

晶采光電科技股份有限公司 AMPIRE CO., LTD.

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM240320L8TNQW-00H
APPROVED BY	
DATE	

☑ Approved For Specifications

 \square Approved For Specifications & Sample

AMPIRE CO., LTD.

TOWER A, 4F, No.114, Sec. 1, HSIN-TAI 5th RD., HIS-CHIH, TAIPEI HSIEN, TAIWAN(R.O.C.)

台北縣汐止鎮新台五路一段114號4樓(東方科學園區A棟)

TEL:886-2-26967269, FAX:886-2-26967196 or 886-2-26967270

APPROVED BY	CHECKED BY	ORGANIZED BY

Date: 2007/09/27 AMPIRE CO., LTD.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2007/08/15	-	New Release	Emil
2007/08/21	12	Modified Interface Specification (Pin6 and Pin9).	Emil
2007/08/21	-	Issued official Part No. AM240320L8TNQW-00H	Emil
2007/08/23	36	Modified Mechanical Drawing.(To indicate Backlight Solder PAD).	Emil
2007/09/20	36	Modified Mechanical Drawing.(Remove bezel)	Emil
2007/09/27	4	Correction the Absolute max ratings of V _{LED.}	Emil

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

1. Features

LCD 2.4 inch Amorphous-TFT-LCD (Thin Film Transistor Liquid Crystal Display) for mobile-phone or handy electrical equipments. The LCD adopts one backlight with High brightness 4-lamps white LED.

- (1) Construction: 2.4" a-Si color TFT-LCD with White LED Backlight and FPC.
- (2) LCD : 2.1 Amorphous-TFT 2.4 inch display, transmissive, Normally white type, 12 o'clock.
 - 2.2 240(RGB)X320 dots Matrix,1/320 Duty.
 - 2.3 LCD controller is ILI9320.
 - 2.4 Real 262K colors display:

Red-5bit, Green-6bit, Blue-5bit (MPU8/16 mode)
Red-6bit, Green-6bit, Blue-6bit (MPU9/18,RGB18 mode)

- (3) Low cross talk by frame rate modulation
- (4) Direct data display with display RAM

Date: 2007/09/27

- (5) Partial display function: You can save power by limiting the display space.
- (6) MPU interface: 8/16/18 bit parallel and 16/18 bit Serial Bus Interface Timing.
- (7) RGB interface: 16/18-bit RGB Interface Circuit Input.

3

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

2. Mechanical specifications

Dimensions and weight

Item		Specifications	Unit
External shape dimensions		*1 43.6 (W) x 85.5(H) x 2.8 (TMax.)	mm
Main	Pixel pitch	0.153 (W) x 0.153(H)	mm
LCD	Active area	36.72 (W) x 48.96 (H)	mm
Weight		T.B.D.	g

^{*1.} This specification is about External shape on shipment from AMPIRE.

3. Absolute max. ratings and environment

3.1. Absolute max ratings

Ta=25°C GND=0V

Item	Symbol	Min.	Max.	Unit	Remarks
Power Supply for Logic	VDD – GND	-0.3	+4.0	V	
Power Input Voltage	Vci	-0.3	+4.6	V	
Power Supply for LED backlight	LED A – LED K	-0.5	+15	V	
Input voltage	VIN	-0.5	VDD+0.5	V	

3.2. Environment

Item	Specifications	Remarks
Storage temperature	Max. +70 °C Min. –30 °C	Note 1: Non-condensing
Operating temperature	Max. +60 °C Min20 °C	Note 1: Non-condensing

Note 1: Ta≤+40 °C · · · · Max.85%RH

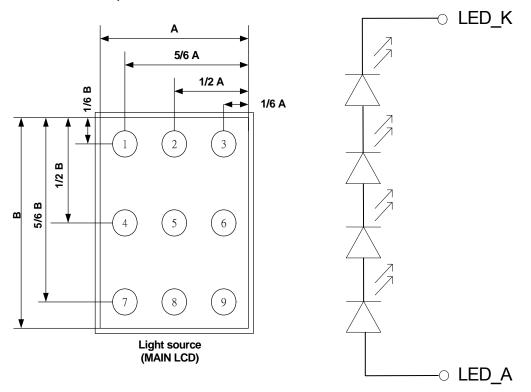
Ta>+40 $^{\circ}$ C · · · The max. humidity should not exceed the humidity with 40 $^{\circ}$ C 85%RH.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

4. Electrical specifications

4.1. Electrical characteristics of LCD

 $(V_{DD}=2.8V, Ta=25 \,{}^{\circ}C)$


Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
IC power voltage	V_{DD}		2.4	2.8	3.3	V
Power input voltage	V _{CI}		2.5	ı	3.3	V
High-level input voltage	V _{IHC}		0.8V _{DD}		V_{DD}	V
Low-level input voltage	V _{ILC}		0		0.2V _{DD}	٧
Consumption current of VDD	I _{DD}		-	6	-	mA
Consumption current of LED	I _F	V _F =12.8V	-	20	-	mA

1. 1/320 duty

4.2. LED back light specification

Item	Symbol	Symbol Conditions		TYP.	MAX.	Unit
Forward voltage	V_{f}	I _f =20mA	12.3	12.8	13.8	V
Reverse voltage	V _r		-	-	12	V
Forward current	I _f	4-chip serial	-	20	-	mA
Power Consumption	P _{BL}	I _f =20mA	-	256	276	mW
Uniformity (with L/G)	-	I _f =20mA	80%*1	-	-	
Bare LED Luminous intensity	V _f	13.2V 20mA	3700	-	-	cd/m ²
Luminous color	White					
Chip connection	4 chip serial connection					

LCM measure position:

*1 Uniformity (LT): $\frac{Min(P1 \sim P9)}{Max(P1 \sim P9)} \times 100 \ge 80\%$

6

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

5. Optical characteristics

5.1. Optical characteristics

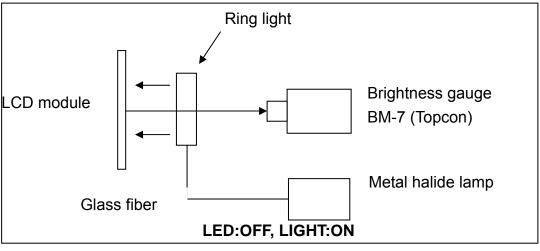
 $(1/320 \text{ Duty in case except as specified elsewhere Ta = }25^{\circ}\text{C})$

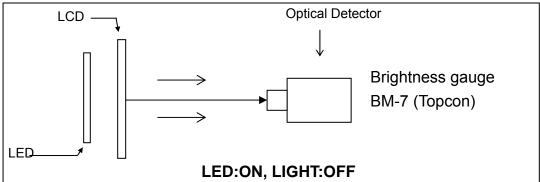
LED backlight transmissive module:

Item	Symbol	Temp.	Min.	Std.	Max.	Unit	Conditions
Response	Tr	25 °C	-	10	20	ms	θ =0 ° , φ =0 °
time	Tf	25 °C	-	20	30	1113	(Note 2)
Contrast ratio	CR	25 °C	150	200	-	-	θ =0°, φ =0° LED:ON, LIGHT:OFF (Note 4)
Transmittance	Т	25 °C	-	4.7	-	%	
Visual angle range front and rear	θ	25 °C		(θf) 70 (θb) 70		De- gree	φ 1= 0°, φ = 0°, CR \ge 10 LED:ON LIGHT:OFF (Note 3)
Visual angle range left and right	θ	25 °C		(<i>θ</i> I)80 (<i>θ</i> r) 80		De- gree	φ 1= 0°, φ =90°, CR \ge 10 LED:ON LIGHT:OFF (Note 3)
Visual angle direction priority				12:00			(Note 5)
Brightness			170	220	-	Cd/m2	I _F =20mA, Full White pattern

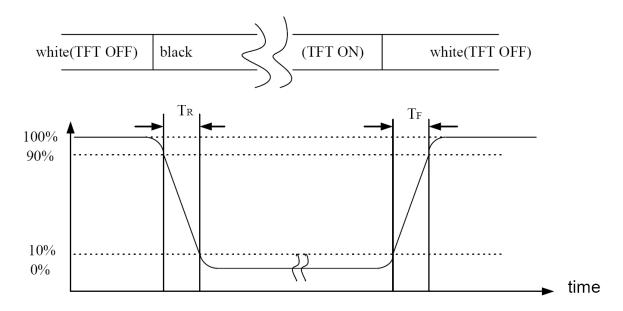
The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

5.2. CIE (x, y) chromaticity (1/320 Duty Ta = 25° C)

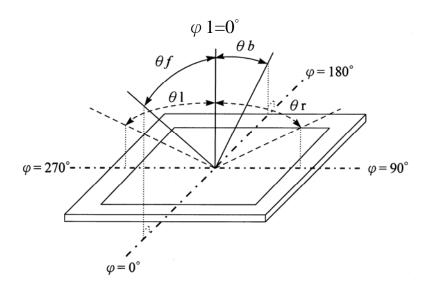

Main LCD: (1/320 Duty Ta = 25°C)

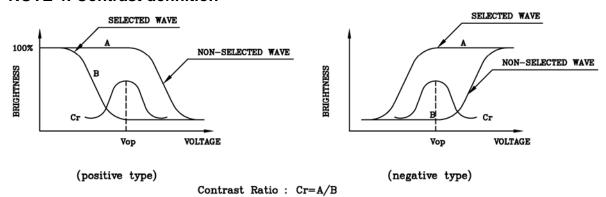

Item	Symbol	-	Transmissive	Conditions	
item	Cymbol	Min.	Std.	Max.	Conditions
Red	Х	0.605	0.635	0.665	θ =0°, φ =0°
	У	0.317	0.347	0.377	,
Green	Х	0.314	0.344	0.374	θ =0°, φ =0°
0.00	У	0.562	0.592	0.620	,
Blue	Х	0.129	0.159	0.189	θ =0°, φ =0°
	У	0.132	0.162	0.192	,
White	х	0.283	0.313	0.343	$\theta = 0^{\circ}$, $\varphi = 0^{\circ}$
	У	0.322	0.352	0.382	, ,

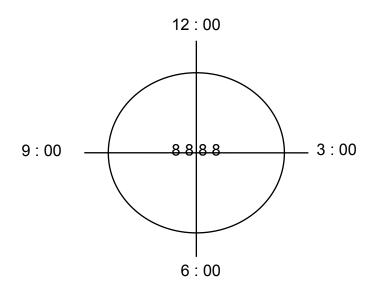
Light source


Item	Symbol		Value	Conditions	
Thom:	Cymbol	Min.	Std.	Max.	Conditions
Light source	Х	0.26	0.29	0.34	θ =0°, φ =0°
Light oddroo	у	0.26	0.29	0.34	, , ,
LED brightness		3700	_		Unit: cd/m ²
LLD brightness		3700	_	_	(I _F =20mA)

NOTE 1: Optical characteristic measurement system




NOTE 2: Definition of Response Time : Sum of TR and TF


NOTE 3: $\varphi \cdot \theta$ definition

NOTE 4: Contrast definition

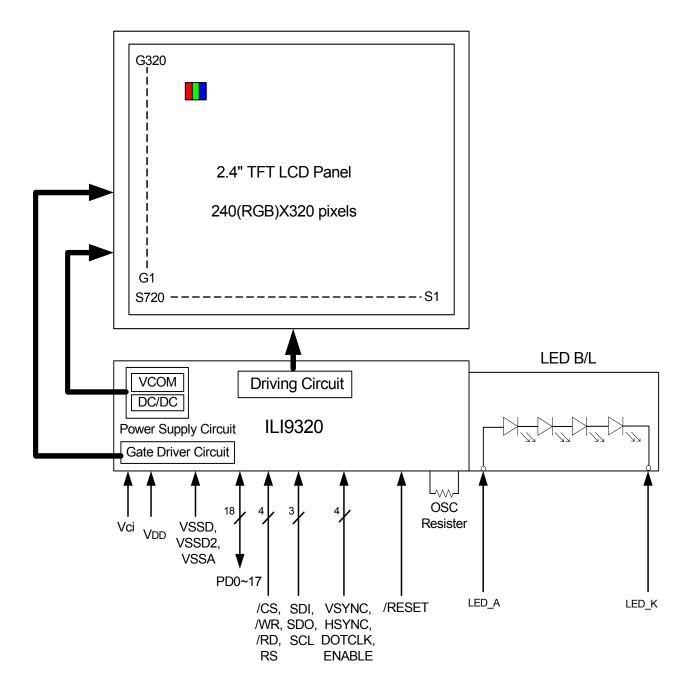
NOTE 5: Visual angle direction priority

10

AMPIRE CO., LTD. Date: 2007/09/27

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

6. Block Diagram


Display format: A-Si TFT transmissive, Normally white type, 12 o'clock.

Display mode: Normally white

Display composition: 240 x RGB x 320 pixels

LCD Driver: ILI9320

Back light: White LED x 4 (I_F =20mA)

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

7. Interface specifications

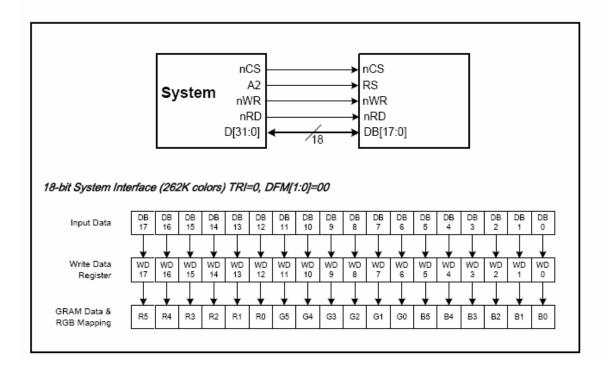
Pin No.	Terminal	Functions
1	ENABLE	A data ENABLE signal in RGB I/F mode.
2	DOTCLK	Dot clock signal in RGB I/F mode.
3	HSYNC	Frame synchronizing signal in RGB I/F mode.
4	VSYNC	Frame synchronizing signal in RGB I/F mode.
5	/CS	Chip select signal.
6	WR/SCL	Write enable signal/Serial bus interface clock input pin.
7	SDI	Serial bus interface data input pin.
8	RS	Command/display Data Selection.
9	NC	NC
10	/RD	Read enable signal.
11	/RESET	Reset pin. Setting either pin low initializes the LSI. Must be reset the chop after power being supplied.
12	PD0	
13	PD1	
14	PD2	
15	PD3	
16	PD4	
17	PD5	
18	PD6	
19	PD7	
20	PD8	18-bits Interface Circuit
21	PD9	10-bits interiace Circuit
22	PD10	
23	PD11	
24	PD12	
25	PD13	
26	PD14	
27	PD15	
28	PD16	
29	PD17	

(To be continue)

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

30	VDD	Power supply for the internal logic circuit. (VDD=2.2~3.3V)
31	VCI	Dower aupply for Stop up airquit (VCI=2.5-2.2)/
32	VCI	Power supply for Step-up circuit. (VCI=2.5~3.3V)
33	NC	
34	NC	
35	NC	
36	NC	NC
37	NC	
38	NC	
39	NC	
40	GND	GND-terminal
41	NC	
42	NC	NC NC
43	NC	INC
44	NC	
45	GND	GND-terminal
46	SDO	Serial bus interface data output pin.
47	NC	
48	NC	NC NC
49	NC	
50	GND	GND-terminal
51	GND	GIND-terminal

Selection the System Interface mode


	IM3 (JP3)	IM2 (JP2)	IM1 (JP1)	IM0 (JP0)
40D:4	(3F3)	(3F 2)	(3F 1)	(3F0)
18Bit	Н	L	Н	L
16 Bit	L	L	Н	L
9 Bit	Н	L	Н	Н
8 Bit	Ĺ	Ĺ	Ĥ	H
Serial Mode	L	Н	L	L

Jumper Default: JP0= "L" JP1= "L" JP2= "H" JP3= "L"

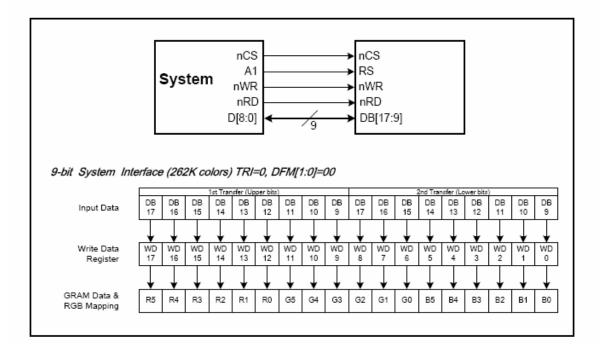
8. System interface and RGB interface

8.1. 80-system 18-bit interface

The i80/18-bit system interface is selected by setting the IM[3:0] as "1010" levels.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

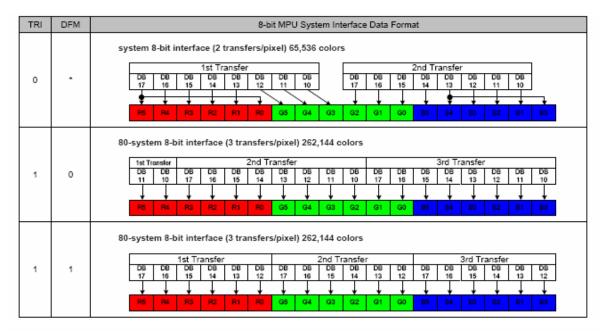
8.2. 80-system 16-bit interface


The i80/16-bit system interface is selected by setting the IM[3:0] as "0010" levels. The 262K or 65K color can be display through the 16-bit MPU interface. When the 262K color is displayed, two transfers (1st transfer: 2 bits, 2nd transfer: 16 bits or 1st transfer: 16 bits, 2nd transfer: 2 bits) are necessary for the 16-bit CPU interface.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

8.3. 80-system 9-bit interface

The i80/9-bit system interface is selected by setting the IM[3:0] as "1011" and the DB17~DB9 pins are used to transfer the data. When writing the 16-bit register, the data is divided into upper byte (8 bits and LSB is not used) lower byte and the upper byte is transferred first. The display data is also divided in upper byte (9 bits) and lower byte, and the upper byte is transferred first. The unused DB[8:0] pins must be tied to either Vcc or AGND.



8.4. 80-system 8-bit interface

Date: 2007/09/27

The i80/8-bit system interface is selected by setting the IM[3:0] as "0011" and the DB17~DB10 pins are used to transfer the data. When writing the 16-bit register, the data is divided into upper byte (8 bits and LSB is not used) lower byte and the upper byte is transferred first. The display data is also divided in upper byte (8 bits) and lower byte, and the upper byte is transferred first. The written data is expanded into 18 bits internally (see the figure below) and then written into GRAM. The unused DB[9:0] pins must be tied to either Vcc or AGND.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

Data transfer synchronization in 8/9-bit bus interface mode

Date: 2007/09/27

ILI9320 supports a data transfer synchronization function to reset upper and lower counters which count the transfers numbers of upper and lower byte in 8/9-bit interface mode. If a mismatch arises in the numbers of transfers between the upper and lower byte counters due to noise and so on, the "00"h register is written 4 times consecutively to reset the upper and lower counters so that data transfer will restart with a transfer of upper byte. This synchronization function can effectively prevent display error if the upper/lower counters are periodically reset.

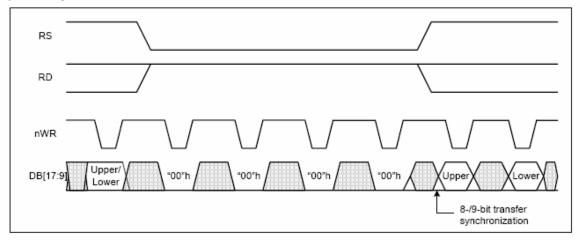
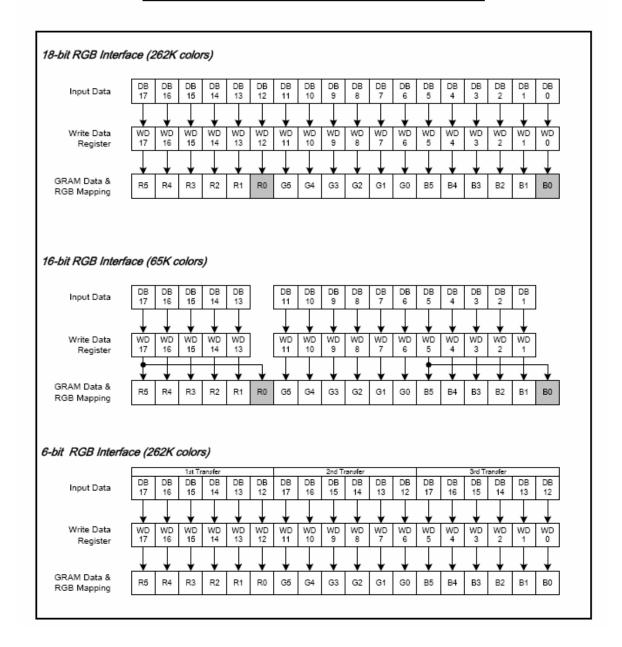
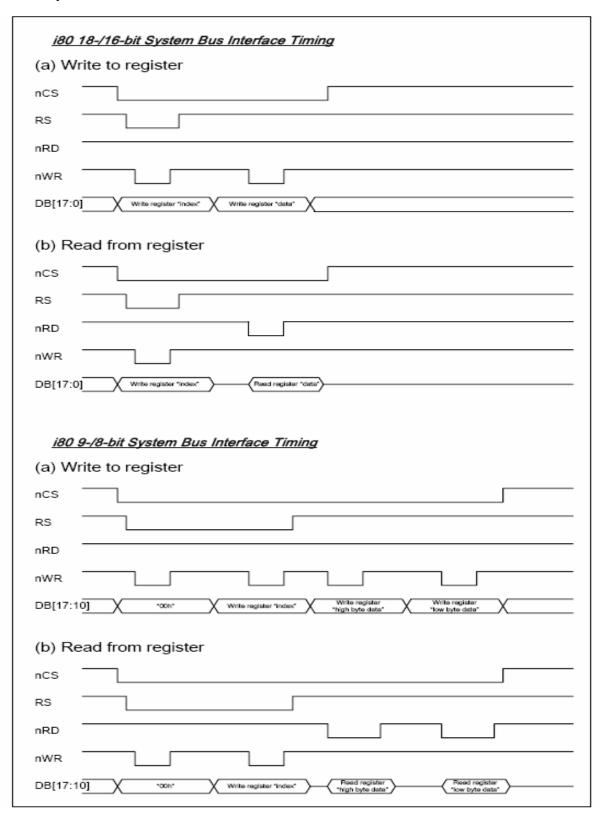


Figure 6 Data Transfer Synchronization in 8/9-bit System Interface


The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

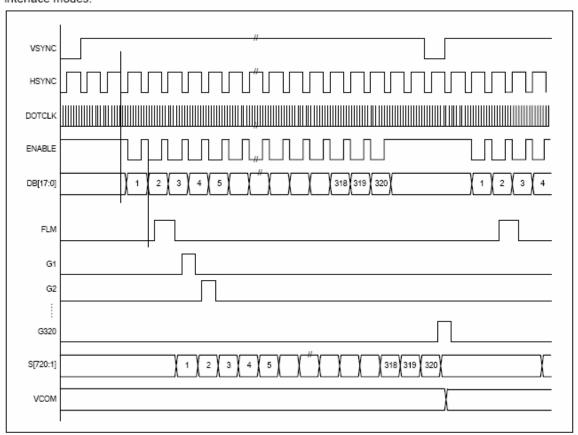
8.5. RGB interface

Date: 2007/09/27


The RGB Interface mode is available for ILI9320 and the interface is selected by setting the RIM[1:0] bits as following table.

RIM1	RIM0	RGB Interface	DB pins
0	0	18-bit RGB Interface	DB[17:0]
0	1	16-bit RGB Interface	DB[17:13], DB[11:1]
1	0	6-bit RGB Interface	DB[17:12]
1	1	Setting prohibited	

8.6. Timing of System Interface and RGB Interface


a. System Interface

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

b. RGB Interface

The following are diagrams of interfacing timing with LCD panel control signals in internal operation and RGB interface modes.

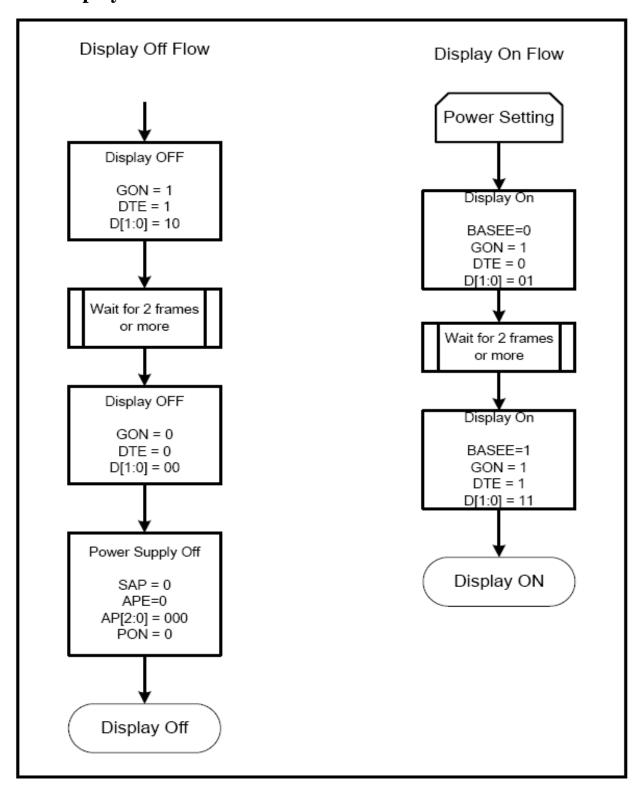
The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

9. INSTRUCTION DESCRIPTIONS

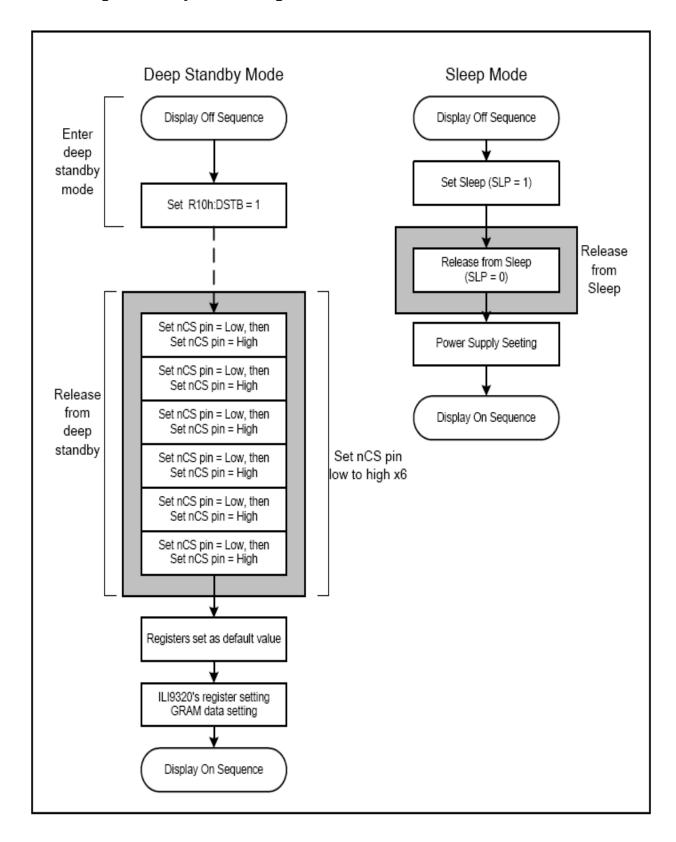
9.1. Instruction List

Main LCD Driver IC:ILI9320

No.	Registers Name	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
IR	Index Register	w	0				-	-	-	-		ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
SR	Status Read	R	0	L7	L6	L5	L4	L3	L2	L1	LO	0	0	0	0	0	0	0	0
00h	Driver Code Read	R	1	1	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0
00h	Start Oscillation	w	1	-	-	-	-	-		-	-		-	-	-	-	-	-	osc
01h	Driver Output Control 1	w	1	0	0	0	0	0	SM	0	ss	0	0	0	0	0	0	0	0
02h	LCD Driving Control	w	1	0	0	0	0	0	1	B/C	EOR	0	0	0	0	0	0	0	0
03h	Entry Mode	w	1	TRI	DFM	0	BGR	0	0	HWM	0	ORG	0	I/D1	I/D0	AM	0	0	0
04h	Resize Control	w	1	0	0	0	0	0	0	RCV 1	RCV 0	0	0	RCH 1	RCH 0	0	0	RSZ1	RSZ0
07h	Display Control 1	w	1	0	0	PTD E1	PTD E0	0	0	0	BAS EE	0	0	GON	DTE	CL	0	D1	D0
08h	Display Control 2	w	1	0	0	0	0	FP3	FP2	FP1	FP0	0	0	0	0	BP3	BP2	BP1	BP0
09h	Display Control 3	w	1	0	0	0	0	0	PTS2	PTS1	PTS0	0	0	PTG1	PTG0	ISC3	ISC2	ISC1	ISC0
0Ah	Display Control 4	w	1	0	0	0	0	0	0	0	0	0	0	0	0	FMA RKO E	FMI2	FMI1	FMIO
0Ch	RGB Display Interface Control 1	w	1	ENC 2	ENC 1	ENC 0	0	0	0	0	RM	0	0	DM1	DM0	0	0	RIM1	RIM0
0Dh	Frame Maker Position	w	1	0	0	0	0	0	0	0	FMP 8	FMP 7	FMP 6	FMP 5	FMP 4	FMP 3	FMP 2	FMP 1	FMP 0
0Fh	RGB Display Interface Control 2	w	1	0	0	0	0	0	0	0	0	0	0	0	VSPL	HSP L	0	DPL	EPL
10h	Power Control 1	w	1	0	0	0	SAP	ВТ3	BT2	BT1	ВТ0	APE	AP2	AP1	AP0	0	DST B	SLP	0
11h	Power Control 2	w	1	0	0	0	0	0	DC12	DC11	DC10	0	DC02	DC01	DC00	0	VC2	VC1	VC0
12h	Power Control 3	w	1	0	0	0	0	0	0	0	VCM R	0	0	0	PON	VRH 3	VRH 2	VRH 1	VRH 0
13h	Power Control 4	w	1	0	0	0	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	0	0	0	0	0
20h	Horizontal GRAM Address Set	w	1	0	0	0	0	0	0	0	0	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
21h	Vertical GRAM Address Set	w	1	0	0	0	0	0	0	0	AD16	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8
22h	Write Data to GRAM	w	1		RAN	I write dat	a (WD17-0) / read da	ta (RD17-0) bits are	ransferred	l via differ	ent data bi	us lines ac	cording to	the selec	ted interfa	ces.	
29h	Power Control 7	w	1	0	0	0	0	0	0	0	0	0	0	0	VCM 4	VCM 3	VCM 2	VCM 1	VCM 0
2Bh	Frame Rate and Color Control	w	1	0	0	0	0	0	0	0	0	EXT_ R	0	FR_S EL1	FR_S EL0	0	0	0	0
30h	Gamma Control 1	w	1	0	0	0	0	0	KP1[2]	KP1[1]	KP1[0]	0	0	0	0	0	KP0[2]	KP0[1]	KP0[0]
31h	Gamma Control 2	w	1	0	0	0	0	0	KP3[2]	KP3[1]	KP3[0]	0	0	0	0	0	KP2[2]	KP2[1]	KP2[0]
32h	Gamma Control 3	w	1	0	0	0	0	0	KP5[2]	KP5[1]	KP5[0]	0	0	0	0	0	KP4[2]	KP4[1]	KP4[0]
35h	Gamma Control 4	w	1	0	0	0	0	0	RP1[2]	RP1[1]	RP1[0]	0	0	0	0	0	RP0[2]	RP0[1]	RP0[0]

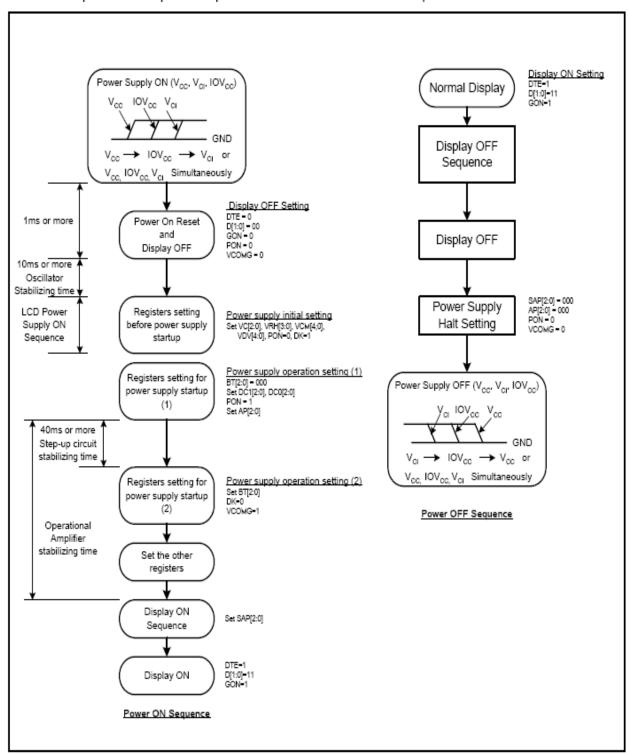

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

36h	Gamma Control 5	w	1	0	0	0	VRP1 [4]	VRP1 [3]	VRP1 [2]	VRP1 [1]	VRP1 [0]	0	0	0	VRP0 [4]	VRP0 [3]	VRP0 [2]	VRP0 [1]	VRP0 [0]
37h	Gamma Control 6	w	1	0	0	0	0	0	KN1[2]	KN1[1]	KN1[0]	0	0	0	0	0	KN0[2]	KN0[1]	KN0[0]


No.	Registers	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
38h	Gamma Control 7	w	1	0	0	0	0	0	KN3[2]	KN3[1]	KN3[0]	0	0	0	0	0	KN2[2]	KN2[KN2[0]
39h	Gamma Control 8	w	1	0	0	0	0	0	KN5[KN5[KN5[0	0	0	0	0	KN4[KN4[KN4[
3Ch	Gamma	w	1	0	0	0	0	0	2] RN1[1] RN1[0] RN1[0	0	0	0	0	2] RN0[1] RN0[0] RN0[
3011	Control 9 Gamma	VV	1	0	U	U	VRN	VRN	2] VRN	1] VRN	0] VRN		U	U	VRN	VRN	2] VRN	1] VRN	0] VRN
3Dh	Control 10	W	1	0	0	0	1[4]	1[3]	1[2]	1[1]	1[0]	0	0	0	0[4]	0[3]	0[2]	0[1]	0[0]
50h	Horizontal Address Start	w	1	0	0	0	0	0	0	0	0	HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0
51h	Position Horizontal Address End Position	w	1	0	0	0	0	0	0	0	0	HEA7	HEA6	HEA5	HEA4	HEA3	HEA2	HEA1	HEA0
52h	Vertical Address Start Position	w	1	0	0	0	0	0	0	0	VSA8	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0
53h	Vertical Address End Position	W	1	0	0	0	0	0	0	0	VEA8	VEA7	VEA6	VEA5	VEA4	VEA3	VEA2	VEA1	VEA0
60h	Driver Output Control 2	w	1	GS	0	NL5	NL4	NL3	NL2	NL1	NL0	0	0	SCN 5	SCN 4	SCN 3	SCN 2	SCN 1	SCN 0
61h	Base Image Display Control	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	NDL	VLE	REV
6Ah	Vertical Scroll Control	W	1	0	0	0	0	0	0	0	VL8	VL7	VL6	VL5	VL4	VL3	VL2	VL1	VL0
80h	Partial Image 1 Display Position	W	1	0	0	0	0	0	0	0	PTD P08	PTD P07	PTD P06	PTD P05	PTD P04	PTD P03	PTD P02	PTD P01	PTD P00
81h	Partial Image 1 Area (Start Line)	W	1	0	0	0	0	0	0	0	PTSA 08	PTSA 07	PTSA 06	PTSA 05	PTSA 04	PTSA 03	PTSA 02	PTSA 01	PTSA 00
82h	Partial Image 1 Area (End Line)	w	1	0	0	0	0	0	0	0	PTEA 08	PTEA 07	PTEA 06	PTEA 05	PTEA 04	PTEA 03	PTEA 02	PTEA 01	PTEA 00
83h	Partial Image 2 Display Position	W	1	0	0	0	0	0	0	0	PTD P18	PTD P17	PTD P16	PTD P15	PTD P14	PTD P13	PTD P12	PTD P11	PTD P10
84h	Partial Image 2 Area (Start Line)	W	1	0	0	0	0	0	0	0	PTSA 18	PTSA 17	PTSA 16	PTSA 15	PTSA 14	PTSA 13	PTSA 12	PTSA 11	PTSA 10
85h	Partial Image 2 Area (End Line)	w	1	0	0	0	0	0	0	0	PTEA 18	PTEA 17	PTEA 16	PTEA 15	PTEA 14	PTEA 13	PTEA 12	PTEA 11	PTEA 10
90h	Panel Interface Control 1	W	1	0	0	0	0	0	0	DIVI1	DIVIO 0	0	0	0	0	RTNI 3	RTNI 2	RTNI 1	RTNI 0
92h	Panel Interface Control 2	w	1	0	0	0	0	0	NOW I2	NOW I1	NOW I0	0	0	0	0	0	0	0	0
93h	Panel Interface Control 3	W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	MCPI 2	MCPI 1	MCPI 0
95h	Panel Interface Control 4	W	1	0	0	0	0	0	0	DIVE 1	DIVE 0	0	0	RTN E5	RTN E4	RTN E3	RTN E2	RTN E1	RTN E0
97h	Panel Interface Control 5	W	1	0	0	0	0	NOW E3	NOW E2	NOW E1	NOW E0	0	0	0	0	0	0	0	0
98h	Panel Interface Control 6	w	1	0	0	0	0	0	0	0	0	0	0	0	0	0	MCP E2	MCP E1	

10. Application

10.1 Display ON / OFF



10.2 Deep Standby and Sleep Mode

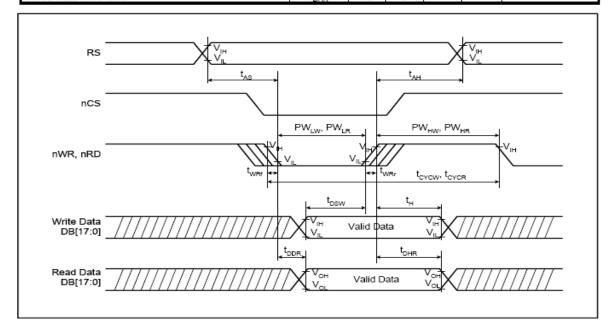
10.3 Power Supply Configuration

When supplying and cutting off power, follow the sequence below. The setting time for oscillators, step-up circuits and operational amplifiers depends on external resistance and capacitance.

11. Timing Characteristics

11.1 Clock Characteristics

VCC = 2.40 ~ 3.30V, IOVCC = 1.65 ~ 3.30V

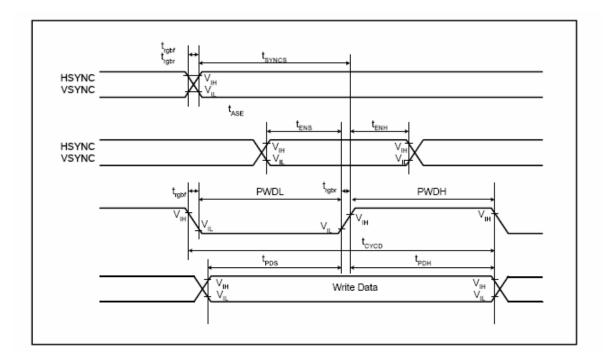

Date: 2007/09/27

Item	Symbol	Test Condition	Min.	Тур.	Max.	Unit
External Clock Frequency	fcp	VCC = 2.4 ~ 3.3V	450	550	650	KHz
External Clock Duty	f _{□uty}	VCC = 2.4 ~ 3.3V	45	50	55	
External Clock Rising Time	Trcp	VCC = 2.4 ~ 3.3V	-	-	0.2	μs
External Clock Falling Time	Tfcp	VCC = 2.4 ~ 3.3V	-	-	0.2	μs
RC oscillation clock	fosc	Rf = 100KΩ, VCC = 2.8V	450	550	650	KHz

11.2 AC Characteristics (i80 – system Interface Timing Characteristics)

Normal Write Mode (IOVCC = 1.65~3.3V, VCC=2.4~3.3V)

	Item	Symbol	Unit	Min.	Тур.	Max.	Test Condition
Pue evele time	Write	tcycw	ns	100	-	-	-
Bus cycle time	Read	tcycr	ns	300	-	-	-
Write low-level pulse width		PW _{LW}	ns	50	-	500	-
Write high-level p	ulse width	PW _{HW}	ns	50	-	-	-
Read low-level pu	lse width	PW _{LR}	ns	150	-	-	-
Read high-level po	ulse width	PW _{HR}	ns	150	-	-	
Write / Read rise /	fall time	twer/twer	ns	-	-	25	
6 - 4 4'	Write (RS to nCS, E/nWR)	4		10	-	-	
Setup time	Read (RS to nCS, RW/nRD)	tas	ns	5	-	-	
Address hold time	•	tан	ns	5	-	-	
Write data set up t	time	t _{DSW}	ns	10	-	-	
Write data hold tin	ne	t _H	ns	15	-	-	
Read data delay ti	t _{DDR}	ns	-	-	100		
Read data hold tin	ne	t _{DHR}	ns	5	-	-	


11.3 AC Characteristics (RGB Interface Timing Characteristics)

18/16-bit Bus RGB Interface Mode (IOVCC = 1.65 ~ 3.3V, VCC=2.4~3.3V)

Item	Symbol	Unit	Min.	Тур.	Max.	Test Condition
VSYNC/HSYNC setup time	tsyncs	ns	0	-	-	-
ENABLE setup time	t _{ENS}	ns	10	-	-	-
ENABLE hold time	t _{ENH}	ns	10	-	-	-
PD Data setup time	tens	ns	10	-	-	-
PD Data hold time	t _{PDH}	ns	40	-	-	-
DOTCLK high-level pulse width	PWDH	ns	40	-	-	-
DOTCLK low-level pulse width	PWDL	ns	40	-	-	-
DOTCLK cycle time	tcyco	ns	100	-	-	-
DOTCLK, VSYNC, HSYNC, rise/fall time	t _{rghr} , t _{rghr}	ns	1	-	25	-

6-bit Bus RGB Interface Mode (IOVCC = 1.65 ~ 3.3V, VCC=2.4~3.3V)

Item	Symbol	Unit	Min.	Тур.	Max.	Test Condition
VSYNC/HSYNC setup time	t _{syncs}	ns	0	-	-	-
ENABLE setup time	t _{ENS}	ns	10	-	-	-
ENABLE hold time	t _{ENH}	ns	10	-	-	-
PD Data setup time	t _{PDS}	ns	10	-	-	-
PD Data hold time	t _{PDH}	ns	30	-	-	-
DOTCLK high-level pulse width	PWDH	ns	30	-	-	-
DOTCLK low-level pulse width	PWDL	ns	30	-	-	-
DOTCLK cycle time	tcycp	ns	80	-	-	-
DOTCLK, VSYNC, HSYNC, rise/fall time	t _{rghr} , t _{rghr}	ns	-	-	25	-

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

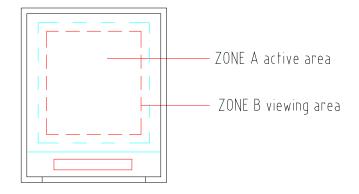
12 QUALITY AND RELIABILITY

12.1 TEST CONDITIONS

Tests should be conducted under the following conditions:

Ambient temperature : $25 \pm 5^{\circ}$ C Humidity : $60 \pm 25\%$ RH.

12.2 SAMPLING PLAN


Sampling method shall be in accordance with MIL-STD-105E , level II, normal single sampling plan .

12.3 ACCEPTABLE QUALITY LEVEL

A major defect is defined as one that could cause failure to or materially reduce the usability of the unit for its intended purpose. A minor defect is one that does not materially reduce the usability of the unit for its intended purpose or is an infringement from established standards and has no significant bearing on its effective use or operation.

12.4 APPEARANCE

An appearance test should be conducted by human sight at approximately 30 cm distance from the LCD module under flourescent light. The inspection area of LCD panel shall be within the range of following limits.

12.5 INSPECTION QUALITY CRITERIA

No.	Item	Criterior	n for defects	Defect type					
1	Non display	No non display is allowed		Major					
2	Irregular operation	No irregular operation is a	No irregular operation is allowed						
3	Short	No short are allowed		Major					
4	Open	Any segments or comm are rejectable.	on patterns that don't activa	e Major					
5	Black/White spot (I)	Size D (mm) $D \le 0.15$ $0.15 < D \le 0.20$ $0.20 < D \le 0.30$ $0.30 < D$	$D \le 0.15$ Ignore $0.15 < D \le 0.20$ 3 $0.20 < D \le 0.30$ 2						
6	Black/White line (I)	Length(mm) Width (10 < L	0.04 5 0.06 3 0.07 2	Minor					
7	Black/White sport (II)	Size D (mm) $D \le 0.30$ $0.30 < D \le 0.50$ $0.50 < D \le 1.20$ $1.20 < D$	Size D (mm) Acceptable number $D \le 0.30$ Ignore $0.30 < D \le 0.50$ 5 $0.50 < D \le 1.20$ 3						
8	Black/White line (II)	20 < L 0.05 < W < 10 < L ≤ 20 0.07 < W ≤ 5.0 < L ≤ 10 0.09 < W ≤	$0.05 < W \le 0.07$ 5 20 $0.07 < W \le 0.09$ 3 10 $0.09 < W \le 0.10$ 2						
9	Back Light	No Lighting is rejectab Elickering and abnorm	Major						

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

10	Display pattern	$\frac{A+B}{2} \le 0.30$ Note: 1. Accep 2. NG if	Minor			
11	Blemish & Foreign matters Size: $D = \frac{A+B}{2}$	Size D (r D ≤ 0.15 0.15 < D ≤ 0.20 0.20 < D ≤ 0.30 0.30 < D	Minor			
12	Scratch on Polarizer	Width (mm) W≤0.03 0.03 <w≤0.05 0.05<w≤0.08="" 0.08<w="" note(1)="" regard<="" td=""><td>Length</td><td>re 2.0 2.0 .0 .0 .0 (1)</td><td>Acceptable number Ignore Ignore 1 1 Ignore Note(1)</td><td>r Minor</td></w≤0.05>	Length	re 2.0 2.0 .0 .0 .0 (1)	Acceptable number Ignore Ignore 1 1 Ignore Note(1)	r Minor
13	Bubble in polarizer	Size D (r D ≤ 0.20 0.20 < D ≤ 0.50 0.50 < D ≤ 0.80 0.80 < D))	Ac	ceptable number Ignore 3 2 0	Minor
14	Stains on LCD panel surface				ven when wiped lig g too are rejectable.	Minor
15	Rust in Bezel	Rust which is	visible in th	e bezel i	is rejectable.	Minor
16	Defect of land surface contact (poor soldering)	Evident crevic	Minor			
17	Parts mounting	1. Failure to m 2. Parts not in 3. Polarity, for	Major Major Major			

Preliminary
The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

18	Parts alignment	 LSI, IC lead width is more than 50% beyond pad outline. Chip component is off center and more than 50% of the leads is off the pad outline. 	
19	Conductive foreign matter (Solder ball, Solder chips)	 1. 0.45< φ ,N≥1 2. 0.30< φ ≤0.45 ,N≥1 φ:Average diameter of solder ball (unit: mm) 3. 0.50<l ,n≥1<="" li=""> L: Average length of solder chip (unit: mm) </l>	Major Minor Minor
20	Faulty PCB correction	 Due to PCB copper foil pattern burnout, the pattern is connected, using a jumper wire for repair; 2 or more places are corrected per PCB. Short circuited part is cut, and no resist coating has been performed. 	Minor

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

12.6 **RELIABILITY**

Test Item	Test Conditions	Note
High Temperature Operation	70±3°C , t=96 hrs	
Low Temperature Operation	-20±3°C , t=96 hrs	
High Temperature Storage	80±3°C , t=96 hrs	1,2
Low Temperature Storage	-30±3°C , t=96 hrs	1,2
Humidity Test	40°C , Humidity 90%, 96 hrs	1,2
Thermal Shock Test	-30°C ~ 25°C ~ 70°C 30 min. 5 min. 30 min. (1 cycle) Total 5 cycle	1,2
Vibration Test (Packing)	Sweep frequency: 10~55~10 Hz/1min Amplitude: 0.75mm Test direction: X.Y.Z/3 axis Duration: 30min/each axis	2
Static Electricity	150pF 330 ohm <u>+</u> 8kV, 10times air discharge	

Note 1: Condensation of water is not permitted on the module.

Note 2 : The module should be inspected after 1 hour storage in normal conditions

(15-35°C, 45-65%RH).

Definitions of life end point :

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

13 USE PRECAUTIONS

13.1 Handling precautions

- 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzine and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

13.2 Installing precautions

- 1) To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. $1M\Omega$ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- 3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off.

33

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

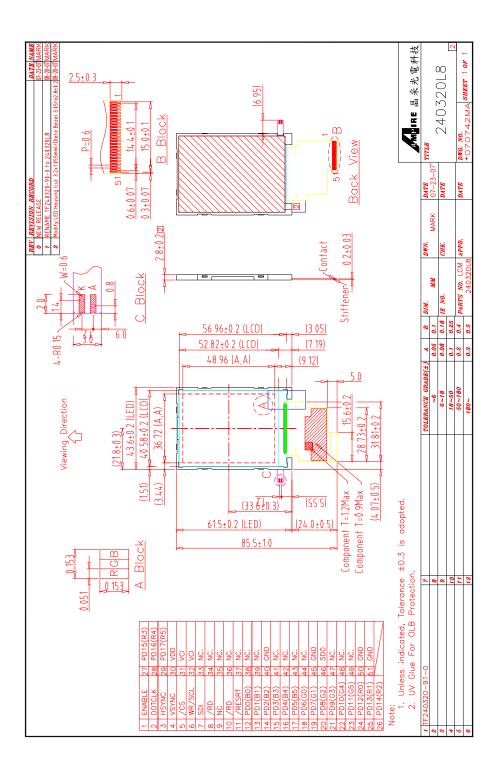
13.3 Storage precautions

- 1) Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- 2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.
- 3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.

13.4 Operating precautions

- 1) Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- 3) The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- 7) The characteristic of the semiconductor element changes when it is exposed to

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD


- light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.
- 8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.

13.5 Other

- 1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 2) The residual image may exist if the same display pattern is shown for hours. This residual image, however, disappears when another display pattern is shown or the drive is interrupted and left for a while. But this is not a problem on reliability.

14 OUTLINE DIMENSION

Date: 2007/09/27

36