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Ordered Trees

Formal Definition (Recursive form) : Either the tree consisting of its root r

alone, or an ordered tuple [r;o1, . . . ,ol], where l ≥ 1 and o1, . . . ,ol are

smaller ordered trees.

Geometric Definition (Intuitive form) : Either the tree consisting of its root r

alone, or a plane tree which has a root and a distinguished edge δ which is

incident with the root.
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I(o) = {1, 2, 3, 8}, T (o) = {4, 5, 6, 7, 9}.

Let On be the set of all ordered trees with n edges.
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Figure 1: Ordered trees with 3 edges

Observe that

∑

o∈O3

|I(o)| = 10 =
∑

o∈O3

|T (o)| .
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Main Theorem

Theorem 1 For all n ≥ 1,
∑

o∈On

|I(o)| =
∑

o∈On

|T (o)| =
1

2

(

2n

n

)

.

Theorem 1 can be proved by various tools as follows :

• Using the generating function technique.

• Changing the object set.

– Binary trees. (Dasarathy and Yang, 1980)

– Dyck paths. (Deutsch, 1999; Seo, 2001)

• Giving an involution on the vertex set of On. (∗)
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Proof of Therem 1 using Binary trees (Dasarathy and Yang, 1980).
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Figure 2: |I(o)| + |I(oR)| = n, so |I(o)| = |T (oR)|.
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Proof of Therem 1 using Dyck paths (Seo, 2001).
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Figure 3: The bijection between ordered trees and Dyck paths



Two involutions on vertices of ordered trees 7

reflection

τ

b

c
b

b

τc

b

leftmost minimum

c

τ
a

b

c z

b

b

τc

z = a

b

c
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Pointed Ordered Trees

For an ordered tree o and a vertex v in o, let (o, v) (abbre. ov)

denote the pointed ordered tree with v pointed.

• O•
n = {ov : o ∈ On , v ∈ V (o)}.

• O+
n = {ov : o ∈ On , v ∈ I(o)}.

• O−
n = {ov : o ∈ On , v ∈ T (o)}.

To verify the Theorem 1, it is enough to show that there exists a

bijection between O+
n and O−

n , where n > 0.
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Figure 5: General decomposition of ov
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Figure 6: Left and right decompositions of internal ov
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Figure 7: Terminal decomposition of terminal ov
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Involutions on Pointed Ordered Trees
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Figure 8: Two maps L and R

Theorem 2 For all n > 0, the maps L and R are involutions in

O•
n with L(O−

n ) = O+
n and R(O−

n ) = O+
n . So L and R are

bijections between O−
n and O+

n .
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Figure 9: Correspondence in O•

3
by the map L
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Let ρ(ov) be the length of the path from v to the root of o. We call it

the level of ov.

Corollary 3 For a ov ∈ O•
n,

ρ(L(ov) ) = ρ(R(ov) ) =

{

ρ(ov) + 1, if ov is internal,

ρ(ov) − 1, if ov is terminal.

Consequently,

[ average level of O−
n ] = [ average level of O+

n ] + 1 ,

which has been proved by Dershowitz and Zaks (1981).
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A Group Action on O•
n

Let G be the group generated by L and R with composition as the

operation. Since L and R are involutions, G has the following

presentation.

G = 〈L,R : L2 = 1, R2 = 1〉.

The group G acts on O•
n by

G · ov = G(ov) for all ov ∈ O•
n and all G ∈ G.

By this G-action, O•
n is partitioned into G-orbits.
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Given ov, let [ov] denote the G-orbit of ov and O•
n/G the set of all

distinct orbits in O•
n, i.e.,

[ov] = {Gov : G ∈ G} ,

O•
n/G = { [ov] : ov ∈ O•

n} .

Then we can raise two natural questions:

Question 1. How many distinct orbits are there, i.e., |O•
n/G| =?

Question 2. Given ov ∈ O•
n, what is the cardinality of [ov]?
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Let H = 〈RL〉 and [ov]+ = [ov] ∩ O+
n .

Clearly, H acts on O+
n and

[ov]+ = {Hov : H ∈ H} , where ov ∈ O+
n .

Observation 1. |O•
n/G| = |O+

n /H|.

Observation 2.
∣

∣[ov]
∣

∣ = 2
∣

∣[ov]+
∣

∣, where ov ∈ O+
n .

With these two observations, instead of the G-action on O•
n, we will

discuss the H-action on O+
n to answer the previous two questions.
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Enumeration of Distinct H-orbits

t1 t2 t3

Figure 10: Trees and plane trees

• As trees, t1 = t2 = t3.

• As plane trees, t2 = t3, but t1 6= t2.

Pn : the set of plane trees with n edges pn : the cardinality of Pn
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Define P : On → Pn by forgetting the root and the distinguished

edge of each ordered tree. By Figure 11,

d̄(RLov) = d̄(ov) and P (d(RLov) ) = P (d(ov) ) .

Hence

[ov
1]

+ = [ow
2 ]+ ⇐⇒

d̄(ov
1) = d̄(ow

2 ) and P (d(ov
1) )=P (d(ow

2 ) ) .

Theorem 4 Let orbn = |O+
n /H|. Then

orbn =
n−1
∑

k=0

|O−
k |·|Pn−k| = pn +

n−1
∑

k=1

1

2

(

2k

k

)

· pn−k. (1)
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Let P(x) denote the ordinary generating function for pn, and O(x)

for Catalan number cn. Then by dissymmetry Theorem for trees

(Bergeron, Labelle and Leroux, 1998),

P(x) = 1+
∑

n≥1

φ(n)

n
log

1

1 − xnO(xn)
+

x

2

(

O(x2) −O2(x)
)

and

pn =
1

2n

∑

d|n

φ
(n

d

)

(

2d

d

)

−
1

2
cn +

1

2
χodd(n) cn−1

2

. (2)

From (1) and (2), we can have the summation form of orbn, but we

cannot find a simple formula. The sequence {orbn}
∞
n=0 starts with

1, 1, 2, 6, 18, 60, 210, 754, 2766, 10280, 38568, . . . , and it does

not appear in On-Line Encyclopedia of Integer Sequences.
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Counting the Cardinality of an orbit

For p ∈ Pn , define the center of p by the center of the longest

path in p (Knuth, 1973; Bergeron, Labelle and Leroux, 1998). Let

c(p) denote the center of p.

e e e

v v v

p1 =

p2 =

e = c(p1)

v = c(p2)

Figure 12: The process to find center of given plane tree
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symmetry index : Define the symmetry index of p by the number

of periods of components around the center of p.

p1 : o1o2

c
(o1,o2) = (

,
) σ(p1) = 1

p2 : o1o2

c
(o1,o2) = (

,
) σ(p2) = 2

Figure 13: σ(p): when c(p) is an edge.
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Figure 14: σ(p): when c(p) is a vertex.
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The symmetry index plays an important role in obtaining the size of

an orbit as follows:

Theorem 5 Given ov ∈ O+
n , the cardinality of [ov]+ is

∣

∣[ov]+
∣

∣ =
2 ǫ(p)

σ(p)
, (3)

where p = P (d(ov) ), and ǫ(p) is the number of edges in p.
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Sketch of the proof : The size of [ov]+ equals the number of ways

of identifying a vertex w in p with v ∈ d̄(ov). For each vertex w

in p, we have deg(w) distinct ways of identifying w with

v ∈ d(ov). So, if we allow repetition, the number of all possible

ways of attaching p to d̄(ov) is
∑

w∈p deg(w) = 2ǫ(p). But

by the definition of the symmetry number, each pattern occurs

exactly σ(p) times. This yields (3).
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Figure 15: symmetry index of all plane trees having 5 or less edges



Two involutions on vertices of ordered trees 28

References

[1] F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-like Structures, Encyclopedia of

Mathematics and its Applications vol. 67, Cambridge University Press, 1998.

[2] C. Chauve, Half of the nodes of Catalan trees are leaves, personal communication.

[3] B. Dasarathy and C. Yang, A transformation on ordered trees, Comput. J., 23, No. 2 (1980), 161–164.

[4] N. Dershowitz and S. Zaks, Applied tree enumerations, in Lecture Notes in Computer Science, vol. 112,

180–193, Springer-Verlag, Berlin, 1981.

[5] E. Deutsch, An involution on Dyck paths and its consequences, Discrete Math., 204 (1999), 163–166.

[6] E. Deutsch, Dyck path enumeration, Discrete Math., 204 (1999), 167–202, esp. p. 175.

[7] D. E. Knuth, The Art of Computer Programming, vol. 1 , Fundamental Algorithms, 2nd ed., Addison-Wesley,

Reading, Massachusetts, 1973.

[8] L. W. Shapiro, The higher you go, the odder it gets, Congressus Numerantium, 138 (1999), 93–96.

[9] S. Seo, A pairing of vertices in ordered trees, Discrete Math., 241 (2001), 471–477.

[10] S. Seo and H. Shin,Two involutions on vertices of ordered trees, in preprint, (2002).

[11] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/∼njas/sequences/.


