Self-Education for Testers

%

James Bach, Satisfice, Inc.
James@satisfice.com
www.satisfice.com
(540)631-0600

Copyright © 2006, Satisfice, Inc.

This 1s what I'm talking about

Self-education means
directing your own education’

* In the normal course of your life and work, and
outside the confines of a learning institution.

o
(D You choose what to learn.
You decide when you learn.
You control how you learn.
You develop your own learning resources.)

These are my credentials

Name of
Student................... Bach, dames

STUDENT ACADEMIC PERMANENT RECORD

1980-81 Gr. 9 FM CR R
English 78 1
Social Studies 84 1
Physical Science 94 1

Math 10

Math 11

French 70 1
Physical Education 85 %

1981-82 Grade 10 FM CR R

lish
Sodia) Sufera gl
Calculus II 83 1
| also have: vt 5o 51 s
. : e M
Level 1 paraglider pilot certification Physical Ed. A

PADI open water diver certification
Driver’s license (state of Virginia)
Student private pilot license (expired)
Motorcycle license (expired)

What’s Special About Testing

There are few people around to teach you how to test.

Most of what is taught as “testing” is unreliable or
misleading folklore.

Testing iIs a complex problem-solving activity.

Learning testing on your own doesn’t cost you much,
you don’t need anyone’s permission, and it generally
poses no threat to life or property.

However...
It’s hard to know If you are doing it well.
Good testing varies quite a lot with the context.

What’s Special About Testing

Self-Education:
Choosing What and When

| learn whatever seems interesting about what’s happening now.
| scout resources and learn whatever looks helpful.

When | need to solve an important problem, or look back on one, |
learn whatever will help me solve it.

When | screw up, | study my failure.
| play games and learn what helps me win.

| choose whom | respect, and then learn what gains me status
among them.

| learn things Inspired by or recommended by someone else who
seems interesting to me.

| study whatever resolves my confusion about the world.

| maintain a list of topics and skills that | believe will make me
better, then learn about something within my personal syllabus.

| study whatever helps me learn better.

Self-Education:
Choosing What and When

What’s happening now?

Are there books or references here?

Am | facing an important problem now?

Have | just screwed something up?

Is this a game | want to win?

Do | feel like iImpressing [Cem, Michael, etc.] today?

What about that book [Cem, Michael, etc.]
recommended?

Am | confused right now?
What do | know about testing?
Can | get an edge by learning to learn better?

From My Personal Syllabus:
Important Things to Learn About Testing

The key idea behind each “buzzword” test technique | might be asked about.
A precise, expressive testing vocabulary for my philosophy of testing.

The ability to speak in precise technical terms about my testing, and to
articulate a story about my thought processes.

How to analyze anything (now!)

How to distinguish practices from contexts, and understand their relationship.
Descriptive and normative aspects of observation and inference.

Basic probability, statistics, and combinatorics.

How to design cognitive artifacts.

How to design and use heuristics.

My personal collection of testing heuristics.

Helpful software tools.

A smattering of many different technologies.

The Perl language.

My (Partial) Testing Syllabus

Logic
Lateral Thinking
Critical Thinking

Modeling ;_..-—0[_ Applied Epistemology |'—J- Design of Experiments
Non-Linearity | : Fd Decisicn-making (normative)
Complexity]‘32 General Systems Jﬁ—-ﬂ,m ;“ Text Analysis
Statics & Dynamics | “x‘ ."II
1'\ / Biases
Probability \ Perception
Statistics A L : . | Decislon-making (descriptive)
Combinatorics | _ My Personal Cognitive Science =4 Human Factors
Sets [Mathematics f Syllabus Heuristics (dynamics of)
S1aphs | 1 Learning
Metrics \ "'-.ll
/ ﬂ "x Terminol
Tools x'lll | xﬂ"xx _ | Heuristics (examples of)
Platforms & Frameworks | et | E""Ol Testing Folklore I{-f- Practices
Frogramming ?’| Technology ,"""j || Communities of Practice
Fallure Studies \

Rhetoric

Document Design

| erﬁng

*o| Communication }’:‘

What Level of Learning?

Level O: “| overcame obliviousness.”
| now realize there is something here to learn.

Level 1: “l overcame intimidation.”

| feel | can learn this subject or skill. I know enough about it so that | am not
Intimidated by people who know more than me.

Level 2: “| overcame incoherence.”

| no longer feel that I’m pretending or hand-waving. | feel reasonably
competent to discuss or practice. What | say sounds like what | think | know.

Level 3: “| overcame competence.”

Now I feel productively self-critical, rather than complacently good enough.
| want to take risks, invent, teach, and push myself. I want to be with other
enthusiastic students.

Choosing How to Learn

Touring: | read a survey piece.

Experiencing: | build an example; or do the activity.
Serendipity: | learn from unexpected events.

Teacher: | go see someone.

Reading: | find famous books and papers.

Global Supermind: I tour Google.

Standards: | discover what is considered “correct.”
Communities: | find a forum or professional association.
Conferences/Classes: | attend with a critical attitude.
Browsing: | skim and riffle.

Acquisition: | gather a library.

Testing: | contrast alternatives, critique, or consider extremes.
Teaching: | try to explain it.

Entry Points for
Self-Education

[Raaliza what you already know.

I,

&
e
-

Write a lesson or heuristic, |
Teach something you kind of know. |

List all the factors that comprise or]
influence an object of your study.

Draw a detailed diagram.

Find a problem that looks tough and solve it. |

Find an easy problem and solve it perfectly. |

-

Tell a story about a critical incident.]

Correct what you think you know. }ﬁ'l

Fead seminal material. l

Say something precisely.

Try a technique on a hard problem.

Subject vour ideas to testing.

Watch someone solve a problem that you
also know how to solve, |

Justify a method to a skeptical friend. |

(=}

Find an easy problem and fail to solve it perfectly |

Analyze your own mistakes (with a smile). |

I T

Al
|1
[

ll - Discover what other people know.]
| o

| . Scout the literature.
|

I Do paired testing.
|I Compare definitions.

| |I Interview another tester.

 Analyze and critique a practice or idea.
|

Teach something you don't know to an expert.
| |
' | Associate with enthusiastic, demanding thinkers

1
LY

? ‘f-ir-: Synthesize what nobody yet knows.
| I

. Find a tough problem and struggle with it.

 Experiment with a strange tool or a crazy idea.

| Reconcile ideas from different disciplines.
|

ED[Improve your ability to know. J

Study General Systems Thinking
Study Cognitive Science

Study Philosophy and History of Science
Study Education Theory

Happening to Learning
to Doing to Happening

actual percieved

ideal

»
actual

@ LESSONS LEARNED IN SOFTWARE TESTING

wm s the underlying problem just difficult to understand? Some systems that we
try to automate are inherently complex or involve difficult technical
issues. The programmers will find them complex and difficult too, and
that will lead them to mistakes of omission, misunderstanding, and
oversimplification.

The more you learn about the product, the technology, and testing in general,
the more powerful a compass your confusion becomes, showing you where
important problems lie.

In testing, if you know nothing else about a product, you at least know

that you're confused. In that situation, confusion can become your best
deliverable, in the form of issues and questions that perhaps no one else has
the courage to raise.

Making sense of something is a rich intellectual process of assimilating new
information into what you already know, while modifying what you know to
accommodate the new information. After you've made sense of a product or
feature, you have a mental map of it, and your mind doesn’t work so hard.
This can be a problem for testers. When you know a product well, you make
more assumptions about it, and you check those assumptions less often.

This situation has at least three implications for your testing:

= When you come to a product or feature for the first time, pay special
attention to what confuses and annoys you. That may tell you something
about how a user would react, too.

= When you work with new additions to the team, test alongside them.
Watch how they react to the product as they're learning it.

m Beware of getting into a testing rut. Even if you're not following rigid test
scripts, you may get so familiar with a particular feature that you test it in
progressively narrower ways. Introduce variation wherever you can or
switch testing duties with another tester.

Avoid following procedures unless they

Beware of other people’s procedures. It's common for test cases and
procedures to be expressed in a way that says nothing about the underlying
design goals of the test. That creates the strong likelihood that you will
follow the tests without quite understanding how to set them up or what to

Chapter 2: Thinking Like a Tester

SS
w@ Q

46

2

look for. In other words, you won't really follow them. In general, test
procedures are poorly written and poorly designed, because few good testers
are good at what amounts to programming humans like computers. If you're
going to follow test procedures, prefer to follow the ones that you designed,
you own, or that you thoroughly comprehend.

For best results, you should be in control of your testing, not your
documentation. Make it follow you.

If you are convinced that procedures are a good thing, at least study how
they work. See Things that Make Us Smart: Defending Human Attributes in the
Age of the Machine (Norman 1993) and The Social Life of Information (Brown
and Duguid 2000).

When you do create test procedures,
avoid “1287"

One of us, Bach, once witnessed a tester write a test procedure that included
the line “Type 1287 characters into the field.” Where did 1287 come from?
The tester explained that her test idea was simply to enter a very large
number of characters into the little input field. Because she had heard that
test procedures should be specific, she went back and carefully counted the
number of characters she had entered, 1287, and that’s what she put in the
procedure—an arbitrary number, now enshrined forever like cat tracks in a
cement sidewalk.

Over-specification is not helpful. When you write down a test procedure,
avoid any specificity that is not germane to the concept of the test. Include
any information and specificity necessary to frame and explain the test, but
let the future tester exercise creativity and judgment. Let the future tester
introduce variation that will keep your test procedure fresh and productive.

One important outcome of a test process

is a better, smarter tester.

We often hear arguments against any form of testing that results in minimal
or no documentation, as though the only value of testing is what comes from
writing down our tests. This ignores a profoundly important product of
testing: the tester herself.

Good testers are always learning. As the project progresses, they gain insight
into the product and gradually improve their reflexes and sensibilities in
every way that matters in that project. An experienced tester who knows the

Examples

A selection from Chapter 2: Thinking Like a Tester

#19 Testing is in your head.

#20 Testing requires inference, not just comparison of output to expected results.
#24 All "tests" are an attempt to answer some question.

#25 All testing is based on models.

#27 To test, you must explore.

#33 Use implicit as well as explicit specifications.

#37 Use heuristics to quickly generate ideas for tests.

#39 You're harder to fool if you know you're a fool.

#42 Confusion is a test tool.

#43 Fresh eyes find failure.

#44 Avoid following procedures unless they followed you first.
#45 When you do create test procedures, avoid "1287."

How to Write a Heuristic

Notice yourself solving a problem or making a decision without
an infallible procedure.

Identify a non-obvious thought or process that seems to help you
solve it.

Find an evocative label or phrase for that thought or process.

Try using the label or phrase next time you have the
problem, or when you are talking about the problem with
someone else.

Does it help? If not, drop it. If so, see If it sticks.

If you find yourself resisting your own heuristic, either there is
something wrong with the heuristic, or the problem isn’t
sufficiently interesting to you.

Ground Rules for
Lessons Learned in Software Testing

Lessons begin with a declarative or imperative sentence.
Each lesson stands alone.

Each lesson is peer reviewed.

Each lesson has a champion who has final say on edits.
Any author may decline to endorse any lesson.

Only include lessons that:
are non-obvious or deserve special emphasis.
at least one of the authors strongly believes in.
we wished we had learned earlier in our careers.
can be outlined usefully in a few paragraphs.
are grounded in the direct experience of at least one author.

We do not have to be complete; just helpful.

Try It now

Analyze and critique a practic

ice or idea

Questions for General Analysis

Why am | here, doing this, right now?

What things are here, now? What is not here?

What is happening right now? What is not happening?

What here do | sense directly, and what am | inferring?

How might | be wrong about what is really here and happening?

Where is the system here? What things connect and influence each other?
How is this like other things? How is it different?

What is changing and what is constant? In what ways could this change?
What is important about this? To whom is it important?

What could be changed or removed without affecting anything that matters?
How could this be better? Better to whom?

How is my presence influencing this? What options do | have, right now?
Project this forward/backward in time. How does it look?

What would this look like in slow or fast motion? Or zoomed in or out?
What would be an easy way to learn from this, or about this?

Is there someone | can talk to about it?

What does “best practice” mean?

‘%@M@@m@ el o Mg @mﬁﬁ@[ﬁ
unless you dothis practice ¥

Someone: Who is it? What do they know?

Believes: What specifically is the basis of their belief?
You: Is their belief applicable to you?

Might: How likely Is the suffering to occur?

Suffer: So what? Maybe it’s worth it?

Unless: Really? There’s no alternative?

You do this practice: What does it mean to “do” it? What does
It cost? What are the side effects? What if you do it badly? What if
you do something else really well?

Context-Driven Testing
Principles (v1.0)

1. The value of any practice depends on its context.
2. There are good practices in context, but there are no best practices.

3. People, working together, are the most important part of any
project's context.

4. Projects unfold over time in ways that are often not predictable.

5. The product is a solution. If the problem isn't solved, the product
doesn't work.

6. Good software testing Is a challenging intellectual process.

7. Only through judgment and skill, exercised cooperatively
throughout the entire project, are we able to do the right things at
the right times to effectively test our products.

Beware of...

Numbers: “we cut test time by 94%.”

Documentation: “you must have a written plan.”

Jud gments: “That project was chaotic. This project was a success.”
Behavior Claims: “oOur testers follow test plans.”
Terminology: Exactly what is a “test plan?”

Contempt for Current Practice: cMM Level 1 (initial) vs.
CMM level 2 (repeatable)

Un qu alified Claims: “A subjective and unguantifiable requirement
IS not testable.”

Look For...

Context: “This practice is useful when you want the power of creative
testing but you need high accountability, too.”

People: “The test manager must be enthusiastic and a real hands-on leader
or this won’t work very well.”

Skill: “This practice requires the ability to tell a complete story about testing:
coverage, techniques, and evaluation methods.”

Learnin 0 Curve: “lttook a good three months for the testers to get
good at producing test session reports.”

Caveats: “The metrics are useless unless the test manager holds daily
debriefings.”

Alternatives: “If you don’t need the metrics, you ditch the daily
debriefings and the specifically formatted reports.”

Ag endas: “lruna testing business, specializing in exploratory testing.”

Test Project Dynamics:
Context Model

Mission

Find Important Problems Advise about QA
Assess Quality Advise about Testing
Certify to Standard Advise about Quality
Fulfill Process Mandates Maximize Efficiency
Satisfy Stakeholders Minimize Cost

Assure Accountability Minimize Time

Development

Product
Project Lifecycle
Project Management

Requirements

Product Mission
Stakeholders

TeSt Quality Criteria
Configuration Management Reference Material
Defect Prevention Process
Development Team
Strategy
Logistics
Work-products
Test Team . Test Lab
Expertise Test Platforms
Loading Test Tools
Cohesion Test Library
Motivation Problem Tracking System
Leadership Office Facilities

Project Integration

Try It now

Try It now

You are using a calculator.
You press the keys “2+2="

What Is the expected result?

Try It now

time

You want to test the interaction between
two potentially overlapping events.

What are the test cases?

