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Architectural geometry:Architectural geometry: 
Curves and SurfacesCurves and Surfaces
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Types of curve representationsTypes of curve representations


 

Explicit form


 

Implicit form


 

Parametric form
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
 

y = f(x)


 

Coordinate system dependent


 

Single valued


 

No vertical tangent allowed


 

Can not represent closed curves


 

Difficult to define a boundary curve


 

Easy to check a point (x, y) lies on the curve


 

Difficult to get a point on the curve
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Explicit formExplicit form
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
 

f(x,y)=0


 

Coordinate system dependent


 

Multiple valued


 

Vertical tangent allowed


 

Can not represent closed curves


 

Difficult to define a boundary curve


 

Easy to check a point (x, y) lies on the curve


 

Difficult to get a point on the curve

0,0222  zryx

Implicit formImplicit form
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
 

x = x(t), y = y(t)


 

Easy to evaluate a point


 

Easy to evaluate orderly sequences of points


 

Easy to draw a curve


 

Easy to define a bounded curve  ex) 0≤
 

t ≤1


 

Difficult to see if a point lies on the curve


 

Representation is not unique
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Parametric formParametric form
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ParameterizationParameterization


 

Line pass through s(0, -1) and q(t, 0)

(2D stereographic projection)
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Polynomial curves/surfacesPolynomial curves/surfaces


 

Coordinate function
– Curve: C(t) = (x(t), y(t), z(t))

– Surface: S(s, t) = (x(s,t), y(s,t), z(s,t))


 

Degree of curves and surfaces
– Highest degree of parameter occurring in coordinate 

functions


 

Polynomial vs. rational
– Rational: polynomial + common denominator

– Curve: C(t) = (x(t) /d(t), y(t) /d(t), z(t) /d(t))

– Surface: S(s, t) = (x(s,t) /d(s,t), y(s,t) /d(s,t), z(s,t) 
/d(s,t))
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Why cubic curve?Why cubic curve?


 

Minimum degree for Spatial curve


 

Minimum degree for Interior inflection point


 

Computation cost


 

Numerical error


 

Minimum degree for C2 continuity


 

Curve controllability
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Why polynomials?Why polynomials?


 

Can be easily, efficiently, and accurately processed 
in a computer
– Ex. Polynomial vs. trigonometric functions


 

Simple and mathematically well understood
– Ex. derivatives and integration


 

Capable of precisely representing all the curves the 
users of the system need


 

Widely used class of functions
– Ex. Power basis form
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Parametric curves and surfacesParametric curves and surfaces


 

Parameter space


 

Tangent?


 

Normal?
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Tangent and normalTangent and normal


 

Tangent
– Regular point / singular point


 

Normal
– Spatial curve: normal plane
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CurvatureCurvature


 

Osculating plane/circle
– Curvature center

– Curvature radius (radius of osculating circle): r
• Curvature: k = 1/r
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CurvatureCurvature


 
Local directional change of the tangent
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Curvature of a curveCurvature of a curve


 

Inflection point
– Curvature k = 0 (Osculating circle 

 
tangent line)


 

Sign of curvature is meaningful for only planar curve
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EvoluteEvolute of a curveof a curve


 

The locus of the centers of all osculating circles of a 
planar curve c
– Evolute e can be generated as envelope of the curve 

normals


 

The normals of c corresponds to the tangents of e
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FrenetFrenet frameframe
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Curvature of a surfaceCurvature of a surface


 

Normal curvature


 

Principal curvature
– Kmax and Kmin


 

Gaussian curvature
– K = Kmax * Kmin


 

Mean curvature
– H = (Kmax + Kmin) / 2
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Classification of surface pointsClassification of surface points
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Classification of surface pointsClassification of surface points
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
 

The curves, or portions of the curves, obtained by 
cutting a cone with a plane are conic sections.

Conic sectionsConic sections
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
 

Solving the nonlinear equation by numerical method.

– 3 equations with 4 unknowns, u, v, s and t

– Assigning an arbitrary value to one of the unknowns

– Convergence depends on the initial values of unknowns

– May not provide all the intersection curves

0),(),(  tsvu QP

Intersection curves of surfacesIntersection curves of surfaces
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
 

Subdivision based method
– Recursively subdivide each surface S1 and S2 until all 

of surface segments are close to the planar 
quadrilaterals

– Quadrilaterals of S1 are tested for intersection I with 
those of S2

– Use the intersection curves from the intersection I as 
initial guesses

– Require more computations than previous method but 
have less chance of missing some intersection curves

Intersection curves of surfacesIntersection curves of surfaces
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