

Windows Batch File

MayBeMayBe’s…

- 2 -

USING BATCH FILES 7

1. USING BATCH PARAMETERS 9

2. USING FILTERS 11

2.1 USING THE MORE COMMAND 11

2.2 USING THE FIND COMMAND 12

2.3 USING THE SORT COMMAND 12

3. USING COMMAND REDIRECTION OPERATORS 13

3.1 DUPLICATING HANDLES 14

3.2 REDIRECTING COMMAND INPUT (<) 14

3.3 REDIRECTING COMMAND OUTPUT (>) 14

3.4 USING THE <& OPERATOR TO REDIRECT INPUT AND DUPLICATE 15

3.5 USING THE >& OPERATOR TO REDIRECT OUTPUT AND DUPLICATE 15

3.6 USING THE >> REDIRECTION OPERATOR TO APPEND OUTPUT 16

3.7 USING THE PIPE OPERATOR (|) 16

3.8 COMBINING COMMANDS WITH REDIRECTION OPERATORS 16

4. CALL 19

SYNTAX 19

PARAMETERS 19

REMARKS 19

EXAMPLES 20

FORMATTING LEGEND 20

5. ECHO 21

SYNTAX 21

PARAMETERS 21

REMARKS 21

- 3 -

EXAMPLES 21

FORMATTING LEGEND 22

6. ENDLOCAL 23

SYNTAX 23

PARAMETERS 23

REMARKS 23

EXAMPLES 23

FORMATTING LEGEND 23

7. FOR 25

SYNTAX 25

PARAMETERS 25

REMARKS 25

EXAMPLES 29

FORMATTING LEGEND 30

8. GOTO 31

SYNTAX 31

PARAMETERS 31

REMARKS 31

EXAMPLES 32

FORMATTING LEGEND 32

9. IF 33

SYNTAX 33

PARAMETERS 33

REMARKS 34

EXAMPLES 35

FORMATTING LEGEND 36

10. PAUSE 37

- 4 -

SYNTAX 37

PARAMETERS 37

REMARKS 37

EXAMPLES 37

FORMATTING LEGEND 38

11. REM 39

SYNTAX 39

PARAMETERS 39

REMARKS 39

EXAMPLES 39

FORMATTING LEGEND 40

12. SETLOCAL 41

SYNTAX 41

ARGUMENTS 41

REMARKS 41

EXAMPLES 42

FORMATTING LEGEND 42

13. SHIFT 45

SYNTAX 45

PARAMETERS 45

REMARKS 45

EXAMPLES 45

FORMATTING LEGEND 46

- 5 -

- 6 -

Using batch files

With batch files, which are also called batch programs or scripts, you can simplify routine or

repetitive tasks. A batch file is an unformatted text file that contains one or more commands and

has a .bat or .cmd file name extension. When you type the file name at the command prompt,

Cmd.exe runs the commands sequentially as they appear in the file.

You can include any command in a batch file. Certain commands, such as for, goto, and if,

enable you to do conditional processing of the commands in the batch file. For example, the if

command carries out a command based on the results of a condition. Other commands allow

you to control input and output and call other batch files.

The standard error codes that most applications return are 0 if no error occurred and 1 (or higher

value) if an error occurred. Please refer to your application help documentation to determine the

meaning of specific error codes.

For more information about batch file operations, see the following topics:

• Using batch parameters

• Using filters

• Using command redirection operators

For more information about commands that you can use in batch files, click a command:

• Call

• Echo

• Endlocal

• For

• Goto

• If

- 7 -

• Pause

• Rem

• Setlocal

• Shift

- 8 -

1. Using batch parameters

You can use batch parameters anywhere within a batch file to extract information about your

environment settings.

Cmd.exe provides the batch parameter expansion variables %0 through %9. When you use

batch parameters in a batch file, %0 is replaced by the batch file name, and %1 through %9 are

replaced by the corresponding arguments that you type at the command line. To access

arguments beyond %9, you need to use the shift command. For more information about the shift

command, see Shift The %* batch parameter is a wildcard reference to all the arguments, not

including %0, that are passed to the batch file.

For example, to copy the contents from Folder1 to Folder2, where %1 is replaced by the value

Folder1 and %2 is replaced by the value Folder2, type the following in a batch file called

Mybatch.bat:

xcopy %1₩*.* %2

To run the file, type:

mybatch.bat C:₩folder1 D:₩folder2

This has the same effect as typing the following in the batch file:

xcopy C:₩folder1 ₩*.* D:₩folder2

You can also use modifiers with batch parameters. Modifiers use current drive and directory

information to expand the batch parameter as a partial or complete file or directory name. To

use a modifier, type the percent (%) character followed by a tilde (~) character, and then type

the appropriate modifier (that is, %~modifier).

The following table lists the modifiers you can use in expansion.

Modifier Description

%~1 Expands %1 and removes any surrounding quotation marks ("").

%~f1 Expands %1 to a fully qualified path name.

%~d1 Expands %1 to a drive letter.

%~p1 Expands %1 to a path.

%~n1 Expands %1 to a file name.

%~x1 Expands %1 to a file extension.

- 9 -

Modifier Description

%~s1 Expanded path contains short names only.

%~a1 Expands %1 to file attributes.

%~t1 Expands %1 to date and time of file.

%~z1 Expands %1 to size of file.

%~$PATH:1 Searches the directories listed in the PATH environment variable and

expands %1 to the fully qualified name of the first one found. If the environment

variable name is not defined or the file is not found, this modifier expands to the

empty string.

The following table lists possible combinations of modifiers and qualifiers that you can use to get

compound results.

Modifier Description

%~dp1 Expands %1 to a drive letter and path.

%~nx1 Expands %1 to a file name and extension.

%~dp$PATH:1 Searches the directories listed in the PATH environment variable for %1 and

expands to the drive letter and path of the first one found.

%~ftza1 Expands %1 to a dir-like output line.

Note

• In the previous examples, you can replace %1 and PATH with other batch parameter values.

The %* modifier is a unique modifier that represents all arguments passed in a batch file. You

cannot use this modifier in combination with the %~ modifier. The %~ syntax must be terminated

by a valid argument value.

You cannot manipulate batch parameters in the same manner that you can manipulate

environment variables. You cannot search and replace values or examine substrings. However,

you can assign the parameter to an environment variable, and then manipulate the environment

variable.

- 10 -

2. Using filters

Used in conjunction with the command redirection pipe character (|), a command filter is a

command within a command that reads the command's input, transforms the input, and then

writes the output. Filter commands help you sort, view, and select parts of a command output.

Filter commands divide, rearrange, or extract portions of the information that passes through

them. The following table lists filter commands that are available in Windows XP.

Command Description

more Displays the contents of a file or the output of a command in one Command Prompt

window at a time.

find Searches through files and command output for the characters you specify.

sort Alphabetizes files and command output.

To send input from a file to a filter command, use a less than sign (<). If you want the filter

command to get input from another command, use a pipe (|).

2.1 Using the more command
The more command displays the contents of a file or the output of a command in one Command

Prompt window at a time. For example, to display the contents of a file called List.txt in one

Command Prompt window at a time, type:

more < list.txt

One Command Prompt window of information appears, and then the -- More -- prompt appears

at the bottom of the Command Prompt window. To continue to the next Command Prompt

window, press any key on the keyboard except PAUSE. To stop the command without viewing

more information, press CTRL+C.

You can use the more command when you work with a command that produces more than one

Command Prompt window of output. For example, suppose you want to view a directory tree on

your hard disk. If you have more directories than can be displayed in the Command Prompt

window, you can use the tree command with a pipe (|) and the more command as follows:

tree c:₩ | more

The first Command Prompt window of output from the tree command appears, followed by the --

More -- prompt. Output pauses until you press any key on the keyboard, except PAUSE.

- 11 -

2.2 Using the find command
The find command searches files for the string or text that you specify. Cmd.exe displays every

line that matches the string or text that you specify in the Command Prompt window. You can

use the find command either as a filter command or a standard Windows XP command. For

more information about using find as a standard command, see Find

To use find as a filter command, you must include a less than sign (<) and the string or text on

which you want to search. By default, find searches are case-sensitive. For example, the

following command finds occurrences of the string "Pacific Rim" in the file Trade.txt:

find "Pacific Rim" < trade.txt

The output does not include any occurrences of "pacific rim." It includes occurrences of the

capitalized "Pacific Rim" only.

To save the output of the find command rather than display it in the Command Prompt window,

type a greater than sign (>) and the name of the file where you want to store the output. For

example, the following command finds occurrences of "Pacific Rim" in the Trade.txt file and

saves them in Nwtrade.txt:

find "Pacific Rim" < trade.txt > nwtrade.txt

2.3 Using the sort command
The sort command alphabetizes a text file or the output of a command. For example, the

following command sorts the contents of a file named List.txt and displays the results in the

Command Prompt window:

sort < list.txt

In this example, the sort command sorts the lines of the List.txt file into an alphabetical list and

displays the results without changing the file. To save the output of the sort command rather

than display it, type a greater than sign (>) and a file name. For example, the following

command alphabetizes the lines of the List.txt file and stores the results in the Alphlist.txt file:

sort < list.txt > alphlist.txt

To sort the output of a command, type the command, type a pipe (|), and then type sort (that is,

command | sort). For example, the following command sorts the lines that include the string

"Jones" (that is, the find command output) in alphabetical order:

find "Jones" maillst.txt | sort

- 12 -

3. Using command redirection operators

You can use redirection operators to redirect command input and output streams from the

default locations to different locations. The input or output stream location is referred to as a

handle

The following table lists operators that you can use to redirect command input and output

streams.

Redirection OP Description

> Writes the command output to a file or a device, such as a printer, instead of

the Command Prompt window.

< Reads the command input from a file, instead of reading input from the

keyboard.

>> Appends the command output to the end of a file without deleting the

information that is already in the file.

>& Writes the output from one handle to the input of another handle.

<& Reads the input from one handle and writes it to the output of another handle.

| Reads the output from one command and writes it to the input of another

command. Also known as a pipe.

By default, you send the command input (that is, the STDIN handle) from your keyboard to

Cmd.exe, and then Cmd.exe sends the command output (that is, the STDOUT handle) to the

Command Prompt window.

The following table lists the available handles.

Handle Numeric equivalent of

handle

Description

STDIN 0 Keyboard input

STDOUT 1 Output to the Command Prompt window

STDERR 2 Error output to the Command Prompt window

UNDEFINED 3-9 These handles are defined individually by the application

and are specific to each tool.

- 13 -

The numbers zero through nine (that is, 0-9) represent the first 10 handles. You can use

Cmd.exe to run a program and redirect any of the first 10 handles for the program. To specify

which handle you want to use, type the number of the handle before the redirection operator. If

you do not define a handle, the default < redirection input operator is zero (0) and the default >

redirection output operator is one (1). After you type the < or > operator, you must specify where

you want to read or write the data. You can specify a file name or another existing handle.

To specify redirection to existing handles, use the ampersand (&) character followed by the

handle number that you want to redirect (that is, &handle#). For example, the following

command redirects handle 2 (that is, STDERR) into handle 1 (that is, STDOUT):

1<&2

3.1 Duplicating handles
The & redirection operator duplicates output or input from one specified handle to another

specified handle. For example, to send dir output to File.txt and send the error output to File.txt,

type:

dir>c:₩file.txt 2>&1

When you duplicate a handle, you duplicate all characteristics of the original occurrence of the

handle. For example, if a handle has write-only access, all duplicates of that handle have write-

only access. You cannot duplicate a handle with read-only access into a handle with write-only

access.

3.2 Redirecting command input (<)
To redirect command input from the keyboard to a file or device, use the < operator. For

example, to get the command input for the sort command from File.txt:

sort<file.txt

The contents of File.txt appear in the Command Prompt window as an alphabetized list.

The < operator opens the specified file name with read-only access. As a result, you cannot

write to the file when you use this operator. For example, if you start a program with <&2, all

attempts to read handle 0 fail because handle 2 is initially opened with write-only access.

Note

• Zero is the default handle for the < redirection input operator.

3.3 Redirecting command output (>)
Almost all commands send output to your Command Prompt window. Even commands that

send output to a drive or printer display messages and prompts in the Command Prompt

- 14 -

window.

To redirect command output from the Command Prompt window to a file or device, use the >

operator. You can use this operator with most commands. For example, to redirect dir output to

Dirlist.txt:

dir>dirlist.txt

If Dirlist.txt does not exist, Cmd.exe creates it. If Dirlist.txt exists, Cmd.exe replaces the

information in the file with the output from the dir command.

To run the netsh routing dump command and then send the command output to Route.cfg, type:

netsh routing dump>c:₩route.cfg

The > operator opens the specified file with write-only access. As a result, you cannot read the

file when you use this operator. For example, if you start a program with redirection >&0, all

attempts to write handle 1 fail because handle 0 is initially opened with read-only access.

Note

• One is the default handle for the > redirection output operator.

3.4 Using the <& operator to redirect input and duplicate
To use the redirection input operator <&, the file you specify must already exist. If the input file

exists, Cmd.exe opens it as read-only and sends the characters contained in the file as input to

the command as if they were input from the keyboard. If you specify a handle, Cmd.exe

duplicates the handle you specify onto the existing handle in the system.

For example, to open File.txt as input read to handle 0 (that is, STDIN), type:

<file.txt

To open File.txt, sort the contents and then send the output to the Command Prompt window

(that is, STDOUT), type:

sort<file.txt

To find File.txt, and then redirect handle 1 (that is, STDOUT) and handle 2 (that is, STDERR) to

the Search.txt, type:

findfile file.txt>search.txt 2<&1

To duplicate a user-defined handle 3 as input read to handle 0 (that is, STDIN), type:

<&3

3.5 Using the >& operator to redirect output and duplicate
If you redirect output to a file and you specify an existing file name, Cmd.exe opens the file as

write-only and overwrites the file's contents. If you specify a handle, Cmd.exe duplicates the file

onto the existing handle.

- 15 -

To duplicate a user-defined handle 3 into handle 1, type:

>&3

To redirect all of the output, including handle 2 (that is, STDERR), from the ipconfig command to

handle 1 (that is, STDOUT), and then redirect the ouput to Output.log, type:

ipconfig.exe>>output.log 2>&1

3.6 Using the >> redirection operator to append output
To add the output from a command to the end of a file without losing any of the information

already in the file, use two consecutive greater than signs (that is, >>). For example, the

following command appends the directory list produced by the dir command to the Dirlist.txt file:

dir>>dirlist.txt

To append the output of the netstat command to the end of Tcpinfo.txt, type:

netstat>>tcpinfo.txt

3.7 Using the pipe operator (|)
The pipe operator (|) takes the output (by default, STDOUT) of one command and directs it into

the input (by default, STDIN) of another command. For example, the following command sorts a

directory:

dir | sort

In this example, both commands start simultaneously, but then the sort command pauses until it

receives the dir command's output. The sort command uses the dir command's output as its

input, and then sends its output to handle 1 (that is, STDOUT).

3.8 Combining commands with redirection operators
You can create custom commands by combining filter commands with other commands and file

names. For example, you can use the following command to store the names of files that

contain the string "LOG":

dir /b | find "LOG" > loglist.txt

The dir command's output is sent through the find filter command. File names that contain the

string "LOG" are stored as a list of file names (for example, NetshConfig.log, Logdat.svd, and

Mylog.bat) in the Loglist.txt file.

To use more than one filter in the same command, separate the filters with a pipe (|). For

example, the following command searches every directory on drive C:, finds the file names that

include the string "Log", and then displays them in one Command Prompt window at a time:

dir c:₩ /s /b | find "LOG" | more

By using a pipe (|), you direct Cmd.exe to send the dir command output through the find filter

- 16 -

command. The find command selects only file names that contain the string "LOG." The more

command displays the file names that are selected by the find command, one Command Prompt

window at a time. For more information about filter commands, see Using filters

- 17 -

- 18 -

4. Call

Calls one batch program from another without stopping the parent batch program. The call

command accepts labels as the target of the call. Call has no effect at the command-line when

used outside of a script or batch file.

Syntax
call [[Drive:][Path] FileName [BatchParameters]] [:label [arguments]]

Parameters
[Drive:][Path] FileName : Specifies the location and name of the batch program you want to call.

The FileName parameter must have a .bat or .cmd extension.

BatchParameters : Specifies any command-line information required by the batch program,

including command-line options, file names, batch parameters (that is, %0 through %9), or

variables (for example, %baud%).

:label : Specifies the label to which you want a batch program control to jump. By using call with

this parameter, you create a new batch file context and pass control to the statement after the

specified label. The first time the end of the batch file is encountered (that is, after jumping to the

label), control returns to the statement after the call statement. The second time the end of the

batch file is encountered, the batch script is exited. For a description of the goto :eof extension

that allows you to return from a batch script, see Related Topics.

arguments : Specifies any command-line information that you pass to the new instance of the

batch program that begins at :label, including command-line options, file names, batch

parameters (that is, %1 through %9), or variables (for example, %baud%).

/? : Displays help at the command prompt.

Remarks
• Using batch parameters

Batch parameters can contain any information that you can pass to a batch program,

including command-line options, file names, batch parameters (that is, %0 through %9), and

variables (for example, %baud%). For more information about batch parameters, see Related

Topics.

• Using pipes and redirection symbols

Do not use pipes and redirection symbols with call.

• Making a recursive call

You can create a batch program that calls itself, however, you must provide an exit condition.

Otherwise, the parent and child batch programs can loop endlessly.

- 19 -

• Working with command extensions

With command extensions enabled (that is, the default), call accepts a label as the target of

the call. The correct syntax is as follows:

call :label arguments

For more information about enabling and disabling command extensions, see cmd in Related

Topics.

Examples
To run the Checknew.bat program from another batch program, type the following command in

the parent batch program:

call checknew

If the parent batch program accepts two batch parameters and you want it to pass those

parameters to Checknew.bat, use the following command in the parent batch program:

call checknew %1 %2

Formatting legend

Format Meaning

Italic Information that the user must supply

Bold Elements that the user must type exactly as

shown

Ellipsis (...) Parameter that can be repeated several

times in a command line

Between brackets ([]) Optional items

Between braces ({}); choices separated by pipe

(|). Example: {even|odd}

Set of choices from which the user must

choose only one

Courier font Code or program output

- 20 -

5. Echo

Turns the command-echoing feature on or off, or displays a message. Used without parameters,

echo displays the current echo setting.

Syntax
echo [{on|off}] [message]

Parameters
{on|off} : Specifies whether to turn the command-echoing feature on or off.

message : Specifies text you want to display on the screen.

/? : Displays help at the command prompt.

Remarks
• The echo message command is useful when echo is turned off. To display a message that is

several lines long without displaying other commands, you can include several echo message

commands after the echo off command in your batch program.

• If you use echo off, the command prompt does not appear on your screen. To display the

command prompt, type echo on.

• To prevent echoing of a line, insert an at sign (@) in front of a command in a batch program.

• To echo a blank line on the screen, type:

echo.

• To display a pipe (|) or redirection character (< or >) when you are using echo, use a caret

character immediately before the pipe or redirection character (for example, ^>, ^<, or ^|). If

you need to use the caret character (^), type two (^^).

Examples
The following example is a batch program that includes a three-line message preceded by and

then followed by a blank line:

echo off

echo.

echo This batch program

echo formats and checks

echo new disks

echo.

If you want to turn echo off and you do not want to echo the echo command, type an at sign (@)

before the command as follows:

- 21 -

@echo off

You can use the if and echo commands on the same command line. For example:

if exist *.rpt echo The report has arrived.

Formatting legend

Format Meaning

Italic Information that the user must supply

Bold Elements that the user must type exactly as

shown

Ellipsis (...) Parameter that can be repeated several

times in a command line

Between brackets ([]) Optional items

Between braces ({}); choices separated by pipe

(|). Example: {even|odd}

Set of choices from which

- 22 -

6. Endlocal

Ends localization of environment changes in a batch file, restoring environment variables to their

values before the matching setlocal command.

Syntax
endlocal

Parameters
/? : Displays help at the command prompt.

Remarks
• You must use endlocal in a script or batch file. If you use endlocal outside of a script or batch

file, it has no effect.

• There is an implicit endlocal command at the end of a batch file.

• With command extensions enabled (that is, the default), the endlocal command restores the

state of command extensions (that is, enabled or disabled) to what it was before the matching

setlocal command was executed. For more information about enabling and disabling

command extensions, see cmd in Related Topics.

Examples
You can localize environment variables in a batch file. For example:

@echo off

rem This program starts the superapp batch program on the network,

rem directs the output to a file, and displays the file

rem in Notepad.

setlocal

path=g:₩programs₩superapp;%path%

call superapp>c:₩superapp.out

endlocal

start notepad c:₩superapp.out

Formatting legend

Format Meaning

Italic Information that the user must supply

- 23 -

Format Meaning

Bold Elements that the user must type exactly as

shown

Ellipsis (...) Parameter that can be repeated several

times in a command line

Between brackets ([]) Optional items

Between braces ({}); choices separated by pipe

(|). Example: {even|odd}

Set of choices from which the user must

choose only one

Courier font Code or program output

- 24 -

7. For

Runs a specified command for each file in a set of files.

Syntax
for {%variable|%%variable} in (set) do command [CommandLineOptions]

Parameters
{%variable|%%variable} : Required. Represents a replaceable parameter. Use %variable to

carry out for from the command prompt. Use %%variable to carry out the for command within a

batch file. Variables are case-sensitive and must be represented with an alpha value, such

as %A, %B, or %C.

(set) : Required. Specifies one or more files, directories, range of values, or text strings that you

want to process with the specified command. The parentheses are required.

command : Required. Specifies the command that you want to carry out on each file, directory,

range of values, or text string included in the specified (set).

CommandLineOptions : Specifies any command-line options that you want to use with the

specified command.

/?: Displays help at the command prompt.

Remarks
• Using for

You can use the for command within a batch file or directly from the command prompt.

• Using batch parameters

The following attributes apply to the for command:

• The for command replaces %variable or %%variable with each text string in the specified

set until the command processes all of the files.

• For variable names are case-sensitive, global, and no more than 52 total can be active at

any one time.

• To avoid confusion with the batch parameters %0 through %9, you can use any character

for variable except the numerals 0 through 9. For simple batch files, a single character such

as %%f works.

• You can use multiple values for variable in complex batch files to distinguish different

replaceable variables.
• Specifying a group of files

The set parameter can represent a single group of files or several groups of files. You can

use wildcards (that is, * and ?) to specify a file set. The following are valid file sets:

- 25 -

(*.doc)

(*.doc *.txt *.me)

(jan*.doc jan*.rpt feb*.doc feb*.rpt)

(ar??1991.* ap??1991.*)

When you use the for command, the first value in set replaces %variable or %%variable, and

then the specified command processes this value. This continues until all of the files (or

groups of files) that correspond to the set value are processed.

• Using the in and do keywords

In and do are not parameters, but you must use them with for. If you omit either of these

keywords, an error message appears.

• Using additional forms of for

If command extensions are enabled (that is, the default), the following additional forms of for

are supported:

• Directories only

If set contains wildcards (* and ?), the specified command executes for each directory

(instead of a set of files in a specified directory) that matches set. The syntax is:

for /D {%% | %}variable in (set) do command [CommandLineOptions]

• Recursive

Walks the directory tree rooted at [Drive:]Path, executing the for statement in each

directory of the tree. If no directory is specified after /R, the current directory is assumed. If

set is just a single period (.), it only enumerates the directory tree. The syntax is:

for /R [[Drive :]Path] {%% | %}variable in (set) do command [CommandLineOptions]

• Iterating a range of values

Use an iterative variable to set the starting value (start#) and then step through a set range

of values until the value exceeds the set ending value (end#). /L will execute the iterative

by comparing start# with end#. If start# is less than end# the command will execute. When

the iterative variable exceeds end# the command shell exists the loop. You can also use a

negative step# to step through a range in decreasing values. For example, (1,1,5)

generates the sequence 1 2 3 4 5 and (5,-1,1) generates the sequence (5 4 3 2 1). The

syntax is:

for /L {%% | %}variable in (start#,step#,end#) do command [CommandLineOptions]

• Iterating and file parsing

Use file parsing to process command output, strings and file content. Use iterative

variables to define the content or strings you want to examine and use the various

ParsingKeywords options to further modify the parsing. Use the ParsingKeywords token

option to specify which tokens should be passed as iterator variables. Note that when used

- 26 -

without the token option, /F will only examine the first token.

File parsing consists of reading the output, string or file content, breaking it up into

individual lines of text and then parsing each line into zero or more tokens. The for loop is

then called with the iterator variable value set to the token. By default, /F passes the first

blank separated token from each line of each file. Blank lines are skipped. The different

syntaxes are:

for /F ["ParsingKeywords"] {%% | %}variable in (filenameset) do command

[CommandLineOptions]

for /F ["ParsingKeywords"] {%% | %}variable in ("LiteralString") do command

[CommandLineOptions]

for /F ["ParsingKeywords"] {%% | %}variable in ('command') do command

[CommandLineOptions]

The filenameset argument specifies one or more file names. Each file is opened, read and

processed before going on to the next file in filenameset. To override the default parsing

behavior, specify "ParsingKeywords". This is a quoted string that contains one or more

keywords to specify different parsing options.

If you use the usebackq option, use one of the following syntaxes:

for /F ["usebackqParsingKeywords"] {%% | %}variable in ("filenameset") do command

[CommandLineOptions]

for /F ["usebackqParsingKeywords"] {%% | %}variable in ('LiteralString') do command

[CommandLineOptions]

for /F ["usebackqParsingKeywords"] {%% | %}variable in (`command`) do command

[CommandLineOptions]

The following table lists the parsing keywords that you can use for ParsingKeywords.

Keyword Description

eol=c Specifies an end of line character (just one character).

skip=n Specifies the number of lines to skip at the beginning of the file.

delims=xxx Specifies a delimiter set. This replaces the default delimiter set of space

and tab.

tokens=x,y,m-n Specifies which tokens from each line are to be passed to the for body

for each iteration. As a result, additional variable names are allocated.

The m-n form is a range, specifying the mth through the nth tokens. If

the last character in the tokens= string is an asterisk (*), an additional

variable is allocated and receives the remaining text on the line after

- 27 -

the last token that is parsed.

usebackq Specifies that you can use quotation marks to quote file names in

filenameset, a back quoted string is executed as a command, and a

single quoted string is a literal string command.

• Variable substitution

Substitution modifiers for for variable references have been enhanced. The following table

lists optional syntax (for any variable I).

Variable with

modifier

Description

%~I Expands %I which removes any surrounding quotation marks ("").

%~fI Expands %I to a fully qualified path name.

%~dI Expands %I to a drive letter only.

%~pI Expands %I to a path only.

%~nI Expands %I to a file name only.

%~xI Expands %I to a file extension only.

%~sI Expands path to contain short names only.

%~aI Expands %I to the file attributes of file.

%~tI Expands %I to the date and time of file.

%~zI Expands %I to the size of file.

%~$PATH:I Searches the directories listed in the PATH environment variable and

expands %I to the fully qualified name of the first one found. If the

environment variable name is not defined or the file is not found by the

search, this modifier expands to the empty string.

The following table lists modifier combinations that you can use to get compound results.

Variable with

combined modifiers

Description

%~dpI Expands %I to a drive letter and path only.

%~nxI Expands %I to a file name and extension only.

- 28 -

%~fsI Expands %I to a full path name with short names only.

%~dp$PATH:I Searches the directories listed in the PATH environment

variable for %I and expands to the drive letter and path of the

first one found.

%~ftzaI Expands %I to an output line that is like dir.

In the above examples, you can replace %I and PATH by other valid values. A valid for

variable name terminates the %~ syntax.

By use uppercase variable names such as %I, you can make your code more readable and

avoid confusion with the modifiers, which are not case-sensitive.
• Parsing a string

You can use the for /F parsing logic on an immediate string, by wrapping the filenameset

between the parentheses in single quotation marks (that is, 'filenameset'). Filenameset is

treated as a single line of input from a file, and then it is parsed.

• Parsing output

You can use the for /F command to parse the output of a command by making the

filenameset between the parenthesis a back quoted string. It is treated as a command line,

which is passed to a child Cmd.exe and the output is captured into memory and parsed as if it

were a file.

Examples
To use for in a batch file, use the following syntax:

for %%variable in (set) do command [CommandLineOptions]

To display the contents of all the files in the current directory that have the extension .doc or .txt

using the replaceable variable %f, type:

for %f in (*.doc *.txt) do type %f

In the preceding example, each file that has the .doc or .txt extension in the current directory is

substituted for the %f variable until the contents of every file are displayed. To use this

command in a batch file, replace every occurrence of %f with %%f. Otherwise, the variable is

ignored and an error message is displayed.

To parse a file, ignoring commented lines, type:

for /F "eol=; tokens=2,3* delims=," %i in (myfile.txt) do @echo %i %j %k

This command parses each line in Myfile.txt, ignoring lines that begin with a semicolon and

passing the second and third token from each line to the FOR body (tokens are delimited by

commas or spaces). The body of the FOR statement references %i to get the second token, %j

to get the third token, and %k to get all of the remaining tokens. If the file names that you supply

- 29 -

contain spaces, use quotation marks around the text (for example, "File Name"). To use

quotation marks, you must use usebackq. Otherwise, the quotation marks are interpreted as

defining a literal string to parse.

%i is explicitly declared in the FOR statement, and %j and %k are implicitly declared by using

tokens=. You can specify up to 26 tokens using tokens=, provided that it does not cause an

attempt to declare a variable higher than the letter 'z' or 'Z'.

To parse the output of a command by placing filenameset between the parentheses, type:

for /F "usebackq delims==" %i IN (`set`) DO @echo %i

This example enumerates the environment variable names in the current environment.

Formatting legend

Format Meaning

Italic Information that the user must supply

Bold Elements that the user must type exactly as

shown

Ellipsis (...) Parameter that can be repeated several

times in a command line

Between brackets ([]) Optional items

Between braces ({}); choices separated by pipe

(|). Example: {even|odd}

Set of choices from which the user must

choose only one

Courier font Code or program output

- 30 -

8. Goto

Within a batch program, directs Windows XP to a line identified by a label. When the label is

found, it processes the commands that begin on the next line.

Syntax
goto label

Parameters
label : Specifies the line in a batch program that you want to go to.

/? : Displays help at the command prompt.

Remarks
• Working with command extensions

If command extensions are enabled (that is, the default) and you use the goto command with

a target label of :EOF, you transfer control to the end of the current batch script file and exit

the batch script file without defining a label. When you use goto with the :EOF label, you must

insert a colon before the label. For example:

goto :EOF

For a description of extensions to the call command that make this feature useful, see cmd in

Related Topics.

• Using valid label values

You can use spaces in the label parameter, but you cannot include other separators (for

example, semicolons or equal signs). The goto command uses only the first eight characters

of a label. For example, the following labels are equivalent and resolve to :hithere0:

:hithere0

:hithere01

:hithere02

• Matching label with the label in the batch program

The label value you specify must match a label in the batch program. The label within the

batch program must begin with a colon (:). Windows XP recognizes a batch program line

beginning with a colon (:) as a label and does not process it as a command. If a line begins

with a colon, any commands on that line are ignored. If your batch program does not contain

the label that you specify, the batch program stops and displays the following message:

Label not found

• Using goto for conditional operations

You can use goto with other commands to perform conditional operations. For more

- 31 -

information about using goto for conditional operations, see if in Related Topics.

Examples
The following batch program formats a disk in drive A as a system disk. If the operation is

successful, the goto command directs Windows XP to the :end label:

echo off

format a: /s

if not errorlevel 1 goto end

echo An error occurred during formatting.

:end

echo End of batch program.

Formatting legend

Format Meaning

Italic Information that the user must supply

Bold Elements that the user must type exactly as

shown

Ellipsis (...) Parameter that can be repeated several

times in a command line

Between brackets ([]) Optional items

Between braces ({}); choices separated by pipe

(|). Example: {even|odd}

Set of choices from which the user must

choose only one

Courier font Code or program output

- 32 -

9. If

Performs conditional processing in batch programs.

Syntax
if [not] errorlevel number command [else expression]

if [not] string1==string2 command [else expression]

if [not] exist FileName command [else expression]

If command extensions are enabled, use the following syntax:

if [/i] string1 CompareOp string2 command [else expression]

if cmdextversion number command [else expression]

if defined variable command [else expression]

Parameters
not : Specifies that the command should be carried out only if the condition is false.

errorlevel number : Specifies a true condition only if the previous program run by Cmd.exe

returned an exit code equal to or greater than number.

command : Specifies the command that should be carried out if the preceding condition is met.

string1==string2 : Specifies a true condition only if string1 and string2 are the same. These

values can be literal strings or batch variables (for example, %1). You do not need to use

quotation marks around literal strings.

exist FileName : Specifies a true condition if FileName exists.

CompareOp : Specifies a three-letter comparison operator. The following table lists valid values

for CompareOp.

Operator Description

EQU equal to

NEQ not equal to

LSS less than

LEQ less than or equal to

GTR greater than

GEQ greater than or equal to

/i : Forces string comparisons to ignore case. You can use /i on the string1==string2 form of if.

These comparisons are generic, in that if both string1 and string2 are both comprised of all

- 33 -

numeric digits, the strings are converted to numbers and a numeric comparison is performed.

cmdextversion number : Specifies a true condition only if the internal version number associated

with the Command Extensions feature of Cmd.exe is equal to or greater than number. The first

version is 1. It is incremented by one when significant enhancements are added to the

command extensions. The cmdextversion conditional is never true when command extensions

are disabled (by default, command extensions are enabled).

defined variable : Specifies a true condition if variable is defined.

expression : Specifies a command-line command and any parameters to be passed to the

command in an else clause.

/? : Displays help at the command prompt.

Remarks
• If the condition specified in an if command is true, the command that follows the condition is

carried out. If the condition is false, the command in the if clause is ignored, and executes any

command in the else clause, if one has been specified.

• When a program stops, it returns an exit code. You can use exit codes as conditions by using

the errorlevel parameter.

• Using defined variable

If you use defined variable, the following three variables are

added: %errorlevel%, %cmdcmdline%, and %cmdextversion%.

%errorlevel% expands into a string representation of the current value of errorlevel, provided

that there is not already an environment variable with the name ERRORLEVEL, in which case

you get the ERRORLEVEL value instead. The following example illustrates how you can use

errorlevel after running a batch program:

goto answer%errorlevel%

:answer0

echo Program had return code 0

:answer1

echo Program had return code 1

goto end

:end

echo done!

You can also use the CompareOp comparison operators as follows:

if %errorlevel% LEQ 1 goto okay

%cmdcmdline% expands into the original command line passed to Cmd.exe prior to any

processing by Cmd.exe, provided that there is not already an environment variable with the

- 34 -

name cmdcmdline, in which case you get the cmdcmdline value instead.

%cmdextversion% expands into the a string representation of the current value of

cmdextversion, provided that there is not already an environment variable with the name

CMDEXTVERSION, in which case you get the CMDEXTVERSION value instead.

• Using the else clause

You must use the else clause on the same line as the command after the if. For example:

IF EXIST filename. (

del filename.

) ELSE (

echo filename. missing.

)

The following code does not work because you must terminate the del command by a new

line:

IF EXIST filename. del filename. ELSE echo filename. missing

The following code does not work because you must use the else clause on the same line as

the end of the if command:

IF EXIST filename. del filename.

ELSE echo filename. missing

If you want to format it all on a single line, use the following form of the original statement:

IF EXIST filename. (del filename.) ELSE echo filename. missing

Examples
If the file Product.dat cannot be found, the following message appears:

if not exist product.dat echo Can't find data file

If an error occurs during the formatting of the disk in drive A, the following example displays an

error message:

:begin

@echo off

format a: /s

if not errorlevel 1 goto end

echo An error occurred during formatting.

:end

echo End of batch program.

If no error occurs, the error message does not appear.

You cannot use the if command to test directly for a directory, but the null (NUL) device does

- 35 -

exist in every directory. As a result, you can test for the null device to determine whether a

directory exists. The following example tests for the existence of a directory:

if exist c:₩mydir₩nul goto process

Formatting legend

Format Meaning

Italic Information that the user must supply

Bold Elements that the user must type exactly as

shown

Ellipsis (...) Parameter that can be repeated several

times in a command line

Between brackets ([]) Optional items

Between braces ({}); choices separated by pipe

(|). Example: {even|odd}

Set of choices from which the user must

choose only one

Courier font Code or program output

- 36 -

10. Pause

Suspends processing of a batch program and displays a message prompting the user to press

any key to continue.

Syntax
pause

Parameters
/? : Displays help at the command prompt.

Remarks
• When you run prompt command, the following message appears:

Press any key to continue . . .

• If you press CTRL+C to stop a batch program, the following message appears:

Terminate batch job (Y/N)?

If you press Y (for yes) in response to this message, the batch program ends and control

returns to the operating system. Therefore, you can insert the pause command before a

section of the batch file you may not want to process. While pause suspends processing of

the batch program, you can press CTRL+C and then Y to stop the batch program.

Examples
To create a batch program that prompts the user to change disks in one of the drives, type:

@echo off

:begin

copy a:*.*

echo Please put a new disk into drive A

pause

goto begin

In this example, all the files on the disk in drive A are copied to the current directory. After the

displayed comment prompts you to place another disk in drive A, the pause command suspends

processing so that you can change disks and then press any key to resume processing. This

particular batch program runs in an endless loop. The goto BEGIN command sends the

command interpreter to the begin label of the batch file. To stop this batch program, press

CTRL+C and then Y.

- 37 -

Formatting legend

Format Meaning

Italic Information that the user must supply

Bold Elements that the user must type exactly as

shown

Ellipsis (...) Parameter that can be repeated several

times in a command line

Between brackets ([]) Optional items

Between braces ({}); choices separated by pipe

(|). Example: {even|odd}

Set of choices from which the user must

choose only one

Courier font Code or program output

- 38 -

11. Rem

Enables you to include comments (remarks) in a batch file or in your configuration files.

Syntax
rem [comment]

Parameters
comment : Specifies any string of characters you want to include as a comment.

/? : Displays help at the command prompt.

Remarks
• Using the echo command to display comments

The rem command does not display comments on the screen. You must use the echo on

command in your batch or Config.nt file to display comments on the screen.

• Restrictions on batch file comments

You cannot use a redirection character "(" or ")" or pipe (|) in a batch file comment.

• Using rem to add vertical spacing

Although you can use rem without a comment to add vertical spacing to a batch file, you can

also use blank lines. The blank lines are ignored when processing the batch program.

Examples
The following example shows a batch file that uses remarks for both explanations and vertical

spacing:

@echo off

rem This batch program formats and checks new disks.

rem It is named Checknew.bat.

rem

echo Insert new disk in drive B.

pause

format b: /v

chkdsk b:

Suppose you want to include in your Config.nt file an explanatory comment before the prompt

command. To do this, add the following lines to Config.nt:

rem Set prompt to indicate current directory

prompt pg

- 39 -

Formatting legend

Format Meaning

Italic Information that the user must supply

Bold Elements that the user must type exactly as

shown

Ellipsis (...) Parameter that can be repeated several

times in a command line

Between brackets ([]) Optional items

Between braces ({}); choices separated by pipe

(|). Example: {even|odd}

Set of choices from which the user must

choose only one

Courier font Code or program output

- 40 -

12. Setlocal

Starts localization of environment variables in a batch file. Localization continues until a

matching endlocal command is encountered or the end of the batch file is reached.

Syntax
setlocal {enableextensions | disableextensions} {enabledelayedexpansion |

disabledelayedexpansion}

Arguments
enableextensions : Enables the command extensions until the matching endlocal command is

encountered, regardless of the setting prior to the setlocal command.

disableextensions : Disables the command extensions until the matching endlocal command is

encountered, regardless of the setting prior to the setlocal command.

enabledelayedexpansion : Enables the delayed environment variable expansion until the

matching endlocal command is encountered, regardless of the setting prior to the setlocal

command.

disabledelayedexpansion : Disables the delayed environment variable expansion until the

matching endlocal command is encountered, regardless of the setting prior to the setlocal

command.

/? : Displays help at the command prompt.

Remarks
• Using setlocal

When you use setlocal outside of a script or batch file, it has no effect.

• Changing environmental variables

Use setlocal to change environment variables when you run a batch file. Environment

changes made after you run setlocal are local to the batch file. Cmd.exe restores previous

settings when it either encounters an endlocal command or reaches the end of the batch file.

• You can have more than one setlocal or endlocal command in a batch program (that is,

nested commands).

• Testing for command extensions in batch files

The setlocal command sets the ERRORLEVEL variable. If you pass either {enableextensions

| disableextensions} or {enabledelayedexpansion | disabledelayedexpansion}, the

ERRORLEVEL variable is set to zero (0). Otherwise, it is set to one (1). You can use this in

batch scripts to determine whether the extensions are available, for example:

verify other 2>nul

- 41 -

 setlocal enableextensions

 if errorlevel 1 echo Unable to enable extensions

Because cmd does not set the ERRORLEVEL variable when command extensions are

disabled, the verify command initializes the ERRORLEVEL variable to a nonzero value when

you use it with an invalid argument. Also, if you use the setlocal command with arguments

{enableextensions | disableextensions} or {enabledelayedexpansion |

disabledelayedexpansion} and it does not set the ERRORLEVEL variable to one (1),

command extensions are not available.

For more information about enabling and disabling command extensions, see cmd in Related

Topics.

Examples
You can localize environment variables in a batch file, as follows:

rem *******Begin Comment**************

 rem This program starts the superapp batch program on the network,

 rem directs the output to a file, and displays the file

 rem in Notepad.

 rem *******End Comment**************

 @echo off

 setlocal

 path=g:₩programs₩superapp;%path%

 call superapp>c:₩superapp.out

 endlocal

 start notepad c:₩superapp.out

Formatting legend

Format Meaning

Italic Information that the user must supply

Bold Elements that the user must type exactly as

shown

Ellipsis (...) Parameter that can be repeated several

times in a command line

Between brackets ([]) Optional items

- 42 -

Format Meaning

Between braces ({}); choices separated by pipe

(|). Example: {even|odd}

Set of choices from which the user must

choose only one

Courier font Code or program output

- 43 -

- 44 -

13. Shift

Changes the position of batch parameters in a batch file.

Syntax
shift

Parameters
none

Remarks
• Using the shift command-line option with command extensions

When command extensions are enabled (that is, the default), the shift command supports the

/n command-line option, which tells the command to start shifting at the nth argument, where

n can be a value from zero to eight. For example,

SHIFT /2

would shift %3 to %2, %4 to %3, and so on, and leave %0 and %1 unaffected.

• How the shift command works

The shift command changes the values of the batch parameters %0 through %9 by copying

each parameter into the previous one. In other words, the value of %1 is copied to %0, the

value of %2 is copied to %1, and so on. This is useful for writing a batch file that performs the

same operation on any number of parameters.

• Working with more than 10 batch parameters

You can also use the shift command to create a batch file that can accept more than 10 batch

parameters. If you specify more than 10 parameters on the command line, those that appear

after the tenth (%9) will be shifted one at a time into %9.

• Using %* with shift

Shift has no affect on the %* batch parameter.

• Shifting parameters back

There is no backward shift command. After you carry out the shift command, you cannot

recover the first batch parameter (%0) that existed before the shift.

Examples
The following batch file, Mycopy.bat, shows how to use shift with any number of batch

parameters. It copies a list of files to a specific directory. The batch parameters are represented

by the directory and file name arguments.

- 45 -

@echo off

rem MYCOPY.BAT copies any number of files

rem to a directory.

rem The command uses the following syntax:

rem mycopy dir file1 file2 ...

set todir=%1

:getfile

shift

if "%1"=="" goto end

copy %1 %todir%

goto getfile

:end

set todir=

echo All done

Formatting legend

Format Meaning

Italic Information that the user must supply

Bold Elements that the user must type exactly as

shown

Ellipsis (...) Parameter that can be repeated several

times in a command line

Between brackets ([]) Optional items

Between braces ({}); choices separated by pipe

(|). Example: {even|odd}

Set of choices from which the user must

choose only one

Courier font Code or program output

- 46 -

	 Using batch files
	 1. Using batch parameters
	 2. Using filters
	2.1 Using the more command
	2.2 Using the find command
	2.3 Using the sort command

	 3. Using command redirection operators
	3.1 Duplicating handles
	3.2 Redirecting command input (<)
	3.3 Redirecting command output (>)
	3.4 Using the <& operator to redirect input and duplicate
	3.5 Using the >& operator to redirect output and duplicate
	3.6 Using the >> redirection operator to append output
	3.7 Using the pipe operator (|)
	3.8 Combining commands with redirection operators

	 4. Call
	Syntax
	Parameters
	Remarks
	Examples
	Formatting legend

	 5. Echo
	Syntax
	Parameters
	Remarks
	Examples
	Formatting legend

	 6. Endlocal
	Syntax
	Parameters
	Remarks
	Examples
	Formatting legend

	 7. For
	Syntax
	Parameters
	Remarks
	Examples
	Formatting legend

	 8. Goto
	Syntax
	Parameters
	Remarks
	Examples
	Formatting legend

	 9. If
	Syntax
	Parameters
	Remarks
	Examples
	Formatting legend

	 10. Pause
	Syntax
	Parameters
	Remarks
	Examples
	Formatting legend

	 11. Rem
	Syntax
	Parameters
	Remarks
	Examples
	Formatting legend

	 12. Setlocal
	Syntax
	Arguments
	Remarks
	Examples
	Formatting legend

	 13. Shift
	Syntax
	Parameters
	Remarks
	Examples
	Formatting legend

