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ABSTRACT. The problem of obtaining the skeleton of a digitized figure is reduced to an optirn~ 
policy problem. A hierarchy of methods of defining the skeleton is proposed; in the more  con 
plicated ones, the skeleton is relatively invariant  under rotation. Two algorithms for eompu 
ing the skeleton are defined, and the corresponding computer programs are compared. A c~ 
terion is proposed for determining the most significant skeleton points. 
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1. Introduction 

In pattern recognition, methods for extracting the main features of a picture l 
needed. When all the information is contained in the contour of a figure, n "skeleto 
method may be useful. In the skeleton method, the contour is replaced by a g~ 
eralized axis of symmetry, the "skeleton" (Blmn [1]: medial axis), together wi 
associated values of a parameter. In order to obtain the skeleton it is necessary 
compute the distance of every point of the plane from the set of points of the figu 
From the skeleton, the contour of the figure can easily be regenerated, so the amol 
of information involved is the same. However, the skeleton seems to ernphas 
some properties of the picture; for instance, curvature properties of the c(mt, 
correspond to topological properties of the skeleton [1]. The concept of a skele 
defined in the real plane was first proposed by Blum [1]. A mathematical theory 
then developed by Kotelly [2] and Calabi [3, 4]. 

In applications, it is often necessary to process pictures givet~ in digitized fo 
I t  may therefore be convenient to define a skeleton transformation directly in 
discrete case. This discrete skeleton should, if possible, have properties very sirn 
to those of the continuous one. Such a transformation was defined by Rosenfeld 
Pfaltz [5, 6], who also found a very simple algorithm for obtaining it. However, 
distance they considered is substantially not Euclidean, so, for instance, this skek 
is not invariant under rotation. Moreover, no improvement is obtained even if 
number of points is increased. 

In this paper it is suggested that the problem of obtaining a discrete skeleton 
be reduced to the determination of optimal paths through a reticular network. 
minimal path length between two vertices in the network provides an approxima 
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of tile distance between the corresponding points in the real plane. By increasing the 
complexRy of the network, we can obtain a "distance" that approximates Euclidean 
distance as closely as we want. In this sense we speak of "quasi-Euclidan" dista~ces. 
The skeleton obtained using the simplest network coincides with Rosenfeld's 
skeleton. 

In Section 2 several definitions of the skeleton in the real plane are given. One of 
those is emphasized, because it can be easily extended to the discrete case. In 
Section 3, the various reticular networks are specified in terms of Farey 
sequences, and in Section 4 the minimal path problem which corresponds to skeleton 
determination is described. The solution of this problem for an infinite retlculum 
allows us to derive, in Section 5, analytical expressions for the minimal p'~th length 
between two points of the network for the various methods. In Sections 6 and 7, 
two algorithms are described that take advantage of the regularity of the network 
to compute simultaneously the lengths of the minimal paths from all the points of 
the network to the fgure. In order to make it easier to apply these results for pat- 
tern recognition purposes, in Sections 9 and 10 a method of eliminating the 
less significant skeleton points is described. In Section 11, FORTm~N IV programs 
which implement the two algorithms are briefly described, and their results are 
compared. 

2. The Skeleton in the Real Plane 

There are many equivalent definitions of tile skeleton in the real phme. We give 
four of them, proposed in [1] and [3], in order to introduce some concepts that arise 
in the discrete case as well. 

(a) Let us interpret the contour as an inRial wavefront and then let it propagate 
with the constraint that  no point can be excited more than once. In this situation, 
there will exist points where the wavefront "intersects itself" and then is extin- 
guished. This locus, together with the corresponding set of times, is the skeleton 
[1] (see Figure l (a ) ) .  One could ask whether the contour propagates "inside" or 
"outside" the figure. In what follows, we assume it propagates outside, so only the 
external skeleton is considered. To obtain the internM one, it suffices to complement 
the figure. 

(b) We define a function at every point P of the plane whose value is the dis- 
tance of P from the contour: 

d ( P )  = mind(P ,  O), Q C v, (1) 

where ff is the set of points of the figure, and d(P, Q) is the usual Euclidean distance 
between two points. Let us visualize this function as a surface; the "ridges" of the 
surface, namely the points where we cannot deflate a tangent plane, together with 
the corresponding distances, constitute the skeleton [1]. 

(c) Let  us define the set 

3 ( e )  = {R I d (P ,  R)  = d ( P )  , R E if}. 

If 5(P) contains more than one point, P is a skeleton point. In Figure 
l(b), 5(P0 = {R~}, so P~ is not a skeleton point, but 5(P2) = {R2', R2"}, so P2 
is a skeleton point [3]. 

(d) Given a point P, a minimal path from P to the contour is a strMght-line 
segment P R  where R C 5(P). Evidently, P is a skeleton point if it does not belong 
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FIG. 1. Examples of application of different definitions of skeletons 

to the minimal path of arty other point. In Figure l (b ) ,  Pa belongs to the minimal 
path P~R~, so Pa is not a skeleton point; but P2 does not belong to any mirfimal 
path, so P2 is a skeleton point. 

This last definition was introduced in a slightly different manner by Cal~tbi [3]. 
I t  carl be easily extended to the discrete case, since the concept of minim~fl path is 
well defined in the discrete case too. 

3. Reticular Networl~s as Approximations of the Real Plane 

In this section we define the networks with which we approximate the real plane. 
Usually, a digitized picture is given in the form of a rectangular array of elements 
al/ (i = 1, . . . , r ;  j = 1, . . . ,  s). We can interpret ( i , j )  as the coordinates 
(xp, y~,) of a point P in the real plane. We connect some pairs of these points with 
straight-line segments. In Figures 2 (a ) - ( c )  we show all the connections for the 
methods, which will be numbered 0, 1, 2, respectively. In Figures 3(~t)-(c) ~m 
"elementary cell" ( that  is, all the points directly connected with a given point), 
and the corresponding segments with their lengths, are shown for methods 0, 1, 2. 
Note that in method 0, every point is directly connected only to the four nearest 
points, while in method n (n # 0), the connections are the simplest ones such 
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FIG. 2. 

FIG. 3. 

! 

½ 

R e t i c u l a r  n e t w o r k s  for  m e t h o d s  0, 1, 2 

b 

_c 

E l e m e n t a r y  cells for  m e t h o d s  0, 1, 2 

that  every point P~ is connected (directly or not), by a straight line, with every 
point P~. belonging to the square centered at P~ and with side length (2n -t- 1). 

We can easily see that  the slope of every segment, relative to the axes, is repre- 
sented by a rational number. For symmetry, we can represent the elementary cell 
by giving only the segments with slopes t such that 0 < t < 1. See Figures 4(a)-  
(d) for methods 0, 1, 2, 3, respectively. 

In method n (n ~ 0), these slopes constitute the Farey sequence of order n 
(Table I) ,  that  is, the ordered sequence of all rational numbers between 0 and 1 
~vith denominators less than or equal to n (see, for example, [7]). The directions 
having those slopes can be thought of as allowed directions for the wavefront. 

Let us now define a reticular network whose vertices and arcs are in one-to-one 
correspondence with the picture points and connections, respectively, so that  to 
any path through the network there corresponds a polygonal arc on the real plane. 
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FIG. 4. 
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Connections in the elementary cells correspond to terms of Farey 
sequences. Methods 0, 1, 2, 3 

TABLE I 

n Farey sequence of order n 

1 0,1 
2 0,½,1 
3 o, L L L t  
4 0 ,¼ ,} ,½ , ] , } , 1  
5 0 , ~ , ~ , ~ , ~ , ½ , ] , ~ , ~ , ~ , 1  
6 o, L L L L L ½ ,  L i ,  L L L 1  

To every such arc, a length is assigned equal to the sum of the lengths of the associ- 
ated connections. Given two points, P~ and P~, and the two corresponding vertices 
P / a n d  P / ,  let us define two functions: d = d(P~, Pi) is the Euclidean distance 
between the points P~ and P j ,  and T = T(P/ ,  P / )  is the length of the minimal 
path through the network between the vertices P / a n d  P / .  Evidently, we have 

T(P/ ,  P / )  > d(Pi ,  Ps). (2) 

4. A Minimal Path Problem 

We now prove the equivalence of the skeleton problem with an optimal policy prob- 
lem. This problem is a well-known one, and its solution is equivalent to the solution 
of a system of functional equations whose unknowns are minimal path lengths. 

Let us define the following sets: 
U = {P' 1 1 < xp < r; 1 < yp < s; xp, yp integers}, the set of all the vertices. 
I = {PI I a(P ) = .TRUE.}, the set of vertices corresponding to the points of 

the figure. 
E = {P' I a(P) = .FALSE.} = U - I,  the set of vertices corresponding to the 

points of the picture which are external to the figure. 
Let us take an extra vertex P J  and connect it with all the vertices P'  ~ I using 
arcs whose length is assumed to be zero. For every vertex P / ,  we can find a minimal 
path to P j .  

We define an external point P~ to be a skeleton point if and only if P /  C E and 
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FIG. 5. An application of the definition of discrete skeleton. The points marked with the dot 
are internal points; the points  marked with the square are skeleton points. The length 

of every arc is 1. 

it does not belong to a minimal path from any other vertex to P j .  To construct the 
skeleton, we determine for every vertex Pi' the "optimal policy" (or policies), 
namely the arc (or arcs) connected to Pi t belonging to a minimal path from P (  
to P~', and countersign it as going out from P( .  P i  is a skeleton point if and only 
if p r E E and there is no arc connected to P~.' and countersigned as going in. (See, 
for example, Figure 5.) 

The determination of the optimal policy is a well-known problem. Bellman [8] 
has shown the solution of this problem to be equivalent to the solution of the fol- 
lowing system of functional equations: 

T~ = rain (t~. + T~.), i = 1, 2, . . .  , N  - 1, j -- 1, . . .  ,N,  j # i, 
(3) 

TN = 0, 

where, if the arc connecting the vertices P (  and P j  exists, t~i is equal to the length 
of this arc; otherwise, t~ = ~.  

T~ in (3) is the length of the minimal path to the figure, that is, T~ = T(Pi ,  PN). 
For every vertex P( ,  the "optimal policy" is given by the arc (or arcs) tik for which 

T~ = tlk + Tk. (4) 

Then Pk is not a skeleton point if and only if we have Tk = Ti - t~ for some Pi'. 
To construct the skeleton, we must thus: 

(a) determine for every node P~ the distance T~ to the figure; 
(b) construct the set 

S =  {P~IPk~ E E; forevery P~, T k ~ T ~ - t i ~ } ;  

(c) associate with every point P~ E S the parameter Tk • 

5. A Quasi-Euclidean Distance 

In this section it is proved that we can always find a minimal path between every 
pair of vertices of our reticulum (assumed infinite) such that the corresponding 
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F~(~. 5. Minimal path,~ fr~m P~ 1:o P~ in an infinite re~icutum 

polygonal arc consists of just two straight-line segments. I~ consequence, an ana- 
lytical expression for the minimal path length between any pair of vertices is ob- 
tained, and the errors in the various methods as compared with Euclide~m di:stanee 
are computed. 

To compute the length of the minimal path between the pair of vertices (1 ) ( ,  P ( ) ,  
let t be the slope of O~e segment P,P~. By symmetry, it suffices to e~sst.~me that  
0 < t < 1. Let 

Pt = (x l ,  y~), 5 x  = x 2 -  x l ,  t -----AY" 
~ x '  

P~ = (x~, y~), ,~y = y~ - y l ,  0 ~ t < 1. 

THEOItEM .1. Suppose given an infinite reticular network of type n. 
(a) If  the rational number t belongs to the Farey sequence qf order n, lhen only one 

minimal path belween P~' and P2 t exists. The corresponding polygonal are connecticut 
P~ and P~ is a single straightoline segment. The length of the minimal path is thus 

,., , = t~)  t ~/(P,, P~') Ax(1 + (5) 

(b) Suppose that the rational number t does not belong to the Farey sequence of 
order n. Let h and t~ be successive terms of this sequence ~uch that t~ < t < t,~ . I n  thi~ 

) t  
case we always have more than one minimal path between P /  and t ~ . However, we 
can always find two minimal paths such that each (V the corresponding polygonal arcs 
consists of just two straightoline segments, having slopes t~ and t~ (see Figure 6(a)).  
Thertfore, the length of any minimal path is easily found to be 

( t - h  h - t  ) 
T(P, ' ,  P~') = Ax \~j.-Z-.~.~.(1 + t~) ~ + h--~-. ~ (l + h~) :~ , h < t < t2. (6) 

I'm)OF. In case (a), the proof is trivial, and eq. (2) holds with equalit.y. We 
now turn to case (b), where we prove that (i) these paths exist, and that (ii) they 
are minimal. 

(i) Let us consider the points R and S (Figure 6), the vertices of the parallelo- 
gram with diagonal P iP : .  If we represent the rational numbers t~, t:,  t as lowest 
term fractions, 

a~ a,~ ,by 
h = ~ , t 2 -  b~' t = ~ ,  

we h a v e  

z) 
'iiiiil 
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b l b ~ y -  a~b~Ax a2blAx-  blb2Ay 
- -  . ~ X s  - -  321 - ~  ; x ,  -- x~ a2bl -- a~b2 a2b~ -- a~b2 

azblAy ~ alaeAx ala2Ax -- albeAy 
Yz¢ - yl = a~bl -- a~b2 ' yz -- yl = a2bl -- alb~ 

t~ut a2b~ - a~b2 = 1 because al/b~ and a2/b2 are two successive terms of a Farey 
sequence [7]. Therefore R ~nd S have integer coordinates, i.e. they correspond to 
vertices. 

(ii) We first show that the function T (P/ ,  P2') defined in (6) is a "distance," i.e. : 
(I) T ( P / , P 2 ' )  >_ 0; T ( P / , P / )  = 0 iff P / =  P / .  

(II) T ( P / ,  P2') = T(P.2', P / ) .  
(III) T ( P / ,  P~') <__ T ( P / ,  Q') + T(Q', P / ) ) .  

( I )  and (II) are obvious. 
Remember now that the length of a path is equal to that of the corresponding 

polygonal arc. We can then easily see (Figure 6(b)) that in (III) equality holds 
for  all points Q internal to the p~ra]lelogram P~RP2S; otherwise, strict inequality 
holds. We call the function T ( P / ,  P~') the q.E. (quasi-Euclidean) distance. 

Suppose now that we have found the q.E. distance from any vertex P2' to the 
vertex P / ;  this distance will sat isfy a system of functional equations of type (3). 
Because the solution of (3) is unique, it suffices to prove that the distance defined in 
(6)  satisfies (3 )~ in  other words, tha t  

T(P/ ,  P2') = rain (t~,.~, -t- T ( P / ,  Q')), 
QI 

where Q' is any vertex directly connected to P2'. But this follows immediately by 
applying (III)  to the vertices P / ,  Q', and P2'. 

The function 

T(PI ' ,  P2') - d(P1, P2) 
6 

T(PI', P2') 

where e is given in percent, is shown in Table II for methods 0, 1, 2, 3. 
Note that method 2 should normally be satisfactory, since its quasi-Euclidean 

distance is very close to Euclidean distance. Figure 7(a)-(c)  shows the locus of 
points having a given q.E. distance from a given point for methods 0, 1, 2, respec- 
tively. This locus ia a polygon which can be inscribed into the circle consisting of 
the points having the given Euclidean distance. This can be shown by putting T = 
constant in (6). 

6. An Iterative Algorithm To F ind  the Distance From a Figure 

For the solution of the functional system (3) an iterative Mgorithm has been de- 
veloped. In the simplest case (method 0), this algorithm coincides exactly with 
~osenfeld's. Because of the regularity of the network, it converges in two iterations 
only, and only half of the vertices connected to each vertex need to be examined 
in each iteration. 

A general method can be outl ined as follows (see [9]) : 
(a) The initial condition may  be, for instance, Ti ° = tin • 
(b) The iterative formula is 
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T k k--1 = r a i n  ( t ~ - +  T~ . ~ , t ~ +  T~ ),  i = 1 , 2 ,  . . .  , N -  1, (7)  

w h e r e  E~1 is t h e  se t  of t h e  v e r t i c e s  P j  for  w h i c h  w e  h a v e  t th ' eady  c o m p u t e d  the  

v a l u e  T~ k in  t h e  k t h  i t e r a t i o n ,  a n d  El2 = U - E l ,  { P ( } .  T h e  o r d e r  i~1 w h i c h  we 

TABLE I I  

a t = tgce 
percent  for  method  number  

0 1 Z 3 

0 0. 0. 0. O. 0. 
2°30 ' 0.04366 4.267 1.712 0.935 0.613 
5 ° 0.08749 8.335 3.230 1.677 1.034 
7030 ' 0.13165 12.197 4.551 2.226 1.263 
10 ° 0.17633 15.846 5.674 2.580 1 299 
12°30 ' 0.22169 19.273 6.595 2.739 1.142 
15 ° 0.26795 22.475 7.313 2.702 0.793 
17030 ' 0.31530 25~442 7.827 2.470 0.251 
20 ° 0.36397 28.171 8.136 2.043 0.157 
22°30 ' 0.41421 30.656 8.239 1.421 0.252 
25 ° 0.46631 32.893 8.136 0.607 0.157 
27°30 ' 0.52057 34.876 7.827 0.251 0.088 
30 ° 0.57735 36.603 7.313 0.792 0.193 
32o30 ' 0.63707 '38.069 6.595 1.142 0.107 
35 ° 0.70021 39.273 5.673 1.298 0.200 
37°3ff 0.76733 40.212 4.551 1.263 0.437 
40 ° 0.83910 40.883 3.229 1.038 0.482 
42°30 ' 0.91633 41.287 1.712 0.613 0.337 
45 ° 1. 41.421 0. 0. 0. 

I 

a 

¢ 

FIo. 7. Loci of points  h~ving ~ given q.E. distance from ~ given point  for methods 0, 1, 2 
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compute  the values T/~ is arbitrary t.md m~,y depend on the iter~tion. Ffowever, the 
convergence rate of the method can be greatly increased by a clever choice of the 
order  (see [9, 10]). 

' rpm+l ~i*n (e) The method stops when we have, for all P, , - i  = In fact, in this 
c~se the values 7' "~ satisfy ~he system (3), so we can write 

Tm+l m 
i = T i  --- T i .  ( S )  

It. is interesting to observe that the values T, ~ form a monotone nonincreasing se- 
quence,  i.e. 

T °~ _> T¢ i _> . . .  _> T .'~ _> T~. (9) 

Assume that we have performed j iterations, and have obtained the se- LEM[MA 1. 

quence 

A = (P 1,1, " ' ,  . . ,  . . ,  

where P'~,,~ is the s4h vertex for which we computed the value in the r-th iteration. 
Consider an optimal path from P~,-' to P i ,  sc~y the sequence 

( P ;  = . . . ,  = P / )  = B,  

where Pi~ (k = O, • ..  , h - 1) is directly connected to P~+, . I f  the points P~,, . . .  , 
t°~h appear in order in the sequence A (we will then s w  that the sequence B is a "sub- 
sequence" of the sequence A ) then we have 

T~,, = T~ h. (9a) 

For the proof of this lemmu, see Appendix 1. 
THEOi~EM 2. In  our specific case, the points P~ are arranged in a rectangular 

array. Compute the values T~ ~ in forward raster sequence and Ti 2 in bac/~ward raster 
sequence) We then have Ti  ~ = T ~ for all P / ,  i.e. the method converges in two iterations 
only. 

We can also obtain other simplifications: 
(a) We  need consider only vertices P (  C E (since for P~' ~ I ,  "1'i = 0). 
(b) In  computing (7) in the first iteration, there is no need to consider vertices 

P ; C E~2 , since in this case we always have T~ ° = ~ .  
(c) W e  have E~I = ~, so also TI 1 = ~ .  
(el) We  have L'~2 = E ~  = Ea  and £'~ = E~, = E~2, so we can make use of T~ ~ 

in  the second iteration. 
The algorithm is then as follows: Let us give to each node P (  art index correspond- 

ing to the forward raster sequence, and: 
(a) Let 

Ti  1 = 0 i f  

T i 1 = ~ i n  
P]tEEil 

(b) Let 

T i 2 .~ 

P (  E I ,  T11 = ~ i f  P /  E E, 

( t ~ +  T~ ~) if P /  E E; Ea = { P /  Ij < il. 

rain ( t~  + T~,  T~I), i N 1, 1 i f  ~ E E,  
P~IEEi2 

E~2 = { P /  Ij > i}, 
1 See [5]. 
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T} = 0 ¢f P /  C I, 

U =  E U I = E ~ U E ; ~ U { P ( } .  

(c) Let 

S = {Pk } Pk' ~ E; for every P (  directly connected to P~', T~ 2 ~ T~ ~ - t4~}. 

(d) Associate to every point Pk ~ S the parameter T2. 
P~OOF. Let us consider a vertex P /  and a minimal path from P4' to P J  (or 

from P j  to P / ;  it is the same since we are concerned with a nondireeted graph). 
In this path, the vertex directly eormected to P J  will be Q' C I. But  between p~' 
and Q~ there exist two minimal paths (a minimal path) as described in Theorem 
lb (a).  In fact, even though in this case the network is not infinite, the polygonal 
arcs corresponding to these minimal paths cannot be cut by the edges of the arr~y, 
because we always have "allowed directions" parallel to the edges. 

Let  us divide the allowed directions into two sets D~ and D~ (see Figure 8). 
Suppose that  there is more than one minimal path from Q' to P ( .  The two direc- 
tions of the polygonal arcs corresponding to these minimal paths can belong: 

(a) both to D~, 
(b) both to D2, 
(c) one to D~ and the other to D~. 

In ease (a),  it is easy to see how the sequence corresponding to the minimal part 
from PN ~ to P (  is a "subsequenee" of the sequence constructed examining the node~ 
in forward raster sequence; we can therefore apply Lemma 1, and we have reaehe( 
the solution at the first iteration. 

In case (b) we similarly obtain the solutiott at the second iteration. 
In  case (e) we can consider the minimal path from P J  to P( ,  of the two availaN 

ones, in which we first meet the ares corresponding to the direction contained i~ 

a 

J 

FIG. 8. 

t oilowed directions 

t allowed directions 

c 

e D I 

e D2 

b 

Allov~ed directions belonging to D1 and D,2 are considered in the first and 
second iteration of the iterative algorithm respectively 
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~ :  ~ : l \ / i x / , x : l \ , j \ : j \ : E , / ,  
j , \  : , , , x  : \ j : \ j  \ : \  : ~  : ~ I  

~ \ ,  i \ / \ ]  I ' ~¢  / x ! \%¢: i ~  / i x h ¢ /  i \  , i 

~"" - ,~ t  - "  ) F "  - T~< - "  7'19" - 9 ~  - ' i F - -  ; l ' : "  - ;T~ - - - 0  
I i ~ / l ! t l  \ l l ~ : l \ / l \ ~ l  \ 1  \ / l \ / : l ~  

: \ I : ~ I : X l / \  : \  ~ \  f ,  \ 1 / \  I , \  I 

~- . . . . .  7 V  - -  ~ ¢ "  - ;~c - - ~ - -  , ~ < - - " c  - - ~ c  - - -  
,~  : ~ \  / x : i x  i x i \  / ~  : ~ \  / / ,  
I : ,  , ,~ ,  ; ~ ,  , 7 %  ] 7, , 7 ,  , 5 " ,  i ? ,  I )< ,  I 

: \ 1 /  \ / \ 1 /  i /  \ 1 /  \ 1 ,  \ 1 /  \ 1 :  t 
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FIG. 9. An example  of appl ica t ion of the i te ra t ive  a lgor i thm:  me thod  1 

D1 and then the arcs corresponding to the direction contained in D2. In this way, 
we obtain a suitable sequence B. Finally, suppose that there is oifly one minimal 
path from Q' to P~'; then either case (a) or case (b) holds. 

Thus by utilizing both iterations we can apply Lemma 1 to all the P(  and obtain 
the solution in all cases. 

Figure 9 shows an example of the application of this algorithm. In Figure 9(a) 
we have the reticular network corresponding to method 1, where the vertices directly 
connected to P J ,  i.e. corresponding to some P~' E I, are countersigned. In Figure 
9(b) the values of T~ 1 are shown; in Figure 9(e) the values of T~ ~ = T~ are shown. 
In Figure 9(d) we see the skeleton points with the corresponding parameters. 
Here and in the following figures, we show only the integer part of the distance, 
assuming the unit length to be 10. 
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7. A Simplified Dantzig Algorithm To Obtain the Skeleton 

In this section, a simplified Dantzig algorithm for obtaining the skeleton directly is 
presented. Each vertex is considered onty once. The distances are computed in 
order, beginning from the smallest ones, so that we can interpret this algorithm as a 
discrete wavefront propagation. In what follows, the general Dantzig method for 
optimal path determination is described (see [9]). 

(1) In the first step, we look for the vertex (or vertices) Pk' such that tk~ = 
min tin. We can immediately write T~ = 0, Tk = tkN. We then define the sets 
E12 = {P~}, E2 2 = U - -  E12. 

(2) We have to compute the values 

Th '~ = rain (th, + T~) for every P~' 6 E2 ~. (10) 
Pzt  E tll m 

Dantzig proved that, for the vertex (or vertices) Pk' such that 7'k "~ = min T~, m, 
Ph'  E E2 m 

we have already obtained the minimM length, i.e. 

T~ ~ = rain Thm = T k .  ( t l )  
Phr~E2  m 

The sets E~ and E2 for the next step are given by E~ +1 E m + {pkr} ~,~+1 
E2 m - {Pk'}. That means that  the set E~ m is the set of vertices for which, at the 
beginning of the ruth step, we have already computed the distance. 

(3) The algorithm stops at the step r such that  E~ +~ is empty. With this algo- 
rithm, vertices are processed according to their distances; that is, if at the ruth step 
we have P~ E E~ m and P j  E E2 m, i.e. if Ps will be accepted after P i ,  we can conclude 
at once that  

T{ < T~. (12) 

In our application, it is interesting to point out how, with this algorithm, we also 
determine the optimal policies in quite a natural manner. In fact, to find the optimal 
policy (or policies) for the vertex (or vertices) Pk' accepted in the ruth step, it 
suffices to remember the vertex (or vertices) P~' for which (tk~ + T~) is the least 
in (10). The optimal policy is (or policies are), the arc (or ares) connecting Pk' 
and P~'. Therefore, we can countersign all the vertices P~' that we meet. When the 
algorithm stops, the noneountersigned vertices belonging to the set E form the 
skeleton. 

We now examine in detail this algorithm for method 0. In this ease, the distances 
can assume integer vahles only. 

THEOREM 3. In method O, ( i) the vertices Pk' accepted in the m-th step are all those 
belonging to the set E~ m and directly connected with some vertex belonging to E~ ,  • ( ii) 
the distance of all these vertices is m. 

PROOF. Let P'km be the vertex (or vertices) accepted in the ruth step. 
(i) From inequality (12) we can write Tk~_~ = max (T~), P~' E E~ m. Then 

from (10), 

Th ~ < 1 "4- Tk~_~ (13) 

for every Ph' 6 E~ ~ and directly connected to a node P~' 6 E~ ~, but from (11), 

Tk~ _< Th ~. (14) 
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FIG.  10. A n  example of application of the Dantzig algorithm: method 0 

Therefore from (13) and (14), Tk,n _~ 1 + T~m_ ~, but from (12), Tkm > T~,~_I. But 
the values T can only be integers; therefore from the last two inequalities we obtain 

Tk~ = Tk~_~ + 1. (15) 

But from (13) and (14), Tkm = Th m, that is, all the nodes Ph' ~re accepted. 
(ii) We have Tkl = 1. Therefore from the finite-difference equation (15) we 

have Tkm = m .  

This theorem allows us to obtain easily the distance of every vertex for method 
0. It suffices to find the vertices belonging to the boundary of the set 2 E, erase them 
from the set E,  and iterate the procedure: the points erased in the ruth iteration 
correspond to nodes whose distance is m. (See the example in Figure 10.) 

2 This result can be accomplished, for instance, with the algorithm described by Ledley in [11]. 
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A simpler algorithm can be found for methods greater than 0 as well, with the 
aid of the following theorem. Let C'£'~ '~ be the "boundary" of the set E.] ~, i.e. 

CE2 TM = { P ( I P (  < E("; 3Q', T(P~', Q') = 1 .AND. Q' { E2"~}. 

'I'r~EOeEM 4. Assume that the Dantzig general algorithm has been applied t]~ot~gh 
the (m - 1)-st step. Then 

( a) All the points accepted at the m-th step belong to CE2 m. 
(b ) 7"he distances of two nodes, both belonging to some CE2 m, diO~r by less than 1. 
(c) For the vertices Ph' belonging to CI5'2 TM and not accepted at the m-th step we can 

write 

Thm = Th. (16) 

For the proof of this theorem, see Appendix 2. 

The simplified Dantzig algorithm is then: 
(1 )  E,  1 = I,  E 2 1 =  E.  
(2) At the beginning of the mth step we already have the sets E~ m and E(:'. 

Therefore we can (a) construct the set CE2 "~, for instance using Ledley's algorithm 
[11]. We then (b) have to compute the values 

min (b,, + T~) = 7'h m = Th 
Px~EBI m 

for the vertices Ph' belonging to CE2 '~ - ( C E2 TM N CEE~ -~) (we cart assume C E2 ° = 
q.,m--1 ~h m ~). In fact, we remember the values *h = T~, for the nodes ph, belonging 

to CE2" C] CE~ '-~ from the previous iterations. (c) We also have to countersign the 
vertices P , '  for which (t~, W 7',) is the least, i.e. for which T, = T,, - ta,. Among 
the vertices P~'(d) we look for the vertices P~' such that Tk = min Th where P~; 
CE~ '~ (and not Ph' C E('*, as in the general Dantzig algorithm). We can now cot> 
struct the sets 

E~ "+' = E," + {Pk'}, E~ '+' = E2m _ { p , }  

that will be needed in the next iteration. 
(3) When E2 ' = ¢,, the noncountersigned vertices Pa' form the set S; the cor- 

responding distance is Ts (see Figure 11 ). 

With this algorithm, each vertex is examined only once, since as soon as it is 
reached by the boundary we can compute the definitive distance value. 

The property proved in Theorem 4, part  (b) means that the set CE2" can be seen 
as a wavefront. Therefore this algorithm realizes the discrete propagation of the 
figure contour. 

8. The Inverse Transformation: How To Obtain the Figure, Given the Skeleton 

Bluln [1] proved that it is possible to achieve the following result: If one excites 
every skeleton point at a negative time equal to the corresponding parameter, at 
t = 0 the wavefront is the contour. In the discrete case too it is possible to prove 
that given the skeleton, the points of the figure can be determined by the solution 
of a minimal path problem. Moreover, for the solution of this problem, the saxne 
iterative algorithm described in Section 6 can be used. 

We first prove the following almost obvious lemma. 
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FIG. 11. An example of application of the Dantzig algorithm: method 1. P '  
belongs to E~+I; ~ t  is countersigned 
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LEMMA 2. Let G be an undirected graphs and let T ( P ( ,  P / )  be the minimal path 
length between the 'vertex P~ and the verte:~: P / .  Now adjoin a new v~rtex Pk ~ a~d corn- 
pule in the new graph G k the minimal length Tk( P( ,  P/). Then 

(a) T~(1P/, P/) < T(&', ~'/); 
(b ) I f  P~' belongs in G k to a minimal path belween Pk' and P / ,  agZ the minimal paths 

between P (  and P j  in G and G k coincide. 
PROOF. (a) G is a subgraph of G k. 
(b) A minimal path bctweerl P{' and Pj' certainly does not contain P~/. There- 

fore a corresponding path exists in G, and (a) holds with equality. Conversely, ~ 
minimal path in G must be minimal in G ~ too, since otherwise equality does not hold 
in (a). 

Let be C an integer constant such that C > maxe{~s T{, where S, as usual, is 
the skeleton point set. Now connect an extra vertex Pu '  to every skeleton node P,( 
with art arc of length teu = C - Ts .  Let G ~v, G M, g w" be the networks with extra 
nodes P N', P M', and P N' P M', respectively. Let 7"V(P(, P / ) , TU ( P ( , P / ) , T~*'V(P/, 
P / )  be the minimal path lengths between P (  and Pi t computed in G N, G M, GuN, 
respeetively. 

THEOREM 5. Let T~ = TN(p( ,  P j ) ,  T (  = TM(p( ,  PM'). Then: 
(a) I f  P.i' E E we have 7'i' = C - T i .  
(b) If P (  E IwehaveT~ > C. 
From the skeleton we can thus obtain the sets E, I again. (We have introduced 

the additive constartt C, since otherwise we would have ares of negative length.) 
PROOF. We compute TMN(pM', P j ) .  P J  is directly connected with sketetor~ 

vertices only. Therefore a skeleton vertex P, '  will belong to an optimal path between 
PN' and P j :  

TMN(pM ', PN') = t~M + TMN(P/, PN'). 

We can apply Lemma 2(b) : 

T'N([ ' / ,  P~') = TN(P/ ,  P~') = T~. 

Therefore we have 

TMN(pM', P~.') = try -I- 5I'~ = C -- 7'~ + T~ = C. 

But a path from PN' to PM' Of length C touches every skeleton vertex Ps': 

51's +tSM = C for every Ps' C S. 

Therefore every skeleton vertex belongs to a minimal path between P j  and Par', 
while evew nonskeleton vertex contained in E belongs to a minimal path in G N 
Dora some P , '  E S and PN', by definition of the skeleton. But minimal paths be- 
tween every Ps' C= S and Pu' coincide in G s" and G **N by Lemma 2(b). Therefore 
every vertex contained in E belongs to a minimal path kom P j  to Pax'. We can write 

C = TM~(pM', P J )  = T~JV(PM', P, ')  + TMA~(P~ ', P j ) .  

Applying Lemma 2(b) twice, 

C = TM(p~/,  Pi')  + TN(P~ ', P J )  = T~' + T i .  

If P~ E I, we have t~  = 0. Therefore T '~ ' (P ( ,  PM') = TMN(PN', PM') = C; and 
from Lemma 2(a), we have 7"(P~' ,  PM') __> C. 

Jom]~al of the Association for Computing Machinery, Vol. 15, No. 4, October 1968 



A Method fo~ • Obtaining Skeletons Using a Quasi-Euclidean Distance 617 

• ! 

To compute the wdues T~ it suffices to apply the iter~tive algorithm of Section 6 
wi th  initial values T~°= C - Ts if Pi ~ S, T~°= oz otherwise. 

9. Extract#tg the Most Important Skeleton Branches 

I n  our skeleton, nonsignificant points can appear that  ndght make it difficult to 
utilize this method for pattern recognition purposes. In this section, a criterion is 
proposed for determining the most significant skeleton branches. This criterion de- 
pends upon a parameter that  is essentially a threshold. I t  can be applied, with slight 
modifications, to the algorithms presented in Sections 6 and 7. 

Let us consider a skeleton in the continuous real phme. Often we can single out 
"branches," that  is, pieces of skeleton h~ving the form of contiImous curves. In 
this  case, we can take the derivative along the curve: 

g(P)  = lira d(P~) -- d (P )  
e,-,~ AS ' 

where d(P)  and d(P~) are the skeleton parameters at P and P~, and AS is the are 
length of skeleton branch P £ .  If we consider the skeleton as the intersection of 
propagating wavefronts (Section 2), v(P)  = 1/g(P) has the meaning of the speed 
a t  which, in P, the given skeleton branch is generated. 

Blum [1] suggested that  the most significant skeleton branches, from a perceptual 
point of view, might be the ones generated with the highest speed. The extrema of 
skeleton branches, where the branches stop or are connected with other branches, 
and the isolated points, are also very important. A limiting speed can thus be fixed, 
and one can accept only the detached points, and the skeleton branch pieces with 
speeds greater than the threshold value. 

For example, Figure 12 shows the same ease as in Figure l (a ) ,  together with the 
values of v(P).  We can see that this parameter is infinite at the vertex of the hyper- 
bola, and decreases asymptotically toward 1. In fact, we tacitly assumed the wave- 

t]~v=1.22 

t=2 ~t v=2.74 /~/// 

t - - 3 /  v= 1.47 

t=[,/ v-- 1.22 

,;;X=,,o 
Fie .  12. A ske le ton  b r anch  and  i ts  p ropaga t ion  speed  
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front propagation velocity to be one. I t  is clear that  the most important part of this 
skeleton is the central one. 

In order to extend this criterion to the discrete ease it is convenient to give 
another equivalent definition of g (P).  Let us compute for every point P the distance 
d(P) from the figure, and the directional derivative 

f (P,  a) = lim d(P1) - d(P) 
Pl~e Al ' 

where A1 is the length of the segment PP1, and where the oriented segment Pp~ 
forms an angle c with a reference axis. Let 

f (P)  = maxf (P ,  a).  
tx 

I t  can be seen that:  
(a) If P does not belong to the skeleton, f (P)  = 1 and conversely, so that the 

function f (P)  could be used to define the skeleton. 
(b) If P is a "departure" point (i.e. a nearest point to the figure), or a midpoint 

of a skeleton branch, f (P)  is equal to the inverse 1/v(P) of the speed defined above. 
(e) If P is an isolated point or an "arrival" point (i.e. a farthest point from the 

figure) of a skeleton branch, f (P)  is negative. 
In the discrete case, we replace the distances by minimal path lengths, and the 

derivatives by finite difference ratios: 

Tj- T~. 
fl -~- max 

Pj  t l i  ' 

Pi  directly connected to Pi , where T j ,  T~, hy have the usual meaning. From (3) 
it follows that - 1  < fi _< 1. 

Instead of the definition of skeleton given in Section 4, we now propose the foI- 
lowing: 

Definition. The point P~ is a skeleton point if and only if P (  E E and - 1  _< 
f(Pi) < K < 1, where K is an assigned threshold value. 

In order to avoid in computing as many divisions as network arcs, the following 
equivalent definition is preferable: 

S {P~ I P '  = ~ E E; for every Pj ,  T~ - T~ < K'hi}. (17) 

If K = 1 this definition coincides with the definition given in Section 4. In order to 
obtain this reduced skeleton with the iterative algorithm, it suffices to replace step 
(e) of the final algorithm described in Section 6 by definition (17). To obtain the 
same result with the simplified Dantzig algorithm described in Section 7, we must 
change step 2(c). Instead of countersigning the vertices for which T, = T~ - th,, 
we must countersign the vertices for which T~ < Th -- K.  th~. 

In Figure 13 we show the skeleton of a digitized circle: 
(a) Method 1 without reduction (K = 1). 
(b) Method 1 with elimination of the less significant skeleton points using the 

threshold K = 0.90. 
(c) Same as (b), but with K = 0.80. 
(d) Same as (b), but  with K = 0.70. 
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( a )  (b) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

O 0 0 0 0 S  . . . S O 0 0 0 0  0 0 0  O 0  . . . . .  0 0 0 0 0  

O00S . . . . . . .  S 000 000 . . . . . . . . .  000 

OOS . . . . . . . . .  SO0 O0 . . . . . . . . . . .  O0 

O 0  . . . . . . . . . . .  O 0  O 0  . . . . . . . . . . .  O 0  
0 S  . . . . . . . . . . .  S 0  0 . . . . . . . . . . . . .  0 

0 . . . . . . . . . . . . .  0 0 . . . . . . . . . . . . .  0 
0 . . . . . .  S . . . . . .  0 0 . . . . . .  S . . . . . .  0 

0 . . . . . . . . . . . . .  0 0 . . . . . . . . . . . . .  0 

0 S  . . . . . . . . . . .  S 0  0 . . . . . . . . . . . . .  0 

O 0  . . . . . . . . . . .  O 0  O 0  . . . . . . . . . . .  O 0  

OOS . . . . . . . . .  SO0 O0 . . . . . . . . . . .  O0 

O00S . . ..... S 000 000 . . . . . . . . .  000 

O 0 0 0 0 S  , . . S O 0 0 0 0  0 0 0 0 0  ..... 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

(c) (d) 

F I G .  13. T h e  s k e l e t o n  o f  a d i g i t i z e d  c o n c a v e  c i r c l e .  S u c c e s s i v e  t h r e s h o l d s  r e d u c e  

t h e  s k e l e t o n  t o  t h e  c e n t e r  o n l y  

10. Nonsignificant Skeleton Points Close to Matrix Boundary 

Often on the matrix boundary there are elements external to the figure. In this case, 
some elements near the matrix boundary usually become meaningless skeleton 
points. For example, the external skeleton of a triangle in the real plsme is empty, as 
usual for a convex figure [1]. In Figure 14 are shown the distances and the external 
skeleton of a discretized triangle (method 1). In this case, the skeleton is not empty. 
The vertices corresponding to points Pi  E S on the matrix boundary in Figure 14 
do ,lot belong to a minimal path of any other vertex, only because the network is 
not infinite. 

In this section a method of eliminating the skeleton noise points close to the matrix 
boundary is described. In Figure 14, all the skeleton points in the first and last row 
aad in the first and last column have no meaning. In the general case, suppose a 
digitized picture given in the form of a rectangular matrix of elements ass (i  = 
1, . . .  , r; j = 1, . . .  , s). Interpret  (i, j )  as the coordinates xv and yv of a point 
P in the real plane, and construct the skeleton S in the usual manner. Now add to the 
reticulum, as external vertices, the vertices corresponding to all the remaining 
points of the plane with integer coordinates, and compute the skeleton S* in this 
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14 I0 i0 14 24 34 42 52 S 

i0 0 0 i0 20 28 38 48 S 

I0 0 0 i0 14 24 34 42 S 

I0 0 0 0 I0 20 28 38 S 

i0 0 0 0 I0 14 24 34 S 

I0 0 0 0 0 i0 20 28 S 

I0 0 0 0 0 i0 14 24 S 

I0 0 0 0 0 0 i0 20 S 

14 I0 i0 i0 I0 I0 14 24 S 

(a) 

FIG. 14. The dis tance 

S S S S 

0 0 . . . .  S 

0 0 S S 

0 0 0 S 

0 0 0 S S 

0 0 0 0 S 

0 0 0 0 S S 

0 0 0 0 0 S 

S S S S S S 

(b) 

t r an s fo rma t ion  and the ske le ton  of a digitized convex tr iangle 

infinite reticulum. One could ask what is the difference between the skeleton S and 
the subset RS* of the skeleton S* included in the original bounds of the matrix. 
The answer is given in the following theorem. 

THEOREM 6. ( a) The distances of all the vertices corresponding to points included 
in the original matrix are the same in both cases. 

(b) RS* ~ S, and all the points of the set S - RS* can belong only to a frame B~ 
of the original matrix, whose width is 1 in the case of method O, and is n in method n 
(n ~ 0). 

PROOF. Let us define the following sets: 
U = {P' I 1 < xp < r; 1 < yp _< c; xp, yp integers} 
I = { P ' l a ( P )  = .TRUE.} 
E = { P ' l a ( P )  = .FALSE.} = U - I 
S = {Pk I Pk' E E;  for every Pi', Tk # T~ -- tik} 

U* = {P' I xp, yp integers} 
I* = I 
E* = U* - I 
S* = {Pk I PJ C E*; for every P~', Tk* # T~* -- tik} 

RS* = { P I P  E S*;P '  E U} 
B.  = { P I 1  ~ x~ ~ m . O R . r -  m < x p  < r .OR.  1 < yp < m . O R .  

e -  m ~ yp_< c ; i f n  = 0 t h e n m  = l e l s e m =  n;PP C U} 
We must prove that 

(a) Ti = Ti* for every Pi p E U; 
(b) S N ( U - B , )  = RS* n ( U - B , ) ,  S N B , ~ R S * N B , .  

(i) Suppose given for Pi p a minimal path to the figure as described in Theorem 
1, computed in the infinite reticulum. Let  Q' be a vertex contained in I* belonging 
to this path. If P (  E U, this is a minimal path in the finite case as well. In fact, 
in this case both Pi p and Q' belong to the finite reticulum (I  = I*), and therefore 
the whole minimal path belongs to the finite reticulum, since in every method we 
have connecting segments parallel to the edges of the matrix. 

(ii) In determining S and RS* apply the definitions: if Pk p C U - B , ,  the 
vertices connected to P~' are the same in both the infinite and the finite reticulum, 
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as are the distances by (i) ; hence the result is the same. If P~' C B,~, the vertices 
connected to Pk t are fewer in the finite reticulum than iu the infinite one, so if the 
relation "Tk ~ T~ - t~k for every P~" holds in the infinite reticulum, it certainly 
holds in the finite one too, but not conversely. 

In order to obtain the skeleton RS* using the algorithms of Sections 6 and 7, it 
suffices (a) to enlarge the given matrix by adding a frame of width 1 in the method 
0, and n in the method n (with a~. = .FALSE.), (b) to compute the skeleton in the 
usual manner, and (c) to erase the frame. 

Let us now return to Figure 14. We see that we have skeleton noise points not 
only on the boundary of the matrix, but inside too, along the contour of the figure. 
The reason for this unwanted result is very simple. In the real plane, a point on the 
contour where we cannot define the tangent line to the contour is always a point 
where the skeleton touches the contour. In the discrete case, a similar situation is 
realized whenever the contour points do not lie in a line, since in a digitized figure 
curves are impossible. Note that  this does not happen in the method 0; in fact, in 
this case the discretized contour does not introduce noise, since it looks smooth with 
the metric used. 

In order to eliminate these skeleton noise points for methods greater than zero, 
it usually suffices to use the method described in Section 9 with a threshold value 
K g 0.70. (See. for instance, Figure 13.) 

11. Two Computer Programs: Description and Comparison 

In this section, a short description is given of FORTRAN IV programs which realize 
the two algorithms described in Sections 6 and 7 and modified in Sections 9 and 10, 
for the methods 0, 1, 2, 3. These programs are available at the Istituto di Elettro- 
tecnica ed Elettronica, Politecnico di Milano, Milano, Italy. 

Programming the iterative method of Section 6 is very simple, since a raster 
sequence can be obtained by simply using two "DO" statements internal one to 
the other. 

In the Dantzig algorithm, we accept, at every step, only the vertices not yet 
accepted which have minimal distance. In this case we should therefore have a major 
reordering problem. In our program, reordering is automatically performed by a 
list structure. At the beginning of the ruth step, the list structure contains the names 
and the distances of all the vertices I m = CE~ -1 N CE2 "~, i.e. belonging to CE~2 -I 
and not accepted at the (m - 1 )-st step. (Here the names could be, for instance, the 
coordinates of the corresponding points.) Usually, many vertices belonging to 
CE~ m have the same distance. The names of all the vertices having the same distance 
are arranged in a list, while the distance is stored in the head of the list. The heads, 
ordered according to the distance, are then arranged in a two-way ring list. In this 
new list, a head of the heads with a permanent, known address is the successor of the 
element corresponding to the minimal distance, and, at the same time, the predeces- 
sor of the element corresponding to the maximal one. The vertices belonging to 
E1 ~, I s, E:  TM - I "~ are distinguished by different marks on the original array. 

In order to obtain the set CE~", it suffices to add to the list structure the vertices 
contained in E~ ~ - I "~ directly connected with an arc of length 1 to a vertex ac- 
cepted at the (m - 1)-st step. By Theorem 4, the distances of these vertices can be 
computed using (10). If we want to put one of these vertices into this structure, we 
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must traverse the ring list beginning from the farthest element, until we find a head 
with a distance equal to the distance of our vertex; the name of this vertex is then 
added to this list. If such a head is not found, a new list is initialized, and its head 
inserted into the ring list in the proper position. In this manner, all the points to be 
accepted in the nth step are in the list whose head is the predecessor of the head of 
the heads. This list and its head can then be erased, and the corresponding memory 
positions added to the free list. The list is then ready for the (m + 1)-st step. The 
computing times required by the two programs, for the same method, are eompar~- 
ble. The Dantzig algorithm is somewhat faster, especially with method 0, for figures 
having a long perimeter and a small area. 

Increasing the method by 1 increases the computing time by a factor of about 1.7. 
If we consider the improvement in the approximation to Euclidean distance (Sec- 
tion 5), it appears that the best methods are 0, 1, 2. 

12. Conclusion 

A definition of the skeleton of a digitized figure is given, which permits a close ap- 
proximation of the properties of the skeleton of a continuous picture in the real 
plane, especially invariance under rotation. Two algorithms are developed; one of 
them is especially suitable for long-perimeter, small-area figures such as chromo- 
somes. A quantitative definition of "significant" skeleton points is given, depending 
upon a parameter. With a suitable choice of this parameter, only the most important 
figure features are preserved in the skeleton, so that its application to pattern recog- 
nition can be made easier. An algorithm for performing the inverse transformation is 
also developed. Using this algorithm, a prototype of the figures belonging to a given 
class can be obtained from the reduced skeleton. 

APPENDIX 1. Proof of Lemma 1 

We use induction to prove (9a), (i) for h = 1, (ii) for h = 1 assuming it holds for 
h < l .  

(i) The sequence (P~0 = P~,  P~i) is an optimal path; that is t~l,~ = Ti ,  But 
the initial condition is T~, = t~,n, so for (9) we have T~ . . . . .  T~ = T~. 

(ii) Let P~., be the element belonging to the sequence A corresponding to the 
! I . I 

element P~ C B, and P ~ ,  that corresponding to P~z-~. k > u; if k = u then 
s > v because, for hypothesis, P~,, is considered before P~,., in the iterative process. 
Using (9a) for h -- l - 1 we obtain T~'~_~ = Ti~_~. After having applied (7) in the 
kth iteration for the vertex P'~,.~ = P~, we have T~ < T~,_~ q- t~.~_,. But the 
sequence B corresponds to an optimal path, so T~ = Tq_~ -b t~t.~,_~; consequently 

APPENDIX 2. Proof of Theorem 4 

(a) Let P / b e  a vertex belonging to E2 ~ but not to CE~ m. Let 

T p  = min (tj~ "-b T~) = tsi q- Ti, P /  E E1 ~. 
P z  t E .~'1 m 

Let the coordinates of the corresponding points Pi and P~ in the real plane be 
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(x~,  yj) and (x~, y~) and, as usual, 

t - y j -  y~ 0 < t < 1, xj > x~. 
X] - -  X i  ' 

[Fhe case t = 0 is impossible, because we have assumed that  P / d o e s  not belong to 
CE2 "~. 

Let x~ = x~. - 1, yk = yj ; then Pk' ~ E2 m, since otherwise P / w o u l d  belong to 
CE~ . Moreover P~. is directly connected to ~, since otherwise t~.~ = ~. This means 

t h a t  P3" is inside the square of side (2n + 1) centered at P~ (where we are using 
me thod  n).  I t  can be easily seen that  Pk is also inside, and therefore 

T ( P ( ,  P~') = ( ( x i  -- xi - 1) 2 + (yj  - y¢)2)~ < ( ( x i  - xi)  ~ + (y j  - yi):)  ~ = h i '  

since all the points within the square have Euclidean distances from P~. If  P~ and 
/% are directly connected, we have T ( P ( ,  Pk') = hk,  so Tk m < Ti -t- ti~ < Ti + 
t~3" = Tj ~, and P~. is not accepted in the mth iteration. But if P~ and Pk are not 
direct ly connected, they are connected in a straight line; let P ;  E El m and Ps'  E E~ m 
b e  two directly connected points which lie on the straight-line segment connecting 
P~ and P~.  Then 

rl'~sm ~_~ Tr -~- t,.~ < Ti -k- T(P~',  P / )  + t~s 

= T~ + T(P~', Ps') <_ T~ + T(P( ,  P~') < T~ + t~ = T/'~ 

~md P~. is not accepted in any case. 

(b) Let T~ ~ =  max TA m , T i m =  min T~ m. 
p h t ~ C E 2  m p h t ~ C E 2  m 

I f  P (  E CE~ m, there wilt be a vertex P~' ~ E1 '~ such that  t~ - 1. Therefore T~ ~ < 
T~ + 1; but  through the (m - 1)-st step we have used the complete Dantzig 
method ,  so we can write (12) T~-~> T ~ , a n d w e h a v e T ~  ' ~ -  T / ~ <  1. 

(c) I f  a vertex P~' E CE~ ~ is not accepted in the mth step, we have 

T~ m = min (th~ -1- T~), P~' E CE2 m 
Bxt ~ E1 m 

r p m + l  r~  [~ L~m+l  ~ = min ( t ~  + ~ ) ,  P~' E ~ , 
P x ' 6El~+l 

b u t  

~t T m E~ +1 E1 m +{Pk} where Tk = Tk = rain h , 
Bht ECg~t m 

so  we can write T~ ~+1 = rain (Th m, Tk + thk). For (b)  we have Th '~ < Tk + 
- -  rl~m+l ~ m • l 1 < Tk + thk, SO ~ = T~ , and if Ph is accepted in the (m + r ) - th  step, then 

T ~+~ T '~+~-I T m ~ T h  ~ h --~ h --~ " ' "  --~ h • 
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