TWO INVOLUTIONS ON VERTICES OF ORDERED TREES
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ABSTRACT. We will give two natural involutions on the set of pointed ordered trees. These
involutions strongly rely on the fact that the pointed ordered trees are embedded in the plane.
Using these involutions, we provide combinatorial bijections between the terminal and the internal
vertices of ordered trees, and then we deal with some counting problems on the pointed ordered
trees.

RESUME. Nous donnons deux involutions naturelles sur I’ensemble des arbres pointés planaires.
Ces deux involutions reposent fortement sur le fait que les arbres planaires pointés sont plongés
dans le plan. En utilisant ces involutions, nous donnons des bijections entre les sommets internes
et externes des arbres planaires. Nous donnons des résultats sur certains de leurs énumérations.

1. INTRODUCTION

An ordered tree is a rooted tree in which children of each vertex are ordered. A pointed ordered
tree is an ordered tree one of whose vertex is pointed, where ‘pointed’ means distinguishing one
vertex. For an ordered tree o and a vertex v in o, let 0¥ denote the pointed ordered tree with v
pointed. Let O,, be the set of all ordered trees with n edges and O;, be the set of all pointed ordered
trees with n edges. Figure 1 shows all the elements of O3 with roots at the top.
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FI1GURE 1. Ordered trees with 3 edges

A pointed ordered tree oV is called terminal, if v is a leaf in o, otherwise, internal. Let O;, be
the set of all terminal pointed ordered trees in Of and O; the set of all internal pointed ordered
trees. Then these two sets have the same cardinality, as illustrated in Figure 1, where there are the
same number of boxed and unboxed vertices.

Many researchers proved |O;'| = |0, | with various combinatorial methods. Dasarathy and Yang
[3] gave combinatorial explanations by Knuth natural correspondence [7, pp. 332-333]. Chauve [2],
Deutsch [5], and Seo [8] introduced proofs in Dyck path version independently. These proofs used
binary trees, Dyck paths, or some other objects, but no proof has been built directly on ordered
trees.

In this paper, we will give two natural bijections on Op. These bijections strongly rely on the
fact that pointed ordered trees are embedded in the plane. We will analyze the set Op and find
some interesting formulas.

2. PRELIMINARY

We adopt conventional terminology on trees as in [1], [6]. Let T, be the set of all trees with n
edges and 7,7 the set of pointed trees with n edges. Every tree can be embedded in a plane without
edge-crossing. A tree embedded in the plane is called a plane tree. Two plane trees are considered
to be the same, if they can be made identical by an orientation preserving homeomorphism defined

1



2 SEO, SHIN

FIGURE 2. Trees, Plane Trees, Ordered Trees

on the plane. Let P,, be the set of all plane trees with n edges and P, the set of all pointed plane
trees with n edges.

An ordered tree is a plane tree which has a distinguished vertex (called the root) and a distin-
guished edge (called the leftmost edge) which is incident with the root. A tree consisting of one
vertex is considered to be an ordered tree. This definition of ordered tree is equivalent to the orig-
inal definition which mentioned in previous section. Two ordered trees are the same, if there is an
orientation preserving homeomorphism which preserves the root and the leftmost edge. Let O,, be
the set of all ordered trees with n edges and O the set of all pointed ordered trees with n edges.

In Figure 2, we illustrate three different ordered trees with roots at the top. As plane trees, two
are the same, the second and the third, and all three are the same as trees.

Let o be an ordered tree. For each vertex v of o, let p(v) be the unique path from the root to v.
For the non-root vertex v, the parent of v is the neighbor of v in p(v), and any neighbor of v in o,
which is not the parent of v, is called a child of v. A vertex v in an ordered tree o is called a terminal
vertex or leaf, if it has no child, and an internal vertex, otherwise. The vertex in the ordered tree
consisting of one vertex is considered as a terminal vertex. We call o” terminal, if v is a terminal
vertex in o, and internal, if v is an internal vertex. Let O denote the set of all internal pointed
ordered trees, and let O, denote the set of all terminal pointed ordered trees, i.e. O, = O \ O;}.
A vertex w in an ordered tree o is called a descendant of a vertex v, if p(v) C p(w) holds.

Given a pointed ordered tree o?, let d(ov), the descendant subtree of 0¥, denote the induced
subtree of oV consisting of all descendants of v and v itself as a root, and let d(ov), the non-
descendant subtree of oV, denote the induced subtree of o consisting of the vertices which are not
descendants of v.

Let 0" be a pointed ordered tree in which v is not the root of o, and u be the parent of v. Define
1(0?) (resp. r(o?)), the left (resp. right)-descendant subtree of o¥ by the subtree of d(0*) consisting
of u as a root and all descendants of u to the left (resp. right) of the edge {u,v}. Finally, let 1(o?)
(resp. T(0v)) be the union of r(o?) (resp. 1(0?)), d(o%), d(o?) and the edge {u,v} (see Figure 3). In
fact, d(o?) (resp. 1(o?), r(o?)) is the edge complement of d(o?) (resp. 1(o?), F(o?)).

3. INVOLUTIONS L AND R ON POINTED ORDERED TREES

In this section, we assume that n > 0. So if o € O}, then v has at least one child, and if
o’ € O,,, then v has a parent.

We can define a mapping LT : O, — O} as follows (Figure 4): Given oV € O,;, where u is the
parent of v, we first cut 1(o”) from ov, and paste it to 1(o”) by identifying u € 1(o¥) and v € 1(oV).
Let 0" be the resulting pointed ordered tree. Note that u is an internal vertex in 6%, so 6* € O .
Set LT (o) = o*.

Conversely, we can also define a mapping L* : OF — O as follows: Given o’ € O, where w is
the leftmost child of v, we first cut d(o®) from o?, and paste it to d(o™) by identifying w € d(o™)
and v € d(o¥), and put d(o®) on the left of the edge {v,w} € d(o®). Let 0¥ be the resulting
pointed ordered tree. Note that w is a terminal vertex in 8%, so 6 € O,,. Set L*(0o”) = 6". Now
define L : Op — Oy, by

L(o") = {Li(o”), ?f o' € O,JE,
L* (oY), if oV € O,.

Figure 5 shows how L maps O; to Of .
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F1GURE 5. Correspondence in Of by L
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By replacing left with right in the definition of L, we can define R : Oy, — O, similarly.

Theorem 1. The maps L and R are involutions in Of with L(O;) = O} and R(O;;) = O;. So
L and R are bijections from O,; to O} .

Proof. Tt suffices to show that (LT)~! = L*. Let o’ be an arbitrary tree in O;;, u be the parent of
v, and 6" be the image of 0¥ under L¥. Then, from the definition of L¥, we obtain 1(o?) = d(o?)
and 1(0?) = d(6"). Observe that v is the leftmost child of u in 6%. Let L*(6") = 6*. Then, from
the definition of L*, we obtain d(6”) = 1(8") and d(6%) = 1(6”). So we get 1(0¥) = 1(0") and
1(0?) = 1(8¥), which yield o = 6", and so L* o LT is the identity. O

Moreover, from Theorem 1, we can easily get the following result. The statement about the
average level previously appeared in [4].

Corollary 2. For o € O;, define the level of 0”, denoted by p(o?), to be the number of edges in
the path p(v). If p(o?) = m, then

m+ 1, if oV is internal,

m—1, if oV is terminal.

p(L(0")) = p(R(0")) = {

Consequently, the average level of terminal oV ’s is greater than the average level of internal 0”’s by
1.

4. VARIOUS ENUMERATIONS ON O

4.1. A group action on O,.

For simplicity, we define L and R on Of to be the identity map. Let G be the group generated
by L and R with composition as the operation. Since L and R are involutions, G has the following
presentation.

G=(L,R:L*=1, R*=1).
The group G acts on O;, by
G- -0’ =G(0") forall o’ € O; and all G € G.

From now on, we write Go? for G(0"). O¢ is partitioned into G-orbits, we are interested in finding
the number of distinct G-orbits and the size of each orbit.

Clearly, every orbit has an even number of elements and exactly half of them are in O;f. For any
element o in 02, let [0”] denote the G-orbit of 0?, and set [0”]" = [0Y]|NO; and [0’]” = [0¥]NO,,.
Since [0Y]T and [0Y]” are equinumerous, [[0?]| = 2|[0¥]*]. Let H be the subgroup of G generated
by RL,i.e. H=(RL). If 0" is chosen from O;, then we can easily see that

[0’]" = {Ho" | H € H}.

And the number of H-orbits in O; equals the number of G-orbits in Of. So instead of the G-action
on Of, we will discuss the H-action on O)}. The following proposition shows how RL acts on

n’

o’ € O;f more intuitively.

Proposition 3. For each o’ € O}, RLo" is obtained as follows: Let w be the leftmost child of v.
First cut d(o”) from o, exchange labels v and w in d(o”), and finally identify v in d(o”) and the
original v in d(oV). The resulting pointed ordered tree is RLo".

Proof. This is apparent from the definition of L and R. See Figure 6. O

4.2. Enumeration of H-orbits.
The Proposition 3 enable us to compute the number of distinct H-orbits in O;. Recall that P,
is the set of all plane trees with n edges. Let p,, denote the cardinality of P,,.

Theorem 4. Let orb,, be the number of distinct H-orbits in O . Then,

n—1
2k —1
4.1 orb,, = p, + o -
(1) pt 3 (5 s
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FIGURE 6. How RL acts on a given o’ € O;F

Proof. Let U be the natural map from O, to P, by just forgetting the root and the initial edge.
By Proposition 3, d(RLo") = d(o?) and U(d(RL(0?))) = U(d(o")). So two orbits [0?]T and [6*]*
are different if and only if d(o?) # d(6™) or U(d(0?)) # U(d(6%)). Assume that d(o?) has k edges.
Since v has no descendants in d(oV), d(o?) is an element of O;, and clearly U(d(ov)) is an element
of P,,_r. Then the number of distinct orbits is the sum

n—1
D10 1Pail.
k=0

Now (4.1) follows, since |Oy| = ¢, = kl?(%f), where ¢, denotes the k-th Catalan number, and for

k>0,10,]=1(k+1)|0k = (**"), and |0y | = 1. 0

Let P(z) denote the ordinary generating function for p,, and O(z) for Catalan number ¢,. Then
by dissymmetry Theorem for trees [1, Theorem 4.1.1],

Plz)=1+ Z ¢§1n) log T x"l(’)

=1 (z")

+3 (06?) - 0*()

and
1 n 2d 1 1
(4.2) Pn =5 §:¢ (3) <d> —3¢n + §Xodd(n)cﬂT—1,

where ¢ is the Euler’s totient function and x,qq is the characteristic function of odd integers. From
(4.1) and (4.2), we can have the summation form of orb,,, but we can not find a simple formula.
The sequence {orb, }32, starts with 1, 1, 2, 6, 18, 60, 210, 754, 2766, 10280, 38568, ... , and it does
not appear in On-Line Encyclopedia of Integer Sequences [9].

4.3. Counting the cardinality of an orbit.
Given oV € O;f, we compute the size of [0’]". For a plane tree p having at least one edge, we
define ¢(p), the center of p, which appears in [1], as follows :
(1) Delete all the leaves in p.
(2) Iterate (1), until the resulting plane tree has at most one internal vertex.

(3) If the resulting plane tree has no internal vertex (one edge), then the edge is ¢(p).
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FIGURE 7. o(p): When ¢(p) is a vertex.
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FIGURE 8. o(p): When ¢(p) is an edge.

(4) If the resulting tree has a unique internal vertex (star shape), then the internal vertex is
c(p)-

If we delete! ¢(p) from p, p\ c(p) is decomposed into several components. In fact, each component
is an ordered tree whose root is a neighbor of the center. We fix one component o, and label other
components counterclockwise 0o, ...,0;, where i is the number of components of p \ ¢(p). Let j
be the smallest positive integer such that (0j41,...,0;4;) = (01,...,0;), where indices are read in
mod i. Define o(p) the symmetry number of p to be the value i/j (see Figures 7, 8).

The symmetry number plays an important role in obtaining the size of an orbit as follows:

Theorem 5. Given o' € O, the cardinality of [0¥]" is

oVlt| = 26(1’)
(43) o'y = 242

where p = U(d(0?)), and €(p) is the number of edges in p.

Proof. Since d(RLo") = d(o") and U(d(RLo")) = U(d(o?)), the size of [0?]T is determined by p.
More precisely, the size of [0’]* equals the number of ways of identifying a vertex in w € p with
v € d(0"). For each vertex w in p, since p is embedded in the plane, we have deg(w) distinct ways of

b

1If ¢(p) is a vertex, then it is a vertex deletion and if ¢(p) is an edge, then it is an edge deletion.
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identifying w with v € d(o"). So, if we allow repetition, the number of all possible ways of attaching
p to d(o") is 3, ., deg(w) = 2¢(p). But by the definition of the symmetry number, each pattern
occurs exactly o(p) times. This yields (4.3). O
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