Architectural geometry:
Curves and Surfaces
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Types of curve representations

B Explicit form
B Implicit form

B Parametric form
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Explicit form

y = f(X) y:im, z=0

Coordinate system dependent

Single valued

No vertical tangent allowed

Can not represent closed curves

Difficult to define a boundary curve

Easy to check a point (X, y) lies on the curve

Difficult to get a point on the curve
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Implicit form

f(x,y)=0 x°+y°-r*=0,z=0

Coordinate system dependent

Multiple valued

Vertical tangent allowed

Can not represent closed curves

Difficult to define a boundary curve

Easy to check a point (X, y) lies on the curve

Difficult to get a point on the curve
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Parametric form

B x=x(1),y =y
X=rcost,y=rsint,z=0
(0<t<27)

Easy to evaluate a point

Easy to evaluate orderly sequences of points
Easy to draw a curve

Easy to define a bounded curve ex) 0=t <1
Difficult to see if a point lies on the curve

Representation is not unique
1-t? 2t

t:tanE (0<0<27)
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Parameterization

B Line pass through s(0O, -1) and q(t, 0)

L I Yy — 1 (2D stereographic projection)
t —_
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Polynomial curves/surfaces %‘p

B Coordinate function

— Curve: C(t) = (x(v), y(v), z(t))

— Surface: S(s, t) = (x(s,b), y(s,1), z(s,1))
B Degree of curves and surfaces

— Highest degree of parameter occurring in coordinate
functions

B Polynomial vs. rational
— Rational: polynomial + common denominator
— Curve: C(t) = (x(t) /Z7d(1), y(t) /Zd(t), z(t) /7d(1D))

— Surface: S(s, t) = (xX(s,t) /Zd(s,b), y(s,t) /Zd(s,b), z(s,t)
/d(s,t))
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Why cubic curve?

Minimum degree for Spatial curve

Minimum degree for Interior inflection point
Computation cost

Numerical error

Minimum degree for C2 continuity

Curve controllability
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Why polynomials?

B Can be easily, efficiently, and accurately processed
IN a computer
— EX. Polynomial vs. trigonometric functions

B Simple and mathematically well understood
— EX. derivatives and integration

B Capable of precisely representing all the curves the
users of the system need

B Widely used class of functions
— EX. Power basis form

P(’t)=[X(’[),y(t),z(t)]:Zn:aiti 0<t<1) a,=(x,y;,2)
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Parametric curves and surfaces %’

B Parameter space
B Tangent?
Normal?
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Tangent and normal . g

B Tangent
— Regular point / singular point

limy,_o ER=CD) — (1) = (2/(2), ' (£), #/(£))

B Normal
— Spatial curve: normal plane
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Curvature

B Osculating plane/Zcircle
— Curvature center

— Curvature radius (radius of osculating circle): r
e Curvature: k = 1/r
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Curvature
B [ocal directional change of the tangent
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Curvature of a curve °€J°

B Inflection point
— Curvature k = O (Osculating circle - tangent line)

B Sign of curvature is meaningful for only planar curve
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Evolute of a curve 03':)"

B The locus of the centers of all osculating circles of a
planar curve c

— Evolute e can be generated as envelope of the curve
normals

B The normals of c corresponds to the tangents of e
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Frenet frame

Rectifying
plane

Normal
plane

{ € —

Osculating
plane n

Voronoi Diagram Research Center



Curvature of a surface

B Normal curvature
B Principal curvature
— Kmax and Kmin
B Gaussian curvature
— K = Kmax * Kmin
B Mean curvature
— H = (Kmax + Kmin) / 2
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Classification of surface points

(a) Elliptic point K >0, H # 0 (b) Hyperbolic point K < 0.H # 0

(¢) Parabolic point K =0,H # 0 (d) Umbilic point Kmax = Kmin 7 0

parabolic

(f) Elliptic, hyperbolic, and parabolic

(e) Planar point Kmax = Kmin = 0 _
polints on a torus




Classification of surface points %

The principal, mean, and Gaussian curvatures distinguish the local geome-
try of a surface at a point p as follows.

Elliptic Point: H # 0, K > 0. At an elliptic point rpin and rpax have the
same sign. Therefore the normal sections have the same profile, implying
the surface near p has the shape of an ellipsoid.

Hyperbolic Point: H # 0, K < 0. At a hyperbolic point £yin and kpax have
opposite signs. So the surface near p has the shape of a saddle.

Parabolic Point: H # 0, K = 0. So either ki = 0 or £pax = 0. Therefore
the surface is linear in one principal direction, and near p the surface has the
shape of a parabolic cylinder. In computer vision applications the surface
1s said to be a ridge or a trough.

Umbilic Point: spin = kmax # 0 (H # 0,K > 0). An umbilic point is a
special case of an elliptic point. The normal curvature is constant (non-
zero) and near p the surface has the shape of a sphere.

Flat or Planar Point: rpin = fmax = 0 (H = K = 0). The normal curva-
ture is identically zero and the surface near p is flat.
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Conic sections

B The curves, or portions of the curves, obtained by
cutting a cone with a plane are conic sections.

N
_________

Hyperbola Parabola Ellipse Circle
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(b) Hyperboloid of one sheet

(a) Ellipsoid

d) Elliptic paraboloid

(

Hyperboloid of two sheets

(c)
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(f) Elliptic cone

yperbolic paraboloid
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Intersection curves of surfaces %jo

B Solving the nonlinear equation by numerical method.

P(u,v)—Q(s,t)=0

— 3 eguations with 4 unknowns, u, v, sand t

— Assigning an arbitrary value to one of the unknowns

— Convergence depends on the initial values of unknowns
— May not provide all the intersection curves
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Intersection curves of surfaces %jo

B Subdivision based method

— Recursively subdivide each surface S1 and S2 until all
of surface segments are close to the planar
guadrilaterals

— Quadrilaterals of S1 are tested for intersection | with
those of S2

— Use the intersection curves from the intersection | as
Initial guesses

— Require more computations than previous method but
have less chance of missing some intersection curves
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