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ABsTRACT. 'The problem of obtaining the skeleton of a digitized figure is reduced to an optimy
policy problem. A hierarchy of methods of defining the skeleton is proposed; in the more ¢on
plicated ones, the skeleton is relatively invariant under rotation. Two algorithms for compu
ing the skeleton are defined, and the corresponding computer programs are compared. A e
terion is proposed for determining the most significant skeleton points.
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1.  Introduction

In pattern recognition, methods for extracting the main features of a picture ¢
needed. When all the information is contained in the contour of a figure, a “skeleto
method may be useful. In the skeleton method, the contour is replaced by a g
eralized axis of symmetry, the “skeleton” (Blum [1]: medial axis), together wi
associated values of a parameter. In order to obtain the skeleton it is necessary
compute the distance of every point of the plane from the set of points of the figu
From the skeleton, the contour of the figure can easily be regenerated, so the amo
of information involved is the same. However, the skeleton seems to emphas
some properties of the picture; for instance, curvature properties of the cont
correspond to topological properties of the skeleton [1]. The concept of a skele
defined in the real plane was first proposed by Blum {1]. A mathematical theory 1
then developed by Kotelly 2] and Calabi {3, 4].

In applications, it is often necessary to process pictures given in digitized fo
It may therefore be convenient to define a skeleton transformation directly in
discrete case. This discrete skeleton should, if possible, have properties very sim
to those of the continuous one. Such a transformation was defined by Rosenfeld
Pfaltz {5, 6], who also found a very simple algorithm for obtaining it. However,
distance they considered is substantially not Buclidean, so, for instance, this skele
is not invariant under rotation. Moreover, no improvement is obtained even if
number of points is increased.

In this paper it is suggested that the problem of obtaining a discrete skeleton
be reduced to the determination of optimal paths through a reticular network.
minimal path length between two vertices in the network provides an approxima
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of the distance between the corresponding points in the real plane. By increasing the
complexity of the network, we can obtain a “distance” that approximates Euclidean
distance as closely as we want. In this sense we speak of “quasi-Fuclidan” distances.
The skeleton obtained using the simplest network coincides with Rosenfeld’s
skeleton.

In Section 2 several definitions of the skeleton in the real plane are given. One of
those is emphasized, because it can be easily extended to the discrete case. In
Section 3, the wvarious reticular networks are specified in terms of Farey
sequences, and in Section 4 the minimal path problem which corresponds to skeleton
determination is described. The solution of this problem for an infinite reticulum
allows us to derive, in Section 5, analytical expressions for the minimal path length
between two points of the network for the various methods. In Sections 6 and 7,
two algorithms are deseribed that take advantage of the regularity of the network
to compute simultaneously the lengths of the minimal paths from all the points of
the network to the figure. In order to make it easier to apply these results for pat-
tern recognition purposes, in Sections 9 and 10 a method of eliminating the
less significant skeleton points is described. In Section 11, Forrran IV programs
which implement the two algorithms are briefly described, and their results are
compared.

2. The Skeleton in the Real Plane

There are many equivalent definitions of the skeleton in the real plane. We give
four of them, proposed in {1} and {3}, in order to introduce some concepts that arise
in the discrete case as well.

(a) Let us interpret the contour as an initial wavefront and then let it propagate
with the constraint that no point can be excited more than once. In this situation,
there will exist points where the wavefront “intersects itself” and then is extin-
guished. This locus, together with the corresponding set of times, is the skeleton
1] (see Figure 1(a)). One could ask whether the contour propagates “inside” or
“outside” the figure. In what follows, we assume it propagates outside, so only the
external skeleton is considered. To obtain the internal one, it suffices to complement
the figure.

(b) We define a function at every point P of the plane whose value is the dis-
tance of P from the contour:

d(P) = mind(P,Q), QEF, (1)

where & is the set of points of the figure, and d( P, @) is the usual Buclidean distance
between two points. Let us visualize this function as a surface; the “ridges” of the
surface, namely the points where we cannot define a tangent plane, together with
the corresponding distances, constitute the skeleton [1].

(¢) Let us define the set

3(P) = {R|d(P,R) = d(P), Re&d

If 3(P) contains more than one point, P is a skeleton point. In Figure
1(b), 3(P)) = {Ri}, so Py is not a skeleton point, but 3(Py) = {Ry, R}, so Py
is a skeleton point [3].

(d) Given a point P, a minimal path from P to the contour is a straight-line
segment PR where B € 3(P). Evidently, P is a skeleton point if it does not belong
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wavefront ab t=4

Fra. 1. Examples of application of different definitions of skeletons

to the minimal path of any other point. In Figure 1({b), P; belongs to the minimal
path PR, so Py is not a skeleton point; but Py does not belong to any minimal
path, so £, is a skeleton point,

This last definition was introduced in a slightly dilferent manner by Calabi 3.
It can be easily extended to the discrete case, since the coneept of minimal path is
well defined in the diserete case too.

3. Relicular Networks as Appravimations of the Real Plane

In this section we define the networks with which we approximate the real plane.
Usually, a digitized pieture is given in the form of a rectangular artay of elements
aij (4= 1,---,7r j=1,---,5). We can interpret (i, 7) as the coorcinates
(%4, 4p) of a point £ in the real plane. We connect some pairs of these points with
straight-line segments. In Figures 2(a)-(¢) we show all the connections for the
methods, which will be numbered 0, 1, 2, respectively. In Figures 3(a)-{e) an
“clementary cell” (that is, all the points directly connected with a given point),
and the corresponding segments with their lengths, are shown for methods 0, 1, 2.
Note that in method 0, every point is directly connected only to the four nearest
points, while in method n  (n ¢ 0), the connections are the simplest ones sueh
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Fi¢. 2. Reticular networks for methods 0, 1, 2
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Fic. 3. Elementary cells for methods 0, 1, 2

that every point P, is connected (directly or not), by a straight line, with every
point P; belonging to the square centered at P; and with side length (2n + 1).

We can easily see that the slope of every segment, relative to the axes, is repre-
sented by a rational number. For symmetry, we can represent the elementary cell
by giving only the segments with slopes ¢ such that 0 < ¢ < 1. See Figures 4(a)-
(d) for methods 0, 1, 2, 3, respectively.

In method n (n = 0), these slopes constitute the Farey sequence of order n
(Table 1), that is, the ordered sequence of all rational numbers between 0 and 1
with denominators less than or equal to n (see, for example, [7]). The directions
having those slopes can be thought of as allowed directions for the wavefront.

Let us now define a reticular network whose vertices and arcs are in one-to-one
correspondence with the picture points and connections, respectively, so that to
any path through the network there corresponds a polygonal arc on the real plane.
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Fre, 4, Connections in the elementary cells correspond to texms of Farey
sequences. Methods 0, 1, 2, 8

TABLE I
n Farey seqitence of order n
1 0,1
2 0,41
3 0,44, 41
4 0: éy él "%‘l %l 3’: 1
5 O)%l%l%'%)%’%r%’%’?ﬁl
6 Oléial &1%’%'%?%!%)%)%? 8‘)1

To every such are, a length is assigned equal to the sum of the lengths of the associ-
ated connections. Given two points, P, and £, and the two corresponding vertices
P! and P/, let us define two functions: d = d{P;, P,) is the Buclidean distance
between the points P; and P, and T = T(P/, P} is the length of the minimal
path through the network betweon the vertices P, and P;’. Evidently, we have

TP, P{Y = d(P;, P;). (2)

4. A Minimal Path Problem

We now prove the equivalence of the skeleton problem with an optimal policy proh-
lem. This problem is & well-known one, and its solution is equivalent to the solution
of a system of functional equations whose unknowns are minimal path lengths.
Let us define the following sets:
U={P 1<z,<r1<y, < sz,,y,integers}, the set of all the vertices.

I =[F | a(P) = .TRUEY, the set of vertices corresponding to the peints of
the figure.
E = [P |a(P) = FALSE) = U ~ I, the set of vertices corresponding to the

paoints of the picture which are external to the figure.
Let us take an extra vertex Py and connect it with all the vertices £’ € I using
arcs whose length is assumed to be zero. For every vertex P, we can find a minimal
path to Py,
We define an external point P; to be a skeleton point if and only if P,/ ¢ E and
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it does not belong to a minimal path from any other vertex to Py'. To construct the
skeleton, we determine for every vertex P; the “optimal policy” (or policies),
namely the arc (or ares) connected to P; belonging to a minimal path from P,
to Py, and countersign it as going out from P,. P, is a skeleton point if and only
if P € E and there is no arc connected to P, and countersigned as going in. (See,
for example, Figure 5.)

The determination of the optimal policy is a well-known problem. Bellman [8]
has shown the solution of this problem to be equivalent to the solution of the fol-
lowing system of functional equations:

T._' min(t,-j-{-Tj), i=1,2,“',N‘—1, j=1,"',N, ‘7?51,
TN=0,

I

(3)

where, if the arc connecting the vertices P, and P; exists, t;; is equal to the length

of this arc; otherwise, t;; = .
T:in (3) is the length of the minimal path to the figure, that is, T; = T(P;, Py).
For every vertex P;/, the “optimal policy” is given by the arc (or ares) ¢4 for which
Ti=ta+ Ts. (4)

Then P; is not a skeleton point if and only if we have T\, = T: — t for some P,
To construct the skeleton, we must thus:

(a) determine for every node P; the distance T'; to the figure;

(b) construct the set

S = {P IP;,' € E; forevery P/, Ty =T, — b} s
(e) associate with every point Py € S the parameter T’ .

5. A Quasi-Euclidean Distance

In this section it is proved that we can always find a minimal path between every
pair of vertices of our reticulum (assumed infinite) such that the corresponding
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polygousl are consists of just two straight-line segments. In gonsequence, an ana-
lytical expression for the minimal path length between any pair of vertices is ob-
mined, and the errors 10 the various methods as compared with Euelidean distance
are computed.

To compute the length of the minimal path between the pair of vertices (', 7,
let ¢ be the slope of the segment PP, . By symmetry, it suffices to assume that
0<t<1. Let

A

Py o= (&, 1), Ax = gy~ 2y, o= 5’-’1155;
Az

Py o= (22, 0), Ay =i~ yy, 0=t <L

Trrores 1. Suppose given an infinile reticuinr network of type n.

(a) If the rational nwmber @ belomgs to ihe Farey sequence of order n, then only one
minimal path between Py and I exists. The corresponding polygonal are connecting
Py and Py is a single straight-line segment. The length of the minimal poth is thus

TP/, P)) = az(l + ) (5)

(6) Suppose that the rational mwnber ¢ does not belong Lo the Farey sequence of
order n. et & and by be successive lerms of this sequence such that £, <21 < &y . In this
case we always have more than one minimal path between P; and Py However, we
cane always find twa mintmal paths such that each of the corresponding polygonal arcs
consists of just two straight-line segments, having slopes & and ty {gee Figure 6(a)).
Therefore, the length of any mindmal path s easily found o be
’l”(P’P’)wa(tw‘.‘.", s b — 1 H) P .

R N ¥ A (L6 4 e (1 67) ], b <t < dy, (B)

ba — & b — Iy

Proor. In case {a), the proof is itrivizl, and eq. (2) holds with equality. We
now turn to case (b), where we prove that (i) these paths exist, and that (i) they
are minimal.

(i) Let us consider the points B and 8 {Figure 6), the vertices of the parallelo-
gram with diagonal PP, . If we represent the rational numbers & , &>, £ as lowest
term fractions,

timc‘i{ !a“(j? -»-é—‘l_j
b’ Tohy? Az’

we have
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bibsAy — abeAT Az — bibAy
xl = e S Ty T

Tp — B Tg — &y =
? azby — anby @by ~ asby
ashAy — 18:AT AT — arhAy
Yp — Y = ——r——y T ys—%*mb A
by — aibz G201 — Q10y

But ab — wbs = 1 because ai/by and a/b: are two successive terms of a Farey
sequence [7]. Therefore R and S have integer coordinates, i.e. they correspond to
vertices.

(it) We first show that the function T(Py, P;') defined in (6) is a “distance,” i.e.:

(1) T(P,,P)Y >0, T(P/,P))=0 iffi P/=P.
(I1) T(P/, P)) = T(P,, P\').
(IID) 7(P/, Py < T(PY, Q) + T(, P2)).
{I) and (II) are obvious,

Remember now that the length of a path is equal to that of the corresponding
polygonal arc. We can then easily see (Figure 6(b)) that in (III) equality holds
for all points @ internal to the parallelogram P RP.S; otherwise, strict inequality
holds. We call the function T( Py, P,) the q.E. (quasi-Euclidean) distance.

Suppose now that we have found the q.E. distance from any vertex Py to the
vertex P,’; this distance will satisfy a system of functional equations of type (3).
Because the solution of (3) is unique, it suffices to prove that the distance defined in
{ 6) satisfies (3)~—in other words, that

71(P1,) PQ’) = Ilélln (thlyQ’ + T(Pl,a QI)))
where Q@ is any vertex directly connected to Py, But this follows immediately by

applying (IIT) to the vertices Py, @', and Py'.
The function

¢ = T(Py, Py) — d(Py, Py)
T(P{, Py) ’
where € is given in percent, is shown in Table II for methods 0, 1, 2, 3.

Note that method 2 should normally be satisfactory, since its quasi-Euclidean
distance is very close to Euclidean distance. Figure 7(a)—(¢) shows the locus of
points having a given q.E. distance from a given point for methods 0, 1, 2, respec-
tively. This locus ia a polygon which can be inscribed into the circle consisting of

the points having the given Euclidean distance. This can be shown by putting T =
constant in (6).

6. An Iterative Algorithm To Find the Distance From a Figure

For the solution of the functional system (3) an iterative algorithm has been de-
veloped. In the simplest case (method 0), this algorithm coincides exactly with
Rosenfeld’s. Because of the regularity of the network, it converges in two iterations
only, and only half of the vertices connected to each vertex need to be examined
1n each iteration.

A general method can be outlined as follows (see [9]):

(a) The initial condition may be, for instance, Tio

(b) The iterative formula is

= tiN-
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608 U, MONTANARI
T4 = omin (G THt+ TV, i=1,2, N =1, (7)
P,-’eE’;h P eEY,

where K% is the set of the vertices P, for which we have already computed the
value 7' in the kth iteration, and E;; = U ~ Ei {P,'}. The order in which we

TABLE II
e percent for method number
3 = tga
0 1 2 3

0 0. 0. 0. 0. 0.

2°30/ 0.04366 4.267 1.712 0.935 0.613
5° 0.08749 8.335 3.230 1.677 1.034
7°30 0.13165 12.197 4.551 2.226 1.263
10° 0.17633 15.846 5.674 2.580 1299
12°30 0.22169 19.273 6.595 2.739 1.142
15° 0.26795 22.475 7.313 2.702 0.793
17°30' 0.31530 25,442 7.827 2.470 0.251
20° 0.36397 28.171 8.136 2.043 0.157
22°30 0.41421 30.656 8.239 1.421 0.252
25° 0.46631 32.893 8.136 0.607 0.157
27°30' 0.52057 34.876 7.827 0.251 0.088
30° 0.57735 36.603 7.313 0.792 0.193
32°30 0.63707 "38.069 6.595 1.142 0.107
35° 0.70021 39.273 5.673 1.298 0.200
37°30/ 0.76733 40.212 4.551 1.263 0.437
40° 0.83910 40.883 3.229 1.038 0.482
42°30" 0.91633 41.287 1.712 0.613 0.337
45° 1. 41.421 0. 0. 0.

Fia. 7. Loci of points having a given q.E. distance from a given point for methods 0, 1, 2
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compute the values 77 is arbitrary and may depend on the iteration. However, the
convergence rate of the method can be greatly increased by a clever choice of the
order (see (9, 10]).

(¢) The method stops when we have, for all P/, 77" = 7™ In fact, in this
case the values T, satisfy the system (3), so we can write

Tz_n-H — Tim — Tz ) (8)

Tt is interesting to observe that the values T." form a monotone noninereasing se-
quence, L.e.

Ti>Tiz - 2T > 1. (9

Lemma 1. Assume that we have performed j ilerations, and have obtained the se-
quence

Fa I3 4 14
4 = (Pil.u e yPil,N—U ) P‘v’j.u T -P”«'i,N—1>>
where P;M is the s-th vertex for which we computed the value in the r-th iteration.

Clonsider an optimal path from Py to P{ | say the sequence

(Py' = Piy, Piy, -, Piy = P) = B,
where Py, (k= 0, -+, h — 1) s directly connected to Ps,,, . If the points Py, - -,
P, appear in order in the sequence A (we will then say that the sequence B is a “‘sub-
sequence” of the sequence A) then we have

Ti = Ts,. (9a)

For the proof of this lemma, see Appendix 1.

TaEOREM 2. In our specific case, the points P; are arranged in a rectangular
array. Compute the values T in forward raster sequence and T in backward raster
sequence.” We then have T = T;for all P}, .. the method converges in two iteratrons
only.

We can also obtain other stmplifications:

(a) We need consider only vertices P € E (since for P/ € I, T; = 0).

(b) In computing (7) in the first dteration, there is no need to consider vertices
P,/ € Ely, since in this case we always have T} = oo,

(¢) We have B}y = ¢, so also T)' = .

(d) We have B2 = Ey = By and E}y = Ei = Ea, so we can make use of T
an the second iteration.

The algorithm is then as follows: Let us give to each node P{ an index correspond-
ang lo the forward raster sequence, and:

(@) Let

Til =0 @f qul € I’ Tll = 0 z:f P1, € E,
Td= min  (t;+T)) f P/E€E;  Ba={(P{|j<i.

PileB;
(b) Let
T2 = min (y+T8HTH, i=N-—-1,---,1 i P/cE,
PileBy
Ey = {PJI[] > 2}:
1See [5].
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T =0 i Pl el
U=EUI = E, UE,U{P/].
(¢) Let

S = (PP € B; for every P{ dirvectly conmected to Py, T # T2 — Lt

(d) Associate to every point P, € S the parameter Ty .

Proor. Let us consider a vertex P,/ and a minimal path from P, to Py’ (or
from Py to P/ ; 1t 1s the same since we are concerned with a nondirected graph).
In this path, the vertex directly connected to Py will be @ € I. But between P/
and Q' there exist two minimal paths (a minimal path) as described in Theorem
1b (a). In fact, even though in this case the network is not infinite, the polygonal
ares corresponding to these minimal paths cannot be cut by the edges of the array,
because we always have “allowed directions” parallel to the edges.

Let us divide the allowed directions into two sets D, and D, (see Figure 8),
Suppose that there is more than one minimal path from Q" to P;. The two direc-
tions of the polygonal arcs corresponding to these minimal paths ean belong:

(a) both to Dy,
(b) both to D,
(e¢) one to D; and the other to D, .

In case (a), it is easy to see how the sequence corresponding to the minimal patt
from Py to P/ isa “subsequence” of the sequence constructed examining the node:
in forward raster sequence; we can therefore apply Lemma 1, and we have reache
the solution at the first iteration.

In case (b) we similarly obtain the solution at the second iteration.

In case (¢) we can consider the minimal path from Py to P/, of the two availabl
ones, in which we first meet the arcs corresponding to the direction contained i

- } allowed directions € Dy -
. /S

//' i ) ) P

allowed directions € Dy

Jo
L
|

7

-

[

Fic. 8. Allowed directions belonging to D, and D, are considered in the first and
second iteration of the iterative algorithm respectively
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Fie. 9. An example of application of the iterative algorithm: method 1

Dy and then the ares corresponding to the direction contained in D, . In this way,
we obtain a suitable sequence B. Finally, suppose that there is only one minimal
path from Q' to P.; then either case (a) or case (b) holds.

Thus by utilizing both iterations we can apply Lemma 1 to all the P;’ and obtain
the solution in all cases.

Figure 9 shows an example of the application of this algorithm. In Figure 9(a)
we have the reticular network corresponding to method 1, where the vertices directly
connected to Py, i.e. corresponding to some P;” € I, are countersigned. In Figure
9(b) the values of 7' are shown; in Figure 9(¢) the values of 7' = T; are shown.
In Figure 9(d) we see the skeleton points with the corresponding parameters.
Here and in the following figures, we show only the integer part of the distance,
assuming the unit length to be 10.
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7. A Simplified Dantzrg Algorithin T'o Obtain the Skelston

In this section, a simplified Dantzig algorithm for obtaining the skeleton directly is
presented. Faeh vertex is considered only once. The distances are computed in
order, heginning from the smallest ones, 5o that we can interpret this algorithm as a
diserete wavefront propagation. In what {ollows, the general Dantzig method for
optimal path determination is described (see [9]).

(1) In the first step, we look for the vertex {or vertices) P, such that f =
min ¢;y . We can immediately write I’y = 0, T% = lw . We then define the sets
E} =Py}, Ef = U — E/.

(2) We have to compute the values

Tw" = min (e + T,) forevery P, ¢ B (10)
Pyl
Dantzig proved that, for the vertex (or vertices) P, such that 72" = min T,",
Py By

we have already obtained the minimal length, i.e.

T.," = min "= Ts. iy
Py eB3™
The sets E, and E, for the next step are given by Ei™ = E/™ + (P}, E7" =
E,* — {P;}. That means that the set E," is the set of vertices for which, at the
beginning of the mth step, we have already computed the distance,

(3) The algorithm stops at the step  such that B ™ is empty, With this algo-
rithm, vertices are processed according to their distances; that is, if at the mth step
we have P; ¢ E," and P; € E.", ie. if P;will be accepted aiter P;, we can conclude
at once that

T< T (12)

In eur application, it is interesting to point out how, with this algorithm, we also
determine the optimal policies in quite a natural manner. In fact, to find the optimal
poliey (or policies) for the vertex (or vertices) P, accepted in the mth step, it
suffices to remember the vertex {or vertices) P,' for which (#, + T,) is the least
in (10). The optimal poliey is (or policies are), the are (or arcs) connecting P,
and Pz'. Therefore, we can countersign all the vertices Pz' that we meet. When the
algorithm stops, the noncountersigned vertices belonging to the set £ form the
skeleton.

We now examine in detail this algorithm for method 0. In this case, the distances
can assume integer values only.

TuporEM 3. In method 0, (7) the verlices Py, accepled in the m-th slep are all those
belonging to the set E.™ and directly connected with some vertex belonging to E\™; (%)
the distance of all these verlices is m.

Proor. Let P;m be the vertex {or vertices) accepted in the mth step.

{i) From inequality (12) we can write T, _, = max (T.)}, P, ¢ E\™. Then
fraom (10},

W <1+ T, (13)
for every P, € Ey™ and directly connected to a node P, € E,™, but from (11),
Tr,, < T\ {14)
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XXXXXXXKXKX 0000000000
XX XXX X 0011000110
X X X X 01 1001 10
X X X 01 101 10
X X X 001 1 10
X X X X X 0001 100
X XX X X 0001 100
X X X X 0001 1 10
X X X 011 101 10
X X X 01 101 10
X X X X X X 0011001100
XXXXXXX XXX 0000000000
(a) (b)
0000000000 0000000000
0011000110 0011000110
0121001210 0121001210
0121012210 0121012210
001212 2710 0012123210
00012 2100 0001232100
0001222100 0001222100
0001212210 0001212710
01121012710 0112101210
0122101210 0122101210
0011001100 0011001100
0000000000 0000000000
(c) (d)
1 1
2 2
2 2
2 3
3
2 2
2 22
12 2
22 2
1
(e)

Fra. 10. An example of application of the Dantzig algorithm: method 0

Therefore from (13) and (14), Ty, < 1 + T4, _,, but from (12), T, > T%,,_,. But
the values 7' can only be integers; therefore from the last two inequalities we obtain

Trp = Thp, + 1. (15)

But from (13) and (14), T4, = T4™, that is, all the nodes P; are accepted.
(ii) We have T, = 1. Therefore from the finite-difference equation (15) we
have T4, = m.

This theorem allows us to obtain easily the distance of every vertex for method
0. It suffices to find the vertices belonging to the boundary of the set’ E, erase them
from the set E, and iterate the procedure: the points erased in the mth iteration
correspond to nodes whose distance is m. (See the example in Figure 10.)

* This result can be accomplished, for instance, with the algorithm deseribed by Ledley in [11].
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A simpler algorithm can be found for methods greater than 0 as well, with the
aid of the following theorem. Let CEY be the “boundary” of the set By, 1.
8 R ;

CE” = (PP ¢ B30, e/, 0) = 1.AND @ ¢ B

TuEoREM 4. Assume ihat the Donlzig general algorithm hos been applied through
the (m — 1)-st step. Then

{a) All the points accepted af the m-th siep belong to CE,™.

{b) The distances of two nodes, both belonging to some CI0,”, differ by less than 1.

(¢) For the vertices Iy belonging to CEY™ and not accepted a1 the m-th step we can
witle

T};‘m = Tp, . (16)
For the proof of this theorem, see Appendix 2,

The simplified Dantzig algorithm is then:

(1) B = I, Ey = E.

(2) At the beginning of the mth step we already have the sets E,” and £:™
Therefore we can (a) construct the set CE,", for instance using Ledley’s algorithm
{11]. We then (b) have to compute the values

min (b4 T.) =T, =T,
PeleEm

for the vertices Py belonging to CE,™ — (CE;”™ N CEY™) (we can assume (75, =
¢). In fact, we remember the values 77 = 7" = T, for the nodes P}/ belonging
to CE,™ N CEY™ from the previous iterations. (¢) We also have to countersign the
vertices P, for which (b 4 T} is the least, Le. for which T, = T4 — {5 . Among
the vertices Ph'(d} we look for the vertices P, such that 7% = min 7, wheve £, &
CE,™ (and not P, € Ey", as in the general Dantzig algorithm). We can now con-
struct the sels

Ef™ = B+ (R, ETY = B - (P

that will be needed in the next iteration.

(3) When B, = ¢, the noncountersigned vertices Pg' form the set §; the cor-
responding distance is T's (see Figure 11).

With this algorithm, each vertex is examined only once, since as soon as it is
reached by the boundary we can compute the definitive distance value.

The property proved in Theorem 4, part {b) means that the set CE,™ ean be seen
as o wavefront. Therefore this algorithm reulizes the discrete propagation of the
figure contour.

8. The Inverse Transformation; How To Obtain the Figure, Given the Skeleton

Blum [1] proved that it is possible to achieve the following result: If one excites
every skeleton peint at a negative time equal to the eorresponding parameter, at
t = () the wavefront is the contour. In the discrete case too it is possible to prove
that given the skeleton, the points of the figure can be determined by the solution
of a minimal path problem. Moreover, for the solution of this problem, the same
iterative algorithm described in Section 6 can be used.

We first prove the following almost obvious lemma.
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Fra. 11. An example of application of the Dantzig algorithm: method 1. P’
belongs to ET™; I is countersigned
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Lewvva 2. Lel @ be an wundirected graph, and let T PSP be the minimaol peth
length between the vertex P, and the vertex I Now odjoin a new veries B oand com
pule in the new groph G* the mintmal length T°(1 2P Then

(o) THPS, P/y < TP, Py,

(b)Y If I/ belongs in G to a mintmal path between P, and PJ, all the minimal paths
between P, and P, in G and G* cotneide.

Proor. {a) G is a subgraph of G,

(b) A minimal path between P, and P/ certainly does not eontain Py There-
fore a corresponding path exists in € and {a) holds with equality. Conversely, a
minimal patl in G must be minimal in 67 100, since stherwise equality does ot hold
in (a).

Let be €' an integer constant such that € > max,,.s Ty, where S, as usual, is
the skeletan point set. Now conneet an oxtra vertex Py’ to every skeleton node 75
with an arc of length tey = ¢ — Ts. Let G¥, %, 6" be the networks with extra
nodes P, Po', and Py’ P,/ respectively. Let TY(P, P, TP, Py, T (P!,
£/} be the minimal path lengths between £, and P computed in ¢, ¢¥, G**
respectively.

Tugousm 5. Let T: = T7(P/, Py), T! = TP/, Py'). Then:

(@) If P{ € Ewehave T = C — 7.

(b) If P{ € Iwehawe T; = C.

From the skeleton we can thus obtain the sets &, I again, (We have introduced
the additive constant €, sinece otherwise we would have ares of negative length.)

Proor. We compute 77(Py, Py). Py is directly connected with skeleton
vertices only. Therefore a skeleton vertex P, will belong to an optimal path between
Py oand Py

TP P =ty 4+ TP, PYO.
We can apply Lemma 2(b):
TR P = TR Py = T
Therelore we have
TPy, Py) = b+ T, = C =T, + T, = C.
But a path from Py to Py of length ¢ touches every skeleton vertex Py :
Ts A+ bsae = C  for every P e 8.
Therefore every skeleton vertex belongs to a minimal path between Py and P,/
while every nonskeleton vertex contsined in £ belongs to a minimal path in G*
from some Ps ¢ & and Py, by definition of the skeleton. But minimal paths be-
tween every P € 8 and Py’ coincide in ¢V and G by Lemma 2(b). Therefore
every vertex contained in E belongs to a minimal path from Py to £, We can write
C = T"(Py, PyY) = T"(Py, P{) + T"(P/, P¥).
Applying Lemma 2(b) twice,
Co= TP, P) 4+ TP PYY = TV + T..
If P; € I, we have Liy = 0. Therefore 7¥(P/, Py) = T"¥(P), Ps') = ; and
from Lemma 2{a), we have 7(P,, P/') > C.
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To compute the values 7' it suffices to apply the iterative algorithm of Section 6
swith initial values 7" = € — T5if P, € S, 7= « otherwise.

9. Luatracting the Most I'mportant Skeleton Branches

In our skeleton, nonsignificant points can appear that might make it difficult to
utilize this method for pattern recognition purposes. In this section, a criterion is
proposed for determining the most significant skeleton branches. This eriterion de-
pends upon a parameter that is essentially a threshold. It can be applied, with slight
modifications, to the algorithms presented in Sections 6 and 7.

Let us consider a skeleton in the continuous real plane. Often we can single out
“branches,” that is, pieces of skeleton having the form of continuous curves. In
this case, we can take the derivative along the curve:

o(P) = le; d(Pl)ATg d(P)\’

where d(P) and d(P;) are the skeleton parameters at P and P, , and AS is the arce
length of skeleton branch P.P. If we consider the skeleton as the intersection of
propagating wavefronts (Section 2), »(P) = 1/g(P) has the meaning of the speed
at which, in P, the given skeleton branch is generated.

Blum [1] suggested that the most significant skeleton branches, from a perceptual
point of view, might be the ones generated with the highest speed. The extrema of
skeleton branches, where the branches stop or are connected with other branches,
and the isolated points, are also very important. A limiting speed can thus be fixed,
and one can accept only the detached points, and the skeleton branch pieces with
speeds greater than the threshold value.

For example, Figure 12 shows the same case as in Figure 1(a), together with the
values of #(P). We can see that this parameter is infinite at the vertex of the hyper-
bola, and decreases asymptotically toward 1. In fact, we tacitly assumed the wave-

Fic. 12. A skeleton branch and its propagation speed

Journal of the Association for Computing Machinery, Vol. 15, No. 4, Qctober 1968



618 . MONTANALT

front propagation veloeity to be one. It is clear that the most important part of this
skeleton is the central one.

In order to extend this criterion to the discrete case it is convenient to give
another equivalent definition of g(P). Let us compute for every point I the distance
d(P) from the figure, and the directional derivative

J(P, @) = lim E0) = 9(P)

PP Al ?

where Al is the length of the segment PP, , and where the oriented segment PP,
forms an angle ¢ with a reference axis. Let

f(P) = mixxf(P, a).

It can be seen that:

(a) If P does not belong to the skeleton, f(£) = 1 and conversely, so that the
function f(£) could be used to define the skeleton.

(b) If Pis a “departure” point (i.e. a nearest point to the figure), or a midpoint
of a skeleton branch, f{ P) is equal to the inverse 1/o(P) of the speed defined above.

(e} If P is an isolated point or an “arrival” point (i.e. a farthest point from the
figure) of a skeleton branch, f(P) is negative.

In the diserete case, we replace the distanees by minimal path lengths, and the
derivatives by finite difference ratios:

f; = max 7 - T"';
¥y tij

P; directly connected to Py, where T';, T, t;; have the usual meaning. From (3)
it follows that —1 < f; < 1.

Tustead of the definition of skeleton given in Section 4, we now propose the fol-
lowing:

Definition. The point P; is a skeleton point if and only if 2/ € E and —1 <
J(P:) < K £ 1, where K is an assigned threshold value.

In order to avoid in computing as many divisions as network ares, the following
equivalent definition is preferable:

S = {Pi lPi’ & E; for every Pj’, Tj -T. < K'tf;‘}. (17)

IFK = 1 this definition eoincides with the definition given in Seetion 4. In order to
obtain this reduced skeleton with the iterative algorithm, it suffices to replace step
(c) of the final algorithm deseribed in Section 6 by definition (17). To obtain the
same result with the simplified Dantzig algorithm described in Section 7 , we must
change step 2(¢). Instead of countersigning the vertices for which 7, = 7% — b,
we must countersign the vertices for which 7, < 7 — K-, .

In Figure 13 we show the skeleton of a, digitized circle:

(a) Method 1 without reduction (K = 1),

(b) Method 1 with elimination of the less signifieant skeleton points using the

threshold K = 0.90.
(e) Bame as (b), but with £ = 0.80.
(d) Same ag (b), but with £ = 0.70.
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Fic, 13. The skeleton of o digitized concave cirele. Successive thresholds reduce
the skeleton to the center only

10.  Nonsignificant Skeleton Poinls Close to Mairiz Boundory

Often on the matrix boundary there are elements external to the figure. In this case,
some elements near the matrix boundary usually become meaningless skeleton
points. For example, the external skeleton of a triangle in the real plane is empty, as
usual for a convex figure [1]. In Figure 14 are shown the distances and the external
skeleton of a diseretized triangle {method 1), Tn this case, the skeleton is not empty.
The vertices corresponding to points P; € S on the matrix boundary in Figure 14
do not belong to a minimal path of any other vertex, only because the network is
ot infinite.

In this section a method of eliminating the skeleton noise points close to the matrix
boundary is described. In Figure 14, all the skeleton points in the first and last row
and in the first and last eolumn have no meaning. In the general easc, supposc a
digitized picture glven in the form of a rectangular matrix of elements a;; (4 =
L.-er; j=1,---,5). Interpret (4, §) as the coordinates x» and 5, of & point
P in the real plane, and construct the skeleton § in the usual manner. Now add to the
reticulum, as external vertices, the vertices corresponding to all the remaining
points of the plane with integer coordinates, and compute the skeleton 8 in this
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14 10 10 L& 24 34 42 52 § 5 3 5 ]
10 0 0 10 20 28 38 48 800 . . . . 3
00 0§10 14 24 34 42 s 008§ . . .5
10 ¢ 0 G 10 20 28 33 5 6090 . . .8
10 ¢ 0 ¢ 1014 24 34 s 60038 . . 8
10 0 0 0 ¢10 20 28 s 0000 . . 8
10 0 0 ¢ 61014 24 5 00005 . 8
10 0 0 0 0 01020 s 00000 .5
14 10 10 10 10 10 14 24 S 5 5 85 8 8 . 5
(a) (b

Fre. 14. The distance transformation and the skeleton of o digitized convex triangle

infinite reticulum. One could ask what is the difference between the skeleton § and
the subset BS* of the skeleton S included in the original bounds of the matrix.
The answer is given in the following theorem.

TugoreM 6. (a) The distances of all the vertices corresponding to points included
in the original matriz are the same in both cases.

(b) R&* < 8, and all the points of the set S — ES™ can belong only fo a frame B,
of the original matrix, whose width is 1 in the case of method 0, and is n in method n
(n = 0).

Proowr. Let us define the following sets:

U=1{P11<2,<r;1 <y, <e5a,,y, integers)

I = {P'|a(P) = TRUE}

§ = {P |a(P) = FALSE} = U — I

S {Pk \ Pk’ c E; for every P-;I, Ty = T; — tik}
U* = {P' | &, ¥y integers}

=1
E=U"~1T
S* = {Py| Py € E* forevery P/, Tv" = T — la
RS*={P|Pc 8P U

B, {P‘l<x,,£m0[{rw—m<:c,,_§r0R]<yp§mOR
c—m <y, < ¢;ifn = 0thenm = lelse m = n; ety
We must prove that
(a) T, = 7* for every P/ ¢ U;
(b) SN(UV — B,) =RS* N/ —B,), SNB, 2RS*NB,.
(1) Suppose given for P, a minimal path to the figure as described in Theorem
1, eomputed in the infinite reticulum. Let Q' be a vertex contained in I™ belonging
to this path. If P’ € U, this is a minimal path in the finite case as well. In fact,
in this case both P, and @' belong to the finite reticulum (I = I*), and therefore
the whole minimal path belongs to the finite reticulum, since in every method we
have connecting segments parallel to the edges of the matrix.
(i) In determining 8 and RS* apply the definitions: if Py’ ¢ U — By, the
vertices connected to P, are the same in both the infinite and the finite reticulum,
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as are the distances by (i); hence the result is the same. If P’ € B, , the vertices
connected to P; are fewer in the finite reticulum than in the infinite one, so if the
relation “Ty = T; — ty for every P;” holds in the infinite reticulum, it certainly
holds in the finite one too, but not conversely.

In order to obtain the skeleton RS™ using the algorithms of Sections 6 and 7, it
suffices (a) to enlarge the given matrix by adding a frame of width 1 in the method
0, and n in the method n (with a;; = FALSE.), (b) to compute the skeleton in the
usual manner, and (c¢) to erase the frame.

Let us now return to Figure 14. We see that we have skeleton noise points not
only on the boundary of the matrix, but inside too, along the contour of the figure.
The reason for this unwanted result is very simple. In the real plane, a point on the
contour where we cannot define the tangent line to the contour is always a point
where the skeleton touches the contour. In the diserete case, a similar situation is
realized whenever the contour points do not lie in & line, since in a digitized figure
curves are impossible. Note that this does not happen in the method 0; in fact, in
this case the discretized contour does not introduee noise, since it looks smooth with
the metric used.

In order to eliminate these skeleton noise points for methods greater than zero,
it usually suffices to use the method described in Section 9 with a threshold value
K < 0.70. (See, for instance, Figure 13.)

11. Two Computer Programs: Description and Comparison

In this section, a short description is given of ForTrAN IV programs which realize
the two algorithms described in Sections 6 and 7 and modified in Sections 9 and 10,
for the methods 0, 1, 2, 3. These programs are available at the Istituto di Elettro-
tecnica ed Elettronica, Politecnico di Milano, Milano, Italy.

Programming the iterative method of Section 6 is very simple, since a raster
sequence can be obtained by simply using two “DO” statements internal one to
the other.

In the Dantzig algorithm, we accept, at every step, only the vertices not yet
accepted which have minimal distance. In this case we should therefore have a major
reordering problem. In our program, reordering is automatically performed by a
list structure. At the beginning of the mth step, the list structure contains the names
and the distances of all the vertices I™ = CEy ™ N CE,", i.e. belonging to CE; ™"
and not accepted at the (m — 1)-st step. (Here the names could be, for instance, the
coordinates of the corresponding points.) Usually, many vertices belonging to
CE,™ have the same distance. The names of all the vertices having the same distance
are arranged in a list, while the distance is stored in the head of the list. The heads,
ordered according to the distance, are then arranged in a two-way ring list. In this
new list, a head of the heads with a permanent, known address is the successor of the
element corresponding to the minimal distance, and, at the same time, the predeces-
sor of the element corresponding to the maximal one. The vertices belonging to
E™ I™ E," — I™ are distinguished by different marks on the original array.

In order to obtain the set CE,™, it suffices to add to the list structure the vertices
contained in E,” — I™ directly connected with an arc of length 1 to a vertex ac-
cepted at the (m — 1)-st step. By Theorem 4, the distances of these vertices can be
computed using (10). If we want to put one of these vertices into this structure, we
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must traverse the ring list beginning from the farthest clement, until we find a head
with a distance equal to the distance of our vertex; the name of this vertex is then
added to this list. If such a head is not found, a new list ig initialized, and its head
inserted into the ring list in the proper position. In this manner, all the poinis o be
accepted in the nth step are in the list whose head is the predecessor of the head of
the heads. This list and its head ean then be erased, and the corresponding memaory
positions added to the free list. The list is then ready for the (m -+ 1)-st step. The
computing times required by the two programs, for the same method, are compara-
ble. The Dantzig algorithm is somewhat faster, especially with method 0, for figures
having a long perimeter and a small area.

Increasing the method by 1 increases the computing time by a factor of about 1.7.
If we consider the improvement in the approximation to Euclidean distance (Sec-
tion 5), it appears that the best methods are 0, 1, 2.

12. Conclusion

A definition of the skeleton of a digitized figure is given, which permits a close ap-
proximation of the properties of the skeleton of a continuous picture in the real
plane, especially invariance under rotation. Two algorithms are developed; one of
them is especially suitable for long-perimeter, small-ares figures such as chromo-
somes. A quantitative definition of “significant’” skeleton points is given, depending
upon a parameter. With a suitable choice of this parameter, only the most important
figure features are preserved in the skeleton, so that its application to pattern recog-
nition can be made easier. An algorithm for performing the inverse transformation is
also developed. Using this algorithm, a prototype of the figures belonging to a given
class can be obtained from the reduced skeleton.

APPENDIX 1. Proof of Lemma 1

We use induetion to prove (9a), (i) forh = 1, {il) for A = [ assuming it holds for
R <l

(i} The sequence (Pﬁ0 = Py, P;,) is an optimal path that is t; v = T“ But
the initial condmon is T%, = tiw, 50 for (9) we have T§, = -« = T%,

(i) Let P,,c . be the element belonging to the sequence A correspondmg to the
element P,z € B, and P‘” that corresponding to P.b, Y k> uifk = u then
s > v because, for hypothesis, P,u , is considered before Pj +.. I the iterative process.
Using (9a) forh = 1 - 1 we obtam Ti‘, , = T, _,. After having applied (7} in the
kth iteration for the vertex P,,, . = Pi wehave T5, < T, + t;,4,_,. But the
sequence B corresponds to an optimal path, so T, = T4, , + &,.5,_,; consequently

= Ty,

APPENDIX 2. Proof of Theorem 4
(a) Let P, be a vertex belonging to E,™ but not to CE.™. Let

T, = min (i +T,) =ts+ T, P/ cE™

plemm

Let the coordinates of the corresponding points P; and P; in the real plane be
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(zj,y;) and (s, y;) and, as usual,

{ =YY 0<t<1, a5 >a.
T; — Xy

The case t = 0 is impossible, because we have assumed that P; does not belong to
CE".

Let 2, = x; — 1, 1y, = y;; then Py’ € Ey", since otherwise P; would belong to
C E,". Moreover P; is directly connected to P;’, since otherwise £;; = oo . This means
that P; is inside the square of side (2n -+ 1) centered at P; (where we are using
method n). It can be easily seen that Py is also inside, and therefore

TP, P) = (=2 — 1) + (5 — 5" < (w5 — )" + (g5 — v))! = 15
since all the points within the square have Euclidean distances from P; . If P; and
Py are directly connected, we have T(P,, Pi) = tu,s0 T%"™ < Ti + ta < T; +
t.; = T,”, and P; is not accepted in the mth iteration. But if P; and P are not
directly connected, they are connected in a straight line; let P,’ € B, and P € E,™
be two directly connected points which lie on the straight-line segment connecting
P;and P, . Then

Ts" < To + ts < Ti + T(P/, P)) + ts

= Ti+ T(P{, Ps) < Ti + T(P/, PY) < Ti+ 1y = T)"
and P; is not accepted in any case.

(b) Let T." = max T4, T," = min T,
P €CEpm P €CEym
If P/ € CE,", there will be a vertex P, € E,™ such that ¢tz = 1. Therefore 7," <
T+ + 1; but through the (m — 1)-st step we have used the complete Dantzig
method, so we can write (12) 7" > T, and we have T," — T, < 1.
(¢) If a vertex Py’ € CE,™ is not accepted in the mth step, we have
T," = min (b + T.), P) € CE™
PyleE™
Tit'= min (b + Ts), P € CEFY,
P eEpt?
but
B = E™ + [Py where Tp=T" = min T,

Pi'ecE”
so we can write Tn™ = min (74", Tr + tw). For (b) we have T%W" < Ti +
L < Th + tw,s0 T = T4"; and if Py is accepted in the (m + r)-th step, then
TTh — T;Ln—{-r — T;:H_r_l — e = Thm-
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