## Two involutions on vertices of ordered trees

Seunghyun Seo and Heesung Shin<br>Mathematics, KAIST

2002. 7. 8

## Ordered Trees

Formal Definition (Recursive form) : Either the tree consisting of its root $r$ alone, or an ordered tuple $\left[r ; \mathbf{o}_{1}, \ldots, \mathbf{o}_{l}\right]$, where $l \geq 1$ and $\mathbf{o}_{1}, \ldots, \mathbf{o}_{l}$ are smaller ordered trees.

Geometric Definition (Intuitive form) : Either the tree consisting of its root $r$ alone, or a plane tree which has a root and a distinguished edge $\delta$ which is incident with the root.



Let $\mathcal{O}_{n}$ be the set of all ordered trees with $n$ edges.


Figure 1: Ordered trees with 3 edges

Observe that

$$
\sum_{\mathbf{o} \in \mathcal{O}_{3}}|I(\mathbf{o})|=10=\sum_{\mathbf{o} \in \mathcal{O}_{3}}|T(\mathbf{o})| .
$$

## Main Theorem

Theorem 1 For all $n \geq 1$,

$$
\sum_{\mathbf{o} \in \mathcal{O}_{n}}|I(\mathbf{o})|=\sum_{\mathbf{o} \in \mathcal{O}_{n}}|T(\mathbf{o})|=\frac{1}{2}\binom{2 n}{n}
$$

Theorem 1 can be proved by various tools as follows:

- Using the generating function technique.
- Changing the object set.
- Binary trees. (Dasarathy and Yang, 1980)
- Dyck paths. (Deutsch, 1999; Seo, 2001)
- Giving an involution on the vertex set of $\mathcal{O}_{n} .(*)$

Proof of Therem 1 using Binary trees (Dasarathy and Yang, 1980).


Figure 2: $|I(\mathbf{o})|+\left|I\left(\mathbf{o}^{R}\right)\right|=n$, so $|I(\mathbf{o})|=\left|T\left(\mathbf{o}^{R}\right)\right|$.

## Proof of Therem 1 using Dyck paths (Seo, 2001).



Figure 3: The bijection between ordered trees and Dyck paths


Figure 4: The relation between triangles and final steps

## Pointed Ordered Trees

For an ordered tree $\mathbf{O}$ and a vertex $v$ in $\mathbf{0}$, let $(\mathbf{o}, v)\left(a b b r e . \mathbf{o}^{v}\right)$ denote the pointed ordered tree with $v$ pointed.

- $\mathcal{O}_{n}^{\bullet}=\left\{\mathbf{o}^{v}: \mathbf{o} \in \mathcal{O}_{n}, v \in V(\mathbf{o})\right\}$.
- $\mathcal{O}_{n}^{+}=\left\{\mathbf{o}^{v}: \mathbf{o} \in \mathcal{O}_{n}, v \in I(\mathbf{o})\right\}$.
- $\mathcal{O}_{n}^{-}=\left\{\mathbf{o}^{v}: \mathbf{o} \in \mathcal{O}_{n}, v \in T(\mathbf{o})\right\}$.

To verify the Theorem 1, it is enough to show that there exists a bijection between $\mathcal{O}_{n}^{+}$and $\mathcal{O}_{n}^{-}$, where $n>0$.


Figure 5: General decomposition of $\mathbf{o}^{v}$


Figure 6: Left and right decompositions of internal $\mathbf{o}^{v}$


Figure 7: Terminal decomposition of terminal $\mathbf{o}^{v}$

## Involutions on Pointed Ordered Trees



Figure 8: Two maps $L$ and $R$
Theorem 2 For all $n>0$, the maps $L$ and $R$ are involutions in $\mathcal{O}_{n}^{\bullet}$ with $L\left(\mathcal{O}_{n}^{-}\right)=\mathcal{O}_{n}^{+}$and $R\left(\mathcal{O}_{n}^{-}\right)=\mathcal{O}_{n}^{+}$. So $L$ and $R$ are bijections between $\mathcal{O}_{n}^{-}$and $\mathcal{O}_{n}^{+}$.


Figure 9: Correspondence in $\mathcal{O}_{3}^{\bullet}$ by the map $L$

Let $\rho\left(\mathbf{o}^{v}\right)$ be the length of the path from $v$ to the root of $\mathbf{O}$. We call it the level of $\mathbf{o}^{v}$.

Corollary 3 For a $\mathbf{o}^{v} \in \mathcal{O}_{n}^{\bullet}$,

$$
\rho\left(L\left(\mathbf{o}^{v}\right)\right)=\rho\left(R\left(\mathbf{o}^{v}\right)\right)= \begin{cases}\rho\left(\mathbf{o}^{v}\right)+1, & \text { if } \mathbf{o}^{v} \text { is internal, } \\ \rho\left(\mathbf{o}^{v}\right)-1, & \text { if } \mathbf{o}^{v} \text { is terminal. }\end{cases}
$$

Consequently,

$$
\left[\text { average level of } \mathcal{O}_{n}^{-}\right]=\left[\text {average level of } \mathcal{O}_{n}^{+}\right]+1
$$

which has been proved by Dershowitz and Zaks (1981).

## A Group Action on $\mathcal{O}_{n}^{\bullet}$

Let $\mathbf{G}$ be the group generated by $L$ and $R$ with composition as the operation. Since $L$ and $R$ are involutions, $\mathbf{G}$ has the following presentation.

$$
\mathbf{G}=\left\langle L, R: L^{2}=1, R^{2}=1\right\rangle
$$

The group G acts on $\mathcal{O}_{n}^{\bullet}$ by

$$
G \cdot \mathbf{o}^{v}=G\left(\mathbf{o}^{v}\right) \text { for all } \mathbf{o}^{v} \in \mathcal{O}_{n}^{\bullet} \text { and all } G \in \mathbf{G} .
$$

By this G -action, $\mathcal{O}_{n}^{\bullet}$ is partitioned into G -orbits.

Given $\mathbf{o}^{v}$, let $\left[\mathbf{o}^{v}\right]$ denote the $\mathbf{G}$-orbit of $\mathbf{o}^{v}$ and $\mathcal{O}_{n}^{\bullet} / \mathbf{G}$ the set of all distinct orbits in $\mathcal{O}_{n}^{\bullet}$, i.e.,

$$
\begin{aligned}
{\left[\mathbf{o}^{v}\right] } & =\left\{G \mathbf{o}^{v}: G \in \mathbf{G}\right\}, \\
\mathcal{O}_{n}^{*} / \mathbf{G} & =\left\{\left[\mathbf{o}^{v}\right]: \mathbf{o}^{v} \in \mathcal{O}_{n}^{*}\right\} .
\end{aligned}
$$

Then we can raise two natural questions:
Question 1. How many distinct orbits are there, i.e., $\left|\mathcal{O}_{n}^{\bullet} / \mathrm{G}\right|=$ ?
Question 2. Given $\mathbf{o}^{v} \in \mathcal{O}_{n}^{\bullet}$, what is the cardinality of $\left[\mathbf{o}^{v}\right]$ ?

Let $\mathbf{H}=\langle R L\rangle$ and $\left[\mathbf{o}^{v}\right]^{+}=\left[\mathbf{o}^{v}\right] \cap \mathcal{O}_{n}^{+}$.
Clearly, $\mathbf{H}$ acts on $\mathcal{O}_{n}^{+}$and

$$
\left[\mathbf{o}^{v}\right]^{+}=\left\{H \mathbf{o}^{v}: H \in \mathbf{H}\right\}, \quad \text { where } \mathbf{o}^{v} \in \mathcal{O}_{n}^{+} .
$$

Observation 1. $\left|\mathcal{O}_{n}^{\bullet} / \mathbf{G}\right|=\left|\mathcal{O}_{n}^{+} / \mathbf{H}\right|$.
Observation 2. $\left|\left[\mathbf{o}^{v}\right]\right|=2\left|\left[\mathbf{o}^{v}\right]^{+}\right|$, where $\mathbf{o}^{v} \in \mathcal{O}_{n}^{+}$.
With these two observations, instead of the G -action on $\mathcal{O}_{n}^{\bullet}$, we will discuss the H -action on $\mathcal{O}_{n}^{+}$to answer the previous two questions.

## Enumeration of Distinct H-orbits



Figure 10: Trees and plane trees

- As trees, $\mathrm{t}_{1}=\mathrm{t}_{2}=\mathrm{t}_{3}$.
- As plane trees, $\mathbf{t}_{2}=\mathbf{t}_{3}$, but $\mathbf{t}_{1} \neq \mathbf{t}_{2}$.
$\mathcal{P}_{n}$ : the set of plane trees with $n$ edges $p_{n}$ : the cardinality of $\mathcal{P}_{n}$


Figure 11: How $R L$ acts on an internal pointed ordered tree $\mathbf{o}^{v}$

Define $P: \mathcal{O}_{n} \rightarrow \mathcal{P}_{n}$ by forgetting the root and the distinguished edge of each ordered tree. By Figure 11,

$$
\overline{\mathrm{d}}\left(R L \mathbf{o}^{v}\right)=\overline{\mathrm{d}}\left(\mathbf{o}^{v}\right) \quad \text { and } \quad P\left(\mathrm{~d}\left(R L \mathbf{o}^{v}\right)\right)=P\left(\mathrm{~d}\left(\mathbf{o}^{v}\right)\right) .
$$

Hence

$$
\begin{aligned}
& {\left[\mathbf{o}_{1}^{v}\right]^{+}=\left[\mathbf{o}_{2}^{w}\right]^{+} \Longleftrightarrow} \\
& \quad \overline{\mathrm{d}}\left(\mathbf{o}_{1}^{v}\right)=\overline{\mathrm{d}}\left(\mathbf{o}_{2}^{w}\right) \text { and } \quad P\left(\mathrm{~d}\left(\mathbf{o}_{1}^{v}\right)\right)=P\left(\mathrm{~d}\left(\mathbf{o}_{2}^{w}\right)\right) .
\end{aligned}
$$

Theorem 4 Let orb $_{n}=\left|\mathcal{O}_{n}^{+} / \mathbf{H}\right|$. Then

$$
\begin{equation*}
\operatorname{orb}_{n}=\sum_{k=0}^{n-1}\left|\mathcal{O}_{k}^{-}\right| \cdot\left|\mathcal{P}_{n-k}\right|=p_{n}+\sum_{k=1}^{n-1} \frac{1}{2}\binom{2 k}{k} \cdot p_{n-k} . \tag{1}
\end{equation*}
$$

Let $\mathcal{P}(x)$ denote the ordinary generating function for $p_{n}$, and $\mathcal{O}(x)$ for Catalan number $c_{n}$. Then by dissymmetry Theorem for trees (Bergeron, Labelle and Leroux, 1998),

$$
\mathcal{P}(x)=1+\sum_{n \geq 1} \frac{\phi(n)}{n} \log \frac{1}{1-x^{n} \mathcal{O}\left(x^{n}\right)}+\frac{x}{2}\left(\mathcal{O}\left(x^{2}\right)-\mathcal{O}^{2}(x)\right)
$$

and

$$
\begin{equation*}
p_{n}=\frac{1}{2 n} \sum_{d \mid n} \phi\left(\frac{n}{d}\right)\binom{2 d}{d}-\frac{1}{2} c_{n}+\frac{1}{2} \chi_{\mathrm{odd}}(n) c_{\frac{n-1}{2}} \tag{2}
\end{equation*}
$$

From (1) and (2), we can have the summation form of orb $b_{n}$, but we cannot find a simple formula. The sequence $\left\{\operatorname{orb} b_{n}\right\}_{n=0}^{\infty}$ starts with $1,1,2,6,18,60,210,754,2766,10280,38568, \ldots$, and it does not appear in On-Line Encyclopedia of Integer Sequences.

## Counting the Cardinality of an orbit

For $\mathbf{p} \in \mathcal{P}_{n}$, define the center of $\mathbf{p}$ by the center of the longest path in p (Knuth, 1973; Bergeron, Labelle and Leroux, 1998). Let $c(\mathbf{p})$ denote the center of $\mathbf{p}$.



Figure 12: The process to find center of given plane tree
symmetry index : Define the symmetry index of $\mathbf{p}$ by the number of periods of components around the center of $\mathbf{p}$.


Figure 13: $\sigma(\mathbf{p})$ : when $c(\mathbf{p})$ is an edge.


Figure 14: $\sigma(\mathbf{p})$ : when $c(\mathbf{p})$ is a vertex.

The symmetry index plays an important role in obtaining the size of an orbit as follows:

Theorem 5 Given $\mathbf{o}^{v} \in \mathcal{O}_{n}^{+}$, the cardinality of $\left[\mathbf{o}^{v}\right]^{+}$is

$$
\begin{equation*}
\left|\left[\mathbf{o}^{v}\right]^{+}\right|=\frac{2 \epsilon(\mathbf{p})}{\sigma(\mathbf{p})}, \tag{3}
\end{equation*}
$$

where $\mathbf{p}=P\left(\mathrm{~d}\left(\mathbf{o}^{v}\right)\right)$, and $\epsilon(\mathbf{p})$ is the number of edges in $\mathbf{p}$.

Sketch of the proof: The size of $\left[\mathbf{o}^{v}\right]^{+}$equals the number of ways of identifying a vertex $w$ in $\mathbf{p}$ with $v \in \overline{\mathrm{~d}}\left(\mathbf{o}^{v}\right)$. For each vertex $w$ in $\mathbf{p}$, we have $\operatorname{deg}(w)$ distinct ways of identifying $w$ with $v \in \mathrm{~d}\left(\mathbf{o}^{v}\right)$. So, if we allow repetition, the number of all possible ways of attaching $\mathbf{p}$ to $\overline{\mathrm{d}}\left(\mathbf{o}^{v}\right)$ is $\sum_{w \in \mathbf{p}} \operatorname{deg}(w)=2 \epsilon(\mathbf{p})$. But by the definition of the symmetry number, each pattern occurs exactly $\sigma(\mathbf{p})$ times. This yields (3).

| $p$ | I | $\wedge$ | $\lambda$ | $\lambda$ | 1 | $\lambda$ | + |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\varepsilon(p)$ | 1 | 2 | 3 | 3 | 4 | 4 | 4 |
| $\sigma(p)$ | 2 | 2 | 3 | 2 | 2 | 1 | 4 |
| $\frac{2 \varepsilon(p)}{\sigma(p)}$ | 1 | 2 | 2 | 3 | 4 | 8 | 2 |
| $p$ | $?$ |  |  | $\rangle$ | $\lambda$ | $\geqslant$ | 丈 |
| $\varepsilon(p)$ | 5 |  | 5 | 5 | 5 | 5 | 5 |
| $\sigma(p)$ | 2 |  | 1 | 1 | 1 | 2 | 5 |
| $\frac{2 \varepsilon(p)}{\sigma(p)}$ | 5 |  | 10 | 10 | 10 | 5 | 2 |

Figure 15: symmetry index of all plane trees having 5 or less edges

## References

[1] F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-like Structures, Encyclopedia of Mathematics and its Applications vol. 67, Cambridge University Press, 1998.
[2] C. Chauve, Half of the nodes of Catalan trees are leaves, personal communication.
[3] B. Dasarathy and C. Yang, A transformation on ordered trees, Comput. J., 23, No. 2 (1980), 161-164.
[4] N. Dershowitz and S. Zaks, Applied tree enumerations, in Lecture Notes in Computer Science, vol. 112, 180-193, Springer-Verlag, Berlin, 1981.
[5] E. Deutsch, An involution on Dyck paths and its consequences, Discrete Math., 204 (1999), 163-166.
[6] E. Deutsch, Dyck path enumeration, Discrete Math., 204 (1999), 167-202, esp. p. 175.
[7] D. E. Knuth, The Art of Computer Programming, vol. 1 , Fundamental Algorithms, 2nd ed., Addison-Wesley, Reading, Massachusetts, 1973.
[8] L. W. Shapiro, The higher you go, the odder it gets, Congressus Numerantium, 138 (1999), 93-96.
[9] S. Seo, A pairing of vertices in ordered trees, Discrete Math., 241 (2001), 471-477.
[10] S. Seo and H. Shin, Two involutions on vertices of ordered trees, in preprint, (2002).
[11] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/.

