
Lessons Learned in Lessons Learned in 
Teaching TestTeaching Test--Driven Driven 

DevelopmentDevelopment
Andy TinkhamAndy Tinkham

Florida Institute of TechnologyFlorida Institute of Technology



About MeAbout Me

DeveloperDeveloper
Worked on naval simulation used by Taiwanese government Worked on naval simulation used by Taiwanese government 
and JPLand JPL

TesterTester
8 years of automated testing prior to graduate school8 years of automated testing prior to graduate school

Doctoral StudentDoctoral Student
4 years and counting4 years and counting
Studying with Cem Kaner at Florida TechStudying with Cem Kaner at Florida Tech
Dissertation topic: Creating a testerDissertation topic: Creating a tester’’s toolkit and then s toolkit and then 
experimentally determining the effects on testersexperimentally determining the effects on testers



TestTest--Driven Development (TDD)Driven Development (TDD)

Write test 
case

Verify test 
fails

Make test 
pass

Ensure all
other tests 

pass

Refactor to 
clean up



Florida Tech CoursesFlorida Tech Courses

Testing 2Testing 2
Intro to Java ProgrammingIntro to Java Programming
Testing ToolsTesting Tools



Testing 2Testing 2

Second course in sequence (first is blackbox Second course in sequence (first is blackbox 
software testing)software testing)
Covers unit testing, TDD, and some scripting Covers unit testing, TDD, and some scripting 
for testers (in Ruby)for testers (in Ruby)
Offered 4 times so farOffered 4 times so far



Testing 2 studentsTesting 2 students

Generally 9Generally 9--13 students per session13 students per session
Predominantly undergraduates, but 3Predominantly undergraduates, but 3--4 4 
graduates each timegraduates each time
Course is required for B.S. in Software Course is required for B.S. in Software 
Engineering, and optional for other degreesEngineering, and optional for other degrees



Testing 2 TextsTesting 2 Texts

Test-Driven Development: A Practical Guide, by 
Dave Astels

JUnit Recipes, by J. B. Rainsberger

Software Quality Engineering, by Jeff Tian



Testing 2 StructureTesting 2 Structure

Begins lectureBegins lecture--based to cover core conceptsbased to cover core concepts
Becomes projectBecomes project--based ~ 1/3 of the way through based ~ 1/3 of the way through 
semestersemester
2 projects2 projects

New development using TDDNew development using TDD
TestTest--driven maintenancedriven maintenance

2 exams2 exams
ConceptConcept--based midtermbased midterm
Project based final (in Ruby) Project based final (in Ruby) 
(see (see 
http://blackbox.cs.fit.edu/blog/kaner/archives/000008.htmlhttp://blackbox.cs.fit.edu/blog/kaner/archives/000008.html
))

http://blackbox.cs.fit.edu/blog/kaner/archives/000008.html


Testing 2 StrengthsTesting 2 Strengths

Projects closer to real world size than Projects closer to real world size than ““toystoys””
Highlighting differences between new Highlighting differences between new 
development and maintenancedevelopment and maintenance
Increased confidence for studentsIncreased confidence for students



Testing 2 DifficultiesTesting 2 Difficulties

Possible for students to write code for Possible for students to write code for 
assignment, then go back and write testsassignment, then go back and write tests

Generally easily spottedGenerally easily spotted
Require documented iterations for each submission Require documented iterations for each submission 
showing a single cycle showing a single cycle 

Paired programming helpful but hard to do in Paired programming helpful but hard to do in 
classroomclassroom



Testing 2 Lessons LearnedTesting 2 Lessons Learned

Starting on toy problems makes TDD just seem Starting on toy problems makes TDD just seem 
like extra work and biases students against the like extra work and biases students against the 
conceptconcept
The more programming experience someone The more programming experience someone 
has, the harder the transition to a TDD mindset has, the harder the transition to a TDD mindset 
seems to beseems to be
Students seemed to like doing the maintenance Students seemed to like doing the maintenance 
project as a classproject as a class



Intro to Java (CSE 1001)Intro to Java (CSE 1001)

First programming course taken by most incoming First programming course taken by most incoming 
firstfirst--year studentsyear students
Offered once with TDD so farOffered once with TDD so far
Covers the basics of computers and programming in Covers the basics of computers and programming in 
JavaJava

•Data types

•Classes

•Constructors

•Public vs. Private 
methods/fields

•Strings

•Constants

•Layered architectures

•Arrays

•Recursion



CSE 1001 StudentsCSE 1001 Students

Predominantly firstPredominantly first--year undergrads who had year undergrads who had 
done poorly in CSE 1001 in the fall 2005 done poorly in CSE 1001 in the fall 2005 
semestersemester

Got a Got a ‘‘DD’’ or an or an ‘‘FF’’
Withdrew in poor standingWithdrew in poor standing

Several students had learning disabilitiesSeveral students had learning disabilities
Also had one 12Also had one 12--year old home year old home schoolerschooler



CSE 1001 TextsCSE 1001 Texts

Agile Java, by Jeff Langr

Java: An Introduction to Problem Solving and 
Programming (4th ed.), by Walter Savitch



CSE 1001 StructureCSE 1001 Structure

Class was largely project basedClass was largely project based
Lectures as needed to explain conceptsLectures as needed to explain concepts
Towards end of semester, instructors began Towards end of semester, instructors began 
pairing with individual students during class timepairing with individual students during class time
3 midterm exams (mixed conceptual & project)3 midterm exams (mixed conceptual & project)
1 final (project)1 final (project)



CSE 1001 StrengthsCSE 1001 Strengths

Pairing with the students made a huge difference Pairing with the students made a huge difference 
to many studentsto many students
JUnit very useful as an exploration toolJUnit very useful as an exploration tool



CSE 1001 DifficultiesCSE 1001 Difficulties

With no testing background (and little With no testing background (and little 
development background), students had a development background), students had a 
harder time understanding the concept of a unit harder time understanding the concept of a unit 
testtest
Text books not idealText books not ideal
More students seemed to try to write the code More students seemed to try to write the code 
then write the tests afterwardsthen write the tests afterwards



CSE 1001 Lessons LearnedCSE 1001 Lessons Learned

JUnit makes a great tool for exploring the JUnit makes a great tool for exploring the 
languagelanguage’’s capabilitiess capabilities
Pairing with individual students is criticalPairing with individual students is critical
Need to spend a lot of time on test design to get Need to spend a lot of time on test design to get 
the concept across (pairing might have alleviated the concept across (pairing might have alleviated 
some of this had it been done earlier)some of this had it been done earlier)
TDD helped provide structure for students to TDD helped provide structure for students to 
tackle task incrementallytackle task incrementally



Testing ToolsTesting Tools

3 pairs of students 3 pairs of students 
3 graduate students3 graduate students
3 undergraduates3 undergraduates
5 of the students had already taken Testing 25 of the students had already taken Testing 2

Each pair worked on own development using Each pair worked on own development using 
AgitatorAgitator



Testing Tools Lessons LearnedTesting Tools Lessons Learned

Making the mental leap to using JUnit isnMaking the mental leap to using JUnit isn’’t t 
enoughenough
Real projects make it much easier to learn toolsReal projects make it much easier to learn tools



Lessons SummaryLessons Summary

NonNon--trivial projects work much better to trivial projects work much better to 
illustrate conceptsillustrate concepts
Pairing or classPairing or class--wide projects can make a huge wide projects can make a huge 
difference in understandingdifference in understanding
Switching to a TDD approach requires a mental Switching to a TDD approach requires a mental 
shift proportional to the amount of shift proportional to the amount of 
programming experienceprogramming experience
Use unit testing tools when learning a new Use unit testing tools when learning a new 
language to gain deeper understandinglanguage to gain deeper understanding



QuestionsQuestions


	Lessons Learned in Teaching Test-Driven Development
	About Me
	Test-Driven Development (TDD)
	Florida Tech Courses
	Testing 2
	Testing 2 students
	Testing 2 Texts
	Testing 2 Structure
	Testing 2 Strengths
	Testing 2 Difficulties
	Testing 2 Lessons Learned
	Intro to Java (CSE 1001)
	CSE 1001 Students
	CSE 1001 Texts
	CSE 1001 Structure
	CSE 1001 Strengths
	CSE 1001 Difficulties
	CSE 1001 Lessons Learned
	Testing Tools
	Testing Tools Lessons Learned
	Lessons Summary
	Questions

