagrams don’'t need them. They represent the
time that a function executes. In this case it shows how long the | ogi n function runs. The
two messages | eaving the activation to the right were sent by the | ogi n method. The unla-
beled arrow shows the | ogi n function returning to the actor, and passing back a return
value.

Note the use of the e variable in the get Enpl oyee message. This signifies the value
returned by get Enpl oyee. Notice also that the Enpl oyee object isnamed e. You guessed
it, they’'re one and the same. The value that get Enpl oyee returns is a reference to the
Enpl oyee object.

Finally, notice that Enpl oyeeDB is a class, not an object. This can only mean that
get Enpl oyee isastatic method. Thus, we'd expect Enpl oyeeDB to be coded asin List-
ing 4-1.

Listing 4-1
EmployeeDB.java

public class Enpl oyeeDB
{

public static Enpl oyee get Enpl oyee(String enpid)

43 Chapter : Sequence Diagrams

Creation and Destruction

We can show the creation of an object on a sequence diagram using the convention shown
in Figure 4-2. An unlabeled message terminates on the object to be created, not on it'slife-
line. We would expect ShapFactory to be implemented as shown in Listing 4-2.

| makeSquare ‘

=0 ‘
[s : Shape ’—> s:Square
\ \

Figure 4-2
Creating an object

Listing 4-2
ShapeFactory.java
publ'ic class ShapeFactory

publ i ¢ Shape makeSquare()
{

return new Square();

}
}

In Javawe don't explicitly destroy objects. The garbage collector does all the explicit
destruction for us. However, there are times when we want to make it clear that we are
done with an object and that, as far as we are concerned, the garbage collector can haveit.

Figure 4-3 shows how we denote thisin UML. Thelifeline of the object to be released

comes to apremature end at alarge X. The message arrow terminating on the X represents
the act of releasing the object to the garbage collector.

. topNode:
i reetap TreeNode
| clear ‘ ‘
’ \
\ o
Figure 4-3

Releasing an object to the garbage collector

TheBasics 44

Listing 4-3 shows the implementation we might expect from this diagram. Notice that
the cl ear method setsthe t opNode variable to nil. Since the Tr eeMap isthe only object
that holds areference to that Tr eeNode instance, it will be released to the garbage collec-
tor.

Listing 4-3
TreeMap.java
publ'ic class TreeMap

private TreeNode topNode;
public void clear()

topNode = nil;

}

Simple L oops

You can draw a simple loop in a UML diagram by drawing a box around the messages
that repeat. The loop condition can appear somewhere in the box, usualy at the lower left.
See Figure 4-4.

\ \
getEmployeelList ‘
\)
idList : Vector

‘ getEmployee(id)

-
-

e : Employee
\ ploy pay

I
for each id in idList

|
|
J— |
|
|
|

Figure4-4
A simple loop

Thisis a useful notational convention. However, it is not wise to try to capture algo-
rithms in sequence diagrams. Sequence diagrams should be used to expose the connec-
tions between objects not the nitty gritty details of an algorithm.

Cases and Scenarios

Rule: Don’t draw sequence diagrams like Figure 4-5 with lots of objects and scores of
messages. Nobody can read them. Nobody will read them. They’re a huge waste of time.

45 Chapter : Sequence Diagrams

Rather, learn how to draw a few smaller sequence diagrams that capture the essense of
what you are trying to do. Each sequence diagram should fit on a single page, with plenty
of room left for explanatory text. You should not have to shrink the icons down to tiny
sizesto get them to fit on the page.

‘ getEmployeelList ‘ ‘ ‘ ‘
y—>
‘ 1 1 1 1
e:=getEmployee(id) ‘ [WeeklyPavment [[
Schedule
| | IsPayDay | ‘ | |
»— isPayDay
\ \ - 5 \ \
‘ | true =0 ‘ ‘ ‘
calculatePay true
‘ ‘ > calculatePay | |
| getDate
—— L
| | — |
[[datelnPayPeriod [
—
‘ ‘ getHours
\ \ — 1
pay calcOvertime
| LS I L |
=0
\ \ T \ , \
calculateDeductions i Union
\ ! | | Affiliation |
| | calculateTaxes | ‘ |
e
‘ ‘ getDues ‘ ‘ ‘
Payment -
- = T »
| deductions | Disposition getServiceCharges ‘ |
| = \ | || | g \
\ ‘ \ \ \ \ \
sendPayment
| | g | | | |
o—=
| payment | | | | | |
\ \ \ \ \ \ \
Figure 4-5

This sequence diagram is too complex

Also, don’'t draw dozens or hundreds of sequence diagrams. If you have too many,
they won't be read. Find out what’s common about all the scenarios and focus on that. In
the world of UML diagrams, commonalities are much more important than differences.
Use your diagrams to show common themes and common practices. Don’t use them to
document every little detail. If you really need to draw a sequence diagram to describe the

TheBasics 46

way messages flow, then do them succinctly, and sparingly. Draw as few of them as possi-
ble.

First of all, ask yousdf if the sequence diagram is necessary at al. Codeis often more
communicative and economical. Listing 4-4, for example, shows what the code for the
Payr ol | class might look like. This code is very expressive, and stands on its own. We
don’'t need the sequence diagram to understand it. So perhaps there's no need to draw the
sequence diagram. Perhaps the code is good enough to stand on its own. When code can
stand on its own, then diagrams are redundant and wasteful.

Listing 4-4
Payroll.Java
publ'ic class Payroll

private Payrol| DB itsPayroll DB;

private Payroll D sposition itsDi sposition;
public void doPayroll ()

{

Li st enpl oyeeli st = itsPayrol| DB. get Enpl oyeeLi st();
for (Iterator iterator = enployeelList.iterator();
iterator.hasNext();)

String id = (String) iterator.next();

Enpl oyee e = itsPayrol | DB. get Enpl oyee(i d);
if (e.isPayDay())

{

doubl e pay = e. cal cul atePay();
doubl e deductions = e. cal cul at eDeductions();
itsDi sposition.sendPaynent (pay - deductions);

}
}
}

Can code really be used to describe part of a system? In fact, this should be a goal of
the developers and designers. The team should strive to create code that is expressive and
readable. The more the code can describe itself, the fewer diagrams you will need, and the
better of the whole project will be.

Secondly, if you feel a sequence diagram is necessary, ask yourself if thereisaway to
split it up into asmall group of scenarios. For example, we could break the large sequence
diagram in Figure 4-5 into several much smaller sequence diagrams that would be much
easier to read. Consider how much easier the small scenario in Figure 4-6 isto understand.

Thirdly, think about what you are trying to depict. Are you trying to show the details
of alow level operation like Figure 4-6 shows how to calculate hourly pay? Or are you
trying to show a high level view of the overall flow of the system asin Figure 4-7? In gen-
eral, high level diagrams are more useful than low level ones. They help the reader tie the
system together in his mind. They expose commonalities more than differences.

47

Chapter : Sequence Diagrams

HourlyPay
Classification

TimeCard

|
‘ calculatePay T

-

| \
e

\
datelnPayPeriod
\ ‘

e
| \

getDate

getHours

| calcOvertime
-

T

Figure 4-6

One small scenario

Payroll PayrollDB

e : Employee

Payment
Disposition

‘ getEmployeelList ‘

™

| e:=getEmployee(id) |
_—

IsPayDay

\ \ =
calculatePay true

\

I I
| pay |
calculateDeductions

v

I I
=0

| deductions
sendPayment

Y

I I
o—>

| payment |

4

Figure 4-7
A high level view.

Advanced Concepts 48

Advanced Concepts

L oops and Conditions

It ispossibleto draw a sequence diagram that completely specifies an algorithm. In Figure
4-8 you can see the payroll agorithm, complete with well specified loops and if state-
ments.

: Payroll : PayrollDB e : Employee :.ﬁm
\ \ \
— getEmployeelList ‘ [
\ \

idList : Vector

I I
*[while id = idList.next()]:payEmployee(id)

\

\

\

\

\ \ \

getEmployee(id) | ‘ ‘
i —

\

\

\

\

\

=0

. I
e : Employee payday := isPayDay |

calculatePa
[payday] ateray

sendPayment
L

»l
>

\
\
I
| calculateDeductions |
\
\
\
\

Figure 4-8

The payEnpl oyee message is prefixed with an recurrence expression that looks like
this:

*[while id := idList.next()]

The star tells us that this is an iteration; the message will be sent repeatedly until the
guard expression in the square brackets is false. UML does not specify a syntax for the
guard expression so | have used a java-like pseudo code that suggests the use of an itera-
tor.

The payEnpl oyee message terminates on an activation that is touching, but offset
from, the first. This denotes that there are now two functions executing in the same object.
Sincethe payEnpl oyee message is recurrent, the second activation will also be recurrent,
and so all the messages depending from it will be part of the loop.

49 Chapter : Sequence Diagrams

Note the activation that is near the [payday] guard. This denotes an i f statement.
The second activation only gets control if the guard condition is true. Thus, if i sPayDay
returnst r ue, then cal cul at ePay, cal cul at eDeduct i ons, and sendPayment will be
executed. Otherwise they won't.

The fact that it is possible to capture all the details of an algorithm in a sequence dia-
gram should not be construed as a license to capture all your algorithms in this manner.
The depiction of agorithmsin UML is clunky at best. The code in Listing 4-4 is a much
better way of expressing the agorithm.

M essages that take time.

Usualy we don’t consider the time it takes to send a message from one oject to another. In
most OO languages that time is virtually instantaneous. That's why we draw the message
lines horizontally -- they don’t take any time. However, in some cases messages do take
time to send. We could be trying to send a message accross a network boundary, or in a
system where the thread of control can break between the sending and reception of a mes-
sage. When this is possible, we can denote it by using angled lines as shown in Figure 4-9

off hook

A{

\
|
|
|
dial !
|
|
|

ringback ‘

g\;
> X
]
o
=

Figure 4-9
Normal Phone Call

Advanced Concepts 50

This figure shows a phone call being made. There are three objects in this sequence
diagram. The cal | er is the person making the call. The cal | ee is the person being
called. Thet el co isthetelephone company.

When the caller lifts the phone from the reciever it send the off hook message to the
telco. The telco responds with dia tone. Having recieved dial tone the caller dias the
phone number of the callee. The telco responds by ringing the callee and playing ringback
tone to the caller. The callee picks up the phone in response to the ring. The telco makes
the connection. The callee says“Hello”, and the phone call has succeeded.

However, there is another possibility that demonstrates the usefulness of these kinds
of diagrams. Look carefully at the diagram in Figure 4-10. Note that it starts exactly the
same. However, just before the callee’s phone rings, he picks it up to make a call himself.
The caller is now connected to the callee, but neither know it. The caller is waiting for
“Hello”, and the callee is waiting for dial tone. The callee eventually hangs up in frustra-
tion, and the caller hears dial tone.

caller telco callee

off hook

\

|
/ |
%’ ‘
|

ringback

Tries to
_| make acall.

off hook ring

7

connect connect

—0

~~~~~~~
line goes dead.
--| Does he hear [
breathing? / ~
on hook

[
gives up waiting
dial tone ‘ for dial tone

Figure4-10
Failed Phone Call.

o — = —

\

The crossing of the two arrows in Figure 4-10 is called a race condition. Race condi-
tions occurr when two asychronous entities can simultaneously invoke incompatible oper-
aions. In our case the telco invoked ring, and the callee went off hook. At this point the
parties al had a different notion of the state of the system. The caller thought he was wait-



51 Chapter : Sequence Diagrams

ing for “Hello.”, the telco thought its job was done, and the call ee thought he was waiting
for dial tone.

Race conditions in software systems can be remarkably difficult to discover and
debug. These diagrams can be helpful in finding and diagnosing them. Mostly they are
useful in explaining them to others, once discovered.

Asynchronous M essages.

Usualy, when you send a message to an object you don't expect to get control back until
the recieving object has finished executing. M essagse that behave this way are called syn-
chronous messages. However, in distributed or multi-threaded systems it is possible for
the sending object to get control back immediately, and for the recieving object to execute
in another thread of control. Such messages are called asynchronous messages.

Figure 4-11shows an asynchronous message. Note that the arrowhead is open instead
of filled. Look back at al the other sequence diagrams in this chapter. They were all
drawn with synchronous (filled arrowhead) messages. It is the elegance (or perversity,
take your pick) of UML that such a subtle difference in the arrowhead can have such a
profound difference in the represented behavior.

logger:Log

\
| logMessage(msg) |
\

Figure4-11
Asynchronous Message

Listing 4-5 and Listing 4-6 show code that could correspond to Figure 4-11. Listing
4-5 show a unit test for the Log class in Listing 4-6. Note that the logMessage function
returns immediately after queueing the message. Note aso that the message is actually
processed in a completely different thread that is started by the constructor. The LogTest
class makes sure that the | ogMessage method behaves asynchronously by first checking
to see if the message was logged but not processed, then yielding the processor to other
threads, and finally by verifying the the message was processed and removed from the
gueue.

Listing 4-5

TestLog.java

import junit.framework. Test Case;
i mport junit.sw ngui.TestRunner;

public class TestlLog extends TestCase {




Advanced Concepts

52

Listing 4-5 (Continued)
TestLog.java

public static void main(String[] args) {
Test Runner. mai n(new String[]{" TestLog"});

}

public TestLog(String nane) {
super (nane) ;

public void testSend() throws Exception {

Log | = new Log(System out);
| .1 ogMessage( "t he message");
assert Equal s(1, |.nessages());
assert Equal s(0, |.1ogged());
Thread. yi el d();
assert Equal s(1, |.logged());
assert Equal s(0, |.nessages());
I .stop();

}

Listing 4-6

Log.java

inmport java.util.Vector;
import java.io.PrintStream

public class Log {
private Vector nessages = new Vector();
private Thread t;
private boolean running = fal se;
private int | ogged = O;
PrintStream | ogStream

public Log(PrintStream streanm {
| ogStream = stream
running = true;
t = new Thread(
new Runnabl e() {
public void run() {
while (running) {
if (messages() > 0) {
String nsg;
synchroni zed (nmessages) {
nmsg = (String) nmessages. renove(0);

| ogStream println(nsg);
| ogged++;
}
}
}
}

tjstart();

public void | ogMessage(String msg) {




53 Chapter : Sequence Diagrams

Listing 4-6 (Continued)
Log.java

synchroni zed (nessages) {
nessages. add(nsg) ;

}

}

public int nessages() {
return nessages. size();

public int logged() {
return | ogged;

public void stop() throws InterruptedException {
running = fal se;
t.join();

}
}

This is just one possible implementation of an asychronous message. Other imple-
mentations are possible. In general, we denote a message to be asynchronous if the caller
can expect it to return before the desired operations are performed.

Multiple Threads
Asynchronous messages imply multiple threads of control. We can show several different

threads of control in aUML diagram by tagging the message name with athread identifier
as shown in Figure 4-12.

out : PrintStream

‘ T1:

’—> logger:Log
L Tl:start
)
\
\
\

T2:printin [
!
\

\
\
| T1:logMessage(msg
\
\
[ running :T true

T1:stop
’ \
\ V \

Figure4-12
Multiple Threads of Control



Advanced Concepts 54

Notice that the name of the message is prefixed with an identifier such as T1, fol-
lowed by acolon. This identifier names the thread that the messages was sent from. In the
diagram, the Log object was created and manipulated by thread T1. The thread that actu-
ally does the message logging, running inside the Log object, is named T2.

As you can see, the thread identifiers don’'t necessarily correspond to names in the
code. Listing 4-6 above does not name the logging thread T2. Rather, the thread identifiers
are for the benefit of the diagram.

Active Objects

Sometimes we want to denote that an object has a seperate internal thread. Such objects
are known as active objects. They are shown with a bold outline asin Figure 4-13.

’—P logger:Log
\ |
| logMessage(msg) |
\ \

Figure4-13
Active Object

Active objects simply objects that instantiate and control their own thread. There are
no restrictions about their methods. Their methods may run in the object’s thread, or they
may run in the caller’s thread.

Sending M essages to | nter faces.

Our Log class is just one way to log messages. What if we wanted our application to be
able to use many different kinds of loggers. We'd probably create a Logger interface that
declared the logM essage method, and derive our Log class, and all the other implementa-
tions from that interface. See Figure 4-14.

The application is going to be sending messages to the Logger interface. It won't
know that the object is an Asychr onousLogger. How can we depict thisin a sequence
diagram?

The diagram in Figure 4-15 is the obvious approach. You just name the object for the
interface and be done with it. This may seem to break the rules since it's impossible to
have an instance of an interface. However, all we are saying hereisthat thel ogger object



55 Chapter : Sequence Diagrams

interface Logger {
«interfaces voi d | ogMessage(String msg);
Logger

public class AsynchronousLogger
i mpl ements Logger {
/1 renamed from Log

+ logMessage

}
Asynchronous
Logger
Figure4-14
% .
\ \
| logMessage(msg) |
\ \
Figure4-15

Sending to an interface

conforms to the Logger type. We aren’t saying that we somehow managed to instantiate
an interface.

Sometimes, however, know the type of the object and yet want to show the message
being sent to an interface. For example, we might know that we have created an Asynch-
ronouslLogger, but we still want to show the application using only the Logger inter-
face. Figure 4-16 shows how this is depicted. We use the interface lollipop on the lifeline
of the object.

logger :
Asynchronous
Logger

\ \
logMessage(msg)

‘ Logger ‘

Figure4-16



Conclusion 56

Conclusion

Aswe have seen, sequence diagrams are a powerful way to communicate the flow of mes-
sages in an object oriented application. We' ve also hinted that the fact that they are easy to
abuse, and easy to overdo.

An occational sequence diagram on the whiteboard can be invaluable. A very short
paper with five or six sequence diagrams denoting the most common interactions in a sub-
system can be worth its weight in gold. On the other hand, a document filled with a thou-
sand sequence diagramsis not likely to be worth the paper it's printed on.

One of the great fallacies of software development in the 1990s was the notion that
developers should draw sequence diagrams for all methods before writing the code. This
always provesto be avery expensive waste of time. Don't do it.

Instead, use sequence diagrams as the tool they were intended to be. Use them at a
whiteboard to communicate with othersin real time. Use them in a document to capture
the core salient collaborations of the system.

Asfar as sequence diagrams are concerned, too few is better than too many. You can
always draw one later if you find you need it.



5

Use Cases

Use cases are awonderful ideathat has been vastly overcomplicated. Over and over again
| have seen teams sitting and spinning in their attempts to write use cases. Typicaly they
thrash on issues of form rather than substance. They argue and debate over preconditions,
postconditions, actors, secondary actors, and a whole bevy of other things that just don’t
matter.

The real trick to doing use cases is to keep them simple. Don’t worry about use case
forms, just write them on blank paper, or on ablank page in a simple word processor, or on
blank index cards. Don’'t worry about filling in al the details. Details aren’t important
until much latter. Don't worry about capturing all the use cases, that's an impossible task
anyway.

The one thing to remember about use cases is: tomorrow they are going to change. No
matter how dilligently you capture them, no matter how fastidiously you record the
details, no matter how thoroughly you think them through, no matter how much effort you
apply to exploring and analyzing the requirements, tomorrow they are going to change.

If something is going to change tomorrow, you don’t really need to capture its details
today. Indeed, you want to postpone the capture of the details until the very last possible
moment.

Think of use cases as: Just In Time Requirements.
Writing Use Cases

Notice the title of this section. We write use cases, we don’t draw them. Use cases are not
diagrams. Use cases are textual descriptions of behavioral requirements; written from a
certain point of view.

57



Writing Use Cases 58

“Wait!”, you say. “| know UML has use case diagrams, |’ ve seen them.”

Yes, UML does have use case diagrams, and we'll study them in a few pages. How-
ever, those diagrams tell you nothing at all about the content of the use cases. They are
devoid of information regarding the behavioral requirements that use cases are meant to
capture. Use case diagrams in UML capture something else entirely. And we'll discuss
them in due course.

What isa use case.

A use case is adescription of the behavior of a system. That description iswritten from the
point of view of a user who has just told the system to do something particular. A use case
captures the visible sequence of events that a system goes through in response to a single
user stimulus.

A visible event is an event that the user can see. Use cases do not describe hidden
behavior a all. They don’'t discuss the hidden mechanisms of the system. They only
describe those things that a user can see.

The Primary Course

Typically, a use case is broken up into two sections. The first is the primary course. This
section describes how the system responds to the stimulus of the user and assumes that
nothing goes wrong.

For example, hereisatypical use case for a point of sale system:

Check Out ltem:

1. Cashier swipes product over scanner, scanner reads UPC code.

2. Price and description of item, as well as current subtotal appear on the
display facing the customer. The price and description also appear on the
cashier’s screen.

3. Price and description are printed on reciept.

4, System emits an audible “ acknowledgement” tone to tell the cashier that
the UPC code was correctly read.

That's the primary course of a use case! Nothing more complex is necessary. Indeed,
even the tiny sequence above might be too much detail if the use case isn’t going to be
implemented for awhile. We wouldn’t want to record thiskind of detail until the use cases
was within afew weeks of being implemented.

How can you estimate a use case if you don't record it's detail ? You talk to the stake-
holders about the detail, without necessarily recording it. This will give you the informa-
tion you need to give arough estimate. Why not record the detail if we're going to talk to
the stakeholders about it? Because tomorrow the details are going to change. Won't that



59 Chapter : Use Cases

chnage affect the estimate? Yes, but over many use cases those effects integrate out.
Recording the detail too early just isn’t cost effective.

If we aren’t going to record the details of the use case just yet, then what do we
record? How do we know that the use case even exists if we don’t write something down?
Write the name of the use case. Keep alist of them in a spreadsheet, or a word processor
document. Better yet, write the name of the use case on an index card and maintain a stack
of use case cards. Fill in the details asthey get closer to implementation.

Alternate Cour ses

Some of those details are concerning things that can go wrong. During the conversations
with the stakeholders you'll want to talk over failure scenarios. Later, it gets closer and
closer to the time when the use case will be implemented, you' [l want to think through
more and more of those alternative cases. They become addenda to the primary course of
the use case. They can be written as follows:

UPC Code Not Read:

If the scanner fails to capture the UPC code, the system should emit the
“reswipe’ tone telling the cashier to try again. If after three tries the
scanner still does not capture the UPC code, the cashier should enter it
manually.

No UPC Code:

If the item does not have a UPC code, the cashier should enter the price
manually.

These alternate courses are interesting because they hint at other use cases that the
stakeholders might not have identified initially. In this case it is apparently necessary to be
able to enter the UPC or price manually.

What else?

What about actors, secondary actors, preconditions, postconditions, etc. etc. What about
al that stuff?

Don’t worry about it. For the vast mgjority of the systems you will work on, you
won't need to know about all those other things. Should the time come that you need to
know more about use cases, then you can read Alistair Cockburn’s definitive work on the
topic: Writing Effective Use Cases, Addison Wesley, 2001. For now, learn to walk before
you learn to run. Get used to writing simple use cases as above. As you master them
(defined as having successfully used them in a project), you can ever so carefully and par-
simonously adopt some of the more sophisticated techniques. But remember, don’t sit and

spin.



Use Cases Diagrams 60

Use Cases Diagrams

Of all the diagramsin UML, use case diagrams are the most confusing, and the least use-
ful. With the exception of the System Boundary Diagram, which I’ll describe in a minute,
| recommend that you avoid them entirely.

System Boundary Diagram

Figure 5-1 shows a System Boundary Diagram. The large rectangle is the system bound-
ary. Everything inside the rectangle is part of the system under development. Outside the
rectangle we see the actorsthat act upon the system. Actors are entities outside the system
that provide the stimuli for the system. Typically they are human users. They might also
be other systems, or even devices such as real -time clocks.

Customer

Close Sale

@

Figure5-1
System Boundary Diagram

Cashier

Supervisor

Inside the boundary rectangle we see the use cases. These are the ovals with names
inside. The lines connect the actors to the use cases that they stimulate. Avoid using
arrows, nobody really knows what the direction of the arrowheads means.

Thisdiagram is ailmost, but not quite, useless. It contains very little information of use
to the Java programmier, but it makes a good cover page for a presentation to stakehold-
ers.



61 Chapter : Use Cases

Use Case Relationships

Use case relationships fall into the category of things that “seemed like a good idea at the
time”. | suggest that you actively ignore them. They’ll add no value to your use cases, or
to your understanding of the system, and they will be the source of many never ending
debates about whether or not to use «extends» or «generalization».

Conclusion

Thiswas a short chapter. That'sfitting because the topic is simple. It isthat simplicity that
must be your attitude concerning use cases. |f once you proceed down the dark path of use
case complexity, forever will it dominate your destiny. Use the force, L uke, and keep your
use cases simple.



Conclusion

62



6

Principles of OOD

Reading chapters about notation is like a box of chocolate candy. After eating a few you
start to crave meat. So lets dump the sugary notation for awhile and eat a nice, rare chees-
burger.

When we look at a UML diagram, what are we looking for? How do we evaluate it?
What are the principles of design that we should apply? In this chapter we will discuss five
such principles that will help us evaluate whether a set of UML diagrams, or a batch of
code, for that matter, are well designed.

Design Quality

What does it mean to be well designed? A system that is well designed is easy to under-
stand, easy to change, and easy to reuse. It presents no particular development difficulties,
is simple, terse, and economical. It is a pleasure to work with. Conversely, a bad design
stinks like rotting meat.

Design Smélls.

You know when a programmer is working with a poor design by the state of his eyes
and nose while he's looking at the code. If his or her facial expression reminds you of the
detectives who have just opened a body bag containing a 12 day old corpse, then the
design is probably pretty ripe. The smells of a poor design have many different compo-
nents.

1. Rigidity: Thesystemishard to change because every time you change one thing,
you have to change something else in a never ending succession of changes.

63



The Single Reponsibility Principle (SRP) 64

2. Fragility: A changeto one part of the system causesit to break in many other,
completely unrelated, parts.

3. Immobility: It is hard to disentangle the system into components that can be
reused in other systems.

4. Viscosity: The development environment is held together with scotch tape and
toothpaste. It takes forever to go around the edit, compile, test loop.

5. Needless Complexity: There are lots of very clever code structures that aren’t
acutally necessary right now, but could be very useful one day.

6. Needless Repetition: The code looks like it was written by two programmers
named Cut and Paste.

7. Opacity: Elucidation of the originator’s intent presents certain difficulties
related to convolution of expression.

It isour desireto rid the code of these smells. UML diagrams can often help with this
because many of the smells can be seen by examining the dependencies in the diagrams.

Dependency M anagement

Many of these smells are a result of mismanaged dependencies. Mismanaged dependen-
cies conjure the view of code that is atangled mass of couplings. Indeed, it is thisview of
entanglement that was the origin of the term “spaghetti code”.

Object oriented languages provide tools that aid in managing dependencies. Interfaces
can be created that break or invert the direction of certain dependencies. Polymorphism
allows modules to invoke functions without depending upon the modules that contain
them. Indeed, an OOPL gives us lots of power to shape the dependencies the way we
want.

So, how do we want them shaped? That's where the following principles comein. |
have written a great deal about these principles. The definitive (and most long-winded)
treatment is[Martin2002]. There are al so quite a number of papers describing these princi-
ples on www. obj ect ment or . com What followsis avery brief summary.

The Single Reponsibility Principle (SRP)

A CLASS SHOULD HAVE ONLY ONE REASON TO CHANGE.

You’'ve probably read the nonsense about objects needing to know how to draw them-
selvesin a GUI, or save themselves to disk, or convert themselves to XML, right? Begin-
ning OO texts like to say things like that. Ridiculous! Classes should know about only one
thing. They should have a single responsibility. More to the point, there should only be
one reason for a class to change.



65 Chapter : Principles of OOD

Consider Figure 6-1. This class knows way too much. It knows how to calculate pay
and taxes, how to read and write itself on disk, how to convert itself to XML and back, and
how to print itself on various reports. Can you smell the Fragility? Change from SAX to
JDOM and you have to change Enpl oyee. Change from Accessto Oracle, and you havet
change Enpl oyee. Change the format of the tax report and you have to change
Enpl oyee. Thisdesign is badly coupled.

public class Enployee {
Employee publ i c doubl e cal cul atePay();
publ i c doubl e cal cul at eTaxes();
+ calculatePay public void witeToDi sk();
+ caloulareTaxes public void readFronDi sk();
T eI public String createXm();
+ createXML public void parseXM.(String xm);
+ parseXML public void di spl ayOnEnpl oyeeReport (
+ displayOnEmployeeReport PrintStream strean);
+ displayOnPayrollReport public void displayOnPayrol | Report (
+ displayOnTaxReport PrintStream strean;
public void di spl ayOnTaxReport (
PrintStream strean);
}

Figure 6-1
Class knows too many things.

In reality we want to separate all these concepts into their own classes so that each
class has one, and only one, reason to change. We'd like the Employee class to dea with
pay and taxes, an XML related class to deal with converting Employee instances to and
from XML, an EmployeeDatabase class to dea with reading and writing Employee
instances to and from the database, and individual classes for each of the various reports.
In short, we want a separation of concerns. A potentia structure is shown in Figure 6-2

Employee
XML
Converter

Employee

+ calculatePay
+ calculateTaxes

+ EmployeeToXML
+ XMLToEmployee

Employee
Database

+ writeEmployee
+ readEmployee

TaxReport EmployeeReport PayrollReport

Figure 6-2
Separation of concerns.



The Open Closed Principle (OCP) 66

Violation of this principle is pretty easy to spot in a UML diagram. Look for classes
that have dependencies on more than one topic area. A dead give-away is a class that
implements one or more interfaces that endow it with certain properties. Careless use of an
interface that endows an object with the ability to be stored on disk, for example, can lead
to classes that couple business rules with issues of persistence.

Consider the two diagrams in Figure 6-3. The one on the left couples Per si st abl e
tighly into Enpl oyee. All users of Enpl oyee will transitively depend upon
Per si st abl e. This dependence may not be great, but it will be there. Changes to the
Per si st abl e interface will have the potentia of affecting al users of Enpl oyee.

The diagram on the right side of Figure 6-3 leaves Enpl oyee independen of Per s-
istabl e, and yet alows for persistence just the same. Instances of Persi s-
t abl eEnpl oyee can be passed around the system as Enpl oyees, without the rest of the
system knowing about the coupling. The coupling exists, but is hidden to most of the sys-
tem.

«interface» «interface»
Persitable Persistable Employee
Embplovee Persistable
ploy Employee
Figure 6-3

Two ways to use Serializable
The Open Closed Principle (OCP)

SOFTWARE ENTITIES (CLASSES, MODULES, FUNCTIONS, ETC.)
SHOULD BE OPEN FOR EXTENSION, BUT CLOSED FOR MODIFICA-
TION.

This principle has a high-falutin’ definition, but a simple meaning: You should be able to
change the environment surrounding a module without changing the module itself.

Consider, for example, Figure 6-4. It shows a simple application that deas with
Enpl oyee objects through a database facade named Enpl oyeeDB. The facade deals
directly with APl of the database. This violates the OCP because a change to the imple-
mentation of the Enpl oyeeDB class can force a rebuild of the Enpl oyee class. The
Enpl oyee is transitively bound to the database API. Any system that contains the
Enpl oyee classmust also contain TheDat abase API.

Unit tests are often the places where we want to make controlled changes to the envi-
ronment. Consider, for example, how we would test Enpl oyee. Employee objects make



67 Chapter : Principles of OOD

EmployeeDB «api»

TheDatabase

Employee

+ readEmployee
+ writeEmployee

Figure 6-4
Violation of OCP

changes to the database. In atest environment we don’t want the real database to change.
We also don't want to create dummy databases just for the purposes of unit testing.
Instead, we'd like to change the environment so that the test catches al the calls that
Enpl oyee makes to the database, and verifies that those calls are made correctly.

We can do this by converting Enpl oyeeDB to an interface asin Figure 6-5. Then we
can create derivatives that either invoke the true database API, or that support our tests.
The interface separates Enpl oyee from the database API, and allows us the change the
database environment that surrounds Enpl oyee without affecting Enpl oyee at all.

«interface»
EmployeeDB
Employee
+ readEmployee
+ writeEmployee
] Employee «api»
UnitTest Database TheDatabase
Database i
Implementation

Figure 6-5
Conforming to the OCP

Among the systems that are plauged by violations of OCP are GUIs. Despite the fact
that MODEL-VIEW-CONTROLLER has been known for nearly three decades, we often can’'t
seem to get the design of GUI systems right. All too often the code that manipulates the
GUI API isinextricably bound to the code that manages and manipulates the data being
displayed.

Consider, for exaple, a very simple dialog box that displays a list of employees. The
user selects an employee from the list and then clicks the “ Terminate” button. We expect
that if no employeeis selected, then the “Teminate” button is disabled. On the other hand,
if we select an employee from the list, the “Terminate” button will be enabled. When the
user clicksthe“ Terminate” button, the terminated employee disappears from the list, none
of the remaining employees is shown as selected, and the terminate button is disabled.



The Open Closed Principle (OCP) 68

Implementations that violate the OCP would put all this behavior in the class that
invokes the calls to the GUI API. OCP compliant systems would seperate the manipula-
tion of the GUI from the manipulation of the data.

Figure 6-6 shows the structure of an OCP compliant system. The Enpl oyee-
Ter mi nat or Model managesthe list of employees, and isinformed when the user selects
or terminates an employee. The Enpl oyeeTer ni nat or Di al og manages the GUI. It is
given the list of employees to display, and informs its controller when a selection changes
or when the terminate button is pressed.

«interface» «interface»
EmployeeTerminatorController EmployeeTerminatorView
+ selectionChanged(employee) + enableTerminate(boolean)

+ terminate() + setEmployeeList(employees)
+ clearSelection()

Employee Employee
Terminator Terminator
Model Dialog

0..* employees ]
String javax.swing
Figure 6-6

Isolating GUI from Data Manipulation

The Enpl oyeeTer mi nat or Model is responsible for actualy deleting the selected
employee from the list. It is also responsible for determining whether or not the terminate
control is enabled or disabled. It doesn’'t know that this control isimplemented with a but-
ton. It simply tellsits associated view whether or not the user is allowed to terminate. Sim-
ilarly, even though the model doesn’t know anything about alistbox, it can tell its view to
clear the selection.

The Enpl oyeeTer ni nat or Di al og is brainless. It makes no decisions on its own,
and manages no data. The Enpl oyeeTer ni nat or Model pullsits strings, and the dialog
reacts. If the user interacts with the dialog, it simply tellsits controller what's going on by
calling methods on the Enpl oyeeTer i nat or Cont rol | er interface. These messages
are passed to the model which then interprets and acts upon them®.

1. Readerswho know MV C will recognize this as a variation. In more complex situations the con-
troller would be atrue object rather than just being an interface for the modd. In this case, how-
ever, the application is so simple that the controller simply acts as a pass through to the model.



69 Chapter : Principles of OOD

The Javaimplementation of this structure is shown in Listing 6-1 through Listing 6-4.
The two interfaces don't hold any surprises. One might ask why terni nate and
sel ecti onChanged are separate functions of Enpl oyeeTer nmi nat or Control |l er.
Why not just have t er i nat e take the enpl oyee argument? | did this because | didn’t
want the Enpl oyeeTer i nat or Di al og making assumptions about what it means when
the user clicks the terminate button.

Listing 6-1
EmployeeTerminatorView.java

inmport java.util.Vector;

public interface Enpl oyeeTerm natorView {
voi d enabl eTer m nat e( bool ean enabl e);
voi d set Enpl oyeelLi st (Vector enpl oyees);
voi d cl earSel ection();

Listing 6-2

EmployeeTerminatorController.java

public interface EnployeeTerm natorController {
public void sel ecti onChanged(String enpl oyee);
public void term nate();

}

EmployeeTerminatorModel is very straighforward. Upon construction it sendsthe list
of employeesto the view, clears the selection, and disables the terminate command. When
the dialog reports a change in selection by caling sel ect i onChanged, then the model
appropriately enables the terminate button and saves the selection. When the dialog calls
terminate then the selected employee is removed from the list, the modified list is sent
back to the view, the selection is cleared, and the terminate button is disabled.

Listing 6-3
EmployeeTerminatorModel.java
inmport java.util.Vector;

public class Enpl oyeeTerni nat or Model
i mpl ements Enpl oyeeTerm nat orControl | er {
private Enpl oyeeTerm nator Vi ew vi ew,
private Vector enployees;
private String sel ect edEnpl oyee;

public void initialize(Vector enpl oyees,
Enpl oyeeTerm nat or Vi ew vi ew) {
this. enpl oyees = enpl oyees;
this.view = view,
vi ew. set Enpl oyeelLi st (enpl oyees);
vi ew. cl ear Sel ection();
vi ew. enabl eTerm nat e(fal se);

}

/1l Enpl oyeeTerm natorController interface

public void sel ecti onChanged(String enpl oyee) {




The Open Closed Principle (OCP) 70

Listing 6-3 (Continued)
EmployeeTerminatorModel.java

vi ew. enabl eTerm nat e(enployee = null);
sel ect edEnpl oyee = enpl oyee;
}

public void term nate() {
if (selectedEnployee != null)
enpl oyees. renove( sel ect edEnpl oyee) ;
vi ew. set Enpl oyeelLi st (enpl oyees);
vi ew. cl ear Sel ecti on();
vi ew. enabl eTer m nat e( f al se);

}
}

The Enpl oyeeTer i nat or Di al og classis the most complex of the set. Fortunately
that complexity is related only to managing the GUI widgets and has nothing to do with
the business rules of the system. It simply builds the terminate button and list box, wires
them up appropriately and then gets them ready for display. The implementation of the
Enpl oyeeTer nmi nat or Vi eware al trivial and unsurprising.

Listing 6-4
EmployeeTerminatorDialog.java

import j avax. swi ng. *,

i mport javax.swi ng. event. Li st Sel ecti onEvent;

i mport j avax.swi ng. event. Li st Sel ecti onLi st ener;
i mport java.aw.*;

import java.aw .event. ActionEvent;

i mport java.aw .event. ActionLi st ener;

i mport java.util.Vector;

public class Enpl oyeeTerni nator Di al og
i mpl ements Enpl oyeeTer m nat or Vi ew {
private JFrane frane;
private JList |istBox;
private JButton term nateButton;
private Enpl oyeeTerm natorController controller;
private Vector enployees;

public static final String ]
EMPLOYEE LI ST_NAME = "Enpl oyee List";
public static final String ]
TERM NATE_BUTTON_NAME = "Term nate";

public void )

Initialize(Enpl oyeeTerm natorController controller) {
this.controller = controller;
initializeEnpl oyeelLi st Box();
initializeTerm nateButton();
initializeContentPane();

}

private void initializeEnployeeListBox() {
listBox = new JList();
| i st Box. set Name( EMPLOYEE_LI ST_NAME) ;
| i st Box. addLi st Sel ecti onLi st ener (




71

Chapter : Principles of OOD

Listing 6-4 (Continued)
EmployeeTerminatorDialog.java

new Li st Selecti onLi stener()
public void val ueChanged(Li st Sel ecti onEvent e) {
i f (!e.getVal uel sAdjusting())
control | er. sel ecti onChanged(
(String) listBox.getSelectedValue());

}
)
}

private void initializeTerm nateButton() ({
term nateButton = new JButton( TERM NATE_BUTTON_NAME) ;
term nat eButton. di sabl e();
term nat eButton. set Name( TERM NATE_BUTTON_NAME) ;
term nat eButton. addActi onLi st ener (
new ActionListener() {
public void actionPerformed(Acti onEvent e) {
controller.termnate();

}
)
}

private void initializeContentPane() {
franme = new JFrame("Enpl oyee List");
frane. get Cont ent Pane() . set Layout (new Fl owLayout ());
frane. get Cont ent Pane() . add(! i st Box);
frane. get Cont ent Pane() . add(t erm nat eButton);
frane. get Cont ent Pane() . set Si ze(300, 600);
franme. pack();

}

publ i c Cont ai ner get ContentPane() {
return frane. get Cont ent Pane();
}

public JFrame get Frame() {
return frame;
}

/1 functions for Enpl oyeeTerm natorView interface

public void enabl eTer mi nat e(bool ean enabl e) {
term nat eButt on. set Enabl ed( enabl e) ;
}

public void set Enpl oyeelLi st (Vect or enpl oyees) {
this. enpl oyees = enpl oyees;
| i st Box. set Li st Dat a(enpl oyees) ;
franme. pack();

public void clearSelection() {
|'i st Box.cl ear Sel ection();




The Open Closed Principle (OCP) 72

Listing 6-4 (Continued)
EmployeeTerminatorDialog.java

}
}
Thenodel anddi al og objectsinteract in an interesting way when it comesto selec-
tion. The dial og reports all changes in selection to the nodel by way of the
control |l er interface. This includes changes caused when the nodel calls cl ear -

Sel ecti on. Asyou can seein Figure 6-7, when the model callscl ear Sel ecti on onthe
di al og, thedi al og responds by calling set Sel ecti on onthe nodel .

Employee Employee
Terminator Terminator
Model Dialog
| ‘ Employee Employee
initialize Terminator Terminator
1
\—> Controller View!
\ -
\ o
[ setEmployeelList
\ >
| [ clearSelection
\ -<
[ r~ setSelection(null)
\ .
| — enableTerminate(false)
\ \
| |

Figure 6-7
Interaction between the Model and Dialog

The conformance to the OCP can be seen most clearly when you look at the unit tests
for the model (Listing 6-5) andthedi al og (Listing 6-6). These unit test work without the
tested modules knowing about their existence. The Test Enpl oyeeTer nmi nat or Model
class tests the functionality of the nodel . The test pretends to be an Enpl oyee-
Ter mi nat or Vi ew and catches the messages that the nodel sendsto the vi ew, checking
to be sure that they are called at the correct times and carry the appropriate information.
Thisisknown asthe SELF SHUNT pattern? for unit testing.

Listing 6-5
TestEmployeeTerminatorModel.java

import junit.framework. Test Case;
i mport junit.sw ngui.TestRunner;

i mport java.util.Vector;
public class TestEnpl oyeeTer ni nat or Model extends Test Case

I mpl ements Enpl oyeeTerni nat or Vi ew {
private bool ean termn nateEnabl ed = true;

2. [Feathers2001]




73

Chapter : Principles of OOD

Listing 6-5 (Continued)
TestEmployeeTerminatorModel.java

private String sel ect edEnpl oyee;

private Vector noEnpl oyees = new Vector();
private Vector threeEnployees = new Vector();
private Vector enployees = null;

private Enpl oyeeTerm nator Mbdel m

public static void main(String[] args) {
Test Runner . mai n(
new String[]{" Test Enpl oyeeTer m nat or Model "});

publ i ¢ Test Enpl oyeeTer m nat or Model (String nane) {
super (nane) ;

public void setUp() throws Exception {
m = new Enpl oyeeTer m nat or Mbdel () ;

t hr eeEnpl oyees. add( " Bob");
t hr eeEnpl oyees. add("Bill ") ;
t hr eeEnpl oyees. add( " Robert ") ;

public void tearDown() throws Exception {
}

public void test NoEnpl oyees() throws Exception {
minitialize(noEnpl oyees, this);
assert Equal s(0, enployees. size());
assert Equal s(fal se, term nateEnabl ed);
assert Equal s(null, sel ectedEnpl oyee);

public void testThreeEnpl oyees() throws Exception {
minitialize(threeEnpl oyees, this);
assert Equal s(3, enployees. size());
assert Equal s(fal se, term nateEnabl ed);
assert Equal s(null, sel ectedEnpl oyee);

}

public void testSelection() throws Exception {
minitialize(threeEnpl oyees, this);
m sel ecti onChanged( " Bob");
assert Equal s(true, term nateEnabl ed);
m sel ecti onChanged(null);
assert Equal s(fal se, term nateEnabl ed);

}

public void testTerm nate() throws Exception {
minitialize(threeEnpl oyees, this);
assert Equal s(3, enployees. size());
sel ect edEnpl oyee = "Bob";
m sel ecti onChanged( " Bob");
mterm nate();
assert Equal s(2, enpl oyees. size());




The Open Closed Principle (OCP) 74

Listing 6-5 (Continued)
TestEmployeeTerminatorModel.java

assertEqual s(nul' T, sel ect edEnpl oyee);
assert Equal s(fal se, term nateEnabl ed);
assert (enpl oyees. contains("Bill"));

assert (enpl oyees. cont ai ns(" Robert"));
assert (! enpl oyees. contai ns("Bob"));

}

/'l Enpl oyeeTermi natorView interface
public void enabl eTerm nat e( bool ean enabl e) {
t erm nat eEnabl ed = enabl €;

}

public void set Enpl oyeeli st (Vector enpl oyees) {
this.enpl oyees = (Vector) enpl oyees. cl one();

public void clearSelection() {
sel ect edEnpl oyee = nul | ;

}
}

The Test Enpl oyeeTer ni nat or Di al og class also uses the SELF-SHUNT pattern,
pretending to be a Test Ter mi nat or Cont r ol | er. It catches the messages sent from the
di al ogtothecontrol | er, and verifiesthat they are called at the right times and contain
the appropriate data. Most of thistest just checks the wiring of the dialog box. It checksto
make sure that the listbox and button are created properly and that they function as they
are supposed to.

Listing 6-6
TestEmployeeTerminatorDialog.java

import junit.framework. Test Case;
i mport junit.sw ngui.TestRunner;

i mport j avax.sw ng. *;

i mport java.awt.*;

i mport java.util.HashMap;
i mport java.util.Vector;

public class Test Enpl oyeeTer ni nat or Di al og
extends Test Case

‘ i mpl ement' s Enpl oyeeTerm natorControl | er
privat e Enpl oyeeTerm natorDi al og term nator;
private JList list;
private JButton button;
privat e Container contentPane;
private String sel ectedvalue = nul|;
private int selectionCount = 0;
private int termnations = 0;

public static void main(String[] args) {
Test Runner. mai n( ) )
new String[]{" Test Enpl oyeeTerni nat orDi al 0g"});




Chapter : Principles of OOD

Listing 6-6 (Continued)
TestEmployeeTerminatorDialog.java

publ i ¢ Test Enpl oyeeTerm nat or Di al og(String name) {
super (nane) ;

public void setUp() throws Exception {
term nator = new Enpl oyeeTer m natorDi al og() ;
terminator.initialize(this);
put Component sl nt oMenber Vari abl es() ;

private void put ConponentslntoMenber Vari abl es() {
cont ent Pane = term nator.get Cont ent Pane();
HashMap map = new HashMap();
for (int i = 0; i < contentPane. get Conponent Count (); i++) {
Conponent c¢ = content Pane. get Conponent (i) ;
map. put (c. get Nane(), c);

list = (JList) nap.get(

Enpl oyeeTer mi nat or Di al og. EMPLOYEE_LI ST_NAME) ;
button = (JButton) map. ?et(

Enpl oyeeTer mi nat or Di al og. TERM NATE_BUTTON_NAME) ;

}

private void put ThreeEnpl oyeeslntoTerm nator() {
Vector v = new Vector();
v. add(" Bob");
v.add("Bill");
v. add(" Boris");
term nat or. set Enpl oyeeLi st (v);

public void testCreate() throws Exception {
assert Not Nul | (cont ent Pane) ;
assert Equal s(2, contentPane. get Conponent Count ());
assertNot Nul | (I'ist);
assertNot Nul | (button);
assert Equal s(fal se, button.isEnabled());

}

public void test AddOneNane() throws Exception {
Vector v = new Vector();

v. add(" Bob");
term nat or. set Enpl oyeeLi st (v);
Li st Model m = |ist. get Mdel ();

assertEqual s(1, mgetSize());
assert Equal s("Bob", m getEl enent At (0));
}

public void test AddManyNanmes() throws Exception {
put Thr eeEnpl oyeesl ntoTer mi nator();
Li st Model m = |ist. get Model ();
assert Equal s(3, mgetSize());

assert Equal s("Bob", m getEl enent At (0));
assertEqual s("Bill", mgetEl ementAt(1));
assertEqual s("Boris", mgetElenentAt(2));




The Open Closed Principle (OCP) 76

Listing 6-6 (Continued)
TestEmployeeTerminatorDialog.java

public void testEnabl eTerminate() throws Exception {
term nator. enabl eTerm nate(true);
assert Equal s(true, button.isEnabled());
term nator. enabl eTerm nat e(f al se);
assert Equal s(fal se, button.isEnabled());

}

public void testCl earSelection() throws Exception {
put Thr eeEnpl oyeesl ntoTer m nator();
l'i st.setSel ectedl ndex(1);
assertNot Nul | (I'ist. getSel ectedVal ue());
term nator. cl earSel ection();
assert Equal s(null, list.getSel ectedValue());

}

public void testSel ecti onChangedCal | back() throws Exception {
put Thr eeEnpl oyeesl ntoTer m nator();
|ist.setSel ectedl ndex(1);
assertEqual s("Bill", sel ectedVal ue);
assert Equal s(1, selectionCount);
I'ist.setSel ectedl ndex(2);
assert Equal s("Boris", selectedValue);
assert Equal s(2, sel ectionCount);

}

public void testTerm nateButtonCal | back() throws Exception {
button. dod ick();
assertEqual s(1, termnations);

/1 i nmplement Enpl oyeeTerm natorController
public void sel ecti onChanged(String enpl oyee) {
sel ect edval ue = enpl oyee;
sel ecti onCount ++;

}

public void termnate() {
tern nati ons++;
}

}

The tests demonstrate conformance to the OCP because it is possible to change the
environment surrounding both the di al og and the nodel to atest environment without
the di al og or nodel knowing it. Consider what this means in terms of the flexibility of
the modules. We could easily replace the di al og with acommand line Ul, or atext menu
Ul. The model would never know the difference. We can put the nodel and di al og on
different machines using RMI. We can change the environment of each module without
affecting the other.

It's easy to see the mechanism of OCP conformance. Look again at Figure 6-6. We
see the familiar FLIP-FLOP pattern® of modules implementing one interface and communi-




77 Chapter : Principles of OOD

cating with another. Clearly we are free to change the environment surrounding the mod-
ules because of their use of abstract interfaces. Indeed, abstraction is the key to OCP
conformance.

How do we identify the abstractions that help us to conform to the OCP? Most often |
achieve OCP compliance simply by writing the unit tests before | write the actual code.
Both of the preceeding unit tests were written using the test-first method. Each of the test
functions were written first, followed by just enough code in the module to make the test
function pass.

For the sake of completeness, Listing 6-7 shows code that binds the dialog and model
together and displays the dialog | used this module as a final, manual, test. It allowed me
to verify the (admittedly sparse) look and feel of the dialog. This isthe only code | wrote
that actually displays the dialog. The dialog unit test above simply checks the wiring and
function of the dialog, and does not actually display it.

Listing 6-7

ShowEmployeeTerminator.java

import | ava. awt . event . W ndowAdapt er;
i mport java.aw .event.W ndowEvent;

i mport java.util. Vector;

public class ShowEnpl oyeeTer m nator {
static Vector enployees = new Vector();
static Enpl oyeeTerm nat or Di al og di al og;

public static void main(String[] args) {
initializeEnpl oyeeVector();
initializeDialog();
runDi al og() ;

private static void initializeEnpl oyeeVector() {
enpl oyees. add(" Bob");
enpl oyees. add("Bil | ");
enpl oyees. add(" Robert");

private static void initializeDi alog() {
Enpl oyeeTer m nat or Model nodel = new
Enpl oyeeTer mi nat or Model () ;
di al og = new Enpl oyeeTer m nat or Di al og() ;
dialog.initialize(nodel);
nodel .initialize(enpl oyees, dialog);

}

private static void runbDialog() {
di al og. get Frane().addW ndowLi st ener (
new W ndowAdapt er () {
public void wi ndowd osi ng( W ndowEvent e) {
for (int i = 0; i < enployees.size(); i++) {

3. So named because of it's resemblance to the circuit diagram of an Eccles-Jordan flip-flop. | know
of nowritten description of this pattern, yet | runinto it al thetime.



The Liskov Substitution Principle (LSP) 78

Listing 6-7 (Continued)

ShowEmployeeTerminator.java
String s = (String) enployees.element At (i);
Systemout. println(s);

} }System exit(0);
}

);
di al og. get Frane().setVisible(true);

The Liskov Substitution Principle (L SP)

SUBTYPES MUST BE SUBSTITUTABLE FOR THEIR BASE TYPES.

Have you ever seen code that has lots of i nst anceof expressions in the clauses of i f
statements. Though there are some legitimate uses for expressions like this, they are few
and far between. Usually they are aresult of violating the LSP, and are themselves aviola-
tion of the OCP.

The LSP says that the users of base classes should not have to do anything specia in
order to use derivatives. Specifically, they should not have to usei nst anceof , or down-
casts. Indeed, they should know nothing about the derivatives at al. Not even that they
exist.

Consider the payroll application shown in Figure 6-8. The Enpl oyee classis abstract
and has an abstract method named cal cPay. It's pretty clear that Sal ari edEnpl oyee
will implement this to return the employee’s salary. It's aso pretty clear that Hour | y-
Enpl oyee will implement it to return the hourly rate times the sum of the hours on this
week’s time cards.

{A}—
Employee

+ calcPay {A}

i
| |

Salaried Hourly 0.* )
Timecard
Employee Employee
Figure 6-8

Simple Payroll Example



79 Chapter : Principles of OOD

What would happen if we decided to add a Vol unt eer Enpl oyee? How would we
implement cal cPay? At first this may seem obvious. We'd implement calcPay to return
zero as shown below.

public class Vol unt eer Enpl oyee extends Enpl oyee {

publ i ¢ doubl e cal cPay(
) return O

}

But is this right? Does it make any sense to even call cal cPay on a Vol unt eer -
Enpl oyee? After al, by returning zero we are implying that cal cPay is a reasonable
function to call, and payment is possible. We might find ourselves in the embarrasing situ-
ation of printing and mailing a paycheck with a gross pay of zero, or some other similar
non-sequitur.

So maybe the best thing to do is to throw an exception, indicating that this function
really shouldn’t have been called.

public class Vol unteerEnpl oyee extends Enpl oyee {
publ i c double caIcPay?? f
t hrow new Unpayabl eEnpl oyeeExcepti on()

}

At first this seems like areasonabl e thing to do. After dl, it'sillegal to cal cal cPay
on aVol unt eer Enpl oyee. Exceptions are meant to be thrown for illegal situations like
this.

Unfortunately, now, every call to cal cPay can throw an Unpayabl eEnpl oyee-
Except i on, so either the exception must be caught or declared by the caller. Thus, acon-
straint upon a derivative has impacted the users of the base class.

To make matters worse, the following code is now illegal.

for (int i = 0; i < enployees.size(); i++) {
Enpl oyee e = (Enplo&ee) enpl oyees. el enent At (i);
total Pay += e.cal cPay();

To makeit legal we haveto wrap the call to cal cPay inatry/ cat ch block.

for (int i = 0; i < enployees.size(); i++) )
Enpl?yee e = (Enpl oyee) enpl oyees. el enent At (i);
try

total Pay += e.cal cPay();

—

catch (Unpayabl eEnpl oyeeException el) {

—

}
return total Pay;

Thisisugly, complicated, and distracting. We might easily be tempted to change it to

for (int i = 0; i < enployees.size(); i++) )
Enpl oyee e = (Enpl oyee) enpl oyees. el emrent At (i);
if (!(e instanceof Vol unteer Enpl oyee))
total Pay += e.cal cPay();



The Dependency Inversion Principle (DI P) 80

But this is even worse because now code that was supposed to operate on the
Enpl oyee base class makes explicit reference to one of its derivatives.

All this confusion has come about because we have violated the LSP. Vol unt eer -
Enpl oyee is not substitutable for Enpl oyee. Users of Enpl oyee are impacted by the
very presence of Vol unt eer Enpl oyee. And this results in strange exceptions and odd
i nst anceof clausesini f statements, all of which violate the OCP.

You know you are violating the LSP whenever you try to make it illegal to invoke a
function on a derivative. You may aso be violating the LSP if you make a derivative
method degenerate, i.e. implemented with nothing. In both cases you are saying that this
function makes no sense in this derivative. And that’s a violation of L SP that can eventu-
aly lead to nasty exceptions and i nst anceof tests.

What's the solution to the Vol unt eer Enpl oyee problem? Volunteers are not
employees. It makes no sense to cal cal cPay on them, so they should not derive from
Enpl oyee, and they should not be passed to functions that need to call cal cPay.

The Dependency Inversion Principle (DIP)

A. HIGH LEVEL MODULES SHOULD NOT DEPEND UPON LOW LEVEL
MODULES. BOTH SHOULD DEPEND UPON ABSTRACTIONS.

B. ABSTRACTIONS SHOULD NOT DEPEND UPON DETAILS. DETAILS
SHOULD DEPEND UPON ABSTRACTIONS.

Better still: Don't depend upon volatile concrete classes. If you inherit from a class, make
it an abstract class. If you hold a reference to a class, make it an abstract class. If you call a
function, make it an abstract function.

In general, abstract classes and interfaces change far less often than their concrete
derivatives. Therefore we would rather depend upon the abstractions than the concretions.
Following this principle reduces the impact that a change can have upon the system.

Does this mean we can’t use Vect or, or St ri ng? After all, they are concrete classes.
Does using them constitute aviolation of DIP? No. It is perfectly safe to depend upon con-
crete classes that are not going to change. Vect or and Stri ng are not going to change
(much) in the next decade, so we can feel relatively safe using them.

It's the volatile concrete classes that we want to avoid depending upon. These are the
concrete classes that are under active development, and that capture business rules that are
likely to change. We want to create interfaces for these classes and depend upon those
interfaces.

From aUML standpoint, this principle is very easy to check. Follow every arrow in a
UML diagram and check to make sure the target of the arrowhead is an interface or an
abstract class. If not, and if the concrete class is volatile, then the DIP has been violated,
and the system will be sensitive to change.



81 Chapter : Principles of OOD

The Interface Segregation Principle

CLIENTS SHOULD NOT DEPEND UPON METHODS THAT THEY DO
NOT USE.

Have you ever seen afat class? A fat classis a class that has dozens or hundreds of meth-
ods. Typicaly we don’t want to have such classes in our systems; but sometimes they are
unavoidable.

The problem with fat classes, other than the fact that they are big and ugly, isthat their
users seldom use al their methods. That is, a user might call just two or three methods on
a class that declares dozens. Unfortunately those users are impacted when changes are
made to the methods they don't call.

For example, consider the course enrollment system depicted in Figure 6-9. The dia-
gram shows two clients of a class named St udent Enr ol | ment . Clearly the Enrol | -
ment Report Generator does not invoke methods like preparelnvoice or
post Payment . Lets also suppose that Account sRecei vabl e does not invoke the meth-
ods get Nane and get Dat e.

Enrollment « » Student « »
Report parameter: otudent parameter: Accqums
Receivable
Generator
+ getName
+ getDate
+ preparelnvoice
+ postPayment

0.*

Course

Figure 6-9
Unsegregated Enrollment System

Now, lets assume that the requirements change in a way that forces us to add a new
argument to the post Paynment method. This change to the declaration of St udent -
Enrol | ment may’ force us to recompile and redeploy Enr ol | ment Repor t Gener at or .
This is unfortunate because EnrollmentReportGenerator does not care at al about the
post Payment method.

We can prevent this unfortunate dependency by following a simple rule. Protect users
from methods they don’t need by giving them interfaces with just the methods they do
need. Figure 6-10 shows how this rule can be applied.

4. Some |DEs are smart enough to avoid such arecompile, but most are not.



Conclusion 82

«interface» «interface»

Enroliment Enroliment
«parameter» Reporter Accounting «parameter»
+ getName + preparelnvoice
+ getDate + postPayment
Enrollment Student
Accounts
Report Enrollment ;
Receivable
Generator
+ getName
+ getDate
+ preparelnvoice
+ postPayment
0“*
Course
Figure6-10

Segregated Enrollment System

Each user of a St udent Enr ol | ment object is given an interface that provides just
the methods that it is interested in. This protects the user from changes in methods that
don’t concern it. It also protects the user from knowing too much about the implementa-
tion of the object it isusing.

Conclusion

So, five simple principles:

1. SRP-- A class should have one and only one reason to change.

2. OCP -- It should be possible to change the environment of a class without chang-
ing the class.

3. LSP-- Avoid making methods of derivativesillegal or degenerate. Users of base
classes should not need to know about the derivatives.

4, DII P -- Depend on interfaces and abstract classes instead of volatile concrete
classes.

5. I%Ed- Give each user of an object an interface that has just the methods that user

needs.

When should these principles be applied? At the first hint of pain. It is not wiseto try
to make al systems conform to all principles al thetime, every time. You' Il spend an eter-
nity trying to imagine all the different environments to apply to the OCP, or all the differ-
ent sources of change to apply to the SRP. You'll cook up dozens or hundreds of little
interfaces for the | SP, and create |ots of worthless abstractions for the DIP.



83 Chapter : Principles of OOD

The best way to apply these principle is reactively as opposed to proactively. When
you first detect that there is a structural problem with the code, or when you first realize
that amoduleis being impacted by changesin another, then you should see whether one or
more of these principles can be brought to bear to address the problem.

Of course if you take a reactive approach to applying the principles, then you also
need to take a proactive approach to putting the kinds of pressure on the system that will
create pain early. If you are going to react to pain, then you need to diligently find the sore
spots.

One of the best ways to hunt for sore spots is to write lots and lots of unit tests. It
works even better if you write the tests first, before you write the code that passes them.
But that's atopic for the next chapter.

Bibliography

[Feathers2001]: The 'Sdf-Shunt Unit Testing Pattern, Michad Feathers, May, 2001,
http://wwmv obj ect ment or. coni resources/ articl es/ Sel f ShunPt rn. pdf

[Martin2002]: The Principles, Patterns, and Practices of Agile Software Devel opment,
Rabert C. Martin, Prentice Hall, 2002



Bibliography

84



v

The Practices. dX

Now we're going to put all this together into a set of practices that a team can use to get
projects done. A group of practiceslike thisis sometimes called a process. However, what
| describe below istoo lightweight to be called a process. It's just a set of simplerulesthat
ateam of developers can useto get alot of work donein ashort amount of time. | cal this
set of rules: dX".

Iterative Development

The key dX practice isto do everything in short iterations. By everything | mean require-
ments, analysis, design, implementation, testing, documentation, etc. Everything. By short
I mean two weeks. We do everything in two week cycles. Each cycle begins with a plan,
and ends with deliverables. After the initia exploration, the chief deliverable of each
cycle, even the earliest of cycles, isworking code.

Thelnitial Exploration

Our first dX iteration begins with an exploration of the requirements. This is the only
iteration that does not end in code, and is the only iteration that may be shorter than two
weeks. Typically exploration is afew days. Sometimesit isaweek. On rare occasionsit is
two weeks.

First we need someone who will be responsible for requirements and priorities. Call
this person “the Customer”. In many projects this person may, in fact, be the rea cus-

1. A visua punon XP that | adopted in the paper: [Martin1999]

85



Iterative Development 86

tomer. In other projects the role of “the Customer” may be played by a team of business
analysts.

We sit down with the customer and talk over what the system has to do. For the first
few days of the project we are just discussing how the system works and what behaviors it
must have. We aren’t necessarily writing much down. We are not trying to capture require-
ments at this time, we are just trying to get an idea of the scope of the system.

As we discuss the system we identify use-cases. We write the name of each use-case
down on an index card. We call these cards user stories. They don’t contain the details of
the use-case, they contain only the name. You might write down afew other salient bits of
information on the card, but we aren’t trying to be complete or thorough just yet. We're
just trying to get our arms around the overall system.

This exploration process never ends. Even when we are in the depths of implementa-
tion, even after the N" release of the system has been shipped, we are till going to be sit-
ting down with the customer and regularly discussing new needs and features.

Estimating the features

We write an estimate on each user story card. This estimate is a dimensionless number. We
don’'t care what the units are at this point. All we care about is that the estimates are pro-
portional to each other. That is, a story with an estimate of eight will take twice aslong as
astory with an estimate of four.

The best way to estimate is to base the estimate for a story on a previously imple-
mented story. If you've done a story like the one you are currently estimating, and you
know that the estimate on the previous story was six, you can make the estimate on the
new story five, six, or seven depending upon how much simpler or harder the new story is.

If you don’t have older stories to base your estimates on, then you can start estimating
by using perfect programming days. Perfect programming days are days in which you
went to bed on time the previous night, ate a hearty breakfast this morning, there was no
traffic on the way to work, the phone never rings all day, there are no meeting, your com-
puter never crashes, the network seemsinfinitely fast, and your co-workers are intelligent,
patient, and considerate. How much could you get done on a day like that? How many
dayslike that would it take to get the story you are estimating done. Write down that num-
ber and then forget that it had anything to do with days -- because, in reality, it doesn’t.

Stories that are too long should be split. Storiesthat are too short should be merged. A
story should never be longer than three or four days worth of effort for the whole team.
They should never be shorter than about half a day’s effort. Stories that are too short tend
to be over-estimated. Stories that are too long tend to be under-estimated. So we merge
and join stories until they sit near the sweet spot of accurate estimation?.

2. Accurate Estimation. Now there’s an oxymoron for you.



87 Chapter : The Practices. dX

Spikes

Asour last act of the initial exploration we will spend two or three days doing a quick and
dirty implementation of two or three interesting stories. We are going to throw thisimple-
mentation away. The goa is simply to calibrate our estimates. Say, for example, that it
took five man days to implement a story with a seven on it. That would imply that for
quick and dirty implementations we can do seven pointsin five days. Perhapsit will take
three times longer to do the same implementation in production quality. So we'll reduce
our calibration to seven points in fifteen days. We'll round that down to half a point per
day. This number isour initial velocity.

Planning

Now that we have stories, estimates, and and vel ocity, we can start planning our iterations.
Planning is simply a matter of using the current velocity to figure out which storieswill be
done each iteration.

Planning Releases

We begin by planning the first release. A release is typically six iterations or about three
months. L ets say we have five people on our team. That means we can do about fifty man
days per iteration. In six iterations we can get 300 man days of work done. At our current
velocity of .5, we can get 150 story points done. So the customer picks stories with esti-
mates that add up to 150. The customer picks the stories that are most important and cost
effective. This batch of stories becomes the release plan.

Planning Iterations

On the first day of each iteration we create a plan for that iteration. An iteration contains
fifty man days. At our current velocity that means we can do about 25 story points. So the
customer selects stories from the release plan that add up to 25. Thisisthe initial iteration
plan.

We take the stories that the customer selected and break them down into tasks. A task
is much smaller than a story. It is a unit of work on the order of four to ten man hoursin
size. A task isasimple unit of work that a single devel oper can take reponsibility for. It'sa
single dialog box, or asingle database transaction, or something along those lines.

The customer helps us do the task breakdown, talking us through the details of the
requirements. The customer also helps us make priority tradeoffs. He points out which
parts of afeature are important and which are not. He hel ps us identify whether aglitzy Ul
is important or not. He helps us keep the business value of the iteration high.



Planning 88

Usualy it will take us two or three hours to break the stories down into tasks. During
that time we write the tasks on a whiteboard or aflip chart of something. Next we sign up
to take responsibility for tasks.

Signup is a simple process. Each developer keeps a budget in the back of his or her
head. This budget it the number of man hours the developer will spend actually working
on tasks during this iteration. As the developer signs up for atask, he estimates that task,
and then subtracts that esimate from his budget. A developer can continue to sign up for
tasks until hisbudget is zero.

We don't assign tasks to developers, we let them sign. We find that the devel opers can
usually work out the best distribution of tasks in this manner. We also let each developer
estimate the tasks they are signing up for.

Ideally, at the end of the signup, every task will have an owner, and every developer’s
budget will be at zero. This seldom happens. Usually, especially during the first iterations,
there are lots of tasks left on the board, and all the developer’s budgets are at zero.

When this happens, the devel opers try to work out another way to divvy up the tasks.
Perhaps someone signed up for atask that doesn’t play to their strengths. Maybe that task
should be done by someone else. The developers hash this out for a while in an effort to
get more tasks signed up.

If there are still tasks left on the board, then the developers tell the customer that they
can't get all 25 stories points done. The customer removes stories from the iteration until
all the tasks can be signed up.

Ideally, the plan isfinalized at about noon.
The midpoint.

Lets say that we finally settled on 20 story points for the iteration. Now we start analyzing,
designing, and implementing those stories. We'll talk about how to do that in the next few
sections. Right now | want to jump forward to Monday morning -- the midpoint of theiter-
ation.

On Monday morning we should have 10 story points done. We calculate the com-
pleted story points by adding up the estimates of the stories that are complete. This pre-
vents us from getting all the stories half done. What we want is to get half the stories done.

If we don’t have 10 story points done, then we aren’'t going as fast as we thought. L ets
say we only got 8 story points done. Then we need to tell the customer that it's not likely
that we'll get more than 16 story points done for the whole iteration. We ask the customer
to remove a story or two so that the total is 16.

By the same token, if we are more than haf done, then we ask the customer to add
extra stories to the iteration. For example, if we have 15 story points done, then it looks
like we might get atotal of 30 done for theiteration. So we ask the customer to add more
stories.



89 Chapter : The Practices. dX

Velocity Feedback.

We stop the iteration on Friday afternoon whether we have completed all the stories or not.
Then we recompute our velocity. If we completed 23 story points then our velocity is 23
story points per iteration. The following Monday, when we do the plan for the next itera-
tion, the customer will select stories that add up to 23.

This is how we continuously calibrate our estimates. We measure how many story
points we got done each iteration and sign up only for that many in the next iteration. We
measure how many story points we got done during the previous release, and sign up only
for that many for the next release. Individually we measure how many man hours worth of
tasks we completed in the last iteration and only sign up for that many tasks in the next
iteration.

Organizing the Iterationsinto Management Phases

The Unified Process® suggests that projects go through four management phases. During
the Inception phase we are trying to determine the feasibility and business case for the sys-
tem. During the Elaboration phase we determine the architecture of the system and create
areliable plan for implementation. During the Construction phase we carry out the imple-
mentation of the system. Finally, during the Transition phase we install the system and
work with the users to tuneit.

Each of these phases of the Unified Process consists of one or more iterations; and
each produces working code. From the programmer’s point of view, there is no difference
between the phases. Each is simply comprised of iterations, al of roughly the same struc-
ture. Each isamatter of identifying stories, estimating them, selecting them for implemen-
tation, and then implementing them.

What’sin an Iteration?

During the two weeks of the iteration we carry out al the traditional tasks of software
development. We analyze the requirements, design a solution, and implement that solu-
tion. However, we restrict our scope to only the stories selected for the current iteration.
We do not consider any other stories that might be selected in future iterations. Our focus
ison thisiteration and only thisiteration.

One might complain that thisleads to poor architectures, inflexible designs, or lots of
rework. On the contrary it leads to the best architectures, very flexible designs, and very
little rework. Thereason is simple, we are always working on the most important features.
The customer selects the features to be developed in each iteration based upon business

3. [Kruchten1998]



What’'sin an lteration? 90

value. Any feature scheduled for a later iteration is, by definition, not as important as the
feature we are currently working on. Therefore our attention is always on the most impor-
tant thing it can be one.

There are a set of practices that we like to follow while implementing stories. They
help us to write clean flexible code. They help us keep our defect rate down and create
flexible and easy to understand designs. They help us communicate with the customer, and
eliminate surprises.

Developingin Pairs

Firstly, when using dX, we develop al software in pairs. Two devel opers work together at
a single workstation implementing a task that one of them signed up for. Both program-
mers are fully engaged in writing the code. Both have their eyeslocked on the screen. One
may control the keyboard, but both know exactly what is about to happen. Indeed, the key-
board moves rapdily back and forth between them. I've even seen instances where one
devel oper uses the keyboard while another uses the mouse.

We changes partners once per day. The owner of the task stays with his task, and
recruits others to work with him. On average each programmer will spend about half his
time working on the tasks he signed up for. The other half of histime will be spend help-
ing other people with their tasks.

You might think this cuts productivity in half. After all, the owner of each task is only
spending half his time on that task. However, the loss of productivity does not seem to
happen. It turns out that pairing is avery efficient way to write software.

Acceptance Tests

At the start of each dX iteration, once the customer has selected the stories to be imple-
mented, the customer and QA folks work together to flesh the user stories into use-cases
and to write executable acceptance tests for the stories. These tests delivered to the pro-
grammers before the iteration is half over’. These tests are the true requirements docu-
ment. It isin these tests that the details of the requirements are truly documented.

Once the developers recieve the tests, they know what their stories and tasks must
accomplish. They run the tests continuously throughout development making sure that
they never break any that have passed. A good iteration ends in akind of anti-climax with
everybody going home early Friday afternoon, all acceptance tests passing.

4. Atleast one QA manager | know of madeit his goal to deliver the acceptance tests during theiter-
ation planning meeting. He worked with the customer afew days before the iteration began to get
an idea of which stories were most imporant. He then developed acceptance tests for those stories
“on spec’.



91 Chapter : The Practices. dX

Unit Tests

InadX project we write unit tests. Lots and lots of unit tests. Moreover we write them
first, before we write the code that passes them. Indeed, the rule is that we will not write
any production code until we have aunit tests that isfailing. Every line of production code
is written to make a particular failing unit test pass.

The technique is extremely iterative. We write a tiny fragment of a unit test, no more
than five or ten lines of code. Then we compileit. Usually it won't compile because it uses
code that hasn’t been written yet. So we write just enough of the production code to get the
test to compile. Typicaly thiswill belessthan half a dozen lines of code. Then we run the
test. It will fail because we did not finish writing the production code. Seeing it fail we
then write just enough production code to make that one fragment of the test pass. Once it
passes we add another fragment to the test and start over.

This cycle lasts between one and ten minutes depending upon the language or the
environment. The faster you can go round the loop the better. And each time around the
loop you run all the tests you have written for that module. This means that, no matter
what is going on at the moment, the code was working a just a few minutes ago. We don’'t
have dozens of windows open with dozens of modules torn to shreds hoping we can wire
them all back together again. A minute or so ago all our tests passed.

As we work from day to day we continue to add more and more tests to the growing
body of unit tests. Dozens per day, hundreds per week, thousands per month. We organize
them into a body that is convenient to run. We run them all the time. We are confident in
the state of our code.

Thetests are aform of documentation. If you want to know how to invoke a particular
API function, there isatest that doesit. If you want to know how to create a certain object,
thereis atest that doesit. The tests act as a set of examplesfor nearly every programming
task in the system. This kind of documentation is unambiguous, accurate, compilable, and
executable.

Refactoring®

The ahility to run some or al of the suite of unit and acceptance tests, provides a simple
way to determine if we've done something to break the system. If we desire to make a
change, we can make it fearlessly, because the tests will tell usif we've broken anything
important.

This means that we can make changes to the code with near impunity. If we see a
variable that could have a better name, we can rename it. If we see a class that has too
many methods, we can split it. If we see a method that isin the wrong class we can move
it. Indeed, so long as we are supported by a bevy of unit and acceptance tests, we can fear-
lessly make any change we like.

5. [Fowler1999]



Conclusion 92

Thus, we incorporate refactoring, the act of improving a program’s structure without
changing it’s behavior, into the practices of dX. Every hour or so of active programming is
followed by a period of refactoring. We look at the code we' ve written and improve it. We
make these improvements in tiny steps, each just a few minutes long, running the tests
after each step. We gradually improve the structure of the system, never letting it degrade.
Theruleis: never let the sun set on bad code.

Open Office

The best environment for dX is an open office, or laboratory. We put tables in the middle
with workstations for pairs. We all work together in the same room, including the cus-
tomer. Our goal isto work together as a team, frequently interacting with each other, able
to ask quick questions of each other, get quick advice, lean over and look at some code.

Continuous I ntegration

The source code control system used in dX is non blocking. That means that anyone can
check out a module, no matter who el'se might have it checked out. First one to check in
wins. Second one to check in merges.

The possibility of merging creates an interesting tension. The longer you have a mod-
ule checked out the greater the likelihood of having to do a merge. Nobody likes to merge,
no matter how good the tools support is, therefore there is a pressure to check in early and
often. Thisisagood thing.

However, dX has a rule about checking in. When you check in code you must first
demonstrate that all of the unit and acceptance tests pass. That means you have to fully
integrate your changes into the system, build the system, and test the system before you
finish the check in.

In a dX project, this happens many times per day per pair. Therefore integration is
happening continuously. Thereis never abig final integration to be performed.

Conclusion

Gosh, did | forget to mention UML? No, | didn’t forget. | also didn’t mention Java. That's
because these tools are irrelevant to the practices. UML is not a method, UML is a nota-
tion. Java is not a method, Java is a programming language. We use these notations and
langauges only when we need them. They are tools to be used, not methods to be fol-
lowed.

Well what about documentation? Don’t we need to use UML to create useful docu-
ments? Yes, we do. However, we don’t need to make them as part of a process. Documen-
tation produced by default is amost aways useless. There is a rule in dX known as
Martin's first law of documentation. It says: produce only those documents for which you



93 Chapter : The Practices. dX

have a significant and immediate need. This means that we do not draw UML diagrams as
amatter of course. We do not specifically capture all requirements in class diagrams. We
do not capture al use cases in sequence diagrams. We use these tools when there is an
immediate and significant need, otherwise we don’t use them.

In a dX project you will see people using UML. You'll see them at whiteboards
scratching diagrams while debating different design options with each other. You'll see
them producing hardcopy diagrams as roadmaps for others to follow. What you wont see
are people producing diagrams because a process told them to. The only diagrams they
produce are the ones they know for sure that they need right now.

The practices | described above as part of dX are drawn from the practices of Extreme
Programming® (XP). Indeed, if you look closely you'll seethat dX isjust XP turned upsid-
edown.

Bibliography

[Kruchten1998]: The Rational Unified Process, Philippe Kruchten, Addison Wesley,
Reading, MA, 1998.

[Fowler1999]: Refactoring, Martin Fowler, Addison Wesley, Reading, MA, 1999

[Martin1999]: RUP vs. XP, Robert C. Martin, 1999,
http://wwmv obj ect ment or. coni resources/ articl es/ RUPvsXP. pdf

[Beck1999]: Extreme Programming Explained, Kent Beck, Addison Wesley, Reading,
MA, 1999

[Jeffries2000]: Extreme Programming Installed, Ron Jeffries, et. a, Addison Wesley,
Upper Saddle River, NJ, 2000

6. [Beck1999], [Jeffries2000]



Bibliography

94



8

Packages

There are two different kinds of packages that are important to Java programmers. The
first is the source code package represented by the Javapackage keyword. The second is
the binary component represented by a. j ar file.

Java Packages

Java packages are namespaces. They allow programmers to create small private areas in
which to declare classes. The names of those classes will not collide with identically
named classesin different packages.

Java compilation systems often keep the generated binary . cl ass files in directory
structures that mimic the package structure of the source code. Thus, the . cl ass file for
the class A.B.C will likely be stored on disk in afile whose path is something like: A/ B/
C. cl ass. Since Java compilers read foreign declarations from . cl ass file instead of
.j ava files, it is critical that both the compiler and runtime system know the appropriate
classpaths for the packages included in the application.

Because of these issuesit isimportant to give due consideration to the package struc-
ture of the system. UML has notational toolsthat can help with that consideration.

Packages
There are severa ways to denote a package in UML. Figure 8-1 shows the simplest. The

package icon is simply a rectangle with a tab on the top to make it look a hit like a file
folder. The fully qualified name of the package is shown within the rectangle.

95



Java Packages 96

com.objectmentor.website.
consultantScheduler

Figure 8-1
Simple UML Package

If you so desire, you can put the name of the package in the tab of the rectangle. This
leaves the large rectangle free so that you can list some or al of the classes within the
package. Figure 8-2 shows what this looks like.

com.objectmentor.website.
consultantScheduler

+ LoginServlet

+ MainMenuServlet

+ MonthlyCalendarServiet
+ WeeklyCalendarServlet

Figure 8-2
UML package showing contents.

Finally, you can show package nesting structure using the contains relationship as
shown in Figure 8-3..

consultant
Scheduler

com objectmentor Website

Figure 8-3
Dependencies

The code within a package often depends upon the code within another. In Javawe see this
when we import a class, or a group of classes, into our source code. We also see it if we
use the qualified name of aclass. In UML we depict this dependency by using the depen-
dency relationship as shown in Figure 8-4.

package consul tant Schedul er;
import cal endarUilities.*;
gi”hzz'g?gﬁ Cuat'ﬁﬂiasr public class Consul tant Cal endar
i mpl ement's Cal endar
{...}
Figure 8-4

Package Dependency



97 Chapter : Packages

Note that the dependency is not the result of the i nport statement. Rather it is the
result of the actual use of cal endar Uti | ities. Cal endar from within consul t ant -
Schedul er. Consul t ant Cal endar. In Java, i nport statements do not create a true
dependency, though compilers are within their rights to complain if the imported class or
package does not exist.

Binary Components--. j ar files.

While packages are convenient groupings for source code, they do not always make con-
venient groupings for binary code. Often we want to bundle larger chunks of binary code
together into components in the form of a . j ar file. Such a component can be conve-
niently deployed to the systemsin which it will execute.

Components are depicted in UML as shown in Figure 8-5. The interface icon shown
on the top is optiona. It denotes that one of the interfaces available within the
Cal endar Render er component is named Cal endar.

Calendar

Calendar
Renderer

Figure 8-5
A component -- possibly a . j ar file.

As with packages, components can also be related with dependency relationships.
Indeed, usually a component contains one or more whole packages, so the dependencies
between the components will usually be a subset of the dependencies between the pack-

ages.

Principles of Package Design

Over theyears |’ ve cometo depend upon a simple set of principlesto help me organize the
large scal e structure of a software application. These principles are not rules, and they are
not “theright way” . Rather, they are simple heuristics that hel p me make the tradeoffs nec-
essary to partition a system.

You will find that these principles do not lead you to a functional decomposition. The
packages that these principles lead you to create are meant to gather volatile classes
together, and keep apart those classes that change for different reasons. They try to isolate
those classes that change frequently from those that don’t. They try to separate the high



Principles of Package Design 98

leved architecture of the system from the low level details, and keep the high level archi-
tecture independent.

These principles are discussed in great detail in [PPP2002]". | cover them very briefly
here.

The Release/Reuse Equivalency Principle (REP)

People don't usualy reuse classes. Usually they reuse groups of classes together. Such
reusabl e groupings should be placed into a package. That package should then be tracked
and released for the benefit of those who would reuse it.

This principle says that one of the criteria for placing classes into a package isto cre-
ate a package that is convenient for others to reuse.

A package that is being reused by others must be treated with a certain care and
respect by the author. Reusers must be notified, in advance, of changes the author intends
to make to the package. The author should consider whether or not to maintain older ver-
sions of the package for a time, to give the reusers opportunity to make incorporate
changes gradually. This implies a certain clerica overhead and logistics that is hard to
apply on aper-class basis. Thus, creating reusable classes is convenient for both the author
and the reuser.

In the end, the smallest things you can reuse is the smallest thing that someone elseis
willing to put the effort into releasing and tracking. The granule of reuse is the granule of
release.

The Common ClosurePrinciple (CCP)

The Single Reponsibility Principle (SRP) told us to give each class one and only one rea-
son to change. The CCP extends this to packages. We want all the classes in a package
closed against the same kinds of changes. We want changes to be focussed into single
packages.

Most systems are built from many, perhaps dozens or even hundreds, of packages.
Those packages depend upon each other creating a large graph of dependencies. The goal
of the CCP is to group classes together by their susceptability to change. Those classes
that change for the same reason are placed in the same package. Thus, when a particular
change occurrs, very few of the packages in the dependency structure will have to be
changed.

1. Principles, Patterns, and Practices of Agile Software Devel opment, Robert C. Martin, Prentice
Hall, 2002.



99 Chapter : Packages

The Common Reuse Principle (CRP)

The Interface Segregation Principle (ISP) told us to create specific interfaces for each cli-
ent of a class. The CRP does the same for packages. A package that has many clientsis
responsible to all those packages. A change in that package can have a very large impact
upon all the packages that depend upon it. Therefore, as much asis possible, we want to
seperate those classes that are used by aclient, from those that are used by a different cli-
ent.

When a package contains classes that are used by different clients, changes to one
class in the package can have an impact even upon those packages that don't use the
changed class. The fact that the package has changed is enough to cause the client pack-
ages to be re-released and re-deployed.

The Acyclic Dependencies Principle (ADP)

Cycles in the package dependency graph can lead to build problems and devel opability
problems. When there are cycles, it is impossible to determine which classes and which
packages should be built first, and which should be built next.

Dependencies are transitive. If package A depends upon package B, and package B
depends upon package C, then package A transitively depends upon package C. This
means that when there is a cycle in the package dependency graph, every package in the
cycle depends upon every other package in the cycle. Such fully connected dependency
graphs can make it very hard to keep the packages isolated from each other so that the
devel opers can work on them without impacting other devel opers.

The solution is to keep the dependency cycles out of the package dependency graph.
This can be done manually, or you can use atool like JDepend (see www.clarkware.com)
to help.

The Sable Dependencies Principle (SDP)

Some packages are meant to be easy to change. Other packages are meant to have many
incomming dependencies, making them hard to change. If a package that has many
incomming dependencies hangs a dependency of its own upon a package that was meant
to be easy to change, then it will make that package hard to change. See Figure 8-6.

The Stable Dependencies Principle says that packages should not depend on packages
that are less stable (easier to change) than themselves. The target of every package depen-
dency will be harder to change than the depending package.

There are some simple metrics discussed in [PPP2002] that allow teams to calculate
the stability of each package, and then evaluate whether or not dependencies flow in the
direction of stability.



Conclusion 100

A
] 7 HardToChange -
A A bad
dependency.
///
P
DesignedToBe |
EasyToChange
Figure 8-6

A violation of the SDP.

The Sable Abstractions Principle (SAP)

Since stable packages are hard to change, we need away to keep them flexible. The OCP
told us that a module could be extended without modifying it. Stable packages are hard to
maodify, but they need not be hard to extend. Thus, the SAP says that in order to keep sta-
ble packages easy to extend, stable packages should be abstract. The more stable a pack-
ageis, the more abstract it should be.

The abstractness of a package is related to the number of abstract classes and inter-
faces it contains. The higher the ratio of abstract classes and interfaces, the more abstract
the package is. According to the SAP, a package with many incomming dependencies is
very stable, and should therefore also be very abstract.

The SDP and SAP combined are the package version of the DIP. The DIP told us that
class relationships should point at abstract classes or interfaces. The SDP/SAP combina-
tion says that stability increases with incomming dependencies, and that abstraction
should increase with stability. Therefore the abstraction of a package should increase with
incomming dependencies.

Again [PPP2002] presents a set of metrics to measure the abstractness of a package,
and to manage the relationship between stability and abstractness.

Conclusion

How important is it to draw package and component diagrams? It turns out that they are
reasonably useful diagrams. The ADP showed us that dependency cycles between pack-



101 Chapter : Packages

ages and components are problematic and need to be resolved. Drawing a picture of the
current structure is often very useful for resolving such cycles.

Package dependency diagrams are also reasonably useful for showing the order in
which packages should be compiled. Compiling packages in the wrong order can lead to
bizarre build problems. The dependency diagram tells you which packages depend upon
which others, and therefore which should be compiled first.

Of course the best way to create these diagrams is to generate them from the code.
Diagrams of the package structure that don’t contain every dependency that exists within
the code are not particularly useful for resolving cycles or determining build order. Thus,
it is not a bad idea to employ a tool that detects the dependencies and either create the
dependency diagrams, or at least provides alist of the dependencies so you can make your
own diagram.?

2. seewww.clarkware.com for just such atool.



Conclusion 102



9

Object Diagrams

Sometimes it can be useful to show the state of the system at a particular point in time.
Like a snapshot of a running system, a UML Object Diagram shows the objects, relation-
ships, and attribute values that obtain at a given instant.

A Snapshot in Time.

Some time ago | was involved with an application that allowed users to draw the floorplan
of abuilding on a GUI. The program captured the rooms, doors, windows, and wall open-
ings in the data structure shown in Figure 9-1. While this diagram shows you what kinds
of data structures are possible, it does not tell you exactly what objects and relationships
are instantiated at any given instant of time.

L ets assume that a user of our program draws two rooms, akitchen, and alunch room,
connected by awall opening. Both the kitchen and the lunch room have a window to the
outside. The lunchroom also has a door to the outside, and it opens out. This scenario is
depicted by the object diagram in Figure 9-2.

This diagram shows the objects that are currently in the system, and what other
objectsthey are connected to. It showski t chen and the| unchRoomas seperate instances
of Space. It shows how these two rooms are connected by a wall opening. It shows that
the outside is actually represented by another instance of space. And it showsall the other
objects and relationships that must exist.

Object diagrams like this are useful when you need to show what the internal struc-
ture of asystem looks like at a particular point in time, or when the system isin a particu-
lar state. An object diagram shows the intent of the designer. It shows the way that certain

103



A Snapshot in Time.

Floor Space Portal
opensinto
HumanPortal Window
Door WallOpening
Figure 9-1
Floorplan

104

firstFloor : floor

—

kitchen : Space

(I
—

R

: window

$

: WallOpening

Lunch room and Kitchen

outside : Space
lunchRoom :
= lunchRoom :
Space
~window
— Door
opensinto
Figure 9-2

classes and relatioships are actually going to be used. It can help to show how the system
will change as different inputs are given to it.



105 Chapter : Object Diagrams

But be careful, it is easy to get carried away. In the last decade | think | have draws
less than a dozen object diagrams of this kind. The need for them simply has not arisen
very frequently. When they are needed, they are indispensable, and that’s why I’ m includ-
ing them in this book. However, you aren’t going to need them very often, and should def-
initely not assume that you need to draw them for every scenario in the system, or even for
every system.

Active Objects

Another place where object diagrams are useful is in multi-threaded systems. Consider,
for example, the Socket Ser vi ce codein Listing 9-1. This program implements asimple
framework that allows you to write socket servers without having to deal with all the nasty
threading and synchronization issues that accompany sockets.

Listing 9-1
SocketService.java

import java.li o. I OException;

i mport | ava. net. Server Socket ;
i mport j ava. net. Socket;

i mport java.util.LinkedList;

public class Socket Service {
private ServerSocket serverSocket = null;
private Thread serviceThread = nul |;
private boolean running = fal se;
private SocketServer itsService = null;
private LinkedList threads = new LinkedList();

publ i c Socket Service(
int port, SocketServer service) throws Exception {
itsService = service;
server Socket = new Server Socket (port);
servi ceThread = new Thread(
new Runnabl e() {
public void run() {
servi ceThread() ;
}
}

serviceThread. start 0);

}

public void close() throws Exception {
running = fal se;
serviceThread.interrupt();
server Socket. cl ose();
serviceThread.join();
wai t For Server Threads();

}

private void serviceThread() {




Active Objects 106

Listing 9-1 (Continued)
SocketService.java

running = true;
while (running) {
try {
Socket s = server Socket. accept ();
start Server Thread(s);

icat ch (1 Oexception e) {

}
}

private void startServerThread(Socket s)
Thread server Thread = new Thread(new Server Runner (s));
synchroni zed (threads) {
t hreads. add(server Thread);

serverThread. start();

private void
wai t For Server Threads() throws InterruptedException {
whil e (threads.size() > 0) {
Thread t;
synchroni zed (threads) {
t = (Thread) threads.getFirst();

yo
t.join();
}

private class ServerRunner inplenments Runnable {
private Socket itsSocket;

Server Runner ( Socket s) {
i tsSocket = s;

public void run() {

try {
itsService. serve(itsSocket);

synchroni zed (threads) {
t hreads. renove( Thread. current Thread());

}
i tsSocket.close();

}
catch (1 OException e) {

}
}
}
}

The class diagram for this code is shown in Figure 9-3. It's not very inspiring. It is
difficult to see what the intent of this code is from the class diagram. It shows all the
classes and relationships alright, but somehow the big picture doesn’t come through.




107 Chapter : Object Diagrams

* SocketService «interface»
Thread SocketServer
threads + serve(port, server)
© + serve(Socket s)
serviceThread
ServerRunner
Thread
«interface» «creates»
Runnable
Figure 9-3

SocketService class diagram.

However, look at the object diagram in Figure 9-4. This shows the structure much
better than the class diagram. It shows that the Socket Servi ce holds onto the
servi ceThread, and that the servi ceThread runs in an anonymous inner class. It
shows that the serviceThread is responsible for creating all the Server Runner
instances.

threads :
LinkedList

: SocketService

serviceThread : «anonymous»
Thread : Runnable
Ihread «creates»

«creates»

1 Thread

: SocketServer

Figure 9-4
SocketService Object Diagram



Conclusion 108

Note the heavy bold lines around the Thr ead instances. Objects with heavy bold bor-
ders are knows as active objects. Active objects act as the head of athread of control. They
contain the methods that control the thread, such asst art, st op, setPriority, €etc. In
this diagram all the active objects are instances of Thr ead because al the processing is
done in derivatives of Runnabl e that the Thr ead instances hold references to. The
Runnabl e derivatives aren’t active, because they don’t control the thread. Rather, the
thread invokes them.

Why isthe object diagram more expressive than the class diagram? Because the struc-
ture of this application is built a runtime. The structure is more about objects than it is
about classes.

Conclusion

Object diagrams show you a snapshot of the state of the system at a particular instant of
time. This can be a useful way to depict a system, especially when the system’s structureis
built dynamically instead of imposed by the static structure of its classes. However, one
should be leary of drawing many object diagrams. Most of them can be inferred directly
from corresponding class diagrams, and therefore serve little purpose.



1

Sate Diagrams

UML has a very rich set of notations for describing finite state machines (FSMs). We'll
look at the most useful bits of that notation in this chapter. FSMs are an enormously useful
tool for writing al kinds of software. | use them for GUI's, communication protocols, and
any other event based system. Unfortunately, | find that too many developers are unfamil-
iar with the concepts of FSMs and are therefore missing many simplifying opportunities.
I’ll do my small part to correct that in this chapter.

The Basics

Figure 10-1 shows a simple Sate Transition Diagram (STD) that describes a finite state
machine that controls the way a user logs in to a system. The round rectangles represent
states. The name of each stateisin its upper compartment. In the lower compartment are
special actions that tell us what to do when the state is entered or exited. For example, as
we enter the Pronpting for Logi n state, we invoke the showlLogi nScreen action.
When we exit that state, we invoke the hi deLogi nScr een action.

The arrows between the states are called transitions. Each is labeled with the name of
the event that triggers the transition. Some are aso labeled with an action to be performed
when the transition is triggered. For example, if we are in the Pronpti ng for Login
state, and we get a | ogi n event, then we transition to the val i dati ng User state and
invoke theval i dat eUser action.

The black circle in the upper left of the diagram is called an initial pseudo state. A
finite state machine beginsit’s life following the transition out of this pseudo state. Thus,
our state machine starts out transitioning into the Pronpt i ng f or Logi n state.

109



TheBasics 110

%m Sending Password

forgotPassword
entry / showLoginScreen entry / sendPassword
exit / hideLoginScreen
\;

failed

login / validateUser sent

retry forgotPassword

. / Login Failed \
failed

entry / showLoginFailureScreen
exit / hideLoginFailureScreen

Validating
User

valid

/ Sending Password Failed \
“logout ValidUser
kemry/ showSendFailureScreen

exit / hideSendFailureScreen

L OK—!

/Sending Password Succeeded\
entry / showSendSuccessScreen
exit / hideSendSuccessScreen

Figure 10-1
Simple Login State Machine

| drew a superstate around the Sending Password Failed and Sending
Passwor d Succeeded states because both states react to the OK event by transitioning to
the Pronpt i ng f or Logi n state. | didn’t want to draw two identical arrows, so | used the
convenience of a superstate.

This finite state machine makes it clear how the login process works. It aso breaks
the process down into nice compact little functions. If we implement all the action func-
tions like showLogi nScr een, val i dat eUser, and sendPasswor d, and wire them up
with the logic shown in the diagram, then we can be sure that the login process will work.

Special Events

The lower compartment of a state contains event / action pairs. The entry and exi t

events are standard, but as you can see from Figure 10-2 you can supply your own events
if you like. If one of these special events occurrs while the FSM isin that state, then the
corresponding action is invoked.

Before UML, | used to respresent a specia event like this as a transition arrow that
looped around back to the same state as in Figure 10-3. However, in UML this has a



111 Chapter : Sate Diagrams

/ State \

entry / entryAction

exit / exitAction
myEventl / myActionl
myEvent2 / myAction2

Figure 10-2
States in UML

dlightly different meaning. Any transition that exits a state will invoke the exi t action (if
any). Likewise any transition that enters a state will inoke the ent ry action (if any). Thus,
in UML, areflexive transition like Figure 10-3 invokes not only nyAct i on, but also the

exit andentry actions.
myEvent / myAction

Figure 10-3
Reflexive Transition

Super Sates

Asyou saw in the login FSM in Figure 10-1, super states are convenient when you have
many states that respond to some of the same events in the same way. You can draw a
super state around those similar states and simply draw the transition arrows leaving the
super state instead of leaving the individual states. Thus, the two diagrams in Figure 10-4
are equivaent.

®>ncel / restart

cancel / restart

Od

cancel / restart .

0]9]9)

Figure 10-4



TheBasics 112

Super state transitions can be overridden by drawing explicit transition from the sub-
states. Thus, in Figure 10-5, the pause transition for S3 overrides the default pause tran-
sition for the Cancel abl e superstate. In this sense, a superstate israther like a base class.
Substates and override their superstate transitions the same way that derived classes can
override their base class methods. However, it isinadvisable to push this metaphor too far.
The relationship between superstates and substates is not really equivalent to inheritance.

Cancelable

pause / hold
Paused
@ cancel / restart .

pause / checkX special
pause

failed / beep
Figure 10-5
Overriding superstate transitions

OK/ hold

Superstates can have entry, exit, and special events the same way that normal
states can have them. Figure 10-6 shows an FSM in which there are exit and entry
actions in both super states and sub states. As the FSM transitions from Sone St at e into
Sub it first invokes the ent er Super action, followed by theent er Sub action. Likewise,
if the FSM transitions out of Sub2 back to Some St at e, it first invokes exi t Sub2 and
then exi t Super. However, since the e2 transition from Sub to Sub2 does not exit the
superstate, it smply invokes exi t Sub and ent er Sub2.

e3
/ Super ‘
/ Sub \ / Sub2 \
el e2
Some State entry / enterSub entry / enterSub2
exit / exitSub exit / exitSub2
entry / enterSuper
Qit/ exitSuper

Figure 10-6
Hierarchical invocation of Entry and Exit actions.



113 Chapter : Sate Diagrams

Initial and Final Pseudo Sates

Figure 10-7 shows two pseudo states that are commonly used in UML. FSMs come into
existence in the process of transitioning out of the initial pseudo state. The transition lead-
ing out of the initial pseudo state cannot have an event, since the event is the creation of
the state machine. It can, however, have an action. This action will be the first action
invoked after the creation of the FSM.

intput / processlinput

Processing
/initialize exit / cleanup

Figure 10-7
Initial and Final Pseudo states

Similarly, a FSM dies in the process of transitioning into the final pseudo state. The
final pseudo state is never actually reached. If there is an action on the transition into the
final pseudo state, it will be the last action invoked by the FSM.

Using FSM Diagrams

| find diagrams like this to be immensely useful for figuring out state machines for sub-
systems whose behavior is well known. On the other hand, most systems that are amena-
ble to FSMs do not have behaviors that are well known in advance. Rather the behaviors
of most systems grow, and evolve over time. Diagrams aren’t a conducive medium for
systems that must change frequently. Issues of layout and space intrude upon the content
of the diagrams. This intrusion can sometimes prevent designers from making needed
changesto a design. The spectre of reformatting the diagram prevents them from adding a
needed class, or state and causes them to use a substandard solution that doesn’t impact
the diagram layout.

Text, on the other hand, is a very flexible medium for dealing with change. Layout
issues are at aminimum, and there is always room to add lines of text. Therefore, for sys-
tems that evolve, | create Sate Transition Tables (STTs) in text files rather than STDs.
Consider the STD of the subway turnstile in Figure 10-8. This can be easily represented as
an STT as shown in Figure 10-9.

The STT isasimple table with four columns. Each row of the table represents atran-
sition. Look at each transition arrow on the diagram. You' |l see that the table row contains
the two endpoints of the arrow, and the event and action of the arrow. You read the STT



Using FSM Diagrams 114

coin / Unlock
pass / Alarm Locked
Unlocked coin / Refund
pass / Lock
Figure 10-8
Subway Turnstile STD
Current State Event New St at e Action
Locked coin Unl ocked Unl ock
Locked pass Locked Al arm
Unl ocked coin Unl ocked Ref und
Unl ocked pass Locked Lock
Figure 10-9

Subway Turnstile STT

using the following sentence template: “If we are in the Locked state, and we get acoi n
event, then we go to the Unl ocked state and invoke the Unl ock function.”

Thistable can be converted into atext file very simply:

Locked coin Unl ocked Unl ock

Locked pass Locked Al arm

Unl ocked coin Unl ocked Refund

Unl ocked pass Locked Lock

These sixteen words contain al the logic of the finite state machine. It should be pos-
sible to write a simple compiler that reads the text file and generates code that implements
that logic.

SMC

So, about 15 years ago, | wrote a simple compiler, named SMC, that reads STTs and gen-
erated C++ code to implement the logic. Since then SMC has grown and changed to emit
code for different languages. SMC is freely available from the resources section of
www.objectmentor.com.

The input to SMC for the turnstile is shown in Listing 10-1. Most of this syntax is
pretty easy to understand. The details are explained in the snt. t xt document that you
can download from the previously mentioned URL. The FSMName header supplies the
name of the class that SMC will generate. The Cont ext header tells SMC the name of a
classthat the FSM should inherit from.

The code generated from this input is shown in Listing 10-2. It makes use of the
STATE pattern. One generated, this code never needs to be editted, or even examined. It



115 Chapter : Sate Diagrams

Listing 10-1
Turnstile.sm

Context TurnStileContext
FSMNane TurnStile
Initial Locked

Locked
{
Coi n Unl ocked Unl ock
Pass Locked Al arm
}
Unl ocked

Coin Unl ocked Thankyou
Pass Locked Lock

}

}

simply implements the logic, allowing the action functions to be implemented in the
Cont ext class.

Listing 10-2
TurnStile.java (Generated)

public class TurnStile extends TurnStileContext {
private State itsState;
private static String itsVersion = "";
private static Locked itsLockedState;
private static Unl ocked itsUnl ockedSt at e;

public TurnStile() {
itsLockedSt ate = new Locked();
i tsUnl ockedSt at e = new Unl ocked();
itsState = itsLockedSt at e;

}

public String getVersion() {
return itsVersion;
}

public String getCurrentStateNanme() {
return itsState. stateName();
}

public void Pass() {
itsState. pass();
}

public void Coin()
itsState.coin();
}

private abstract class State {
public abstract String stateNanme();

public void pass() {
FSMVError (" Pass", itsState.stateNane());




Using FSM Diagrams 116

Listing 10-2 (Continued)
TurnStile.java (Generated)

public void coin() {
n",

FSMEr r or (" Coi itsState.stateNanme());
}

}

private class Locked extends State {
public String stateName() ({
return "Locked";

public void pass() {
Alarm();
itsState = itsLockedSt at e;

}

public void coin() {
Unl ock();
itsState = itsUnl ockedSt at e;

}

private class Unl ocked extends State {
public String stateName() {
return "Unl ocked";

public void pass() {

Lock();

itsState = itsLockedSt at e;
}

public void coin() {
Thankyou() ;
itsState = itsUnl ockedSt at €;

}

Creating and maintaining finite state machines in this form is much eaiser than trying
to maintain diagrams, and generating the code saves lots of time. So, though diagrams can
be very useful to help you think through or present a FSM to others, the text form is much
more convenient for development.

ICE: A Case Sudy

Several years ago | was involved in a workstation project named ICE. Users sat at GUIs
and worked through a sequence of screens using afairly ssmple workflow. Thelogic of the
GUI isshown in Figure 10-10. This diagram was never drawn while the project was being
developed; | just drew it here to show you how acomplex FSM would be drawn in UML.



117

Chapter : Sate Diagrams

/ login \

init
exit / hideLoginScreen

entry / DisplayLoginScreen

auto

o
-

autoBatch

—noBatchFound / noBatchDiang%\emry / checkUserState E

ﬂetermining UserMode

I
manual / createSelector

manual /

entry / displayThumbnailAuto
itemChanged / workTypeltemChanged

select / createSelector

gettingAutoBatch

!

entry / getNextAutoBatch

redisplay / displayThumbnailAuto /

r

createSelector gettingManualbatch

L entry / isBatchAvailable

batchesFound

refresh

~

noBatchesFound
| entry / displayThumbnailManual
exit

manualBatch

complete / completeBatch, hideThumbnailScreen

ok / allMode, initBatch,
displayAutoThumbnailProcessing

ok / allMode, initBatch,
dislayManualThumbnailProcessing

reject / rejectBatch, cleanupBatch

/ processingAutoBatch

s redisplay / displayThumbnailManual

[

3] I

5% nextBatchFound select / selectManualBatch

< - © 5 ﬁ L
S le j'ag € ‘ batchSplash K S
3 |22 / 23
2 |aok Sa
2 |EE3 batchSplashAut §2
g | 88= atchsplashAuto batchSplashManual 2 %
© £
= S =
=] %5
[ - o=
2 entry / displayBatchSplashScreen o8
I exit / hideBatchSplashScreen 2 %
g 2
S © 92
o - =
P Phs
P 5]
Q E §
[=%
5 58
o

processingBatch
assign / assignPage

reject / rejectBatch, cleanupBatch

processingManualBatch \

redisplay /
displayAutoThumbnailProcessing

f

il

openPage —|

exit /

requeueBatch stop

1

stop

redisplay /
displayManualThumbnailProcessing

/~ processingAutoBatchStopped "\

redisplay /
displayAutoThumbnailProcessing

openPage —

%

goBack /

displayAuto
ThumbnailProcessing

goBack /
displayAuto
ThumbnailProcessing

goBack /
displayManual

T
)
I
Q . .
S ThumbnailProcessing
Q
e

pageAutoBatch

page

pageAutoBatchStopped pageManualBatch

entry / displayPageScreen
exit / hidePageScreen

assign / assignPage, redisplayPageScreen
setZone / assignZone, redisplayPageScreen

Figure 10-10
ICE FSM



Using FSM Diagrams 118

The SMC input for this diagram is shown in Listing 10-3. This source file grew from
humble beginings to the full description you see now. This file was easy to create, easy to
maintain, and fit very nicely into our build procedure.

Listing 10-3
ice.sm

Cont ext Root FSM
Initial init
FSMName Root FSMGen
Version 042399 1528 rcm
FSMCGener at or snt. generator.java. SMlavaGener at or
Pragma Package root
init

init | ogin {}
| ogi n <di spl ayLogi nScreen >hi deLogi nScreen

l ogin det er mi ni ngUser Mode {}
cancel end {}

det erm ni ngUser Mode < { cl eanupThunbnails checkUserState }
{

aut o aut oBat ch {}
manual getti ngManual Batch { createSel ector }

}

aut oBat ch < { setUserAuto displayThunbnail Auto }

{
manual getti ngManual Batch { createSel ector }
sel ect get ti ngAut oBat ch { createSel ector }
i tenChanged * wor kTypel t emChanged
redi spl ay * di spl ayThunbnai | Aut o
exit end {}

gettingAut oBat ch <get Next Aut oBat ch
{

next Bat chFound bat chSpl ashAut o {}
noBat chFound det erm ni ngUser Mode { noBat chbDi al og }

gettingManual Batch <i sBatchAvail abl e

bat chesFound manual Bat ch
noBat chFound aut oBat ch

-
e

manual Bat ch < { set User Manual di spl ayThunbnai | Manual }
{




119

Chapter : Sate Diagrams

Listing 10-3
ice.sm
auto autoBatch {7
refresh getti ngMvanual Batch {}
sel ect bat chSpl ashManual sel ect Manual Bat ch
redi spl ay * di spl ayThunbnai | Manual
exit end {}
}
(processi ngBat ch) >hi deThunbnai | Screen
ok * {}
cancel * {}

conpl ete det er mi ni ngUser Mode { conpl et eBat ch

cl eanupBatch }
requeue det er mi ni ngUser Mode { requeueBatch
cl eanupBatch }
rej ect det er mi ni ngUser Mode { rejectBatch
cl eanupBatch }
assign * assi gnPage
exit end requeueBat ch
}
processi ngAut oBat ch : processi ngBatch
stop processi ngAut oBat chSt opped {}

conpl et e get ti ngAut oBat ch
rej ect get ti ngAut oBat ch
openPage pageAut oBat ch

redisplay * ) )
di spl ayAut oThunbnai | Processi ng

{ conpl et eBat ch
cl eanupBatch }
{ rejectBatch
cl eanupBatch }

{}

processi ngAut oBat chSt opped : processingBatch

conpl et e det er m ni ngUser Mbde

rej ect det er m ni ngUser Mbde

openPage pageAut oBat chSt opped
stop processi ngAut oBat ch

redi spl ay

*
di spl ayAut oThunbnai | Pr ocessi ng
}

processi ngManual Bat ch : processi ngBatch

openPage pageManual Bat ch
redi spl aY * ] )
di spl ayManual Thunbnai | Pr ocessi ng

{ conpl et eBat ch
cl eanupBatch }
{ rejectBatch
cl eanupBatch }

{}
{}

{}




Using FSM Diagrams 120

Listing 10-3
ice.sm

— (batchSplash) <di spl ayBat chSpl ashScr een
>hi deBat chSpl ashScr een

{
}

bat chSpl ashAuto : bat chSpl ash
{

ok processi ngAut oBat ch {al | Mode initBatch
) di spl ayAut oThunbnai | Process
ng
conpl ete get ti ngAut oBat ch {compl et eBat ch
hi deThunbnai | Scr een}
}
bat chSpl ashManual : batchSpl ash
{
ok processi ngManual Bat ch {al | Mbde initBatch
) di spl ayManual Thunbnai | Processi
ng
conpl ete det er mi ni ngUser Mode {conpl et eBat ch
hi deThunbnai | Scree
n}
}
(page) <displ ayPageScreen >hi dePageScreen
{
assign * {assi gnPage redi spl ayPageScreen}
set Zone * {assi gnZone redi spl ayPageScreen}

pageAut oBat ch : page

) goBack processingAutoBatch
di spl ayAut oThunbnai | Processi ng
}

pageAut oBat chSt opped : page

goBack processi ngAut oBat chSt opped
) di spl ayAut oThunbnai | Process
ing
}

pageManual Bat ch : page

goBack processi ngvanual Bat ch
di spl ayManual Thunbnai | Processi ng
}

end <exitProgram

{
}




121 Chapter : Sate Diagrams

Conclusion

Finite state machines are a powerful concept for structuring software. UML provides a
very powerful notation for visualizing FSMs. However, it is easier to develop and main-
tain an FSM using atextua language than as a diagram.



Conclusion 122



11

Heuristics and Coffee

Over the past dozen years | have taught, and continue to teach, OO design to professional
software developers. My courses are divided into morning lectures and afternoon exer-
cizes. For the exercizes | will divide the class up into teams and have them solve a design
problem using UML. The next morning we choose one or two teams to present their solu-
tions on awhiteboard, and we critique their designs.

I have taught these courses hundreds of times and have notice that there are a group of
design mistakes that are commonly made by the students. This chapter presents a few of
the most common errors, shows why they are errors, and addresses how they can be cor-
rected. Then it goes on to solve the problem in a way that | think resolves all the design
forces nicely.

TheMark IV Special Coffee M aker

During the first morning of an OOD class | present the basic definitions of classes,
objects, relationships, methods, polymorphism, etc. At the sametime | present the basics
of UML. Thus, the students learn the fundemental concepts, vocabulary, and tools of
object oriented design.

During the afternoon | give the class the following exersize to work on. | ask them to
design the software that controls a simple coffee maker. Here is the specification | give
them.!

The Mark IV Special Coffee Maker

1. Thisproblem comesfrom my first book: Designing Object Oriented C++ Applications using the
Booch Method, Robert C. Martin, Prentice Hall, 1995.

123



TheMark |V Special Coffee Maker 124

The Mark IV special makes up to 12 cups of coffee at atime. The user places afilter
in the filter holder, fills the filter with coffee grounds, and dlides the filter holder into its
receptacle. The user then pours up to 12 cups of water into the water strainer and presses
the “Brew” button. The water is heated until boiling. The pressure of the evolving steam
forces the water to be sprayed over the coffee grounds, and coffee drips through the filter
into the pot. The pot is kept warm for extended periods by a warmer plate, which only
turnson if thereiscoffeein the pot. If the pot is removed from the warmer plate while cof-
fee is being sprayed over the grounds, the flow of water is stopped, so that brewed coffee
does not spill on the warmer plate. The following hardware needs to be monitored or con-
trolled:

*  The heating element for the boiler. It can be turned on or off.
»  The heating element for the warmer plate. It can be turned on or off.

»  The sensor for the warmer plate. It has three states: war ner Enpt y, pot Enpt y,
pot Not Enpty.

» A sensor for the boiler, which determines if there is water present or not. It has
two states: boi | er Enpt 'y or boi | er Not Enpt y.

e The brew button. Thisisamomentary button that starts the brewing cycle. It has
an indicator that lights up when the brewing cycle isover and the coffee is ready.

» A pressure-relief valve that opensto reduce the pressure in the boiler. Thedropin

pressure stops the flow of water to the filter. It can be opened or closed.

The hardware for the Mark 1V has been designed and is currently under development.
The hardware engineers have even provided a low-level API for us to use, so we don’'t
have to write any bit-twiddling 1/0O driver code. The code for these interface functionsisin
Listing 11-1. If this code looks strange to you, just keep in mind that it was written by
hardware engineers.

Listing 11-1
CofeeMakerAPl.java

public interface CoffeeMaker APT {
public static Cof feeMaker APl api = null; // set by main.

/**

* This function returns the status of the warnmer-plate
* sensor. This sensor detects the presence of the pot
* and whether it has coffee init.

*/

public int getWarnerPl ateStatus();

public static final int WARMER EMPTY = O;
public static final int POT_EMPTY = 1;
public static final int POT_NOT_EMPTY = 2;

/**

* This function returns the status of the boiler swtch.
* The boiler switch is a float switch that detects if
* there is nore than 1/2 cup of water in the boiler.




125 Chapter : Heuristics and Coffee

Listing 11-1 (Continued)
CofeeMakerAPl.java

*]
public int getBoilerStatus();

public static final int BOLER EMPTY = O;
public static final int BO LER NOT_EMPTY = 1;

/**

* This function returns the status of the brew button.

* The brew button is a nomentary switch that remenbers
* jts state. Each call to this function returns the

* renmenbered state and then resets that state to

* BREW BUTTON_NOT_PUSHED.

*

* Thus, even if this function is polled at a very sl ow
* rate, it will still detect when the brew button is

* pushed.

*/
public int getBrewButtonStatus();

public static final int BREWBUTTON PUSHED = O;
public static final int BREWBUTTON NOT_PUSHED = 1;

/**

* This function turns the heating elenent in the boiler
* on or off.

*/

public void setBoilerState(int boilerStatus);

public stati
public stati

final int BOLER ON = O;
final int BOLER OFF = 1;

o0

/**

* This function turns the heating elenent in the warner
* plate on or off.

*/

public void setWarnmer State(int warnerState);

public static final int WARMER ON = O;
public static final int WARMER OFF = 1;

/**

* This function turns the indicator |light on or off.
* The indicator |ight should be turned on at the end
* of the brewing cycle. It should be turned of f when
* the user presses the brew button.

*/

public void setlndicatorState(int indicatorState);

public stati
public stati

c final int | ND CATOR ON = O;
c final int |ND CATOR OFF = 1;

/**

* This function opens and closes the pressure-reli ef
* valve. When this valve is closed, steam pressure in
* the boiler will force hot water to spray out over




TheMark |V Special Coffee Maker 126

Listing 11-1 (Continued)
CofeeMakerAPl.java
*the coffee filter. Wien the valve is open, the steam
* in the boiler escapes into the environment, and the
* water in the boiler will not spray out over the filter.
*/
public void setReliefValveState(int reliefValveState);

public static
public static

}
A Challenge.

inal int VALVE OPEN = O;
inal int VALVE CLOCSED = 1;

— —h

If you want a challenge, stop reading here and try to design this software yourself.
Remember that you are designing the software for an simple embedded real-time system.
What | expect of my students is a set of class diagrams, sequence diagrams, and state
machines.

A Common, but Hideous, Coffee Maker Solution

By far the most common solution that my students present isthe onein Figure 11-1. In this
diagram we see the central Cof f eeMaker class surrounded by minions that control the
various devices. The Cof f eeMaker contains aBoi | er, aWar ner Pl at e, aButton, and a
Light. The Boiler contains a BoilerSensor and a Boil erHeater. The
War mer Pl at e containsa Pl at eSensor and aPl at eHeat er . Finaly there are two base
classes, Sensor and Heat er, that act as parents to the Boi | er and War mer Pl at e ele-
ments.

Itishard for beginners to appreciate just how hideous this structureis. There are quite
a few rather serious errors lurking in this diagram. Many of these errors would not be
noticed until you actualy tried to code this design and found that the code was absurd.

But before we get to the problemswith the design itself, lets look at the problems with
the way the UML iscreated.

MissingM ethods.

The biggest problem that Figure 11-1 exhibits is a complete lack of methods. We are writ-
ing a program here; and programs are about behavior! Where is the behavior in this dia-
gram?

When designers create diagrams without methods they may be partitioning the soft-
ware on something other than behavior. Partitionings that are not based upon behavior are
amost always significant errors. It is the behavior of a system that is the first clue to how
the software should be partitioned.



127 Chapter : Heuristics and Coffee

Button Light

1 i
‘

———————————< CoffeeMaker [ @———

Boiler WarmerPlate

! !

BoilerSensor BoilerHeater PlateSensor PlateHeater

| | | |
b ¥

Sensor Heater

Figure11-1
Hyper-Concrete Coffee Maker

Vapor Classes

We can see how poorly partitioned this particular design is, if we consider the meth-
ods we might put in the class Li ght . Clearly the Li ght object just wants to be turned on
or turned off. Thus we might put an on() and of f () method in classLi ght . What would
the implementation of those function look like? See Listing 11-2.

Listing 11-2
Light.java
public class Light {
public void on() {
Cof f eeMaker API . api .
set I ndi cat or St at e( Cof f eeMaker API . | NDI CATOR_ON) ;

public void off() {
Cof f eeMaker API . api .
set | ndi cat or St at e( Cof f eeMaker API . | NDI CATOR_CFF) ;




TheMark |V Special Coffee Maker 128

There are some peculiar things about class Light. First, it has no variables. Thisis odd
since an object usualy has some kind of state that it manipulates. What's more, the on()
and of f() methods simply delegate to the setlndicatorState method of the
Cof f eeMaker API . So apparently the Li ght class is nothing more than a call trandator.
It's not really doing anything useful.

This same reasoning can be applied to the Butt on, Boil er, and War ner Pl ate
classes. They are nothing more than adapters that translate a function call in one form to
another. Indeed, they could be removed from the design altogether without changing any
of the logic in the Cof f eeMaker class. That class would simply have to cal the
Cof f eeMaker API directly instead of through the adapters.

By considering the methods, and then the code, we have demoted these classes from
the prominent position the hold in Figure 11-1, to mere place holders without much reason
to exist. For thisreason, | call them Vapor Classes.

Imaginary Abstraction

Notice the Sensor and Heat er base classes in Figure 11-1. The previous section should
have convinced you that their derivatives were mere vapor; but what about base classes
themselves? On the surface they seem to make alot of sense. And yet, there doesn’t seem
to be any place for them.

Abstractions are tricky things. We humans see them everywhere, but many are not
appropriate to be turned into base classes. These, in particular, have no place in this
design. We can see this by asking ourselves who uses them.

No class in the system actualy makes use of the Sensor or Heater class. If nobody
uses them, what reason do they have to exist? Sometimes we might tolerate a base class
that nobody uses if it supplied some common code to the derivatives; but these bases have
no code in them at al. At best their methods are abstract. Consider, for example, the
Heater interface in Listing 11-3. A class with nothing but abstract functions and that no
other classusesisofficialy useless.

Listing 11-3

Heater.java

public interface Heater {
public void turnOn();
public void turnOif();

The Sesor class (Listing 11-4) isworse! Like Heat er, it has abstract methods and no
users. What's worse is that the return value of its sole method is ambiguous. What does
the sense() return? In the Boi | er Sensor it returns two possible values, But in
War mer Pl at eSensor it returns three possible values. In short, we cannot specify the
contract of the Sensor in the interface. The best we can do is say that sensors may return
i nts. Thisis pretty weak.




129 Chapter : Heuristics and Coffee

Listing 11-4

Sensor.java

public interface Sensor {
public int sense();

What really happened here is that we read through the specification, found a bunch of
likely nouns, made some inferrences about their relationships, and then created a UML
diagram based on that reasoning. If we accepted these decisions as an architecture and
implemented them the way they stand, then we'd wind up with an all powerful Coffee-
Maker class surrounded by vaporous minions. We might as well programitin C!

God Classes

Everybody knows that god classes are a bad idea. We don’t want to concentrate al the
intelligence of a system into a single object, or asingle function. One of the goals of OOD
is the partitioning and distribution of behavior into many classes and many functions. It
turns out, however, that many object models that appear to be distributed are realy the
abode of gods in disguise. Figure 11-1 is a prime example. At first glance it looks like
there are lots of classes with interesting behavior. But as we drill down into the code that
would implement those classes we find that only one of those classes, Cof f eeMaker, has
any interesting behavior, and the rest are all imaginary abstractions or vapor classes.

A Coffee Maker Solution

Solving the coffee maker problem is an interesting exercize in abstraction. Most develop-
ers new to OO find themselves quite surprized by the result.

The trick to solving this problem is to step back from the problem and separate the
details from the essentia nature of the problem. Forget about boilers, vaves, heaters, sen-
sors, and all the little details of the problem and concentrate on the underlying problem.
What is that problem? The problem is: How do you make coffee?

How do you make cofee? The simplest, and most common solution to this problem, is
to pour hot water over coffee grounds, and to collect the resulting infusion in some kind of
vessel. Where do we get the hot water from? Let's call it a Hot Wat er Sour ce. Where do
we collect the coffee? Lets call it aCont ai nment Vessel 2

Are these two abstractions really classes? Does a Hot Wat er Sour ce have behavior
that could be captured in software? Does a Cont ai nment Vessel do something that soft-
ware could control? If we think about the Mark 1V unit, we could imagine the boiler,
valve, and boiler sensor playing the role of the Hot Wat er Sour ce. The Hot Wat er Sour ce
would be responsible for heating the water and delivering over the coffee grounds to drip

2. That nameis particularly appropriate for the kind of coffeethat | like to make.



A Coffee Maker Solution 130

into the Cont ai nnment Vessel . We could also imagine the warmer plate and its sensor
playing the role of the ContainmentVessdl. It would be responsible for keeping the con-
tained coffee warm, and also for letting us know whether there was any coffee left in the
vessel.

Crossed Wires

How would you capture the previous discussion in a UML diagram? Figure 11-2 shows
one possible schema. Hot Wat er Sour ce and Cont ai nment Vessel are both represented
as classes, and are associated by the flow of coffee.

Hot Water Coffee Flow Containment

Source Vessel

Figure 11-2
Crossed Wires.

The association shows an error that OO novices commonly make. The association is
associated with something physical about the problem instead of with the control of soft-
ware behavior. The fact that coffee flows from the Hot WaterSource to the
Cont ai nnent Vessel is completely irrelevant to the association between those two
classes.

For example, what if the software in the Containment Vessel told the
Hot Wat er Sour ce when to start and stop the flow of hot water into the vessel. This might
be depicted as shown in Figure 11-3. Notice that the Cont ai nnent Vessel issending the
start message to the Hot Wat er Sour ce. This means that the association in Figure 11-2 is
backwards. Hot Wat er Sour ce does not depend upon the Cont ai nnent Vessel at al.
Rather, the Cont ai nment Vessel depends upon the Hot Wat er Sour ce.

start

HotWater Containment
Source Vessel

Figure 11-3
Starting the flow of hot water

The lesson here is simply this: Associations are the pathways through which mes-
sages are sent between objects. They have nothing to do with the flow of physica objects.
The fact that hot water flows from the boiler to the pot does not mean that there should be
an association from the Hot Wat er Sour ce to the Cont ai nment Vessel .

| call this particular mistake, “ Crossed Wires’ because the wiring between the classes
has gotten crossed between the logical and physical domains.



131 Chapter : Heuristics and Coffee

The Coffee Maker User Interface

It should be clear that something is missing from our coffee maker model. We have aHot-
WaterSource and a ContainmentVessel, but we don’t have any way for ahuman to interact
with the system. Somewhere our system has to listen for commands from a human. Like-
wise the system must be able to report status to its human owners. Certainly the Mark IV
had hardware dedicated to this purpose. The button and the light served as the user inter-
face.

Thus, we'll add a User | nt er f ace classto our coffee maker model. This gives us a
triad of classes interacting to create coffee under the direction of a user.

Use Case 1. User pushes brew button.

OK, given these three classes, how to their instance communicate? Lets look at severa use
cases to seeif we can find out what the behavior of these classesis.

Which one of our objects detects the fact that the user has pressed the brew button?
Clearly it must be the User | nt er f ace object. What should this object do when the brew
button is pushed?

Our goal isto start the flow of hot water. However, before we can do that, we' d better
make sure that the Cont ai nment Vessel isready to accept coffee. We'd also better make
surethat the Hot Wat er Sour ce isready. If we think about the MarklV, we' re making sure
that the boiler is full, and that the pot is empty and in place on the warmer.

So the first thing our User | nterface object does is to send message to the
Hot Wat er Sour ce and the Cont ai nment Vessel to seeif they are ready. Thisis shown
in Figure 11-4.

IsReady
User e Hotwater
Interface Source

Containment
. Vessel
IsReady
Figure 11-4
Brew Button Pressed, Checking for ready.

If either of these queries returns false, then we refuse to start brewing coffee. The
User | nt er f ace object can take care of letting the user know that his request was denied.
Inthe MarklV case, we might flash the light a few times.



A Coffee Maker Solution 132

If both queries return true, then we need to start the flow of hot water. Probably the
User I nterface object should send a St art message to the Hot Wat er Sour ce. The
HotWaterSource will then start doing whatever it needs to do to get hot water flowing. In
the case of the MarklV, it will close the valve and turn on the boiler. Figure 11-5 shows
the completed scenario.

1:IsReady
User > HotWater
Interface , Source
3:Start
Containment
» Vessel
2:IsReady
Figure 11-5
Brew Button Pushed, complete.

Use Case 2: Containment Vessel not Ready.

Inthe Mark 1V we know that the user can take the pot off the warmer while coffeeis flow-
ing. Which one of our objects would detect the fact that the pot had been removed? Cer-
tainly it would be the Cont ai nment Vessel . The requirements for the MarklV tell usthat
we need to stop the flow of coffee when this happens. Thus the Cont ai nnent Vessel

must be able to tell the Hot Wat er Sour ce to stop sending hot water. Likewise, it needsto
be ableto tell it to start again when the pot is replaced. Figure 11-6 adds the new methods.

la:lsReady
User HotWater
Interface » Source
3a:Start
ﬂ\ 1b: Pause
2b: Resume
Containment
_ . Vessel|
2a:IsReady
Figure 11-6
Pausing and Resuming the flow of hot water.

Use Case 3: Brewing Complete.

At some point we will be done brewing coffee, and we'll have to turn off the flow of hot
water. Which one of our objects knowswhen brewing is complete? In the MarklV case the



133 Chapter : Heuristics and Coffee

sensor in the boiler tells us that the boiler is empty. So our Hot Wat er Sour ce would
detect this. However, it's not hard to envision a coffee maker in which the Cont ai nnent -
Vessel would be the one to detect that brewing was done. For example, what if our cof-
fee maker was plumbed into the water mains and therefore had an infinite supply of water.
What if the water was heated by an intense microwave generator® as it flowed through the
pipes into into a thermally isolated vessel. What if that vessel had a spigot from which
users got their coffee. In this case it would be a sensor in the vessel that would know that it
was full, and that hot water should be shut off.

The point isthat in the abstract domain of the Hot Wat er Sour ce and Cont ai nment -
Vessel , neither is aparticular compelling candidate for detecting completion of the brew.
My solution to that is to ignore the issue. I'll assume that either object can tell the others
that brewing is complete.

Which objects in our model need to know that brewing is complete? Certainly the
User I nter face needs to know since, in the Mark 1V case, it must turn the light on. It
should also be clear that the Hot Wat er Sour ce needs to know that brewing is over,
because it’'ll need to stop the flow of hot water. In the Mark IV case it'll shut down the
boiler and open the valve. Does the Cont ai nment Vessel need to know that brewing is
complete? | s there anything special that the Cont ai nment Vessel needsto do, or to keep
track of, once the brewing is complete? In the Mark 1V case it's going to detect an empty
pot being put back on the plate, signalling that the user has poured al the coffee. This
causesthe Mark IV to turnthelight out. So, yes, the Cont ai nnent Vessel needsto know
that brewing is complete. Indeed, the same argument can be used to say that the
User I nterface should send the St art message to the Cont ai nnent Vessel when
brewing starts. Figure 11-7 shows the new messages. Note that I’ve shown that either
Hot Wat er Sour ce or Cont ai nnent Vessl el can send the Done message.

2c: Done
-—
la:lsReady
User HotWater
Interface Source
3a:Start
. . 1b: Pause
2d: Done T 1c: Donel T 2b: Resume
Containment
Vessel
2a:IsReady 1d: Done
Figure 11-7
Detecting when Brewing is Complete

3. OK...I'm having abit of fun. But..what if?



A Coffee Maker Solution 134

Use Case 4. Coffee all gone.

The Mark 1V shuts off the light when brewing is complete and an empty pot is placed on
the plate. Clearly, in our object modd, it is the Cont ai nnent Vessel that should detect
this. It will have to send aConpl et e message to the User | nt er f ace. Figure 11-8 shows
the completed collaboration diagram.

2c: Done
-—
la:lsReady
User - HotWater
Interface Source
3a:Start
. . . 1b: Pause
2d: Done T Tle. Complete lc: Donel T 2b: Resume
Containment
Vessel
2a:IsReady 1d: Done
—»
4a:Start
Figure 11-8
Coffee all gone.

From this diagram we can draw a class diagram with all the associations intact. This
diagram holds no surprises. You can seeit in Figure 11-9.

Hot Water
Source

User Interface

Containment
Vessel

Figure 11-9

Implementing the Abstract M odel.

Our object model is reasonably well partitioned. We have three distinct areas of responsi-
bility, and each seems to be sending and receiving messages in a balanced way. There
does not appear to be agod object anywhere. Nor do there appear to be any vapor classes.

So far, so good; but how do we implement the Mark IV in this structure? Do we just
implement the methods of these three classes to invoke the Cof f eeMaker APl ? This



135 Chapter : Heuristics and Coffee

would be area shame! We've captured the essense of what it takes to make coffee. It
would be pitifully poor design if we were to now tie that essense to the Mark IV.

Infact, I’'m going to make arule right now. None of the three classes we have created
must ever know anything about the Mark V. This is the Dependency Inversion Principle
(DIP). We are not going to allow the high level coffee making policy of this system to
depend upon the low level implementation.

OK, then how will we create the Mark 1V implementation? Lets look at al the use
cases again; but thistime, lets look at them from the Mark 1V point of view.

Use Case 1. User pushes Brew Button (Mark V)

Looking at our model, how doesthe User | nt er f ace know that the brew button has been
pushed? Clearly it must call the Cof f eeMaker API . get BrewBut t onSt at us() function.
Where should it call this function? We've already decreed that the User | nt er f ace class
itself cannot know about the CoffeeMakerAPI. So where does thiscall go?

We'll apply the DIP and put the call in a derivative of User | nt er f ace. See Figure
11-10 for details.

User Interface Hot Water

Source

# startBrewing

M4UserInterface

Containment
Vessel

+ checkButton

Figure 11-10
Detecting the brew button

We've derived MAUser | nt er f ace from User | nt er f ace, and we've put acheck-
But t on() method in MAUser | nt er f ace. When this function is called, it will call the
Cof f eeMaker API . get BrewBut t onSt at us() function. If the button has been pressed,
it will invoke the protected st art Br ewi ng() method of User I nt er f ace. Listing 11-5
and Listing 11-6 show how this would be coded.

Listing 11-5
M4UserlInterface.java
public class MiUserInterface extends Userinterface {
private void checkButton() {
int buttonStatus =
Cof f eeMaker API . api . get BrewButt onSt at us() ;
if (buttonStatus == CoffeeMaker APl . BREW BUTTON_PUSHED) {
start Brewi ng();




A Coffee Maker Solution 136

Listing 11-5 (Continued)
M4UserlInterface.java

¥
}
}

Listing 11-6
Userinterface.java

public class UserInterface {
private Hot WAt er Source hws;
private Contai nment Vessel cv;

public void done() {}
public void conplete() {}
protected void startBrew ng()
if (hws.isReady() && cv.isReady()) {
hws. start ();
cv.start();
}
}
}

You might be wondering why | created the protected st ar t Br ewi ng() method at
al. Why didn't | just call thest art () functionsfrom MdUser | nt er f ace. Thereason is
simple, but significant. Thei sReady() tests, and the consequential callsto thestart ()
methods of the Hot Wat er Sour ce and the Cont ai nnent Vessel are high level policy
that the User I nt er f ace class should posess. That code is valid irrespective of whether
or not we are implementing a Mark 1VVand should therefore not be coupled to the Mark 1V
derivative. You will see me make this same distinction over and over again in this exam-
ple. | keep as much code as | can in the high level classes. The only code | put into the
derivativesis code that is directly, and inextricably, associated with the Mark IV.

Implementing thei sReady() functions.

How arethei sReady() method of Hot Wat er Sour ce and Cont ai nnent Vessel imple-
mented? It should be clear that these are really just abstract methods, and that these classes
are therefore abstract classes. The corresponding derivatives MiHot Wat er Sour ce and
M4Cont ai nment Vessel will implement them by calling the appropriate Cof f eeMaker -
APl functions. Figure 11-11 shows the new structure, and Listing 11-7 and Listing 11-8
show the implementation of the two derivatives.

Notice that in the UML of Figure 11-11 | am using a shorthand to represent abstract
classes and methods. | place the symbol: { A} near the entity that | am denoting as abstract.
Thisis my own shorthand convention. It’s much more convenient than having to write out
{abstract} al thetime.



137 Chapter : Heuristics and Coffee

User Interface Hot Water
Source {A}

——{> # startBrewing
+ {A} isReady()

Containment
Vessel {A}
M4UserInterface
. M4HotWater
+ {A} isReady() Source

+ checkButton

M4Containment
Vessel

Figure 11-11
Implementing the isReady methods

Listing 11-7
M4HotWaterSource.java
public class MAHof WAt er Sour ce ext ends Hof Water Source {
publ i ¢ bool ean isReady() {
int boilerStatus =
Cof f eeMaker API . api . get Boi | er Stat us();
return boil er Status == Cof f eeMaker APl . BO LER_NOT_EMPTY;

}
}

Listing 11-8
M4ContainmentVessel.java
public class MACont ai nment Vessel extends Contai nment Vessel {
publ i c bool ean isReady() {
int plateStatus =
Cof f eeMaker API . api . get Warnmer Pl at eSt at us() ;
return pl ateStatus == CoffeeMaker APl . POT_EMPTY;

}

Implementingthest art () functions.

Thest art () method of Hot Wat er Sour ce isjust an abstract method that isimplemented
by MiHot Wat er Sour ce to invoke the Cof f eeMaker API functions that close the valve
and turn on the boiler. As | wrote these functions | begain to get tired of all the Coffee-
MakerAPl.api. XXX structures | waswriting, so | did alittle refactoring at the same time.
Theresultisin Listing 11-9.



A Coffee Maker Solution 138

Listing 11-9

M4HotWaterSource.java

publ'ic class MiHot WAt er Source extends Hot VAterSource {
Cof f eeaker APl api ;

publ i ¢ MiHot WAt er Sour ce( Cof f eeMaker APl api) {
this.api = api;

publ i ¢ bool ean isReady() {
int boilerStatus = api.getBoilerStatus();
return boilerStatus == api.BO LER_NOT_EMPTY;

}

public void start()
api . set Rel i ef Val veSt at e( api . VALVE_CLGCSED) ;
api . set Boi | er St at e(api . BO LER_QN) ;

}
}
Thestart () method for the Cont ai nnent Vessel isalittle more interesting. The
only action that the MiCont ai nnent Vessel needs to take is to remember the brewing

state of the system. Aswe'll see later, thiswill alow it to respond correctly when pots are
placed on, or removed from, the plate. Listing 11-10 shows the code.

Listing 11-10

M4ContainmentVessel.java

publ'ic class MACont ai nment Vessel extends Cont ai nment Vessel {
private Cof feeMaker APl api ;
privat e bool ean i sBrew ng;

publ i c MiCont ai nnment Vessel ( Cof f eeMaker APl api) {
this.api = api;
i sBrewi ng = fal se;

publ i c bool ean i sReady() {
int plateStatus = api.getWarnerPl ateStatus();
return pl ateStatus == api.POT_EMPTY;

public void start() {
i sBrewi ng = true;
}

}

How doesMAUser | nt er f ace. checkBut t on get called?

Thisis an interesting point. How does the flow of control ever get to a place at which the
Cof f eeMaker API . get BrewBut t onSt at us() function can be called. For that matter,
how does the flow of control get to where any of the sensors can be detected?

Many of the teams who try to solve this problem get completely hung up on this
point. Some don’'t want to assume that there's a multi-threading operating system in the



139 Chapter : Heuristics and Coffee

coffee maker, and so they want to use a polling approach to the sensors. Others want to put
multi-threading in so that they don’t have to worry about polling. I’ ve seen this particular
argument go back and forth for an hour or more in some teams.

The mistake that these teams are making (which | eventually point out to them after
letting them sweat a hit) is that the choice between threading and polling is completely
irrelevant. This decision can be made at the very last minute without harm to the design.
Therefore it is aways best to assume that messages can be sent asynchronously, as though
there were independent threads, and then put the polling or threading in at the last minute.

The design so far has assumed that somehow the flow of control will asynchronously
get into the MAUser | nt er f ace object so that it can call Cof f eeMaker API . get Br ew
Butt onSt at us() . Now lets assume that we are working in a very minima JVM that
does not support threading. This meanswe' re going to have to poll. How can we make this
work?

Consider the Pol | abl e interface in Listing 11-11. This interface has nothing but a
pol I () method. Now, what if MdUser | nt er f ace implemented this interrface? What if
the mai n() program hung in a hard loop just caling this method over and over again?
Then the flow of control would continuously be reentering MéUser I nt er f ace and we
could detect the brew button.

Listing 11-11

Pollable.java

public interface PolTable {
public void poll();

Indeed, we can repeat this pattern for al three of the M4 derivatives. Each hasits own
sensorsit needs to check. So, as shown in Figure 11-12, we can derive all of the M4 deriv-
atives from Pol | abl e and call them all from mai n() .

Listing 11-12 shows what the main function might look like. It is placed in a class
called Cof f eeMaker. The mai n() function creates the implemented version of the api ,
and then creates the three M4 components. It calsi nit () functionsto wire the compo-
nents up to each other. Finaly it hangs in an infinite loop calling pol | () on each of the
componentsin turn.

Now it should be clear how the MiUser I nt er f ace. checkButt on() function gets
called. Indeed, it should be clear that this function isreally not called checkBut t on() . It
iscaled pol I (). Listing 11-13 showswhat MdUser | nt er f ace look like now.

Completing the Coffee M aker

The reasoning used in the previous sections can be repeated for each of the other compo-
nents of the coffee maker. The result is shown in Listing 11-14 through Listing 11-21.




A Coffee Maker Solution

User Interface Hot Water
Source {A}

——{> # startBrewing

+ {A} isReady()

Containment
Vessel {A}

M4HotWater
Source

M4UserInterface
——— + {A} isReady()

+ checkButton

M4Containment
Vessel

N

140

«interface»
Pollable
+ poll()
Figure 11-12
Pollable Coffee Maker
Listing 11-12
CoffeeMaker.java

public class CoffeeMaker {
public static void main(String[] args)

{
Cof f eeMaker APl api = new MACof f eeMaker API | npl enent ati on();

MiUser | nterface ui = new MiUserl nterface(api);
MiHot WAt er Sour ce hws = new M4Hot WAt er Sour ce(api ) ;
MiCont ai nnent Vessel cv = new MiCont ai nnent Vessel (api);

ui .init(hws,cv);
hws.init(ui,cv);
cv.init(ui,hws);

whil e(true) {

ui . poll();
hws. pol | ();
cv.poll ();




141 Chapter : Heuristics and Coffee

Listing 11-13
M4UserlInterface.java
public class MiUserTnterface extends Userinterface
i mpl ements Pol | abl e {
private Cof feeMaker APl api ;
private Hot WAt er Source hws;
private Contai nment Vessel cv;

public void init(HotWterSource hws, ContainnentVessel cv) {
this. hws = hws;
this.cv = cv;

public MiUser | nterface(Cof feeMaker APl api) {
this.api = api;

private void poll () {
int buttonStatus = api.getBrewButtonStatus();
if (buttonStatus == api.BREW BUTTON_PUSHED) {
start Brewi ng();

}
}

The Benefits of thisdesign.

Despite the trivial nature of the problem, this design shows some very nice characteristics.
Figure 11-13 shows the structure. | have drawn a line around the three abstract classes.
These are the classes that hold the high level policy of the coffee maker. Notice that all
dependencies that cross the line point inwards. Noting inside the line depends upon any-
thing outside. Thus, the abstractions are completely separated from the details.

The abstract classes know nothing of buttons, lights, valves, sensors, nor any other of
the detailed elements of the coffee maker. By the same token, the derivatives are domi-
nated by those details.

Note that the three abstract classes could be reused to make many different kinds of
coffee machines. We could easily use them in a coffee machine that is connected to the
water mains and uses a tank and spigot. It seems likely that we could also use them for a
coffee vending machine. Indeed, | think we could use it in an automatic tea brewer or even
achicken soup maker. This segregation between high level policy and detail isthe essense
of object oriented design.

How did | really come up with thisdesign?

| did not just sit down one day and develop this design in a nice straightfoward manner.
Indeed, my very first design for the coffee maker looked much more like Figure 11-1.
However, | have written about this problem many times, and have used it as an exercize
while teaching class after class. So this design has been refined over time.




A Coffee Maker Solution 142

Hot Water

User Interface
Source

{A}

{A}

Containment
Vessel
{A}

M4UserInterface ‘

I

M4Containment
Vessel

J;

«interface»
Pollable

M4HotWater
Source

+ checkButton

Figure 11-13
Coffee Maker Components

The code you see below was created, test first, using unit testsin Listing 11-22. | cre-
ated the code based upon the structure in Figure 11-13, but put it together incrementally,
one failing test case at atime.*

I am not convince that the test cases are complete. If this were more than an example
program, |I'd do a more exhaustive analysis on the test cases. However, | felt that such an
analysis would have been overkill for this book.

Listing 11-14

Userinterface.java

public abstract class Userlnterface {
privat e Hot WAt er Source hws;
privat e Contai nment Vessel cv;
protected bool ean i sConpl ete;

public Userlinterface() {
i sConpl ete = true;

public void init(HotWterSource hws, ContainnmentVessel cv) {
this. hws = hws;
this.cv = cv;

}

4. See Test Driven Devel opment, Kent Beck, Addison Wesley, 2002




143

Chapter : Heuristics and Coffee

Listing 11-14 (Continued)
Userinterface.java

public void conplete() {
i sConpl ete = true;
conpl et eCycl e();

protected void startBrew ng() {
if (hws.isReady() && cv.isReady()) {
i sConpl ete = fal se;
hws. start () ;
cv.start();

}

publ ic abstract void done();
publ ic abstract void conpl eteCycle();
}

Listing 11-15
M4UserlInterface.java

public class MAUserInierface extends Userinterface

i mpl ements Pol | abl e {
private Cof feeMaker APl api;

public MiUser | nterface(Cof feeMaker APl api) {
this.api = api;

public void poll() {
int buttonStatus = api.getBrewButtonStatus();
if (buttonStatus == api.BREW BUTTON PUSHED) {
start Brewi ng();

}
}
public void done()
api . setlndicatorState(api.|ND CATOR ON);

}
public void conpl eteCycle() {
api . setlndi catorState(api.|ND CATOR COFF);
) }
Listing 11-16

HotWaterSource.java

publ'ic abstract class Hot WAt er Source {
private Userlnterface ui;
privat e Contai nnment Vessel cv;
prot ected bool ean i sBrew ng;

publ i ¢ Hot Wat er Source() {
i sBrewi ng = fal se;

}




A Coffee Maker Solution

144

Listing 11-16 (Continued)
HotWaterSource.java

public void init(Userinterface ui, Contai nmentVessel
this.ui = ui;
this.cv = cv;

public void start() {
i sBrewing = true;
startBrew ng();

}

public void done() {
i sBrewi ng = fal se;

CcV)

}
protected voi d decl areDone() {
ui . done();
cv. done();
i sBrewi ng = fal se;
}
publ i c abstract bool ean isReady();
public abstract void startBrew ng();
public abstract void pause();
public abstract void resunme();
}
Listing 11-17

M4HotWaterSource.java

public class MAHof WAt er Source ext ends Hotf Wat er Source
i mpl ements Pol | abl e {
privat e Cof feeMaker APl api;

publ i c MiHot WAt er Sour ce( Cof f eeMaker APl api) {
this.api = api;
}

publ i c bool ean i sReady() {
int boilerStatus = api.getBoil erStatus();
return boil erStatus == api . BA LER_NOT_EMPTY;

public void startBrew ng() {
api . set Rel i ef Val veSt at e(api . VALVE_CLOSED) ;
api . set Boil er St at e(api . BO LER _ ON);

}

public void poll()
int boilerStatus
if (isBrew ng) {
if (boilerStatus == api.BO LER_EMPTY) {
api . set Boil er St at e(api . BO LER_OFF) ;
api . set Rel i ef Val veSt at e(api . VALVE_CLOSED) ;
decl areDone() ;

{
= api.getBoil erStatus();




145

Chapter : Heuristics and Coffee

Listing 11-17 (Continued)
M4HotWaterSource.java

}
}

public void pause() {
api . set Boi | er St at e(api . BO LER_CFF) ;
api . set Rel i ef Val veSt at e( api . VALVE_OPEN) ;

}
public void resume()

{
api . set Boi | er St at e(api . BO LER_QN) ;
api . set Rel i ef Val veSt at e( api . VALVE_CLGCSED) ;

}
}

Listing 11-18
ContainmentVessel.java

public absiract class Contai nnment Vessel {
private Userlnterface ui;
private Hot WAt er Source hws;
protected bool ean i sBrew ng;
protected bool ean isConpl ete;

publ i ¢ Cont ai nnment Vessel () {
i sBrewi ng = fal se;
i sConpl ete = true;

public void init(Userlnterface ui, HotWterSource hws) {
this.ui = ui;
this. hws = hws;

public void start() {
isBrewing = true;
i sConpl ete = fal se;
}

public void done() {
i sBrewi ng = fal se;

}

protected void decl areConplete() {
i sConpl ete = true;
ui .complete();

protected void containerAvail abl e() {
hws. resune() ;

protected void contai nerUnavail abl e() {
hws. pause() ;

public abstract bool ean isReady();




A Coffee Maker Solution

146

Listing 11-18 (Continued)
ContainmentVessel.java

}

Listing 11-19
M4ContainmentVessel.java

public class MACont ai nment Vessel ext ends Cont ai nment Vessel
i mpl ement s Pol | able {
private Cof feeMaker APl api ;
private int |astPotStatus;

publ i ¢ MiCont ai nment Vessel ( Cof f eeMaker APl api) {
this.api = api;
| ast Pot St at us = api . POT_EMPTY;

}

publ i ¢ bool ean isReady() {
int plateStatus = api.getWarnmerPl ateStatus();
return plateStatus == api.POT_EMPTY;

public void poll () {
int potStatus = api.get\WarnerPl ateStatus();
if (potStatus != |astPotStatus) {
if (isBrew ng)
handl eBr ewi ngEvent (pot St at us) ;
} else if (isConplete == false) {
handl el nconpl et eEvent ( pot St at us) ;

}
| ast Pot St at us = pot St at us;

}
}

private voi d handl eBrew ngEvent (i nt potStatus) {
if (potStatus == api.POTr_NOT_EMPTY) {
cont ai ner Avai | abl e();
api . set ar nmer St at e( api . WARMER_ON) ;
} else if (potStatus == api. WARVER_EMPTY) {
cont ai ner Unavai | abl e() ;
api . set ar ner St at e( api . WARMER_OFF) ;
} else { // potStatus == api.POl_EMPTY
cont ai ner Avai | abl e();
api . set ar ner St at e( api . WARMER_OFF) ;

}
}

private void handl el nconpl et eEvent (i nt pot Status) {
if (potStatus == api.POTr_NOT_EMPTY) {
api . set War mer St at e( api . WARMER_ON) ;
} else if (potStatus == api. WARVER_EMPTY) {
api . set ar ner St at e( api . WARMER_OFF) ;
} else { // potStatus == api.POTl_EMPTY
api . set War mer St at e( api . WARMER_OFF) ;
decl areConmpl ete();




147

Chapter : Heuristics and Coffee

Listing 11-19 (Continued)
M4ContainmentVessel.java

¥
}

Listing 11-20
Pollable.java

public interface PolTable {
public void poll();

Listing 11-21
CoffeeMaker.java

publ'ic class CoffeeMaker {
public static void main(String[] args) {
Cof f eeMaker APl api = new M4Cof f eeMaker API | mpl ement ation();

MiUser | nterface ui = new MdUserl nterface(api);
MiHot Wt er Sour ce hws = new MiHot WAt er Sour ce(api ) ;
MACont ai nment Vessel cv = new M4Cont ai nnent Vessel (api);

ui .init(hws,cv);
hws.init(ui,cv);
cv.init(ui,hws);

whil e(true) {
ui . poll();
hws. pol | ();
cv.poll ();

}
}

Listing 11-22
TestCoffeeMaker.java

import junit.framewor k. Test Case;
i mport junit.sw ngui.TestRunner;

cl ass Cof feeMaker Stub i npl ements Cof f eeMaker APl {

publ i c bool ean buttonPressed;
publ i c bool ean |i ght On;

publ i c bool ean boil er On;

publ i ¢ bool ean val veCl osed;
publ i c bool ean pl at eOn;

publ i c bool ean boil er Enpty;
publ i ¢ bool ean potPresent;
publ i ¢ bool ean pot Not Enpty;

publ i c Cof f eeMaker Stub() {

butt onPressed = fal se;
lightOn = fal se;
boilerOn = fal se;

val veC osed = true;

pl ateOn = fal se;

boil erEnpty = true;

pot Present = true;




A Coffee Maker Solution 148

Listing 11-22 (Continued)
TestCoffeeMaker.java
pot Not Enpty = fal se;

public int getWarmerPl ateStatus() {
if (!potPresent)
return WARMVER _EMPTY;
el se if (potNot Enpty)
return POT_NOT_EMPTY;
el se
return POT_EMPTY,;
}

public int getBoilerStatus()
return boilerEnpty ? BO LER EMPTY : BO LER _NOT_EMPTY;
}

public int getBrewButtonStatus() ({
i f (buttonPressed)
buttonPressed = fal se;
return BREW BUTTON_PUSHED,
} else {
return BREW BUTTON_NOT_PUSHED;
}
}

public void setBoilerState(int boilerStatus) {
boil erOn = boil erStatus == BO LER_ON,;

public void setWarnmerState(int warnerState) {
pl at eOn = war nmer St ate == WARMER_ON,;

public void setlndicatorState(int indicatorState) {
lightOn = indicatorState == | NDI CATOR_ON;

public void setReliefValveState(int reliefValveState) {
val ved osed = reliefValveState == VALVE_CLOSED;

}

public class Test Cof feeMaker extends TestCase {
public static void main(String[] args) {
Test Runner. mai n(new String[]{" Test Cof feeMaker"});

publ i c Test Cof f eeMaker (String nane) {
super (nane) ;

private M4Userlnterface ui;
private MiHot WAt er Source hws;
private M4Cont ai nment Vessel cv;
privat e Cof feeMaker Stub api;




149 Chapter : Heuristics and Coffee

Listing 11-22 (Continued)
TestCoffeeMaker.java

public void setUp() throws Exception {
api = new Cof f eeMaker St ub();
u = new MiUserInterface(api);
hws = new M4Hot WAt er Sour ce(api ) ;
cv = new M4Cont ai nnent Vessel (api);
ui.init(hws, cv);

hws.init(ui, cv);

cv.init(ui, hws);

}

private void poll ()
ui . poll();
hws. pol I () ;
cv.poll ();

public void tearDown() throws Exception {

}

public void testlnitial Conditions() throws Exception {
pol 1 ();
assert(api.boilerOn == fal se);
assert(api.lightOn == fal se);
assert(api.plateOn == fal se);
assert (api.val veCl osed == true);

}

public void testStart NoPot() throws Exception {
pol 1 ();

api . buttonPressed = true;
api . pot Present = fal se;

pol | ();
assert(api.boilerOn == fal se);
assert(api.lightOn == fal se);
assert(api.plateOn == fal se);
assert (api.valveC osed == true);

}

public void testStart NoWater() throws Exception {
pol 1 ();

api . buttonPressed = true;
api . boilerEnpty = true;

pol I ();

assert(api.boilerOn == fal se);
assert(api.lightOn == fal se);
assert(api.plateOn == fal se);
assert (api.valveC osed == true);

}

public void testGoodStart() throws Exception {
normal Start();
assert(api.boilerOn == true);
assert(api.lightOn == fal se);
assert(api.plateOn == fal se);




A Coffee Maker Solution 150

Listing 11-22 (Continued)
TestCoffeeMaker.java

assert (api.valveCl osed == true);

private void normal Start() {
pol 1 ();
api . boil erEmpty = fal se;
api . buttonPressed = true;
pol 1 ();

public void testStartedPot Not Enpty() throws Exception {
normal Start ();
api . pot Not Enpty = true;

pol I ();

assert(api.boilerOn == true);
assert(api.lightOn == fal se);
assert(api.plateOn == true);
assert (api.valveClosed == true);

}
public void testPot RenbvedAndRepl acedWhi | eEnpt y()
throws Exception {

normal Start();

api . pot Present = fal se;

pol I ();

assert(api.boilerOn == fal se);
assert(api.lightOn == fal se);
assert(api.plateOn == fal se);
assert (api.valveC osed == fal se);
api . pot Present = true;

pol | ();

assert(api.boilerOn == true);
assert(api.lightOn == fal se);
assert(api.plateOn == fal se);
assert (api.valveC osed == true);

}
public void testPot RenbvedWi | eNot Enmpt yAndRepl acedEnpty()
throws Exception {

normal Fill();

api . pot Present = fal se;

pol I ();

assert(api.boilerOn == fal se);
assert(api.lightOn == fal se);
assert(api.plateOn == fal se);
assert (api.valveC osed == fal se);

api . pot Present = true;
api . pot Not Enpty = fal se;

pol I ();

assert(api.boilerOn == true);
assert(api.lightOn == fal se);
assert(api.plateOn == fal se);
assert (api.valveC osed == true);

}

private void normal Fill () {




151 Chapter : Heuristics and Coffee

Listing 11-22 (Continued)
TestCoffeeMaker.java

normael Start ();
api . pot Not Enpty = true;
pol 1 ();

}
public void testPot RenovedWwi | eNot Enpt yAndRepl acedNot Enpt y ()
throws Exception {

normal Fill();

api . pot Present = fal se;

pol 1 ();

api . pot Present = true;

pol I ();

assert(api.boilerOn == true);
assert(api.lightOn == false);
assert(api.plateOn == true);
assert (api.valveClosed == true);

}

public void testBoilerEnmptyPot Not Empty() throws Exception {
nor mal Brew() ;

assert(api.boilerOn == fal se);
assert(api.lightOn == true);
assert(api.plateOn == true);
assert (api.valveC osed == true);

}

private void normal Brew() {
normal Fill();
api . boilerEnpty = true;
pol I ();

}
public void testBoilerEnptiesWilePot Renmoved()
throws Exception {

normal Fill();

api . pot Present = fal se;

pol 1 ();

api . boilerEnpty = true;

pol I ();

assert(api.boilerOn == fal se);
assert(api.lightOn == true);
assert(api.plateOn == fal se);
assert (api.valveC osed == true);
api . pot Present = true;

pol I ();

assert(api.boilerOn == fal se);
assert(api.lightOn == true);
assert(api.plateOn == true);
assert (api.valveC osed == true);

}

public void testEnptyPot ReturnedAfter() throws Exception {
nor mal Brew() ;
api . pot Not Enpty = fal se;
pol I ();
assert(api.boilerOn == fal se);




A Coffee Maker Solution 152

Listing 11-22 (Continued)

TestCoffeeMaker.java
assert(api.lightOn == false);
assert(api.plateOn == fal se);
assert (api.valveClosed == true);




12

SM C Remote Service: Case Sudy

Some time ago | decided to write a pair of programs that would allow users to compile
SMC! input files remotely. On the client side the program would be invoked just like
SMC. However, instead of compiling a state map file it would take the file and ship it
acrosstheinteret to a central server. This server would compile the state map file into Java
or C++ and then ship the resulting files back to the client. Except for the network delay,
the remote user would not see much difference between compiling locally and compiling
remotely.

The reason to do this is to get some idea of how many people are using SMC, and
how often they are using it. Another reason is to make sure that all SMC users are using
the most current version of the compiler.

Caveat Emptor

In this chapter | describe these programs using text, UML, and code. | do thisto show
you how UML and code are related, and the many options for documenting a system using
UML. However, you should not take this chapter as a recommendation for how systems
should be documented. Indeed | am purposely over-documenting this software so that |
can show you all the various UML diagramsin awell controlled context.

Please know that these programs were designed without the use of any UML at all.
They started from very humble beginnings and were refactored through no less than 20
revisionsto get to where they are in this book.? At no point did | need or want aUML dia-
gram to help me with that design. Nor do | think that the use of UML diagrams would
have made the development more efficient or resulted in a superior design.

1. See“SMC” on page 114
2. | amthinking about publishing a book that chronicles that development. It would have one chap-
ter for each revision of the system, showing how it evolved from state to state.

153



The SM CRemote System. 154

If | were documenting this software for other developers to maintain, | would cer-
tainly create some UML diagrams to show them. However, | would not create anywhere
near the amount of UML diagrams | am going to show here. Again, what you see hereis
severely over documented.

You have been warned.
Unit Tests.

Among the best documents for describing a software system are the unit tests for that sys-
tem®. Usually | would show you the unit tests first, before showing you the production
code. However, in this case | am trying to expose UML, not the system itself. So | have
put the tests at the end of the chapter, instead of giving them the prominence that they
deserve. Sill, you'll likely find that you'll understand the code much better if you read
through those tests, so | strongly recommend looking through them.

The SM CRemote System.

Figure 12-1 shows the physical deployment of the system. There are two executable
programs, each contained within its own node. The two programs communicate using a
socket connection.

Client Node Server Node
«executable» «executable»
SMCRemote «socket» SMCRemote

Client Service
Figure12-1
Deployment

SM CRemoteClient

First, lets look at the client side of the program. The next several pages will present text,
diagrams, and code that show how the SMCRenot ed i ent works, and how it is struc-
tured.

3. [TDD2002], p???



155 Chapter : SMC Remote Service: Case Study

SM CRemoteClient Command Line

Users invoke the SMCRenot eCl i ent for one of two purposes.

» Toregister to use the SMCRenot e system.
*  To usethe SMCRenpt e system to compile a. smfile.

The difference between the two is specified on the command line. To register to use
SMCRenot e the user types the following:

SMCRenote -r <enmmil - addr ess>

The SMCRenvt e registers the email address, calculates a password, and emails that
password back to the email address. From then on, the user will use that email address and
password in order to run compiles.

To run acompile the user types the following:

SMCRenpt e -u <emmi | -address> -w <password> <file>

This command sends the file to the remote compiler. The remote compiler verifies
that the email and password are valid. Then it compiles the file. The compiled file(s) are
then sent back to the client and written in the user’s directory. Any st dout or stderr
messages produced by the compiler are also sent back to the client and will appear on the
user’s console.

There are other command line options as well.

e -p <port> - specifiesthe port number of the remote server
* -h <host> - specifies the hosthame of the remote server

* -g <generator> -foracompile, specifies the code generator to use.
<gener at or > may be either j ava or G++.

* -v - Verbose output. Printslots of messages on the console to tell you what kind
of progress and errors the SMCRenot ed i ent has encountered.

SM CRemote Communication Protocols

The two different functions of the SMCRenot eCl i ent use two different communications
protocols. The protocol for registration is shown in Figure 12-2, and the protocol for com-
pilation is shown in Figure 12-3.

Both protocols begin with the client creating a connection to the server. The server
responds with a simple identification string that includes the SMCRenot eServer’ s ver-
sion number. Then it sends a message-of-the-day, if one exists. The client will print that
message on its console.



SM CRemoteClient 156

Registration is simply a matter of sending the email address from the client to the
server. In the norma case the server generates a password for the user, creates a user
record, and then emails the password to the email address. The server sends a response
back to the client telling the user that he'll find his password in an email message.

+SMCRemote SMCRemote - Emails

Connect

SMCR + version

message of the day

registrationRequest(emailaddress)

\

\

\

\

\

\

send(emailaddress,password) |

| registrationResponse(status) |
\

\

Figure 12-2
Registration Protocol

Compilation is a bit more complex. After theinitial connection, the client collects the
email and password from the command line and issues a login request to the server. The
server validates the email and password and sends alogin response back. If the response if
positive, then the client gathers up the file to compile and sendsiit to the server. The server
runs the compiler, gathers up the output files and the st dout and st derr streams, and
sends them back to the client. The client writes the output files in the user’s directory and
emitsthe st dout and st der r streamson hisconsole.

4. Readers experienced with distributed systems should be shaking their headsin frugtration. By cre-
ating a separate transaction for login, | have violated the old maxim “Round trips are the enemy.”
It would be much more efficient to piggyback the login protocol on top of the compile protocal.
The compileFile message could carry the email and password, and the compileResults messsage
could carry back alogin failure response. | didn’t do this for two reasons. First, none of my trials
indi cated that the round trip time was significant. Second, this program was written for teaching
purposes, and | wanted a two stage protocol in the example.



157 Chapter : SMC Remote Service: Case Study

SMCRemote SMCRemote
Client Server

Connect

| SMCR + version

message of the day

login(emai + password)
| loginResponse(accepted, count)

compileFile(file, generator)

compilerResults(files, stdout, stderr, status)

Figure 12-3
Compile protocol

SM CRemoteClient

The structure of the SMCRenote client program is shown in Figure 12-4.
SMCRenot ed i ent has the main program. It holds a referece to C i ent CommandLi ne
and Messagelogger. C i ent CommandLi ne knows how to parse the command line
arguments. MessageLogger knows how to format and dispose of the various status mes-
sages that come from the different parts of the client program.

Figure 12-5 shows what happens when the clients boots up. First it constructs an
instance of the SMCRenot eCl i ent and passes the command line arguments to it. The
SMCRenot ed i ent constructor createsthe d i ent CommandLi ne object and directsit to
parse the arguments. It then asks the O i ent CommandLi ne to set the generic parameters
like host, port, and verbose. The dient ConmandLi ne cals back to the
SMCRenot ed i ent instance through the Cl i ent CommandLi neProcessor interface.
Next the SMCRenot eC i ent creates the appropriate derivative of the MessagelLogger,
depending upon the state of the verbose flag. Finally, the SMCRenot eCl i ent constructor
returns, and mai n callsr un upon the newly created SMCRenot eCl i ent object.

The run method of SMCRenot eCl i ent checks the validity of the command line. If
the command line is malformed, it prints a usage message and exits. Otherwise it sends the
pr ocessComand message to the d i ent CormandLi ne object. The Cl i ent Command-
Li ne responds by inspecting the command line arguments in order to determine whether
they represent a registration or a compilation. Then, as shown in Figure 12-6 and Figure
12-7 the Cl i ent CommandLi ne sends a message back to the SMCRenot eCl i ent through



SM CRemoteClient 158

«interface»
ClientCommand

LineProcessor
«parameter,

+ setGenericParameters
+ compile
+ register
«interface»
MessagelLogger
ClientCommand
Line + logMessage
+ parseCommandLine SMCRemote
Client
+mai Console
7M(“1 MessagelLogger
RemoteSession
Base Null
+ connect MessagelLogger
+ login
+ sendTrnsaction
+ readServerObj
Socket —
Remote
«local» ]
Compiler
+ compile
I ObSJeCanul —= InputStream <—
Remote tream
«local» Registrar
+ register ObjectOutput
j utpu
—= Stream == OutputStream |<=—
Figure 12-4

SMCRemoteClient Static Structure

theCl i ent CommandLi nePr ocessor interface. Themessageit sendsiseitherr egi st er
orconpil e.

The code for SMCRenot eCli ent, Cli ent CommandLi ne, and Cl i ent Command-
Li neProcessor isin Listing 12-1, Listing 12-2, and Listing 12-3 respectively. You
should be ableto match theinteraction diagram in Figure 12-5 to the codein thoselistings.



159 Chapter : SMC Remote Service: Case Study

SMCRemote
Client.main()
[ | SMCRemote
\ :
args ClientC

| - - Line

‘ args

‘ D setGenericParameters
ClientCommand =0

LineProcessor

ine
| F parseCommandLine
‘ setGenericParameters

(host, port,
verbose)

\
[verboscﬂ ConsoleMessage
Logger |
\
['verbose] NullMessage ‘
| un T Logger |
[ processCommand(this) |
\ - \
Figure 12-5

SMCRemoteClient.main()

ClientCommand SMCRemote
Line Client

‘ register(email) ‘

’—> host,port,logger
ClientComman o—=
LineProcesso - Rﬁmg
| Registrar
[ email B E—
o—=
—_—
| connectAndRegister ‘

Figure 12-6
Registration



SM CRemoteClient 160

ClientCommand SMCRemote
Line Client

user, password, ‘
generator, filename |
compile o=

’—> host,port,logger
“Creprocessal || Remate
| "
\ compile
.
| o = \
\

user, password |
generator, flename

Figure 12-7
compilation

Listing 12-1
SMCRemoteClient.java

package com obj ect nentor. SVCRenote. client;

public class SMCRenoted ient inplenents O ient CommandLi neProcessor {
public static final String VERSION = "$Id$";

private OientCommandLi ne comandLine;
private String itsHost;

private int itsPort;

private bool ean isVerbose = false;
private MessagelLogger itsLogger;

public static void min(String[] args) {
SMCRemot eClient client = new SMCRenot eCli ent (args);
client.run();

}

public SMRenoteQient(String[] args) {
commandLi ne = new O i ent CommandLi ne(args);
commandLi ne. set Generi cParaneters(this);
if (isVerbose)
i tsLogger = new Consol eMessagelogger();
el se
i tsLogger = new Nul | MessageLogger ();

private void run() {

if (commandLine.isValid()) {
| ogHeader () ;
commandLi ne. processCormand(t hi s);

} else {
Systemout. printin("usage: ");
Systemout. printIn(

" to conpile: java SMCRemoteC ient -u <emmi|address> -w <password> <filenane>");

Systemout. printin(" to register: java SMCRenoteC ient -r <enmiladdress>");
Systemout. printIn("options: -h <hostname> override default hostname.");




161 Chapter : SMC Remote Service: Case Study
Listing 12-1
SMCRemoteClient.java
Systemout. printin(” -p <port> override default port™);
Systemout. println(" -V verbose consol e output”);
}
}
public void setGenericParaneters(String host, int port, boolean verbose) {
itsHost = host;
itsPort = port;
i sVerbose = verhose;
public void compile(String username, String password,
String generator, String filenane) {
Renot eConpi | er compi | er = new Renot eCompi | er (i tsHost, itsPort, itsLogger);
conpi | er. conpi | e(usernane, password, generator, filenane);
public void register(String registrant) {
Renot eRegi strar registrar = new Renot eRegi strar(itsHost, itsPort, itslLogger);
regi strar. connect AndRegi ster(registrant);
}
private void |ogHeader() {
[ ogMessage( " SMCReNDt €Q i Nt - -« -« = x o mm e e e ");
[ ogMessage( VERSI ON);
| ogMessage("host = "+ itsHost);
| ogMessage("port = "+ itsPort);
| OgMESSAgE( " - - - w e ")
}
private void |oghessage(String msg) {
i tsLogger. | ogMessage(nsg);
}
}

Listing 12-2 (Continued)
ClientCommandLine.java

package com obj ect nent or. SVCRemot e. cl 1 ent;
import com neoworks. util. Getopts;

public class CientCommandLine {
public static final String DEFAULT HOST = "l ocal host";
public static final String DEFAULT PORT = "9000";
public static final String DEFAULT GENERATOR = "java";

private String itsFilename = null;

private String itsHost = DEFAULT HCST;

private int itsPort = Integer.parselnt(DEFAULT PCRT);
private String itsCenerator = DEFAULT GENERATOR,
private bool ean isVerbose = false;

private String itsRegistrant;

private String itsUsernane;

private String itsPassword;

private bool ean isValid = fal se;




SM CRemoteClient

162

Listing 12-2 (Continued)
ClientCommandLine.java

private Getopts opts;

public CientCommandLine(String[] args) {
isValid = parseCommandLi ne(args);

}

public bool ean isValid() {
return isValid;

}

public bool ean parseCommandLine(String[] args) {
opts = new Getopts("r:h:p:g:uiwv", args);
if (opts.error()) return fal se;

try {
i tsFilename = opts.argv(0);
itsHost = opts.option('h', DEFAULT_HOST);
itsPort = Integer.parselnt(opts.option('p', DEFAULT_PCRT));
i tsGenerator = opts.option('g', DEFAULT_GENERATCR);
i tsRegistrant = opts.option('r', null);
i tsUsername = opts.option('u', null);
i tsPassword = opts.option('w, null);
i sVerbose = opts.hasQption('v');
} catch (Nunber For mat Exception e) {
return false;

return isConpileCommand() || isRegistrationCommand();
}

public void setGenericParaneters(Cient CommandLi neProcessor processor) {
processor. set GenericParamet ers(itsHost, itsPort, isVerbose);

}

public void processCommand( Qi ent CommandLi neProcessor processor) {
if (isConpileConmand()) {
processor. conpi | e(itsUsernane, itsPassword, itsGnerator, itsFilenane);
} else if (isRegistrationComand()) {
processor.register(itsRegistrant);

}

private bool ean hasFileNane() {
return opts.arge() == 1;

}

private bool ean i sConpil eCommand() {
return opts.hasOption('u') &&
opts. hasQption('w) &&
lopts.hasQption('r') &&
hasFi | eNare();

private bool ean isRegi strationCommand() {
return opts.hasOption('r') &&




163

Chapter

: SMC Remote Service: Case Study

Listing 12-2 (Continued)
ClientCommandLine.java

}

(itsRegistrant T= nuiT) &&
lopts.hasQption('u') &&
lopts.hasQption('w) &&
lopts.hasQption('g') &&
I'hasFi | eNanme();

public bool ean isVerhose() {

return isVerhose;

public String getHost() {

return itsHost;

public String getFilename() {

return itsFil enane;

public int getPort() {

return itsPort;

public String getGenerator() {

return itsGenerator;

public String getUsername() {

return itsUsernane;

public String getPassword() {

}

return itsPassword;

Listing 12-3
ClientCommandLineProcessor.java

package com obj ect nentor. SVCRenote. client;

public interface CientCommandLi neProcessor {
public void setGenericParaneters(String host, int port, boolean verbose);
public void conpile(String username, String password, String generator, String filenane);
public void register(String registrant);




SM CRemoteClient 164

The Loggers

You can see the implementation of the logger filesin Listing 12-4 through Listing 12-6.
The MessageLogger interface allows the SMCRenot ed i ent and all its minions to log
message. Nul | MessagelLogger simply ignores those messages, whereas Consol e-
MessageLogger prints the messages on standard out, along with time and date informa-
tion.

Listing 12-4
Messagelogger.java

package com obj ect mentor. SVCRenote. client;

public interface MessageLogger {
public void | ogMessage(String nsg);

Listing 12-5
NullMessagelLogger.java

package com obj ect nentor. SVCRenote. client;

public class Null MessageLogger inplenents Messagelogger {
public void | ogMessage(String msg) {
}

}

Listing 12-6
ConsoleMessagel.ogger.java

package com obj ect nentor. SVCRenote. client;

inport java.text.Sinpl eDat eFormat;
inport java.util.Date;

public class Consol eMessageLogger inplenents MessagelLogger {
public void | ogMessage(String nsg) {
Date | ogTime = new Date();
S npl eDat eFormat fnt = new Sinpl eDat eFormat ("yyyy. MM dd hh: nm ss");
String logTimeString = fnt.format(logTine);
Systemout. printIn(logTimeString + " | " + msQ);
}
}




165 Chapter : SMC Remote Service: Case Study

The Remote Sessions.

Figure 12-8 shows more of the static structure of the Renot eRegi strar and
Renot eConpi | er. Both derive from the base class Renot eSessi onBase which sup-
plies them with some common utilities. These classes use the DATA TRANSFER OBJECT®
pattern in order to communicate with the server. The Logi nTransacti on, Logi n-
ResponseTransacti on, Regi strationTransacti on, Regi strati onResponse-
Transact i on, Conpi | eFi | eTransacti on, and Conpi | er Resul t sTransacti on are
the data transfer objects used by the remote sessions. These objects are data packets that
are sent back and forth between the client and server. Indeed, you can see that these names
are very similar to those used to name the messages in the protocol sequence diagramsin
Figure 12-2 and Figure 12-3.

Login
Transaction
RemoteSession | “locab
Base
LoginResponse
Transaction
Remote Remote
Compiler Registrar
«local»  «local»
CompileFile Registration
Transaction Transaction
CompilerResults Rgglssiiizn
Transaction pons
Transaction
Figure 12-8

Remote Sessions.

5. [PEAA2002], page 401



SM CRemoteClient 166

RemoteSessionBase

The code for the Renot eSessi onBase, and the two login transactions is shown in
Listing 12-7, through Listing 12-9. Renot eSessi onBase contains a set of utility func-
tions that Renot eRegi st rar and Renot eConpi | er both use. It also contains the func-
tions that perform the login protocol used by the Renot eConpi | er.

Listing 12-7
RemoteSessionBase.java

package com obj ect nent or . SVCRemot e. cl i ent;
i nport com obj ect ment or. SMCRenot e. transact i ons. *;

inport java.io.*;
inport java.net.Socket;

public class Renot eSessi onBase {
private String itsHost;
private int itsPort;
private Messagelogger itsLogger;
private Socket sncrSocket;
private QojectlnputStreamis;
private QojectQutputStream os;

publ i ¢ Renot eSessi onBase(String itsHost, int itsPort, MessagelLogger |ogger) {
this.itsHost = itsHost;
this.itsPort = itsPort;
this.itsLogger = logger;

public String getHost() {
return itsHost;

public int getPort() {
return itsPort;

protected void | ogMessage(String msg) {
i tsLogger. | ogMessage(nsg);

protected hool ean connect () {

| ogMessage("Trying to connect to: " + getHost() + ":" + getPort() +"...");
bool ean connectionStatus = fal se;
try {

sncrSocket = new Socket (get Host(), getPort());
i's = new Chj ect | nput St reanm( sncr Socket . get | nput Strean());
0s = new (bj ect Qut put St rean( sncr Socket . get Qut put Strean());
String headerLine = (String) readServerQject();
connectionStatus = headerLine !'= null && headerLine.startsWth("SMR");
String message = (String) readServerQoject();
if (message '= null) {
System out. print | n( message);




167 Chapter : SMC Remote Service: Case Study

Listing 12-7
RemoteSessionBase.java

if (connectionStatus)
| oghessage(" Connect i on acknow edged: " + headerLine);
el se
| oghessage(" Bad Acknow edgenent: " + headerLine);
} catch (Exception e) {
connectionStatus = fal se;
| ogMessage(" Connection failed: " + e.get Message());

return connectionStat us;

}
public void close()
if (is!=null || os!=null || sncrSocket != null) {
| ogMessage("d osing Connection.");
try {
if (is!=null) is.close();
if (os !=null) os.close();
if (smcrSocket !'=null) sncrSocket. close();
} catch (1CException e) {
logMessage(" Coul dn't close : " + e.get Message());
}
}
protected hool ean |ogin(String username, String password) {
try {

Logi nTransaction It = new Logi nTransact i on( user nane, password);
sendTransaction(lt);
Logi nResponseTransaction | rt = (Logi nResponseTransaction) readServer Obj ect();
if (Irt.isAccepted()) {

loghessage("login (" + Irt.getLogi nCount() + ") accepted.");

return true;
} else {

[ ogMessage("Logi n Rejected");

return fal se;

}
} catch (Exception e) {
| ogMessage("login failed: " +e);
return false;
}
}

protected hool ean sendTransaction(Socket Transaction t) {
bool ean sent = fal se;
try {
os.witeChject(t);
o0s.flush();
sent = true;
} catch (I OBxception e) {
sent = false;

return sent;




SM CRemoteClient 168

Listing 12-7
RemoteSessionBase.java
protected Object readServerChj ect() throws EXception {
return is.readject();

}
}

Listing 12-8
LoginTransaction.java
package com obj ect ment or. SMCRemot €. transacti ons;

public class Logi nTransaction inplements Socket Transaction {
private String itsUserNang;
private String itsPassword;

public LoginTransaction(String itsUserName, String itsPassword) {
this.itsUserName = itsUserNane;
this.itsPassword = itsPassword:;

}

public String getUserName() {
return itsUser Nane;

public String getPassword() {
return itsPassword;

public void accept (Socket Transacti onProcessor processor) throws Exception {
processor. process(this);

}

Listing 12-9
LoginResponseTransaction.java

package com obj ectmentor. SVCRenot e. transacti ons;

public class Logi nResponseTransaction inplenents Socket Transaction {
private bool ean isAccepted:;
private int |oginCount;

publ i ¢ Logi nResponseTransaction(bool ean accepted, int |ogi nCount) {
this.logi nCount = |oginCount;
this.isAccepted = accepted;

public bool ean isAccepted() {
return isAccepted;

public int getLogi nCount() {
return | oginCount;

public void accept (Socket Transacti onProcessor processor) throws Exception {
processor. process(this);




169 Chapter : SMC Remote Service: Case Study

Listing 12-9
LoginResponseTransaction.java

}
}

The first three lines of the Renot eSesi onBase. | ogi n() function are particularly
illustrative.
Logi nTransaction It = new Logi nTransaction(usernane, password);

sendTransaction(lt); . . .
Logi nResponseTransaction Irt = (Logi nResponseTransaction) readServer (bject();

These lines show how all the communication accross the sockets is achieved. Asyou

can see from Listing 12-10, all the transactions are serializable, so it is absurdly simple to
write them to, and read them from, a socket.

Listing 12-10
SocketTransaction.java

package com obj ect ment or. SVCRemot e. Transacti ons;
inport java.io.Serializable;

public interface SocketTransaction extends Serializable {
public void accept (Socket TransactionProcessor processor) throws Exception;

Listing 12-10 shows one other thing. There is the hint of a VIsITOR® pattern lurking in
the Socket Transacti on class. We won't see why until we study the SMCRenot e-
Server later onin this chapter.

The Remote Registrar

The Renot eRegi st ar, and the two registration transactions are shown in Listing 12-11
through Listing 12-13. The process is very simple. It simply connects to the server and
sends the RegistrationTransaction. Then it recieves the Regi stration-
ResponseTransacti on and makes sure that it was accepted by the server.

Listing 12-11
RemoteRegistrar.java

package com obj ect nentor. SVCRemot e. cl i ent;
import com obj ect ment or. SMCRenot e. t ransactions. *;
public class RemoteRegistrar extends RenoteSessionBase {
public RenoteRegistrar(String itsHost, int itsPort, MessageLogger |ogger) {

super(itsHost, itsPort, [ogger);
}

public void connect AndRegi ster(String registrant) {

6. [GOF95], p 331




SM CRemoteClient 170

Listing 12-11 (Continued)
RemoteRegistrar.java

it (connect()) {
Regi strationResponseTransaction rrt;
if ((rrt =register(registrant)) !=null) {
if (rrt.isConfirnmed()) {
| ogMessage(registrant + " was registered");
Systemout. printIn("User: " + registrant + " registered. Emil sent.");
} else {
| ogMessage(registrant + " was NOT registered:

Systemout. print! n( .
registrant + " was NOT regi stered:

+ rrt.getFail ureReason());

+ rrt. getFailureReason());

}
}else { /] rrt == null
Systemout. println("Something bad happened. Sorry.");

close();
} else { [/ conect
Systemout. printIn("failed to connect to " + getHost() + ":" + getPort());

}
}
Regi strationResponseTransaction register(String registrant) {
logMessage("Attenpting to register " + registrant);
Regi strationTransaction t = new RegistrationTransaction(registrant);
sendTransaction(t);
Regi strationResponseTransaction rrt = null;
try {
rrt = (RegistrationResponseTransaction) readServer Qbject();

} catch (Exception e) {
| ogMessage( " Coul d not send registration response:

+ e, get Message());

return null;
return rrt;
}
}
Listing 12-12

RegistrationTransaction.java

package com obj ectmentor. SVCRenot e. transacti ons;

public class RegistrationTransaction inplements SocketTransaction {
private String usernane;

public String getUsername() {
return usernane;

}

public RegistrationTransaction(String usernane) {
this.username = usernane;

}

public void accept (Socket Transacti onProcessor processor) throws Exception {
processor. process(this);




171 Chapter : SMC Remote Service: Case Study

Listing 12-13
RegistrationResponseTransaction.java

package com obj ect nent or . SVCRent e. transacti ons;

public class RegistrationResponseTransaction inpl ements Socket Transaction {
private bool ean confirmed;
private String failureReason;

public RegistrationResponseTransaction(bool ean confirmed) {
this.confirmd = confirned;

}

public String getFailureReason() {
return failureReason;

}

public void setFailureReason(String failureReason) {
this.failureReason = fail ureReason;

}

public bool ean isConfirmed() {
return confirmed;

}

public void accept (Socket Transacti onProcessor processor) throws Exception {
processor. process(this);

}

The Remote Compiler

The Renot eConpi | er (Listing 12-14) is a bit more complicated than the Renot e-
Regi st rar ; though the idea is the same. Figure 12-9 is a rough model of the sequence.
The diagram does not completely conform to the code, but it's pretty close. Making it con-
form to completely to the code would have made the diagram more cluttered than it shoudl
have been. By the same token, making the code correpond to the diagram would have
made the code more cluttered than it should have been. This kind of mismatch between the
code and diagram is not uncommon. The clarity of each is satisfied in different ways.

In the code, compilation begins when the Cl i ent ConmandLi ne instance calls the
conpi | e() method of SMCRenot eConpi | er; which in turn creates the Renvt e-
Conpi | er and calsitsconpi | e() method.

The conpi | e() method of Renot eConpi | er logs a header message and then calls
connect AndRequest Conpi | e() . This method makes sure that the file to be compiled
exists, connects to the server, and then invoke the | ogi n() method. The I ogi n()
method executes the login protocoal. If the login succeeds, the conpi | eFi | e() methodis
invoked. This method builds the Conpi | eFi | eTransacti on (Listing 12-15) object and
sends it to the server. It then reads the Conpi | er Resul t sTransacti on (Listing 12-16)
from the server and writes any filesit contains onto the local filesystem.



SM CRemoteClient

172

: ClientCommand : SMCRemote
Line Client
‘ processCommand ‘
| compile ‘
\ \
‘ ’% : RemoteCompiler
| | compile(filename)
\ \
connectAndRequestCompile(filename)
\ \
| | login
| | compileFile(filename)
\ \ o
cft : CompileFile
| | Transaction
[ [ filename
[ [ L : FileCarrier
o—=
filename
| | Zl sendTransaction(cft)
| | crt := readServerObject
\ \ crt: Compiler
| | Results ~FleCaret
Transaction
| | write ‘ ‘ 0..*/P ‘
\ \ \ \
| | | *write ‘
\ \ \ \
\ \ \ \
Figure 12-9
Compile Process
Listing 12-14

RemoteCompiler.java

package com obj ect nentor. SVMCRemot e. ¢l 1 ent;
import com obj ect ment or. SMCRenot e. t ransactions. *;

inport java.io.*;
inport java.util.Vector;

public class Remot eConpil er extends Renot eSessionBase {

private String itsFilename = null;

private String itsCenerator = O ient CormandLine. DEFAULT GENERATOR:




173 Chapter : SMC Remote Service: Case Study

Listing 12-14 (Continued)
RemoteCompiler.java

private String itsRegistrant;

public RenoteConpiler(String itsHost, int itsPort, MessageLogger itsLogger) {
super(itsHost, itsPort, itsLogger);
}

public void compile(String username, String password,
String generator, String filenane) {
itsFilename = fil enane;
itsGenerator = generator;
| ogConpi | eHeader () ;
connect AndRequest Conpi | e( usernane, password);

}

private void connect AndRequest Conpil e(String username, String password) {
if (prepareFile()) {
if (connect()) {
if (login(usernane, password)) {
if (conpile() ==false) {
Systemout.printin("Internal error, sonething awful. Sorry.");

}
}else { /] login
Systemout. printIn("failed tologin.");

close();
} else { /I connect
Systemout.printin("failed to connect to " + getHost() +":" + getPort());

} else { /] prepareFile
Systemout. printin("could not open:
} Il prepareFile

+ itsFilenane);

private bool ean conpile() {
Conpi | erResul t sTransaction crt = conpileFile();
if (crt ==null)
return false;
wri t eConpi | er Qut put Li nes(crt);
return true;

}

public void setFilename(String itsFilename) {
this.itsFilenane = itsFilenang;

publ i c bool ean prepareFile() {
File f = newFile(itsFilenane);
return f.exists();

}

publ i ¢ Conpi | er Resul tsTransaction conpileFile() {
Conpi | erResul t sTransaction crt = null;
| ogMessage("Sending file and requesting conpilation.");
try {
Conpi | eFi | eTransaction t = new Conpi | eFileTransaction(itsFilenane, itsGenerator);
if (sendTransaction(t) == true) {




SM CRemoteClient 174

Listing 12-14 (Continued)
RemoteCompiler.java

crt = (ConpilerResultsTransaction) readServerChj ect();
| ogConpi | erResul t sMessage(crt);
crt.wite();

} catch (Exception e) {
| ogMessage(" Conpi | ation process failed:

+ e. get Message());
return crt;

private static void witeConpilerQutput Li nes(Conpil erResul tsTransaction crt) {
Vector stdout = crt.get StdoutLines();
writeLineVector(Systemout, crt.getStdoutLines());
writelineVector(Systemerr, crt.getStderrLines());

private static void witeLineVector(PrintStreamps, Vector stdout) {
for (int i =0; i <stdout.size(); i++) {
String s = (String) stdout.elementAt(i);
ps.printin(s);

}

private void |ogConpil eHeader () {
| ogMessage( " Conpi ling...");
| oghMessage(“file = "+ itsFilename);
| ogMessage("generator =" + itsCGenerator);

}

private void |ogConpil erResul t sMessage( Conpi | er Resul t sTransaction crt) {
| ogMessage( " Conpi | ation results received.");
String filenames[] = crt.getFilenames();
for (int i =0; 1 <filenanes.length; i++) {
String s = (String) filenanes[i];
| ogMessage("..file: " +s + " received.");

}
}

Listing 12-15
CompileFileTransaction.java

package com obj ect ment or . SMCRemot e. Transacti ons;

import com obj ect mentor. SocketUtilities.FileCarrier;

inport java.io.File;

public class ConpileFileTransaction inplenents Socket Transaction {
private FileCarrier itsCarrier;
private String itsCenerator;
publ i ¢ Conpil eFileTransaction(String filenane, String generator) {

itsCarrier = new FileCarrier(null, filenang);
itsGenerator = generator;




175 Chapter : SMC Remote Service: Case Study

Listing 12-15 (Continued)
CompileFileTransaction.java

}

public String getFilename() {
return itsCarrier.getFilename();

}

public String getGenerator() {
return itsCenerator;

}

public void wite(File subDirectory) {
itsCarrier.wite(subDirectory);

}

public void accept (Socket TransactionProcessor processor) throws Exception {
processor. process(this);

}

Listing 12-16
CompilerResultsTransaction.java

package com obj ect ment or. SMCRemot e. Transacti ons;
i nport com obj ect ment or. Socket Utilities.FileCarrier;

inport java.io.File;
inport java.util. Vector;

public class ConpilerResultsTransaction inplenents Socket Transaction {
public static final int OK=0;
public static final int NOT_LOGEED IN = 1;

private FileCarrier[] files;
private String[] filenames;
private Vector stdout;
private Vector stderr;
private int status;

public int getStatus() {
return status;

public void setStatus(int status) {
this.status = status;

public Vector getStdoutlLines() {
return stdout;

public Vector getStderrLines() {
return stderr;

public String[] getFilenames() {




SM CRemoteClient 176

Listing 12-16 (Continued)
CompilerResultsTransaction.java
return filenames;

public Conpil erResul tsTransaction() {
stdout = new Vector();
stderr = new Vector();

}

public void |oadFiles(File subDirectory, String[] filenames) {
this.filenames = filenanes;
files = new FileCarrier[filenanes.length];
for (int filelndex = 0; filelndex < filenames.length; filelndex++) {
files[filelndex] = new FileCarrier(subDirectory, filenames[filelndex]);

}

public void wite()
for (int filelndex = 0; filelndex < files.length; filelndex++) {
FileCarrier carrier = files[filelndex];
carrier.wite();

}

public void accept (Socket Transacti onProcessor processor) throws Exception {
processor. process(this);

}
FileCarrier

Both the Conpi | eFi | eTransact i on and the Conpi | er Resul t sTransact i on needto
carry text files accross the client/server boundary. They do this by using a helper class
calledFil eCarri er.Fil eCarri er holdsthe name of thefile being carried, and alist of
strings which correspond to the lines of text in the file. It contains methods for loading the
Fil eCarrier fromafile and for creating anew filefromtheFi | eCarri er.

Listing 12-17
FileCarrier.java
package com obj ectmentor. Socket UtiTities;

inport java.io.*;
inport java.util.*;

public class FileCarrier inplements Serializable {
private String itsFilenaneg;
private LinkedList itsLines = new LinkedList();
private bool ean |oaded = fal se;
private bool ean error = false;

public FileCarrier(File subDrectory, String filenane) {
File inputFile = new File(subDirectory, filenane);
itsFilename = new String(filenang);




177 Chapter : SMC Remote Service: Case Study

Listing 12-17
FileCarrier.java
BufferedReader br = nulT;

try {
br = new Buf f er edReader (new | nput St reanReader (new Fil el nput Strean{inputFile)));
String Iine;

while ((line = br.readLine()) '= null) {
itsLines.add(line);

br.close();
| oaded = true;

} catch (Exception e) {
error = true;

}

public void write() {
wite(null);

}

public void wite(File subDirectory) {
File f = newFile(subDrectory, itsFilenang);
if (f.exists()) f.delete();
try {
PrintStreamw = new Print Strean{new FileQutput Strean(f));
for (Iterator i =itsLines.iterator(); i.hasNext();) {
String line = (String) i.next();
wprintin(line);

w. cl ose();
} catch (I OBxception e) {
error = true;
}
}

public bool ean isLoaded() {
return | oaded;

public bool ean isError() {
return error;

public String getFilename() {
return itsFilenane;

}

SM CRemoteClient Conclusion

That's pretty much all there is to say about the SMCRenot ed i ent . It's a pretty simple
process. It reads its command line arguments, figures out whether to perform aregistration
or a compilation, builds the appropriate transactions and sends them to the server, and
reads the response transactions back. Not rocket science.



SM CRemoteSer ver 178

SM CRemoteSer ver

The server is a bit more complex than the client. It must run continuously, accepting con-
nections and responding to them. It must also be able to deal with many concurrent trans-
actions. It must maintain a database of registrations, and must know how to invoke,
control and capture the output of the SMC compiler.

The story of the server begins with a bit of framework that I, and my son Micah, put
together some months back.

SocketService

While we were working on a Ruby web server named ROPE, Micah and | wrote a
simple Ruby framework to accept incomming socket requests. It worked very nicely and
was so generic that | later trandated it into a simple Java framework for socket servers'.
This framework creates the server socket, waits for connections on that socket, and
spawns a new thread for each incoming connection. Figure 12-1 showsit’s structure.

SocketService «interface»
SocketServer

+ SocketService(port: int, SocketServer)
+ close() + serve(s:Socket)

Figure 12-10
SocketService

Theideais pretty simple. If you want to write a program that serves incoming socket
connections, you derive your program from Socket Ser ver . Then you create an instance
of the Socket Ser vi ce and pass your derivativeinto the constructor, along with the num-
ber of the port that you want your server to listen at. From then on, whenever a connection
comes into that port, a new thread will be created and the ser ve method of your deriva-
tive will be invoked in that new thread.

For example, Hel | oService in Listing 12-18 is a simple socket service that
responds to an incomming connection by sending “Hello” and then closing the connec-
tion. The program in Listing 12-19 teststhat Hel | oSer vi ce doeswhat it is supposed to.

Listing 12-18

Socket service that says “Hello”.

class HelToService inplenents Sockef Server {
public void serve(Socket s) {

7. Yes, thisisthe same framework that I’ ve been using for fodder in my “Craftsman” column in
Software Development Magazine.




179 Chapter : SMC Remote Service: Case Study

Listing 12-18
Socket service that says “Hello”.

fry {
Qutput Streamos = s.get Qut put Strean();
PrintStream ps = new Print Streanos);
ps.printin("Hello");

} catch (I CException e) {

}

}
}

Listing 12-19
A client that tests the HelloService.

public voi d TestSendvessage() throws Exception {
ss = new Socket Servi ce(999, new Hel | oService());
Socket s = new Socket ("l ocal host", 999);
Buf f eredReader br = Test Wil ity. Get Buf f eredReader(s);
String answer = br.readLine();
s.close();
ss. close();
assert Equal s("Hel [ 0", answer);

}

The complete implementation of the Socket Ser vi ce framework isshown in Listing
12-20 through Listing 12-21. Thejist of its operation is shown below in Figure 12-11. The
Socket Servi ce begins it's life by spawning the servi ceThread and then returning.
The ser vi ceThread hangsin aloop calling accept ontheserver Socket. The cal to
accept returns with a new socket each time there is an incomming connection. The
servi ceThr ead then spawns anew ser ver Thr ead and loops back to call accept on
the Ser ver Socket again. Theser ver Thr ead calsser ve onthe Socket Ser ver deriv-
ative supplied by the user.

As an aside, the diagram in Figure 12-11 shows how rapidly message sequence hum-
bers can become unworkable in UML collaboration diagrams. This particular sequence of
messages is much better shown as a collaboration diagram than as a sequence diagram,
since exposing the topology of the relationships is more imortant than exposing the
sequence of events. Unfortunately, even mildly complex scenarios lead to sequence num-
bers that look more like organic chemistry than software.



SM CRemoteSer ver

1:start

: SocketService senviceThread : Runnable

: Thread
— —»

: ServerSocket

1.1a: start 1.1a.1* : accept

—
1.1a.2: start

Runnable

Z
S -
§

serverThread

- Thread

N 1.1a.2.1b: run

>
NN

—= . SocketServer : Socket

Figure12-11
SocketService Object Diagram

180

Listing 12-20
SocketServer.java

package com obj ect ment or . Socket Ser vi ce;
inport java.net.Socket;
public interface SocketServer

public void serve(Socket s);

Listing 12-21
SocketService.java

package com obj ect mentor. Socket Ser vi ce;

inport java.io.|OException;
inport java.net.*;
inmport java.util.LinkedList;

public class Socket Service {
private ServerSocket serverSocket = null;
private Thread serviceThread = null;
private bool ean running = fal se;
private SocketServer itsService = null;
private LinkedList threads = new LinkedList();

public Socket Service(int port, SocketServer service)
throws Exception {
itsService = service;
server Socket = new Server Socket (port);
serviceThread = new Thread(
new Runnabl e() {




181 Chapter : SMC Remote Service: Case Study

Listing 12-21 (Continued)
SocketService.java

public void run() {
serviceThread();

}
}

)i
serviceThread. start();

}

public void close() throws Exception {
wai t For ServiceThreadToStart ();
running = fal se;
server Socket . cl ose()
servi ceThread. j 0i n()
wai t For Server Thr eads

}

private void waitForServi ceThreadToStart() {
while (running == fal se) Thread.yield();
}

private void serviceThread() {
running = true;
while (running) {
try {
Socket s = server Socket . accept();
start ServerThread(s);
} catch (1 CException e) {
}

}
}

private void startServerThread(Socket s) {
Thread server Thread = new Thread(new ServerRunner(s));
synchroni zed (threads) {
threads. add( server Thread) ;

0):

serverThread. start();

private void waitForServer Threads()
throws | nterruptedException {
while (threads.size() > 0) {
Thread t;
synchroni zed (threads) {
t = (Thread) threads.getFirst();

b
t.join();

}

private class ServerRunner inplements Runnable {
private Socket itsSocket;

Server Runner ( Socket s) {
i tsSocket =s;




SM CRemoteSer ver 182

Listing 12-21 (Continued)
SocketService.java

}

public void run() {
try {
itsService.serve(itsSocket);
synchroni zed (threads) {
t hreads. renove( Thread. current Thread());

)

i tsSocket . cl ose();
} catch (1CException e) {
}




183 Chapter : SMC Remote Service: Case Study

SM CRemoteService

Clearly we can build upon the Socket Ser vi ce framework to create the SMCRenpt e-
Servi ce program. The diagram in Figure 12-12 shows the structure. SMCRenot e-
Servi ce has a Socket Ser vi ce instance which it initializes with an anonymous inner
class that implements the Socket Server interface. This class delegates to SMCRenot e-
Ser ver which handles the protocols for each connection.

SMCRgmote SocketService
Service
«static» % SocketService
«anonymous»
+ serve(Socket)
«interface» «interface»
UserDirectory EmailSender «delegates»
SMCRemote
+isValid(name, pw) + send(email, subj, text) Server
+ add(name, pw)
; ; + serve(Socket)
Null Null
UserDirectory EmailSender
) OReilly
UserRepository EmailSender
Figure 12-12

High level structure of SMCRemoteService

SMCRenpt eService aso holds a reference to a UserDirectory and an
Emai | Sender . These two classes have two derivatives each; one is a NULLOBJECT® and
the other provides a functional implementation. The functional implementation of User -
Di rect ory isnamed User Reposi t or y. This class manages the user database. It allows
users to be added to the database. It also provides methods for checking the password of a
user. The functional implementation of Emai | Sender is ORei | | yEmai | Sender. This
class makes use of athird party SMTP agent to send email.

8. Seethe NullObject pattern in [PPP2002], p 189



SM CRemoteSer ver 184

The listings for SMCRenot eSer vi ce and the two interfaces are in Listing 12-22
through Listing 12-24. For the most part SMCRenot eSer vi ce contains a set of utilities
that SMCRenot eSer ver USeS.

Listing 12-22
SMCRemoteService.java

package com obj ect ment or . SVCRemot €. Server;
i nport com obj ect ment or. Socket Servi ce. *;
i nport com neoworks. util. Getopts;

inport java.io.*;

inport java.text.SinpleDateFormat;
inport java.util.*;

inport java.net.Socket;

class Null UserDirectory inplements UserDirectory {
public bool ean isValid(String usernane, String password) {
return true;

public String getPassword(String usernane) {
return null;

public int increnentLoginCount(String usernane) {
return 0;

public bool ean add(String username, String password) {
return true;

}

class Nul | Emai | Sender inplements Enail Sender {
public bool ean send(String email Address, String subject, String text) {
return true;

}

public class SMORenot eService {
public static final String DEFAULT PORT = "9000";
public static final String VERSION = "0.99";
public static final String COMPILE_ COMAND = "java -cp c:\\SM\\snt.jar snt. Sntc -f";

static bool ean i sVerbose = fal se;
static bool ean isEmail Quiet = false;
static int servicePort;

static String messageFile;

private static UserDirectory userDirectory = new Null UserDirectory();
private static Email Sender email Sender = new Nul | Emai | Sender();
private Socket Service service;

Socket Server server = new Socket Server() {




185

Chapter : SMC Remote Service: Case Study

Listing 12-22 (Continued)
SMCRemoteService.java

public voi d serve{Sockef sockef) {
new SMCRenot eSer ver (). serve(socket);
}
I

public SMORemt eService(int port) throws Exception {
service = new Socket Service(port, server);

public void close() throws Exception {
service.close();

static void setUserDirectory(UserDirectory userDirectory) {
SVCRenot eServi ce. userDirectory = userDirectory;

}

public static void setEmail Sender (Email Sender ensil Sender) {
SMCRenot eSer vi ce. emai | Sender = emai | Sender;

}

public static void min(String[] args) {
if (parseCommandLi ne(args)) {
verboseHeader () ;
set User Di rect ory(new User Repository("users"));
if ('isEmailQuiet) setEmilSender(new OReillyEmail Sender());
try {
SMCRenot eSer vi ce service = new SMCRenot eServi ce(servicePort);
} catch (Exception e) {
Systemerr.printIn("Could not connect");
}
} else {
Systemout. println("usage: java SMCRemoteService -p <port> -v");

}

static boolean validate(String username, String password) {
return userDirectory.isValid(usernane, password);

}

static bool ean addUser (String usernane, String password) throws Exception {
return userDirectory. add(usernane, password);

}

static String getPassword(String username) {
return userDrectory. get Passwor d( user nane)

}

static int incrementLoginCount (String usernane) throws Exception {
return userDirectory.incrementLogi nCount (user nane);

}

static bool ean sendEmai | (String emi | Address, String subject, String text) {
return email Sender.send(emai | Address, subject, text);

}




SM CRemoteSer ver 186

Listing 12-22 (Continued)
SMCRemoteService.java

static bool ean parseCommandLi ne(String[] args) {
Getopts opts = new Getopts("mp:ve", args);
if (opts.error())
return false;

try {
servicePort = Integer. parselnt(opts.option('p', DEFAULT_PCRT));
i sVerbose = opts.hasOption('Vv');
messageFile = opts.option('m,
i SEmai | Quiet = opts.hasQption('
} catch (Number For mat Exception e)
return false;

ull);
')
{

n
e

return true;

}

static String buil dCommand(String filename, String generator) {
String generatord ass;

if (generator.equals("java"))

generatordass = "snt.generator.java. SWlavaGenerator";
else if (generator.equal s("C+"))

generat ord ass = "snt. generator. cpp. SMcppGener ator";
el se

return "echo bad generator " + generator;

return COVPILE_ COMMAND + " -g " + generatorClass +" " + filenang;

static int executeCommand(String command, Vector stdout, Vector stderr)
throws Exception {

Runtime rt = Runtine. get Runtine();

Process p = rt.exec(command);

flushProcessQut puts(p, stdout, stderr);

p. wai t For ();

return p.exitVal ue();

private static void flushProcessQutputs(Process p, Vector stdout, Vector stderr)
throws | OException {
Buf f er edReader st dout Reader =
new Buf f eredReader (new | nput St reanReader (p. get I nput Strean()));
Buf f er edReader st derrReader =
new Buf f eredReader (new | nput St reanReader (p. getErrorStrean()));
String line;

while ((line = stdout Reader.readLine()) !=null)
stdout. add(line);
while ((line = stderrReader.readLine()) !=null)
stderr.add(line);
}




187 Chapter : SMC Remote Service: Case Study

Listing 12-22 (Continued)
SMCRemoteService.java

static FiTe mekeTenpDirectory() {
File tnpDirectory;
do {
long mllis = SystemcurrentTimeMIlis();
tnpDirectory = new File("sncTenpDirectory" + mllis);
} while (tnpDirectory.exists());
tmpDirectory. mkdir();
return tnpDirectory;
}

private static void verboseHeader() {
ver boseMessage( " SMORenDt eServi Ce-- - -« -« -vmmmmmmmeaie e ");
ver boseMessage( VERSI ON) ;
ver boseMessage("port =" + servicePort);
if (isEmailQuiet) verboseMessage("email is disabled");
VErDOSEMBSSAQE( " - - - == x - m ");

}

static void verboseMessage(String nsg) {
if (isVerbose) {
Date logTime = new Date();
Sinpl eDat eFormat fnt = new Si npl eDat eFor mat ("yyyy. M dd hh: mm ss");
String logTineString = fnt.format(logTine);

Systemout. printIn(logTimeString + " | " + nsQ);

}
}

Listing 12-23
UserDirectory.java

package com obj ect nentor. SVCRenote. server;

public interface UserDirectory {
public bool ean isValid(String username, String password);
public bool ean add(String username, String password) throws Exception;
public String getPassword(String usernang);
public int increnentLoginCount(String usernane) throws Exception;

Listing 12-24
EmailSender.java

package com obj ect nentor. SVCRenote. server;

public interface Email Sender {
public bool ean send(String email Address, String subject, String text);

SM CRemoteSer ver

SMCRenot eServer is asimple class. It hangs in aloop reading Socket Tr ansact i on
objects from the socket. It uses the VISITOR® pattern to decode the transactions it reads.



SM CRemoteSer ver

188

Once the transaction is decoded, SMCRenot eSer ver sends the appropriate event to the
Server Sessi on instance. See Figure 12-13 and Figure 12-14.

«interface»

SocketTransaction

«interface»

TransactionProcessor

+ process
+ process

+ accept(SocketTransactionProcessor)

= + process

+ process

+ process
+ process

CompileFileTransaction)
CompilerResultsTransaction)
LoginTransaction)
LoginResponseTransaction)
RegistrationTransaction)
RegistrationResponseTransaction)

all the
transactions

SMCRemote

Figure 1

ServerSession

+ initializeSession

Server

2-13

+ compileEvent
+ loginEvent
+ registerEvent

SMCRemoteServer structure. The Transaction Visitor Pattern.

SV.

SMC@mote
Server

serve

t
Socket
Transaction

ServerSession

initializeSession

]

t := readObject

accept(sv)

process(t : CompileFile Transaction) |

or
process(t : LoginTransaction)
or

process(t : RegistrationTransaction) |

compileEvent(t : CompileFile Transaction) |

or

loginEvent(t : LoginTransaction)

or
registerEvent(t : RegistrationEvent)

I
| while socket is open

Figure 1

2-14

SMCRemoteServer Transaction Decoding

9. The Visitor pattern is descriped in [GOF95], p331, and there are significant examplesin

[PPP2002] p. 388



189 Chapter : SMC Remote Service: Case Study

Each time the SMCRenpt eSer ver reads a Socket Tr ansact i on from the socket, it
passes itself to the accept function of that transaction. This works because SMCRenot e-
Server implements the Socket Tr ansact i onProcessor interface. The transaction
calls back through this interface to the appropriate pr ocess function. That function, in
turn, sends the appropiate event to the Ser ver Sessi on object. Listing 12-25 and Listing
12-26 show the SMCRenot eSer ver and Socket Tr ansact i onPr ocessor classes.

Listing 12-25
SMCRemoteServer.java

package com obj ect nent or . SVCRendi €. Server;

i nport com obj ect ment or. SMCRenot e. transact i ons. *;
i nport com obj ect ment or. Socket Servi ce. Socket Server;

inport java.io.hject!nputStream
inport |ava.net.Socket;

cl ass SMORenot eServer extends Socket Transacti onProcessor {
private QojectlnputStream serverlnput;
private bool ean isQpen = fal se;
private ServerSession session;

public void serve(Socket socket) {
isCpen = true;

try {
sessi on = new ServerSession(this, socket);
sessi on. ver boseMessage( " Connected");
serverlnput = session.initializeSession(socket);
while (isCpen) {
Socket Transaction st = (Socket Transaction) serverlnput.readQoject();
st.accept(this);

}

} catch (Exception e) {
SMCRenot eSer vi ce. verboseMessage( " Connection torn down:" + e);
return;

SMCRenot eSer vi ce. ver boseMessage( " Connection cl osed normal ly.");

}

public void process(ConpileFileTransaction t) throws Exception {
sessi on. conpi | eEvent (t);

}

public void process(LoginTransaction t) throws Exception {
sessi on. | ogi nEvent (t);

}

public void process(RegistrationTransaction t) throws Exception {
sessi on. registerEvent(t);

}

public void close() {
isOpen = false;




SM CRemoteSer ver 190

Listing 12-25 (Continued)
SMCRemoteServer.java

}
}

Listing 12-26
SocketTransactionProcessor.java

package com obj ect nent or . SVCRenot e. fransacti ons;

public class SocketTransactionProcessor {
public void process(CompileFileTransaction t) throws Exception {
throw new NoProcessor Except i on(" Conpi | eFi | eTransaction");

public void process(ConpilerResul tsTransaction t) throws Exception {
throw new NoProcessor Except i on(" Conpi | er Resul t sTransaction");

public void process(LoginTransaction t) throws Exception {
throw new NoProcessor Excepti on(" Logi nTransaction");

public void process(LoginResponseTransaction t) throws Exception {
throw new NoProcessor Except i on(" Logi nResponseTransaction”);

public void process(RegistrationTransaction t) throws Exception {
throw new NoProcessor Exception("RegistrationTransaction");

public void process(RegistrationResponseTransaction t) throws Exception {
throw new NoProcessor Exception("Regi strationResponseTransaction");

}

Ser ver Session

The ServerSession class is a finite state machine that controls the communication proto-
cols between the client and the server. The state transition diagram that shows thislogicis
in Figure 12-15. Note that registrations can take place right from the | dl e state, but in
order to do a compile you must login first.

This finite state machine was tranglated into SMC code, and compiled into Java. The
SMC input is shown in Listing 12-27. If you are interested the generated output is shown
a the end of the chapter in Listing 12-46.



191 Chapter : SMC Remote Service: Case Study

compileEvent / sendCompileRejection
abortEvent / reportError

K StoringUser \ registerEvent loginEvent / Loggingin \
Idle

\@try / storeUserAndSendPasswordj entry / checkValidUser /

{

validUserEvent

invalidUserEvent / rejectLogin | acknowledgeLogin

userStoredEvent / confirmRegistration
abortEvent / reportError

userNotStoredEvent / denyRegistration
sendFailedEvent / denyRegistration
abortEvent / |reportError denyRegistration}

W

Loggedin
abortEvent / reportError

-

abortEvent / reportError compileEvent

Closing / Compiling \
O \ .
closeEvent entry / close entry / doCompile

goodCompileEvent / sendCompileResults
badCompileEvent / sendCompileError

I

Figure 12-15
ServerSession Finite State Machine.

Listing 12-27
server.sm

Context ServerControl I er Cont ext
FSMName Server Control | er
Pragma Package com obj ect nent or. SMCRenot e. ser ver

Initial Idle
{
ldle {
| ogi nEvent Loggingln  {}
conpi | eEvent ldle sendConpi | eRej ecti on
regi sterEvent StoringUser {}
abort Event * reportError
}
StoringUser <storeUser AndSendPassword {
user St oredEvent ldle confirnRegi stration
user Not St or edEvent 1dle denyRegi stration
sendFai | edEvent ldle denyRegi stration
abort Event ldle {reportError denyRegistration}
}

Loggi ngl n <checkVal i dUser {
val i dUser Event  Loggedin  acknow edgelLogin
invalidUserEvent Idle rejectLogin
abort Event ldle reportError




SM CRemoteSer ver 192

Listing 12-27 (Continued)

server.sm
Loggedin {
conpi | eEvent Conpiling {}
abor t Event lde report Error

Conpi ling <doConpile {
goodConpi | eEvent C osing sendConpi | eResul ts
badConpi | eEvent O osi ng sendConpi | eError
abor t Event lde reportError

Qosing < closef
cl oseEvent Cosed {}

Cosed {}
}

Three Level FSM

The Server Sessi on class is part of a design pattern called Three Level FSM™. Using
this pattern we split the finite state machine into three levels as shown in Figure 12-16.
The first level is Server Control | er Cont ext. This class contains one degenerate
method for every action of the finite state machine. If you examinethe codein Listing 12-
28, you'll see all the empty methods. They are empty, instead of abstract, because SMC
presumes that the context class is not abstract. In this class you'll also see the FSMEr r or
method. This method is called by the generated code whenever an event occurrsin a state
that did not expect it.

The generated code (Listing 12-46) creates the Ser ver Control | er that derives
from Sever Cont rol | er Cont ext . It also creates St at e and all its derivatives. Finally, |
wrote Ser ver Sessi on to derive from Server Cont rol | er. ServerSession implements
al the degenerate methods of Server Contr ol | er Cont ext . As such it contains all of
the detailed code that implements the behavior of the server. The code for this classis a bit
long, but it's dso quite simple. You'll find it in Listing 12-29.

User Repository

I chose a very simple implementation for the UserRepository (See Listing 12-30). This
classimplementsthe User Di r ect or y interface and provides the means whereby the reg-
istration data is stored. | could have used a database for this, but the need was so simple
that it didn't seem to make sense. So, instead, | create a directory named users. Inside
this directory | create a file for each user. The name of the file is the email address of the
user. The contents of the file are a simple XML record that contains the user's email

10. [PLOP95], Discovering Patternsin Existing Applications, Robert C. Martin, p383




193 Chapter : SMC Remote Service: Case Study

ServerController
Context
«generated» «generated»
ServerController State

«generated» «generated»

ServerSession Compiling LoggedIn
«generated» «generated»
LoggingIn StoringUser
«generated» «generated»

Closed Idle

«generated»

— Closing

Figure 12-16

Three Level Finite State Machine.

Listing 12-28
ServerControllerContext.java

package com obj ect nentor. SVCRenote. server;

public class ServerControllerContext {
public void FSMError(String event, String state) {
S;\/CRermI eServi ce. verboseMessage(" Transition Error. Event:
state);

}
public void checkValidUser() {
}

+event +" instate:" +

public void close() {

}
public void acknow edgeLogin() {
}

public void rejectLlogin() {
}




SM CRemoteSer ver

194

Listing 12-28 (Continued)
ServerControllerContext.java

publ'ic void doConpiTe() {
}

public void sendConpil eResults() {
}

public void sendConpil eRejection() {
}

public void sendConpileError() {
}

public void reportError() {

public void confirnRegistration() {
}

public void denyRegistration() {
}

public void storeUser AndSendPassword() {

}
}

Listing 12-29
ServerSession.java

package com obj ect ment or . SVCRemot e. Server;
import com obj ect ment or. SMCRenot e. t ransacti ons. *;

inport java.io.*;
inport java.net.*;

class ServerSession extends ServerController {
private QobjectQutput Stream server Qut put;
private Qoject|nput Stream serverlnput;
private String itsSessionlD;
private Socket itsSocket;
private Exception itsException;
private SMCRemot eServer itsParent;

private String registrationFailureReason = null;

private ConpileFileTransaction cft;
private File tempDirectory;

private ConpilerResultsTransaction crt;
private LoginTransaction It;

private RegistrationTransaction rt;

public Server Sessi on( SMORenot eServer parent, Socket socket) throws | CException {
itsParent = parent;
i tsSocket = socket;
bui | dSessi onl ) ;
server Qut put = new Cbj ect Qut put Strean(itsSocket. get Qut put Strean());




195 Chapter : SMC Remote Service: Case Study

Listing 12-29 (Continued)
ServerSession.java

serverinput = new Cbj ectTnput Strean(i t sSocket. gef Tnput Strean());

public ObjectInputStreaminitializeSession(Socket socket) throws | CException {
server Qut put. writeChject ("SMCR Server. " + SMCRenot eServi ce. VERSI ON);
writeMessageFile();
server Qut put. flush();
return serverlnput;

}

private void witeMessageFile() throws | CException {

if (SVMCRemoteService. nessageFile == null) {
serverQutput. writeQoject(null);

} else {
StringBuffer b = new StringBuffer();
Buf f eredReader br = new Buff eredReader (new Fi | eReader ( SMCRenot eServi ce. nessageFil e));
String line;
while ((line = br.readLine()) != null)

b. append(line + "\n");

serverQut put. writeQoject(b.toString());

}

}

public void conpil eEvent ( Conpi | eFi | eTransaction cft) {
this.cft = cft;

conpi | eEvent();

public void | oginEvent (LoginTransaction It) {
this.It = It;
| ogi nEvent ();

public void registerEvent (RegistrationTransaction rt) {
this.rt =rt;
verboseMessage(rt. get Username() + " requests registration.");
regi sterEvent();

public String generatePassword() {
ver boseMessage(" Generating password.");
return Passwor dGenerat or. gener at ePassword();

}

public void storeUser AndSendPassword() {
String password = generat ePassword();
String username = rt. get Username();
try {
bool ean stored = SMORenot eServi ce. addUser (user name, password);
if (stored) {
verboseMessage(" User stored. Sending password email.");
bool ean emai | Sent = sendPasswor dEnai | (user name, password);
if (emilSent)
user StoredEvent () ;
el se {




SM CRemoteSer ver 196

Listing 12-29 (Continued)

ServerSession.java
verhoseMessage( could not send email.");
regi strationfail ureReason = "could not send email.";
sendFai | edEvent () ;

} else {
ver boseMessage(" Dupl i cate Registration");
password = SMCRenot eSer vi ce. get Passwor d( user nane) ;
resendPasswor dEmai | (usernane, password);
registrationFailureReason = "al ready a menber. Email resent.";
userNot St oredEvent () ;

} iatch (Exception e) {
abort(e);

}

private bool ean resendPasswor dEmai | (String username, String password) {
return SMCRenot eServi ce. sendEnai | (user nane,
" SMCRermot e Resendi ng password”,
"Your SMCRermte password is: " + password);

}

private bool ean sendPasswor dEmai | (String usernane, String password) {
return SMCRenot eServi ce. sendEnai | (user nane,
"SMCRenot e Regi stration Confirnation",
"Your password is: " + password);

}

public void confirnRegistration() {
verboseMessage(" Confirming registration.");
try {
Regi strationResponseTransaction rrt = new Regi strationResponseTransaction(true);
sendToC i ent (rrt);
} catch (Exception e) {
abort(e);

}

public void denyRegistration() {
verboseMessage("Regi stration Denied: " + registrationFail ureReason);
try {
Regi strationResponseTransaction rrt = new Regi strationResponseTransaction(fal se);
rrt.setFail ureReason(registrationFail ureReason);
sendToC i ent (rrt);
} catch (I OBxception e) {
abort(e);
}
}

public void checkValidUser() {
String userName = |t. get User Name();
String password = I't. get Password();
if (SMCRemoteService. validate(userName, password))
val i dUser Event ();
el se




197 Chapter : SMC Remote Service: Case Study

Listing 12-29 (Continued)
ServerSession.java

inval i dUser Event (J;

public void close() {
itsParent.close();
cl oseEvent ();

}

public void acknow edgelLogin() {
try {
int logins = SMCRenot eServi ce. i ncrement Logi nCount (1t. get User Nane());
verboseMessage("Login(" + logins +"): " + It.getUserName() + " accepted.");
Logi nResponseTransaction | rt = new Logi nResponseTransaction(true, |ogins);
sendToC 1 ent (I rt);
} catch (Exception e) {
abort(e);
}
}

public void rejectLogin() {
verboseMessage("Login: " + It.getUserName() + " rejected.");
try {
Logi nResponseTransaction I rt = new Logi nResponseTransacti on(fal se, 0);
sendToC 1 ent (I rt);
} catch (I OBxception e) {
abort(e);
}
}

public void doConpile() {

ver boseMessage(" Conpi ling: " + cft.getFilename() + " using " + cft.getGenerator() + "
generator.");

try {
tenpDirectory = SMCRenot eServi ce. makeTenpDirectory();
cft.wite(tenpDirectory);

conpi le();
goodConpi | eEvent () ;

} catch (Exception e) {
abort(e);

}

public void sendConpil eResults() {
try {
sendConpi | erResul tsToClient();
tenpDirectory. delete();
} catch (I OBxception e) {
abort(e);
}
}

public void sendConpil eRejection() {
verboseMessage("Not 1 ogged in, can't conpile.");




SM CRemoteSer ver 198

Listing 12-29 (Continued)
ServerSession.java

Conpi TerResultsTransaction crt = new Conpi | er ResultsTransaction();
crt. set Status(Conpil erResul t sTransaction. NOT_LOGGED IN);
try {
sendToCl i ent (crt);
} catch (I CException e) {
abort(e);
}
}

public void sendConpileError() {

}

public void reportError() {
Systemout. println("Aborting:

+ i tsException);

private void abort (Exception e) {
i tsException = e;
abortEvent ();

}

private void buildSessionl D) {
I net Address addr = itsSocket.get!|netAddress();
String connect edHost Nane = addr. get Host Nane( ) ;
String connectedl P = addr. get Host Address() ;
if (connect edHost Nane. equal s(connectedl P)) {
i tsSessionl D = connect edHost Nane + ":" + itsSocket. getPort();
} else {
i tsSessionl D =
connect edHost Name + ":" + itsSocket.getPort() + "(" + connectedlP + ")";

}

private void compile() throws Exception {
String filename = cft.getFilenane();
crt = new Conpil erResul t sTransacti on();
File batFile = writeConpileScript();

SMCRenot eSer vi ce. execut eConmand(tenpDirectory + "\\snt.bat", crt.getStdout Li nes(),
crt.getStderrLines());

bat Fil e.del ete();
File sourceFile = new File(tenpDirectory, filename);
sourceFile. del ete();

}

private File witeConpileScript() throws |CException {
File batFile = new File(tenpDirectory, "snt.bat");
PrintWiter bat = new PrintWiter(new FileWiter(batFile));
bat.printin("cd " + tenpDirectory);
bat . print| n( SMCRemot eSer vi ce. bui | dCormand(cft. get Fi | enane(), cft.getGenerator()));
bat . cl ose();
return batFile;




199 Chapter : SMC Remote Service: Case Study

Listing 12-29 (Continued)
ServerSession.java
private voi d sendConpi I erResultsTod i ent() Throws TCException {

String[] filenames = tenpDirectory.list();
crt. loadFiles(tenpDrectory, filenanes);
crt. set Status( Conpi | erResul t sTransacti on. OK);
ver boseSendFi | eReport (fi | enanes);
sendToCl i ent(crt);
del et eConpi | edFi | es(fil enanes);

}

private void sendTod ient(Socket Transaction t) throws | CException {
server Qut put. writeChject(t);
server Qut put. flush();

}

private void del et eConpil edFiles(String[] filenanes) {
for (int i =0; i <filenames.length; i++) {
File f = newFile(tenpDirectory, filenames[i]);
f.delete();

}
}

private void verboseSendFi | eReport (String[] filenames) {
for (int i =0; i <filenanes.length; i++) {
String filename = filenames[i];
verboseMessage( " Sending: " + filenane);

}

public void verboseMessage(String nsg) {
SMCRenot eSer vi ce. ver boseMessage("<" + itsSessionlD + "> " + nsg);

}
}

address, password, and a count of the number of times the user has logged in.This file is
created upon registration, and is referenced every time the user logsin.

You might wonder why | didn't use a database, or some other more traditional
scheme. The answer is simply that a database wasn’t necessary. The kind of data | am
storing is very simple; and does not require SQL or any of the other features of a database.

You might also ask why | choseto use XML. It turns out that JDOM isvery simpleto
use, and it allowed me to create user records that were flexible. | could add new fields or
change existing fields without alot of fuss.

Listing 12-30
UserRepository.java
package com obj ect nentor. SMCRent e. server;

inmport org.jdom?*;
import org.jdominput. SAXBui | der;
import org.jdom output. XM.Qut put ter;

inport java.io.*;




SM CRemoteSer ver 200

Listing 12-30 (Continued)
UserRepository.java

public class UserRepository inplements UserDirectory {

class Wser {
fublic Wser() {

public User(String username, String password, int |oginCount) {
this.username = usernane;
this. password = password;
this.loginCount = I oginCount;

String usernane;

String password;

int loginCount;
}

private File userDirectory;

public UserRepository(String userDirectoryNane) {
userDirectory = makeUser Directory(userDirectoryNane);

}

private File nakeUserDirectory(String userDirectoryNane) {
File directory = new File(userDirectoryNane);
if ('directory.exists())
directory. nkdir();
return directory;

public bool ean isValid(String username, String password) {
return password. equal s get Password( user nane) ) ;

public String getPassword(String usernane) {
User user = readUser (usernang);
return user.password;

}

private User readUser(String usernane) {
User user = new User();
try {
File userFile = new File(userDirectory, username);
if (userFile. canRead()) {
SAXBUi | der bui | der = new SAXBui | der ("org. apache. xer ces. par sers. SAXParser");
Document userDoc = buil der. buil d(userFile);
B ement userEl ement = user Doc. get Root El ement ();
user. usernanme = userEl enent. get Chil d("name"). get Text Trim();
user. password = userEl enent. get Chi | d(" password"). get Text Trim();
user. | ogi nCount =
I nt eger. parsel nt (user El ement . get Chi | d("I ogi nCount") . get TextTrim());

}
} catch (JDOVException e) {
Systemout.printin("e =" +¢);




201 Chapter : SMC Remote Service: Case Study

Listing 12-30 (Continued)
UserRepository.java

return nuiT;

return user;

public bool ean add(String username, String password) throws Exception {
File userFile = new File(userDirectory, usernane);
if (userFile. exists() == false) {
User user = new User(username, password, 0);
writelser(user);
return true;
} else {
return false;

}

private void witeUser(User user) throws | CException {
File userFile = new File(userDirectory, user.usernane);
FileQut put Stream os = new Fi | eQut put Strean{userFile);
Docunent userDoc = creat eUser Docunent (user);
XM.Qut putter xm Qut = new XM.Qut putter();
xm Qut . out put (user Doc, 0s);
0s. cl ose();

}

private Docunent creat eUser Docunent (User user) {
B ement userEl ement = new El enent("user");
user B ement . addCont ent (new El ement ("nanme") . set Text (user. usernane));
user B ement . addCont ent (new El ement (" password") . set Text (user. password));
user B ement . addCont ent (
new El ement ("1 ogi nCount ") . set Text (I nt eger. toString(user. | oginCount)));
Docunent userDoc = new Docunent (user El enent);
return userDoc;

}

publ i ¢ bool ean cl ear User Reposi tory() {
bool ean cl eared = true;
File files[] = userDirectory.listFiles();
for (int i =0; i <files.length; i++) {
File file = files[i];
if (file. delete() == false)
cleared = fal se;
}
if (userDirectory.delete() == false)
cleared = false;
return cleared;

}

public int increnentLoginCount(String usernane) throws Exception {
User user = readUser (usernang);
user. | ogi nCount ++;
writeUser(user);
return user.|ogi nCount;




SM CRemoteSer ver 202

ORelllyEmailSender

The ORei | | yEmai | Sender is a very simple FACADE™ that gives the server access to
email facilities. | choseto use the OReilly engine simply because I’ ve used it before, and it
seems to work just fine. See Listing 12-31.

Listing 12-31
OReillyEmailSender.java
package com obj ectmentor. SMCRemot e. Server,

inport comoreilly.servlet.Mail Message;
inport java.io.*;

public class OReillyEnail Sender inplenents Email Sender {
public bool ean send(String email Address, String subject, String text) {

try {
Mai | Message nsg = new Mai | Message(" cvs. obj ect nent or. cont');
nsg. from("i nfo@bj ect ment or. cont');
nsg. t o( emai | Addr ess);
ns(. set Subj ect (subj ect);
Print Stream body = msg. get PrintStrean();
body. println(text);
nsg. sendAndCl ose() ;
return true;

} catch (I OBxception e) {
Systemerr.printin("Couldn't send email: " + e.get Message());
return false;

}
}

PasswordGener ator

The Passwor dGener at or class is adso very simple and straightforward. This class is
used to generate a password for a newly registered user. See Listing 12-32.

Listing 12-32
PasswordGenerator.java
package com obj ect mentor. SMCRent e. server;

public class PasswordGenerator {
public static String generatePassword() {
StringBuffer password = new StringBuffer();
for (int i =0; i <8 i++ {
passwor d. append( gener at eRandontCharacter ());

return password.toString();

}

11. The Facade design pattern is explained in [GOF95] p. 185. There is a nice example and explana-
tion of Facade in [PPP2002] p. 173




203 Chapter : SMC Remote Service: Case Study

Listing 12-32 (Continued)
PasswordGenerator.java
private static char generateRandontharacter() {
double x = Math. randon();
X *= 26;
return (char) (‘a' + x);
}
}

Conclusion.

That's dl there is to the SMCRenot e system. All-in-all, including tests, the system is
around 3,000 lines of code with an average cyclomatic complexity of 1.48.

The UML diagrams in this chapter are examples of the kinds of diagrams one might
draw in order to explain an existing system to someone else. | kept my diagrams terse, and
| tried not to inundate you with them. Mostly they are just there to help you read the code.




Tests for SMCRemoteClient 204

Tests for SM CRemoteClient

Listing 12-33
TestClientBase.java

package com obj ectment or. SVCRemote. Cl'i ent;
inport junit.framework. Test Case;

i nport com obj ect ment or. SMCRenot e. transact i ons. *;
i nport com obj ect ment or. Socket Servi ce. Socket Server;

inport java.io.*;
inport java.net.Socket;

abstract class MckServerBase inplements Socket Server {
private QojectQutputStream os;
private QojectlnputStreamis;

public abstract SocketTransactionProcessor getProcessor();

public void sendTransaction(Socket Transaction t) throws Exception {
0s. witeChject(t);
os. flush();

public void serve(Socket socket) {
try {

0s = new (bj ect Qut put St rean{ socket . get Qut put Strean());

i's = new Chj ect | nput St rean(socket . get I nput Strean());

0s.writeChject("SVCR Test Server");

os.witeChject(null);

os.flush();

while (true) {
Socket Transaction t = (Socket Transaction) is.readChject();
t.accept (get Processor());

} l:atch (Exception e) {
}

public class TestCientBase extends TestCase {
public static final int SMCPORT = 9000;

private ByteArrayQut put Stream st dout Buf fer;
private ByteArrayQut put Stream stderrBuffer;

public TestCientBase(String s) {
super(s);

protected void setUp() throws Exception {
stdout Buf fer = new Byt eArrayQut put Streanf);
stderrBuffer = new ByteArrayQut put Strean);

}




205 Chapter : SMC Remote Service: Case Study

Listing 12-33 (Continued)
TestClientBase.java

protected String getStderr() {
return stderrBuffer.toString();

protected String get Stdout() {
return stdoutBuffer.toString();

protected void runMain(String[] args) throws | OException {
PrintStreamsysout = System out;
PrintStreamsyserr = Systemerr;

System set Qut (new Print St rean(stdoutBuffer));
System set Err(new PrintStrean{stderrBuffer));

SVCRerot eCl i ent . mai n(args);
System set Qut (sysout);
System set Err(syserr);

stdout Buf fer. cl ose();
stderrBuffer.close();

Thread. yiel d();

}
}

Listing 12-34
TestClientCommandLine.java

package com obj ect nentor. SVCRenote. client;

import junit.framework. Test Case;
import junit.sw ngui.TestRunner;

public class TestCientCommandLi ne extends TestCase {
public static void min(String[] args) {
Test Runner. mai n(new String[]{" TestClient ConmandLine"});

}

public Test CientCormandLi ne(String name) {
super (nang) ;

}
public void setUp() throws Exception {
}

public void tearDown() throws Exception {

}
public void testParseSinpl eConpi | eCommandLi ne() throws Exception {

Qi ent ConmandLine ¢ = new C i ent CommandLi ne(new String[]{"-u", "user", "-w',
"password", "filename"});

assert Equal s("filenane", c.getFilename());

assert Equal s(Cli ent CommandLi ne. DEFALLT HOST, c.getHost());

assert Equal s( I nt eger. par sel m(d|emC0mmndL| ne. DEFAULT PCRT) c.getPort());




Tests for SMCRemoteClient

206

Listing 12-34 (Continued)
TestClientCommandLine.java

assertEqual s( i ent ConmandLi ne. DEFAULT_GENERATCR, ¢. gef Generator());
assert(!c.isVerbose());
assert("sinple conpile", c.isvalid());

public void testParseConpl exConpi | eCommandLi ne() throws Exception {
ai i ent Oommndu ne ¢ = new O ient CommandLi ne(new Stri ng[]{

teg, "G, flsnt));
assert(c. |sVa||d()),

assert Equal s("f.snf', c.getFilename());

assert Equal s(" bad host", "obj ect entor. conf, c.getHost());
assert Equal s("bad port", 999, c.getPort());

assert Equal s("bad generator", "C+", c.getGenerator());
assert ("verbose", c.isVerbose());

}

public void testRegistrationConmandLine() throws Exception {
Qi ent ConmandLine ¢ = new O i ent ConmandLi ne(new String[]{"-r", "user"});
assert("registration comandline", c.isValid());

}

public void testParselnval i dConmandLine() {

assert("no arguments", !checkCormandLi ne(new Stri ng[O])),

assert("no filename", !checkCommandLine(new String[]{"-h", dodah '}));

assert("too many f||es I checkCommandLi ne(new Stri ng[]{ filel", e2'}));
);

assert ("Bad Port" | check CommandLi ne(new String[]{"-p", "bad port"}

cont
"fil
assert ("Bad Argumem | checkComandLi ne(new String[]{"-x", "filet" H
)
assert (" generator but no file name", !checkCommandLi ne(new String[]{"-

"myFile’}));
assert("filename but no password",

I checkCommandLi ne( new SI ri ng[]

registration with user"

I checkCommandLi ne( new St ri ng(]

N "-u", "user", "nyFile"}));
("
assert("registration wth password",
("
("

assert
ot tuser”, "-u', "user"})):

I checkCommandLi ne(new Stri ng[]
registration with generator”,

I checkCommandLi ne(new String[]
registration with file",

I checkCommandLi ne( new St r ng[]{"

assert
ot tuser”, "-g', "gen'}));
assert

}

private bool ean checkCommandLi ne(String[] args) {
A ient ConmandLine ¢ = new C i ent CommandLi ne(args);
return c.isvalid();
}
}

{
{
{"-r", "user", "-p", "password"}));
{
{

-1, "user", "nyFile"}));

-p", "999", "-h", "objectnentor.cont, "-v", "-u", "user", "-w', "password",

"Ctt
assert("filenane but no user or passvu)rd I checkConmandLi ne(new Str|ng[]{ nyF
assert("filename but no user” I check CommandLi ne(new String[]{"-w', "password",

'}
|

)
e

)
D)

Listing 12-35
TestRemoteCompiler.java

package com obj ect nentor. SVCRenote. client;

import junit.sw ngui.TestRunner;




207 Chapter : SMC Remote Service: Case Study

Listing 12-35 (Continued)
TestRemoteCompiler.java

import com obj ect ment or. SMCRemot e. Transactions. ™,
i nport com obj ect ment or. Socket Servi ce. Socket Servi ce;

inport java.io.*;

cl ass MockRemot eConpi | er Server extends MckServerBase {
public String filename = "noFileNane";
public bool ean fileReceived = fal se;
public String generator;
public bool ean isLoggedin = false;

class Remot eConpi | er Transacti onProcessor extends Socket Transacti onProcessor {
public void process(ConpileFileTransaction t) throws Exception {
try {
File f1 = Test Renot eConpil er.createTestFile("nyFile.java", "wow');
File f2 = Test Renot eConpil er. createTestFile("file2.java", "ick");
filename = t.getFilenanme();
generator =t.getGenerator();

Conpi | erResul tsTransaction crt = new Conpi | er Resul t sTransaction();
crt.loadFiles(null, new String[]{"nyFile.java", "file2.java"});

f1. delete();

f2.delete();

crt.get StdoutLines().add("conpile diagnostics");
crt.getStderrLines().add("stderr nmessage");
sendTransaction(crt);

—~

fileReceived = true;
} catch (1 CException e) {
}

}

public void process(Logi nTransaction t) throws Exception {
Logi nResponseTransaction Irt = new Logi nResponseTransaction(true, 0);
sendTransaction(lrt);
i sLoggedin = true;

}

publ i ¢ Socket Transacti onProcessor get Processor() {
return new Remot eConpi | er Transact i onProcessor ();
}
}

public class TestRenot eConpiler extends TestdientBase {
public static void min(String[] args) {
Test Runner. mai n(new String[]{"com obj ectment or. SMCRenot e. cl i ent . Test Rermot eConpi | er"});

}

publ i ¢ Test Remot eCompi | er (String nane) {
super (nane) ;

private RenoteConpiler c;




Tests for SMCRemoteClient 208

Listing 12-35 (Continued)
TestRemoteCompiler.java

private NMockRempteConpiTer Server Server,
private SocketService snt;

public void setUp() throws Exception {
super. set Up();
¢ = new Renot eConpi | er ("1 ocal host", SMCPORT, new Nul | MessageLogger());
server = new MckRemot eConpi | er Server ();
smc = new Socket Servi ce( SMCPCRT, server);

}

public void tearDown() throws Exception {
c. close();
snt. cl ose();

}

static File createTestFile(String nane, String content) throws | OException {
File f = new File(nane);
Fi l eQut put Stream stream = new Fil eQut put Strean(f);
streamwite(content.getBytes());
streamcl ose();
return f;

}

public void testFileDoesNot Exi st() throws Exception {
c.setFilename("t hi sFi | eDoesNot Exi st");
bool ean prepared = c. prepareFile();
assert Equal s(fal se, prepared);

public void testConnect ToSMORenot eServer () throws Exception {
bool ean connection = c.connect();
assert (connection);

}

public void testConpileFile() throws Exception {
String filename = "test SendFile";
File f = createTestFile(filename, "I amsending this file.");
c.setFilename(filenang);
assert (c. connect ());
assert(c.prepareFile());
assert(c.conpileFile() !'=null);
Thread. sl eep(50);
assert (server.fileReceived);
assert Equal s(filename, server.filenane);
assert Equal s("Bad Generator", "java", server.generator);
f.delete();

}

public void testMinConpileFile() throws Exception {
File f = createTestFile("nyFile.sni', "the content");
runMain(new String[]{"-u", "user", "-w', "pw', "-g", "C+", "nyFile.snf});

f.delete();
File filel = new File("nyFile.java");
File file2 = new File("file2.java");




209 Chapter : SMC Remote Service: Case Study

Listing 12-35 (Continued)
TestRemoteCompiler.java

hoolean TiTelExists = filel exists();
bool ean file2Exists = file2.exists();
bool ean exists = filelExists && file2Exists;
int filellen = (int) filel length();
int file2len = (int) file2.length();

if (filelExists) filel.delete();
if (file2Exists) file2. delete();

assert("Not logged in", server.isLoggedin);
assert("not received", server.fileReceived);

assert Equal s("bad generator", "C+", server.generator);
assert("One or more files doesn't exist", exists);
assert("f1 zero", filellen > 0);

assert("f2 zero", file2len > 0);

assert ("consol eMessage", get Stdout (). startsWth("conpile diagnostics"));
assert ("Stderr Message", getStderr().startsWth("stderr message"));
}
}

Listing 12-36
TestRemoteRegistration.java

package com obj ect nent or . SVCRemot e. ¢l ent;
inport junit.swingui.TestRunner;

import com obj ect ment or. SMCRenot e. t ransactions. *;
import com obj ect ment or. Socket Servi ce. Socket Servi ce;

cl ass MockRenot eRegi strationServer extends MckServerBase {
public String user;

class Remot eRegi strationServer Transacti onProcessor extends Socket TransactionProcessor {
public voi d process(RegistrationTransaction t) throws Exception {
user =t.getUsernang();
Regi strationResponseTransaction rrt;
if (user.equal s("goodUser")) {
rrt = new Regi strationResponseTransaction(true);
} else {
rrt = new Regi strationResponseTransaction(fal se);

sendTransaction(rrt);

}
}

publ i ¢ Socket Transacti onProcessor get Processor() {
return new Remot eRegi strationServer Transact i onProcessor () ;

}

public class TestRenot eRegi stration extends Test O ientBase {
publ i ¢ Test Renot eRegi stration(String s) {




Tests for SMCRemoteClient

210

Listing 12-36 (Continued)
TestRemoteRegistration.java

super(s);

public static void min(String[] args) {
~Test Runner. mai n( new . . .
String[]{"com obj ect ment or. SMORenot e. cl i ent . Test Renot eRegi stration"});
}

private RenoteRegistrar r;
private MckRemoteRegi strationServer server;
private SocketService snt;

public void setUp() throws Exception {
super. set Up();
r = new Renot eRegi strar ("l ocal host", SMCPORT, new Nul | MessageLogger());
server = new MockRenot eRegi strationServer();
st = new Socket Servi ce( SMCPCRT, server);

}

public void tearDown() throws Exception {
r.close();
snt. cl ose();

}

public void testRegistration() throws Exception {
Regi strationResponseTransaction rrt;
assert (r.connect());
rrt = r.register("goodUser");
assert("rrt not null", rrt = null);
assert("registration passed", rrt.isConfirned());
Thread. sl eep(50);
assert Equal s("Regi stration", "goodUser", server.user);

}

public void testRegistrationMain() throws Exception {
runMai n(new String[]{"-r", "goodUser"});

assert("Registration nessage", . .
get Stdout ().startsWth("User: goodUser registered. Emil sent."));




211 Chapter : SMC Remote Service: Case Study

Testsfor SocketService

Listing 12-37
TestSocketService.java

package com obj ect nent or . Socket Servi ce;

inport junit.framework. Test Case;
inport | unit.swingui.Test Runner;

inport java.io.*;
inport java.net.Socket;

public class TestSocket Service extends TestCase {
private int connections = 0;
private Socket Server connectionCounter;
private Socket Service ss;

public static void min(String[] args) {
Test Runner . mai n(new String[] {
"com obj ect ment or. Socket Ser vi ce. Test Socket Ser vi ce"

}

publ i c Test Socket Service(String nane) {
super (nane) ;
connectionCounter = new Socket Server() {
public void serve(Socket s) {
connect i ons++;

}
¥
}

public void setUp() throws Exception {
connections = 0;

public void tearDown() throws Exception {

}

public void testNoConnections() throws Exception {
ss = new Socket Servi ce(999, connectionCounter);
ss. close();
assert Equal s(0, connections);

}

public void testeConnection() throws Exception {
ss = new Socket Servi ce(999, connectionCounter);
connect (999);
ss. close();
assert Equal s(1, connections);

public void testManyConnections() throws Exception {
ss = new Socket Servi ce(999, connectionCounter);
for (int i =0; i <10, i+
connect (999);




Tests for SocketService 212

Listing 12-37
TestSocketService.java
ss. close();
assert Equal (10, connections);
}

public void testSendMessage() throws Exception {
ss = new Socket Servi ce(999, new Hel | oService());
Socket s = new Socket ("I ocal host", 999);
Buf f eredReader br = Test Wil ity. Get Buf f eredReader(s);
String answer = br.readLine();
s.close();
ss. close();
assert Equal s("Hel [ 0", answer);

}

public void testReceiveMessage() throws Exception {
ss = new Socket Servi ce(999, new EchoService());
Socket s = new Socket ("l ocal host", 999);
Buf f eredReader br = Test Utility. Get Buf f er edReader (s);
PrintStreamps = TestWility.GetPrintStrean(s);
ps. println("MMssage");
String answer = br.readLine();
s.close();
ss. close();
assert Equal s("M/Message", answer);

}

public void testMiltiThreaded() throws Exception {
ss = new Socket Servi ce(999, new EchoService())
Socket s = new Socket ("I ocal host", 999);
Buf f eredReader br = Test Utility. Get Buf f er edReader (s);
PrintStreamps = TestWility.GetPrintStrean(s);

Socket s2 = new Socket ("l ocal host", 999);
Buf f eredReader br2 = Test Wility. Get Buf fer edReader(s2);
PrintStreamps2 = TestUtility. GetPrintStrean(s2);

ps2. println("MMessage");
String answer2 = br2.readLine();
s2.close();

ps. println("MMssage");
String answer = br.readLine();
s.close();

ss. close();
assert Equal s("M/Message", answer?2);
assert Equal s("M/Message", answer);

}
private void connect(int port) {
try {
Socket s = new Socket ("l ocal host", port);
try {

Thread. sl eep(10);
} catch (InterruptedException e) {




213 Chapter : SMC Remote Service: Case Study

Listing 12-37
TestSocketService.java

}
s.close();

} catch (I OException e) {
fail("could not connect");

}
}
}

class TestUility {
public static PrintStream GetPrintStrean( Socket s)
throws | OException {
Qut put Streamos = s. get Qut put Strean();
PrintStreamps = new PrintStreanos);
return ps;

}

public static BufferedReader GetBufferedReader (Socket s)
throws |CException {
InputStreamis = s.getlnput Strean();
I nput StreanReader isr = new | nput StreanReader(is);
Buf f eredReader br = new Buf f eredReader (isr);
return br;
}
}

class HelloService inplenents Socket Server {
public void serve(Socket s) {
try {
PrintStreamps = TestWility. GetPrintStrean(s);
ps.printIn("Hello");
} catch (I OBxception e) {
}

}
}

cl ass EchoService inplements Socket Server {
public void serve(Socket s) {

try {
PrintStreamps = TestWility. GetPrintStrean(s);
Buf f eredReader br = TestUtility. Get BufferedReader(s);
String token = br.readLine();
ps.println(token);

} catch (I OBxception e) {

}




Tests for SM CRemoteSer ver

Tests for SM CRemoteSer ver

214

Listing 12-38
TestBase.java

package com obj ect nent or . SVCRemot €. Server;
inport junit.framework. Test Case;
i nport com obj ect ment or. SMCRenot e. transact i ons. *;

inport java.io.*;
inport |ava.net.Socket;

class MckUserDirectory inplements UserDirectory {
public int incrementLogi nCount (String usernane) {
return 0;

}

public bool ean isValid(String usernane, String password) {
return true;

}

public String getPassword(String usernane) {
return null;

}

public bool ean add(String username, String password) {
return true;
}
}

public class TestBase extends TestCase {
protected Coject|nputStreamis;
protected Cbject Qut put Stream os;
protected SMCRemot eService service;
protected Socket client;

protected UserDirectory mockUserDirectory = new MckUserDirectory();

protected UserDirectory mockUserInvalidator = new MockUserDirectory() {
public bool ean isValid(String username, String password) {
return false;

I
public TestBase(String name) {

super (nang) ;

}

public void setUp() throws Exception {
SMCRenot eServi ce. i sVerbose = fal se;

}

public void tearDown() throws Exception {




215 Chapter : SMC Remote Service: Case Study

Listing 12-38 (Continued)
TestBase.java

profected hoolean Togin() throws TCException, O asSNof FoundException {
Logi nTransaction It = new Logi nTransaction("name", "password");
sendToServer(It);
Logi nResponseTransaction Itr = (Logi nResponseTransaction) is.readbject();
return ltr.isAccepted();

}

protected void sendToServer (Socket Transaction t) throws | CException {
0s. writeQoject(t);
0s. flush();

}

protected void di sconnect ClientFronServer() throws Exception {
Thread. sl eep(500) ;
client.close();
service. cl ose();

}

protected void connect O ientToServer() throws Exception {
service = new SMCRenot eServi ce(999);
client = new Socket("local host", 999);
is = new Chject!nput Strean(client.getlnputStrean));
0s = new Obj ect Qut put Streanclient.get Qutput Strean));

String headerLine = (String) is.readObject();
assert ("header!ine", headerLine.startsWth("SMR Server"));
assert Equal s("di scard message", null, is.readCbject()); // discard nessage

}
}

Listing 12-39
TestCommandLine.java
package com obj ect mentor. SMCRent €. server;

public class Test CommandLi ne extends Test Base {
publ i ¢ Test CommandLi ne(String name) {
super (nane) ;

}

public void tearDown() throws Exception {

super. t ear Down() ;

SMCRenmot eSer vi ce. messageFile = nul | ;

SMCRent eSer vi ce. i sVerbose = fal se;

SMCRenot eSer vi ce. servicePort = | nteger. parsel nt ( SMCRenot eSer vi ce. DEFAULT_PCRT) ;
}

public void setUp() throws Exception {
super. set Up();

public void testValidCommandLi ne() throws Exception {
assert ("Nul | Command Line", SMCRemoteService. par seCommandLi ne(new String[0]));
assert Equal s("default port",
| nteger. par sel nt ( SMCRenot eSer vi ce. DEFAULT_PCRT),
SMCRenmot eSer vi ce. servi cePort);




Tests for SM CRemoteSer ver 216

Listing 12-39 (Continued)
TestCommandLine.java

assert("default verbose™, SMORenof eService.isVerbose == fal se);

assert ("Parametric Command Line",
SMCRenot eSer vi ce. par seCommandLi ne(
new String[]{"-p", "999", "-v", "-nf, "nessage.txt", "-e"}));
assert Equal s("port", 999, SMCRenot eServi ce. servicePort);
assert("verbose", SMCRenoteService.isVerbose == true);
assert Equal s("message", "message.txt", SMCRenoteService. messageFile);
assert Equal s("emai | ", true, SMCRenoteService.isEmail Quiet);

}

public void testlnvalidCommandLine() throws Exception {
assert Equal s("Invalid Cormand Line",
fal se, SMCRenot eServi ce. parseCommandLi ne(new String[]{"-x"}));
assert Equal s("Bad Port",
fal se, SMCRenoteServi ce. par seCormandLi ne(new String[]{"-p", "badport"}));
}

}

Listing 12-40
TestCompilation.java

package com obj ect ment or . SVCRemot e. Server;
inport junit.swingui.TestRunner;
i nport com obj ect ment or. SMCRenot e. transact i ons. *;

inport java.io.*;
inport java.net.Socket;
inport java.util.*;

public class Test Conpilation extends TestBase {

public static void min(String[] args) {
Test Runner. mai n(new String[]{"Test Conpilation"});

public Test Conpilation(String name) {
super (nane) ;

public void setUp() throws Exception {
}

public void tearDown() throws Exception {

public void testBuildCommand() throws Exception {
assert Equal s("Build Java Command”,
SMCRenot eSer vi ce. COVPI LE_COVMAND +
" -g smt.generator.ava. SWavaGenerat or nyFil
SMCRenot eSer vi ce. bui | dConmand(" nyFile", "java")

e",
).

assert Equal s("Bui | d C++ Conmand",
SMCRenot eSer vi ce. COWPI LE_COWAND + .
" -g smt. generator. cpp. SMoppCGenerator nyFile",




217

Chapter : SMC Remote Service: Case Study

Listing 12-40 (Continued)
TestCompilation.java

SMCRenwt eSer vi ce. bui T dConmand( "myFiTe™, "CH")J;
}

public void testExecuteCommand() throws Exception {
File snFile = new File("nyFile. sn);
File javaFile = new File("F.java");

writeSourceFile(snFile);

Vector stdout = new Vector();

Vector stderr = new Vector();

String command = SMCRenot eServi ce. COVPI LE_COWAND + " nyFile.snt';

assert Equal s("exitVal ue", 0, SMCRemoteService. execut eCommand(command, stdout, stderr));
assert Equal s("fil eExists", true, javaFile.exists());

assert("javaFile", javaFile.delete());

assert ("snFile", snFile.delete());

checkConpi | er Qut put St reams(stdout, stderr);

}

public void testMakeTenpDirectory() throws Exception {
File f1 = SMCRenot eServi ce. makeTenpDirectory();
File f2 = SMCRenot eServi ce. makeTenpDi rectory();
assert Equal s("MakeTenpDirectory", false, fZ1. getName().equal s(f2.getNane()));
assert("f1", fl delete());
assert("f2", f2.delete());

}

public void testConpilelava() throws Exception {
connect d i ent ToServer();
servi ce. set UserDirect ory(nockUserDirectory);
Login();
Conpi | erResul t sTransaction crt = i nvokeRenot eConpil er ("java");
assert Equal s(" Conpiler Status", ConpilerResultsTransaction. OK crt.getStatus());
checkConpi | edJavaFil e(crt);
checkConpi | er Qut put St reans(crt. get Stdout Li nes(), crt.getStderrLines());
di sconnect i ent FromBerver();

}

public void testConpil eCPP() throws Exception {
connect d i ent ToServer();
servi ce. set UserDirect ory(nockUserDirectory);
Login();
Conpi | erResul t sTransaction crt = i nvokeRemot eConpi | er (" C+");
assert Equal s(" Conpiler Status", ConpilerResultsTransaction. OK crt.getStatus());
checkConpi | edCPPFi I e(crt);
checkConpi | er Qut put St reans(crt. get Stdout Li nes(), crt.getStderrLines());
di sconnect i ent FromBerver();

}

public void testConpil eNoLogin() throws Exception {
connect 0 i ent ToServer();
service. set UserDirect ory(nockUserDirectory);
Conpi | erResul t sTransaction crt = i nvokeRenot eConpil er ("java");
di sconnect O i ent FromBerver();
assert Equal s(" Conpiler Status", ConpilerResultsTransaction. NOT_LOGGED | N,
crt.getStatus());




Tests for SM CRemoteSer ver

218

Listing 12-40 (Continued)
TestCompilation.java

}

public void test TwoConpil esl nARowNot Al | owed() throws Exception {
connect G i ent ToServer () ;
service. set UserDi rect ory(mckUserDi rectory);
L ogi n() ;
Conpi | erResul tsTransaction crt = invokeRenot eConpil er ("] ava");
try {
crt = invokeRenot eConpi | er ("java");
fail("Two Conpiles inarow);
} catch (Exception e) {
} finally {
di sconnect O i ent FronBerver () ;

}

public void testdoseServer() throws Exception {
try {
servi ce = new SMORenot eServi ce(999);
client = new Socket ("l ocal host", 999);
client.close();
servi ce. close();
} catch (Exception e) {
fail("couldn't connect" + e.getMssage());
}

try {
client = new Socket ("l ocal host", 999);

fail("connected to closed server");
} catch (Exception e) {
}

}

protected Conpil erResul tsTransaction .
I nvokeRenot eConpi | er (String generator) throws Exception {
Conpi | eFi | eTransaction cft = buildConpileFileTransaction(generator);
sendToSer ver(cft);
Conpi | erResul t sTransaction crt = (Conpil erResultsTransaction) is.readChject();
return crt;

}

Brpt ected Conpi | eFil eTransacti on .
ui | dConpi | eFi | eTransaction(String generator) throws | OException {
File sourceFile = new File("nyFile.snt);
writeSourceFil e(sourceFile);
Conpi | eFi | eTransaction cft = new Conpi | eFi | eTransaction("nyFile.snl', generator);
sourceFile. del ete();
return cft;

}

protected void witeSourceFile(File snfile) throws | CException {
PrintWiter w=newPrintWiter(new FileWiter(snFile));
w printin("Context C');
w.printin("FSWame F")
woprintIn("Initial ")
woprintIn("{I{E| A}"
w close();

)




219 Chapter : SMC Remote Service: Case Study

Listing 12-40 (Continued)
TestCompilation.java

}

protected void checkCompi | er Qut put Streans(Vector stdout, Vector stderr) {
assert("stdout enpty", stdout.size() > 0);
assert("stderr not enpty", stderr.size() == 0);

protected void checkConpi | edJavaFi | e( Conpi | erResul t sTransaction crt) {
String filenames[] = crt.getFilenames();
assert Equal s("filenames", 1, filenanes.length);
assertEqual s("F.java", "F.java", filenames[0]);

crt.wite();

File javaFile = new File("F.java");
assert Equal s(" Conpile", true, javaFile.exists());
javaFile. delete();

}

protected void checkConpi | edCPPFi | e( Conpi | er Resul t sTransaction crt) {
String filenames[] = crt.getFilenames();
Arrays. sort(filenanes);
assert Equal s("filenanes", 2, filenames.length);
assert Equal s("nyFile.cpp", "nyFile.cpp", filenanes[0]);
assertEqual s("nyFile. h", "nyFile. h", filenanes[1]);

crt.wite();

File cppHFile = new File("nyFile.h");
File cppCFile = new File("nyFile.cpp");
assert Equal s("Conpile", true, cppHFile.exists() & cppCFile.exists());
cppHFi I e. delete();
cppCFile. delete();
}
}

Listing 12-41
TestOReillyEmail.java

package com obj ect nentor. SVCRenote. server;

import junit.framework. Test Case;
import junit.sw ngui.TestRunner;

public class TestORei |l | yEmai| extends Test Case {
public static void min(String[] args) {
Test Runner. mai n(new String[]{" Test ORei | | yEmai | "});

public Test OReillyEmail (String name) {
super (nang) ;

public void setUp() throws Exception {
}




Tests for SM CRemoteSer ver

220

Listing 12-41 (Continued)
TestOReillyEmail.java

public void tearDown{) throws Exception {

public void testSendEmail () throws Exception {
bool ean emnil Status = fal se;
CRei | | yEmai | Sender sender = new OReil | yEmai | Sender();
emi | Status = sender. send(" uncl ebob@Dbj ect ment or. conf, "hi bob", "oh boy, email!");
assert Equal s("SendEmai | ", true, email Status);

}
}

Listing 12-42
TestRegistration.java

package com obj ect ment or . SVCRemot €. Server;
i nport com obj ect ment or. SMCRenot e. transact i ons. *;

public class TestRegistration extends TestBase {
private String email Address;
private String mail Subject;
private String mail Text;
private int emailMssagesSent = 0;

private Email| Sender nmockEmail Sender = new Emai | Sender () {
public bool ean send(String enai | Address, String subject, String text) {
Test Regi stration.this.emailAddress = email Address;
Test Regi stration.this. mil Subject = subject;
TestRegi stration.this. mail Text = text;
enai | MessagesSent ++;
return true;
}
b

private Email Sender nockBadEmail Sender = new Email Sender() {
public bool ean send(String email Address, String subject, String text) {
return false;

p’ri vate Regi strationResponseTransaction rrt;
private UserRepository userRepository;
private String userRepositoryName = "test Users";

public TestRegistration(String name) {
super (nane) ;

public void tearDown() throws Exception {
super. t ear Down() ;
user Reposi t ory. cl ear User Reposi tory();

}

public void setUp() throws Exception {
super. set Up();
user Reposi tory = new User Reposi t or y(user Reposi t or yName) ;




221 Chapter : SMC Remote Service: Case Study

Listing 12-42 (Continued)
TestRegistration.java

public void testRegistration() throws Exception {
sendRegi st rat i on( mckEmai | Sender);
assert Equal s("emai | Address", "rmartin@ma. coni’, email Address);
assert Equal s("mai | Subject”, "SMCRemote Registration Confirmation", mailSubject);
assert("Mail Text", mail Text.startsWth("Your password is: "));
assertEqual s("Mi | Text Length", 26, mailText.length());
assert Equal s("Registration", true, rrt.isConfirned());
String password = mail Text. substring(18);
assert Equal s(" User Regi stered",
true, SMORenoteService.validate("rmarti n@m. cont, password));
assert Equal s("email count", 1, emai|MessagesSent);

}

public void testBadEmail () throws Exception {
sendRegi st rati on( mckBadEmai | Sender);
assert Equal s("Registration", false, rrt.isConfirmed());
assert Equal s("Reason", "could not send email.", rrt.getFailureReason());

}

public void testDoubl eRegi stration() throws Exception {
sendRegi st rati on( mockEmai | Sender);
sendRegi st rati on( mockEmai | Sender);
assert Equal s("second registration", false, rrt.isConfirnmed());
assert Equal s("second registration reason",
"already a menber. Email resent.", rrt.getFailureReason());
assert Equal s("emai | Address", "rmartin@ma. con, email Address);
assert Equal s("emai | Subj ect", "SMCRemote Resending password”, mailSubject);
assert ("email Text", mailText.startsWth("Your SMCRemote password is: "));
assert Equal s("emai | Text Length", 36, mailText.length());
assert Equal s("emi | Count", 2, emmi | MessagesSent);

}

private voi d sendRegistration(Emai | Sender email Sender) throws Exception {
connect d i ent ToServer();
servi ce. set Emai | Sender ( emai | Sender) ;
servi ce. set UserDi rect ory(userRepository);
try {
Regi strationTransaction rt = new RegistrationTransaction("rmarti n@na. cont);
sendToSer ver (rt);
rrt = (RegistrationResponseTransaction) is.readChject();
} finally {
di sconnect O i ent FronBer ver () ;
}
}
}

Listing 12-43
TestServerLogin.java

package com ohj ect nentor. SVCRenote. server;

public class TestServerLogin extends TestBase {
public Test ServerLogin(String name) {
super (nang) ;




Tests for SM CRemoteSer ver 222

Listing 12-43 (Continued)
TestServerLogin.java

}

public void setUp() throws Exception {
super. set Up();

public void tearDown() throws Exception {
super. t ear Down() ;

public void testAcceptedLoginTransaction() throws Exception {
bool ean | oggedin = fal se;
try {
connect G i ent ToServer();
servi ce. set User Di rect ory(mockUser Directory);
I oggedin = login();
di sconnect O i ent FronBer ver () ;
} catch (Exception e) {
}

assert Equal s("Logi nTransaction", true, |oggedln);

public void testRejectedlLoginTransaction() throws Exception {
bool ean | oggedin = fal se;
try {
connect G i ent ToServer () ;
servi ce. set User Di rect ory( mockUser I nval i dat or);
l'oggedin = login();
di sconnect O i ent FronBer ver () ;
} catch (Exception e) {
}

assert Equal s("Logi nTransaction", false, |oggedin);

}
}

Listing 12-44
TestUserRepository.java

package com obj ect nent or. SNCRenot e. server;

import junit.framework. Test Case;
import junit.sw ngui.TestRunner;

public class TestUserRepository extends TestCase {
private UserRepository repository;

public static void min(String[] args) {
Test Runner. mai n(new String[]{" Test User Repository"});

}

publ i c Test User Repository(String nane) {
super (nang) ;

}




223 Chapter : SMC Remote Service: Case Study

Listing 12-44 (Continued)
TestUserRepository.java

public void setUp() throws Exception {
repository = new UserRepository("testUsers");

public void tearDown() throws Exception {
assert ("Repository not cleared", repository.clearUserRepository());

}

public void testEmptyRepository() throws Exception {
assert Equal s(" Enpt yReposi tory", false, repository.isValid("rmartin@na.conf,
"password"));

public void testAdd() throws Exception {
repository.add("rmartin@na. cont’, "password");
assert Equal s("Add", true, repository.isvalid("rmartin@ma.cont, "password"));

}

public void testwongPassword() throws Exception {
assert Equal s("addFai | ed", true, repository.add("rmartin@nma.conf, "password"));
assert Equal s("w ongPassword", false, repository.isValid("rmartin@na.cont, "xyzzy"));

public void testDuplicateAdd() throws Exception {
assert Equal s("FirstAdd", true, repository.add("rmartin@ma. cont, "password"));
assert Equal s(" Dupl i cateAdd", false, repository.add("rmartin@na.cont, "password"));

}

public void testIncrement() throws Exception {
int logins = 0;
repository. add("rmartin@na. cont, "password");
logins = repository.incrementLoginCount ("rmartin@ne. cont');
assert Equal s("Increment", 1, logins);
logins = repository.incrementLoginCount ("rmartin@ne. cont');
assert Equal s("Increment2", 2, logins);




Other Tests

Other Tests

224

Listing 12-45
TestFileCarrier.java

package com obj ectmentor. Socket Ui Titi es;

inport junit.framework. Test Case;
inport |unit.swingui.TestRunner;

inport java.io.*;

public class TestFileCarrier extends TestCase {
public static void min(String[] args) {
Test Runner . mai n(new String[]{" TestFileCarrier"});

}

public TestFileCarrier(String name) {
super (nane);

public void setUp() throws Exception {

public void tearDown() throws Exception {

}

private abstract class FileComparator {
File f1;
File f2;

abstract void witeFirstFile(PrintWiter w);
abstract void witeSecondFile(PrintWiter w;

voi d conpare(hbool ean expected) throws Exception {
f1=newFile("f1");
f2 = new File("f2");
PrintWiter wl = new PrintWiter(new FileWiter(fl));
PrintWiter w2 = new PrintWiter(new FileWiter(f2));
witeFirstFile(wl);
writeSecondFile(w);
wl. cl ose();
W2. cl ose();
assertEqual s("(f1,f2)", expected, filesAreTheSame(fl, f2));
assertEqual s("(f2,f1)", expected, filesAreTheSame(f2, f1));
f1. delete();
f2.delete();

}

}

public void testeFil eLonger ThanTheQther () throws Exception {
Fi | eConparator ¢ = new FileConparator() {
void witeFirstFile(PrintWiter w) {
woprintin("hi there");




225 Chapter : SMC Remote Service: Case Study

Listing 12-45 (Continued)
TestFileCarrier.java

void witeSecondF le(PrintWiter w {
woprintin("hi there you");

}

s conpare(fal se);

public void testFilesAreDifferentInTheM ddie() throws Exception {
Fi l eConparator ¢ = new FileConparator() {
void witeFirstFile(PrintWiter w {
woprintin("hi there");

void witeSecondFile(PrintWiter w {
woprintin("hi their");

c conpare(fal se);

}

public void testSecondLineDifferent() throws Exception {
Fi I eConparator ¢ = new FileConparator() {
void witeFirstFile(PrintWiter w) {
woprintin("hi there");
woprintin("This is fun");

void witeSecondFile(PrintWiter w {
woprintin("hi there");
woprintIn("This isn't fun");

}

c conpare(fal se);

public void testFilesSame() throws Exception {
Fi | eConparator ¢ = new FileConparator() {
void witeFirstFile(PrintWiter w) {
woprintin("hi there");

void witeSecondFile(PrintWiter w {
wprintin("hi there");

I
c.conpare(true);

}

public void testMiltipleLinesSane() throws Exception {
Fi | eConparator ¢ = new FileConparator() {
void witeFirstFile(PrintWiter w) {
woprintin("hi there");
woprintin("thisis fun");
wprintin("Lots of fun");

}




Other Tests 226

Listing 12-45 (Continued)
TestFileCarrier.java

void witeSecondFile(PrintWiter w {
woprintin("hi there");
woprintin("this is fun");
woprintin("Lots of fun");

) conpare(true);

}

public void testFileCarrier() throws Exception {
File sourceFile = new File("testFileCarrier.txt");
PrintWiter w=newPrintWiter(new FileWiter(sourceFile));
woprintin("line one");

woprintin("line two");
woprintin("line three");
w close();

FileCarrier fc = new FileCarrier(null, "testFileCarrier.txt");
assert (fc.isError() == false);
assert (fc.isLoaded() == true);

File tnpDirectory = new File("tnpDirectory");
tmpDirectory. nkdir();

File newrile = new File("tnpDirectory/testFileCarrier.txt");
fc.write(tmpDirectory);

assert("file wasn't written", newrile.exists());
assert("files aren't the same.", filesAreTheSanme(newrile, sourceFile));

assert ("newfile", newFile.delete());
assert ("ol dFile", sourceFile.delete(
assert ("directory", tnpDirectory.del

}

bool ean filesAreTheSane(File f1, File f2) throws Exception {

FilelnputStreamrl = new Filel nput Strean(f1);
Fi lelnputStreamr2 = new Filel nput Strean(f2);
try {

int c;

while ((c =rlread()) '=-1) {

if (r2.read() '=¢) {
return fal se;

)
ete());

}
if (r2.read() !'=-1)
return fal se;
el se
return true;
} finally {
ri.close();
r2.close();

}




227

Chapter : SMC Remote Service: Case Study

Listing 12-45 (Continued)
TestFileCarrier.java

}
}

Server Controller (SMC Gener ated)

Listing 12-46
ServerController.java

D I

Il FSM Server Control | er

Il Context:  ServerControllerContext

/I Err Func: FSMError

/1 Version:

/] Generated: Wednesday 11/13/2002 at 20:32:13 CST

Il class ServerController
/1 This is the Finite State Machine class
/1

public class ServerController extends ServerControllerContext {
private State itsState;
private static String itsVersion = "";

/1 instance variables for each state
private Loggedln itsLoggedinState;
private StoringUser itsStoringUserState;
private Idle itsldleState;

private Aosing itsCosingState;

private Conpiling itsConpilingState;
private Loggingln itsLoggi nglntate;
private Cosed itsC osedState;

/I constructor

public ServerController() {
i tsLoggedl nState = new Loggedin();
itsStoringUserState = new StoringUser();
itsldeState = new Idlie();
itsCosingState = new Cl osing();
i tsCompilingState = new Conpiling();
i tsLoggingl nState = new Loggingln();
itsCosedState = new O osed();

itsState = itsldl eState;

/] Entry functions for: Idle




Server Controller (SMC Gener ated)

228

Listing 12-46 (Continued)
ServerController.java

/1 accessor functions
public String getVersion() {
return itsVersion;

public String getCurrentStateName() {

return itsState. stateName();
/1 event functions - forward to the current State
public void userStoredEvent() {

itsState. userStoredEvent();

public void badConpileEvent() {
i tsState. badConpi | eEvent ();

public void invalidUserEvent() {
itsState.invalidUserEvent();

public void conpileEvent() {
itsState. conpil eEvent();

public void | oginEvent() {
itsState. | oginEvent();

public void abortEvent() {
itsState. abort Event();

public void registerEvent() {
itsState.registerEvent();

public void closeEvent() {
itsState. closeEvent();

public void userNot StoredEvent() {
itsState. userNot St oredEvent ();

public void sendFail edEvent () {
itsState. sendFai | edEvent();

public void goodConpil eEvent() {
i tsState. goodConpi | eEvent ();




229

Chapter : SMC Remote Service: Case Study

Listing 12-46 (Continued)
ServerController.java

}

public void validUserEvent() {
itsState.validUserEvent();

/1

Il private class State

Il This is the base State class

/1

private abstract class State {
public abstract String stateName();

/I default event functions

public void userStoredEvent () {
FSMError ("user StoredEvent”, itsState. stateNane());

}

public void badConpi | eEvent () {
FSMEr ror ("badCompi | eEvent”, itsState. stateNane());

}

public void invalidUserEvent() {
FSMError("invalidUserEvent”, itsState.stateNang());

}

public void conpileEvent() {
FSMError ("conpil eEvent”, itsState.stateNane());

}

public void | ogi nEvent() {
FSMError ("l ogi nEvent”, itsState. stateNamg());

}

public void abortEvent() {
FSMError ("abort Event”, itsState. stateNamg());

}

public void registerEvent() {
FSMError("regi sterEvent”, itsState. stateName());

}

public void closeEvent() {
FSMError("closeEvent”, itsState. stateName());

}

public void userNot StoredEvent () {
FSMError ("user Not St oredEvent ", itsState. stateName());

}

public void sendFail edEvent () {
FSMError ("sendFai | edEvent”, itsState. stateNane());

}




Server Controller (SMC Gener ated) 230

Listing 12-46 (Continued)
ServerController.java

public voi d goodConpi | eEvent () {
FSMError (" goodConpi | eEvent”, itsState.stateNane());

public void validUserBvent() {
FSMError ("val i dUser Event", itsState. stateName());

/1
Il class Logged!n
Il handl es the Loggedin State and its events
/1
private class Loggedin extends State {
public String stateNanme() {
return "Loggedin”;

/1
/1 responds to abortEvent event
11

public voi d abortEvent() {
reportError();

/I change the state
itsState = itsldleState;

11
/1 responds to conpil eEvent event
/1

public void conpileEvent() {
/I change the state
itsState = itsConpilingState;

/I Entry functions for: Conpiling
doCompi | e();
}

/1
Il class Storinglser
Il handl es the StoringUser State and its events
/1
private class StoringUser extends State {
public String stateName() {
return "StoringUser";

11
/1 responds to userNot StoredEvent event




231

Chapter : SMC Remote Service: Case Study

Listing 12-46 (Continued)
ServerController.java

I
public void userNotStoredEvent () {
denyRegi stration();

/I change the state
itsState = itsldleState;

}

11

/1 responds to userStoredEvent event

11

public void userStoredEvent () {
confi rnRegi stration();

/I change the state
itsState = itsldleState;

}

/1
/1 responds to abortEvent event
11
public void abortEvent() {
reportError();
denyRegi stration();

/I change the state
itsState = itsldleState;

11
/1 responds to sendFail edEvent event
11

public voi d sendFail edEvent () {
denyRegi stration();

/I change the state
itsState = itsldleState;

/I class ldle
Il handl es the Idle State and its events
/1
private class Idle extends State {
public String stateName() {

return "ldle";
}
/1
/1 responds to abortEvent event
11

public void abortEvent() {
reportError();




Server Controller (SMC Gener ated) 232

Listing 12-46 (Continued)
ServerController.java
I

11
/1 responds to registerEvent event
11
public void registerEvent() {
/I change the state
itsState = itsStoringUserState;

/] Entry functions for: StoringUser
st or eUser AndSendPasswor d() ;

11
/1 responds to conpileEvent event

public void conpileEvent() {
sendConpi | eRej ection();

/I change the state
itsState = itsldleState;

11
/1 responds to | oginEvent event
11

public void | ogi nEvent() {
/I change the state
itsState = itsLogginglnState;

/] Entry functions for: Loggingln
checkVal i dUser ();

/1
Il class Qosing
1 handl es the Cosing State and its events
/1
private class Cosing extends State {
public String stateName() {
return "Cosing";

/1
/1 responds to closeEvent event
11

public void closeEvent() {
/I change the state
itsState = itsC osedState;




233

Chapter : SMC Remote Service: Case Study

Listing 12-46 (Continued)
ServerController.java

7
/1 class Conpiling
1 handl es the Conpiling State and its events
11
private class Conpiling extends State {
public String stateNane() {
return "Conpiling";

11
/1 responds to abortEvent event

public void abortEvent() {
reportError();

/I change the state
itsState = itsldleState;

11
/1 responds to goodConpi | eEvent event
11

public voi d goodConpi | eEvent () {
sendConpi | eResul ts();

/I change the state
itsState = itsCosingState;

/] Entry functions for: O osing
close();

}

/1

1 responds to badConpi | eEvent event

11

public void badCompi | eEvent () {
sendConpi | eError();

/I change the state
itsState = itsCosingState;

/I Entry functions for: O osing
close();

/1
/I class Loggingln
Il handl es the Loggingln State and its events
/1
private class Loggingln extends State {
public String stateName() {
return "Loggingln";




Server Controller (SMC Gener ated) 234

Listing 12-46 (Continued)
ServerController.java

11
/1 responds to abortEvent event

public void abortEvent() {
reportError();

/I change the state
itsState = itsldleState;

11
/1 responds to validUserEvent event

public void validUserBvent() {
acknow edgeLogi n();

/I change the state
itsState = itsLoggedinState;

11
/1 responds to invalidUserEvent event
11

public void invalidUserEvent() {
rejectLogin();

/I change the state
itsState = itsldleState;

/1 class O osed
Il handl es the Closed State and its events
Il
private class Cosed extends State {

public String stateName() {

return "Cosed";

}

}




235 Chapter : SMC Remote Service: Case Study

Bibliography

[PEAA2002]: Patterns of Enterprise Application Architecture, Martin Fowler, Addison
Wesley, 2002

[GOF95]: Design Patterns, Gamma, et. a., Addison Wesley, 1995

[TDD2002]: Test Driven Development, Kent Beck, Addison Wesley, 2002.

[PPP2002]: Agile Software Development: Principles, Patterns, and Practices, Robert C.
Martin, Prentice Hall, 2002.

[PLOP95]: Pattern Languages of Program Design, Volume I, Coplien and Schmidt,
Addison Wesley, 1995



Bibliography 236



	Overview of UML for Java Programmers
	Diagram Types
	Class Diagrams
	Object Diagrams
	Sequence Diagrams
	Collaboration Diagrams
	State Diagrams

	Conclusion
	Bibliography

	Working with Diagrams
	Why Model?
	Why build models of software?
	Why should we build comprehensive designs before coding?

	Making Effective use of UML
	Communicating with Others.
	Back end Documentation
	What to keep, and What to throw away.

	Iterative Refinement
	Behavior first.
	Check the structure
	Envisioning the code.
	Iterative Refinement

	Minimalism
	When and how to draw diagrams.
	When to draw diagrams, and when to stop.
	CASE Tools.
	But what about documentation?
	And Javadocs?

	Conclusion

	Class Diagrams
	The Basics
	Classes
	Association
	Multiplicity
	Inheritance

	An Example Class Diagram
	The Details
	Class Stereotypes
	Abstract classes
	Properties
	Aggregation
	Composition
	Multiplicity
	Association Stereotypes
	Inner Classes
	Anonymous Inner Classes
	Association classes
	Association Qualifiers

	Conclusion
	Bibliography

	Sequence Diagrams
	The Basics
	Objects, Lifelines, Messages, and other odds and ends.
	Creation and Destruction
	Simple Loops
	Cases and Scenarios

	Advanced Concepts
	Loops and Conditions
	Messages that take time.
	Asynchronous Messages.
	Multiple Threads
	Active Objects
	Sending Messages to Interfaces.

	Conclusion

	Use Cases
	Writing Use Cases
	What is a use case.
	The Primary Course
	Alternate Courses
	What else?

	Use Cases Diagrams
	System Boundary Diagram
	Use Case Relationships

	Conclusion

	Principles of OOD
	Design Quality
	Design Smells.
	Dependency Management

	The Single Reponsibility Principle (SRP)
	The Open Closed Principle (OCP)
	The Liskov Substitution Principle (LSP)
	The Dependency Inversion Principle (DIP)
	The Interface Segregation Principle
	Conclusion
	Bibliography

	The Practices: dX
	Iterative Development
	The Initial Exploration
	Estimating the features
	Spikes

	Planning
	Planning Releases
	Planning Iterations
	The midpoint.
	Velocity Feedback.

	Organizing the Iterations into Management Phases
	What’s in an Iteration?
	Developing in Pairs
	Acceptance Tests
	Unit Tests
	Refactoring
	Open Office
	Continuous Integration

	Conclusion
	Bibliography

	Packages
	Java Packages
	Packages
	Dependencies

	Binary Components -- .jar files.
	Principles of Package Design
	The Release/Reuse Equivalency Principle (REP)
	The Common Closure Principle (CCP)
	The Common Reuse Principle (CRP)
	The Acyclic Dependencies Principle (ADP)
	The Stable Dependencies Principle (SDP)
	The Stable Abstractions Principle (SAP)

	Conclusion

	Object Diagrams
	A Snapshot in Time.
	Active Objects
	Conclusion

	State Diagrams
	The Basics
	Special Events
	Super States
	Initial and Final Pseudo States

	Using FSM Diagrams
	SMC
	ICE: A Case Study

	Conclusion

	Heuristics and Coffee
	The Mark IV Special Coffee Maker
	A Challenge.
	A Common, but Hideous, Coffee Maker Solution
	MissingMethods.
	Vapor Classes
	Imaginary Abstraction
	God Classes

	A Coffee Maker Solution
	Crossed Wires
	The Coffee Maker User Interface
	Use Case 1: User pushes brew button.
	Use Case 2: Containment Vessel not Ready.
	Use Case 3: Brewing Complete.
	Use Case 4: Coffee all gone.
	Implementing the Abstract Model.
	Use Case 1. User pushes Brew Button (Mark IV)
	Implementing the isReady() functions.
	Implementing the start() functions.
	How does M4UserInterface.checkButton get called?
	Completing the Coffee Maker
	The Benefits of this design.
	How did I really come up with this design?


	SMC Remote Service: Case Study
	Caveat Emptor
	Unit Tests.
	The SMCRemote System.
	SMCRemoteClient
	SMCRemoteClient Command Line
	SMCRemote Communication Protocols
	SMCRemoteClient
	The Loggers
	The Remote Sessions.
	RemoteSessionBase
	The Remote Registrar
	The Remote Compiler
	FileCarrier
	SMCRemoteClient Conclusion

	SMCRemoteServer
	SocketService
	SMCRemoteService
	SMCRemoteServer
	ServerSession
	Three Level FSM
	UserRepository
	OReillyEmailSender
	PasswordGenerator

	Conclusion.
	Tests for SMCRemoteClient��
	Tests for SocketService
	Tests for SMCRemoteServer���
	Other Tests
	ServerController (SMC Generated)
	Bibliography


