

C#/
Gui

VB .NET Coding

Develop

CodeIt.Right – Static Code A
CodeIt.Once – Pain

PrettyCode.Print – Source Code Do
Steve S
Iridium

Octobe

delines
artain
Software, Se

r 2006
http://submain.com
er Performance Tools

naliysis + Auto Refactoring
less Refactoring for .NETTM

cumentation Made EasyTM

nior Architect

http://submain.com/

2C#/VB .NET Coding Guidelines

Contents

1 Overview...6

2 When Does This Document Apply ...7

2.1 Code changes made to existing systems not written to this standard 7
2.2 Code written for customers that require that their standards should be adopted 7

3 Naming Guidelines ...8

3.1 Overview 8
3.2 Capitalisation Styles 8

3.2.1 Pascal Case 8
3.2.2 Camel Case 8
3.2.3 Uppercase 8

3.3 Case Sensitivity (not applicable to VB) 9
3.4 Abbreviations 10
3.5 Word Choice 11
3.6 Avoid Type Name Confusion 12
3.7 Namespace Naming Guidelines 14
3.8 Class Naming Guidelines 15
3.9 Interface Naming Guidelines 16
3.10 Attribute Naming Guidelines 17
3.11 Enumeration Type Naming Guidelines 17
3.12 Static Field Naming Guidelines 18
3.13 Parameter Naming Guidelines 18
3.14 Method Naming Guidelines 18
3.15 Property Naming Guidelines 19
3.16 Event Naming Guidelines 21
3.17 Control Naming Guidelines 22

3.17.1 Specifying Particular Control Variants 23
3.17.2 Table of Standard Control Prefixes 23
3.17.3 Menu Controls 25

3.18 Data Naming Guidelines 25
3.18.1 Fields in Databases 26

4 Class Member Usage Guidelines ..27

4.1 Property Usage Guidelines 27

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

3C#/VB .NET Coding Guidelines

4.1.1 Property State Issues 27
4.1.2 Raising Property-Changed Events 31
4.1.3 Properties vs. Methods 34
4.1.4 Read-Only and Write-Only Properties 36
4.1.5 Indexed Property Usage 36

4.2 Event Usage Guidelines 37
4.3 Method Usage Guidelines 41

4.3.1 Methods With Variable Number of Arguments 45
4.4 Constructor Usage Guidelines 46
4.5 Field Usage Guidelines 48
4.6 Parameter Usage Guidelines 52
4.7 Type Usage Guidelines 54
4.8 Base Class Usage Guidelines 54
4.9 Base Classes vs. Interfaces 54

4.9.1 Protected Methods and Constructors 55
4.10 Sealed Class Usage Guidelines 56
4.11 Value Type Usage Guidelines 57
4.12 Structure Usage Guidelines 57
4.13 Enum Usage Guidelines 59
4.14 Delegate Usage Guidelines 61

4.14.1 Event notifications 61
4.14.2 Callback functions 61

4.15 Attribute Usage Guidelines 62
4.16 Nested Type Usage Guidelines 63

5 Guidelines for Exposing Functionality to COM ..65

5.1 Marshal By Reference 65
5.1.1 Marshal By Reference Guidelines 65

6 Error Raising & Handling Guidelines ...67

6.1 Standard Exception Types 70
6.2 Wrapping Exceptions 71

7 Array Usage Guidelines...73

7.1 Arrays vs. Collections 73
7.2 Using Indexed Properties in Collections 73
7.3 Array Valued Properties 73

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

4C#/VB .NET Coding Guidelines

7.4 Returning Empty Arrays 73

8 Operator Overloading Usage Guidelines ...75

8.1 Guidelines for Implementing Equals and the Equality Operator (==) 77
8.1.1 Implementing the Equality Operator on Value Types 77
8.1.2 Implementing the Equality Operator on Reference Types 77
8.1.3 Implementing the Equals Method 77

9 Guidelines for Casting Types ..79

10 Common Design Patterns ...80

10.1 Implementing Finalize and Dispose to Clean Up Unmanaged Resources 80
10.2 Customizing a Dispose Method Name 82

10.2.1 Finalize 82
10.2.2 Dispose 82

11 Callback Function Usage..84

11.1 Events 84
11.2 Delegates 84
11.3 Interfaces 84

12 Time-Out Usage ..85

13 Security in Class Libraries...88

13.1 Protecting Objects with Permissions 88
13.2 Fully Trusted Class Library Code 88
13.3 Precautions for Highly Trusted Code 89
13.4 Performance 89

13.4.1 Summary of Class Security Issues 89

14 Threading Design Guidelines..91

15 Formatting Standards...93

15.1 White Space and Indentation 93

16 Commenting Code ..95

16.1 XML Comments 95
16.2 In-line Comments 95
16.3 End of Line Comments 96

17 Code Reviews...97

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

5C#/VB .NET Coding Guidelines

18 Additional Notes for VB .NET Developers...98

18.1 Procedure Length 98
18.2 “If” 99

18.2.1 Write the nominal path through the code first, then write the exceptions 99
18.2.2 Make sure that you branch correctly on equality 99
18.2.3 Put the normal case after the If rather than after the Else 99
18.2.4 Follow the If with a meaningful statement 99
18.2.5 Always at least consider using the Else clause 99
18.2.6 Simplify complicated conditions with Boolean function calls 99
18.2.7 Don't use chains of If statements if a Select Case statement will do 99

18.3 “Select Case” 99
18.3.1 Put the normal case first 99
18.3.2 Order cases by frequency 100
18.3.3 Keep the actions of each case simple 100
18.3.4 Use the Case Else only for legitimate defaults 100
18.3.5 Use Case Else to detect errors. 100
18.3.6 Exceptions to the rule 100

18.4 “Do” 101
18.4.1 Keep the body of a loop visible on the screen at once 101
18.4.2 Limit nesting to three levels 101

18.5 “For” 101
18.5.1 Never omit the loop variable from the Next statement 101
18.5.2 Try not to use i, j and k as the loop variables 101

18.6 “Goto” 101
18.7 “Exit Sub” / “Exit Function” And “Return” 102
18.8 “Exit Do” 103

19 Disclaimer ..104

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

6C#/VB .NET Coding Guidelines

1 Overview
This document is a working document - it is not designed to meet the requirement that we have “a”
coding standard but instead it is an acknowledgment that we can make our lives much easier in the
long term if we all agree to a common set of conventions when writing code.

Inevitably, there are many places in this document where I have simply had to make a choice
between two or more equally valid alternatives. I have tried to actually think about the relative
merits of each alternative but inevitably some of my personal preferences have come into play.

This document is not fixed in stone; but it is not a suggestion, either. The only thing worse than no
coding standard is multiple coding standards so these coding standards are mandatory where they
apply (see the section When Does This Document Apply below).

However, if you think that something could be improved, or even if you think that I've made a
wrong call somewhere, then let me know so we can review it.

I hope you find that this document is actually readable. I hate standards documents that are so dry
as to be about as interesting as reading the Yellow Pages. However, do not assume that this
document is any less important than those drier Yellow Pages. Iridium Software takes these
standards very seriously.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

7C#/VB .NET Coding Guidelines

2 When Does This Document Apply
It is the intention that all code written for or by Iridium Software adheres to this standard. However,
there are some cases where it is impractical or impossible to apply these conventions.

This document applies to all code except the following:

2.1 Code changes made to existing systems not written to this
standard
In general, it is a good idea to make your changes conform to the surrounding code style wherever
possible. You might choose to adopt this standard for major additions to existing systems or when
you are adding code that you think will become part of the Iridium Software code library.

2.2 Code written for customers that require that their standards
should be adopted
Iridium Software may, from time to time work with customers that have their own coding standards.
Most coding standards applicable to a Microsoft development language derive at least some of
their content from a Microsoft white paper that documented a set of suggested naming standards.
For this reason many coding standards are broadly compatible with each other. This document
goes a little further than most in some areas; however it is likely that these extensions will not
conflict with most other coding standards. We must be absolutely clear on this point: if there is a
conflict, the customer's coding standards are to apply - always.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

8C#/VB .NET Coding Guidelines

3 Naming Guidelines
Of all the components that make up a coding standard, naming standards are the most visible and
arguably the most important.

Having a consistent standard for naming the various objects in your program will save you an
enormous amount of time both during the development process itself and also during any later
maintenance work.

3.1 Overview
For those of you coding in VB.NET, first things first, always use Option Explicit. The reasons are so
obvious that I won't discuss it any further. If you don't agree, see me and we'll discuss it amicably.
Secondly, you must set Option Strict on. Again, I shouldn’t need to explain the advantages of this.

Remove the Visual Basic reference from your project. Making use of the original Visual Basic
functions has been proven to be up to 1000 times slower than the .NET counterparts; you have
been warned.

3.2 Capitalisation Styles
Use the following three conventions for capitalising identifiers.

3.2.1 Pascal Case
The first letter in the identifier and the first letter of each subsequent concatenated word are
capitalised. You can use Pascal case for identifiers of three or more characters. For example:

BackColor

3.2.2 Camel Case
The first letter of an identifier is lowercase and the first letter of each subsequent concatenated word
is capitalized. For example:

backColor

3.2.3 Uppercase
All letters in the identifier are capitalized. Use this convention only for identifiers that consist of two
or fewer letters. For example:

System.IO

System.Web.IO

You might also have to capitalize identifiers to maintain compatibility with existing, unmanaged
symbol schemes, where all uppercase characters are often used for enumerations and constant
values. In general, these symbols should not be visible outside of the assembly that uses them.

The following table summarizes the capitalization rules and provides examples for the different
types of identifiers.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

9C#/VB .NET Coding Guidelines

Identifier Case Example

Class Pascal AppDomain

Enum type Pascal ErrorLevel

Enum
values

Pascal FatalError

Event Pascal ValueChange

Exception
class

Pascal WebException

Note: Always ends with the suffix Exception.

Read-only
Static field

Pascal RedValue

Interface Pascal IDisposable

Note: Interfaces always begin with the prefix I.

Method Pascal ToString

Namespace Pascal System.Drawing

Parameter Camel typeName

Property Pascal BackColor

Protected
instance
field

Camel redValue

Note: Rarely used. A property is preferable to using a protected
instance field.

Public
instance
field

Pascal RedValue

Note: Rarely used. A property is preferable to using a public
instance field.

3.3 Case Sensitivity (not applicable to VB)
To avoid confusion and guarantee cross-language interoperation, follow these rules regarding the
use of case sensitivity:

1. Do not use names that require case sensitivity. Components must be fully usable from both
case-sensitive and case-insensitive languages. Case-insensitive languages cannot distinguish
between two names within the same context that differ only by case. Therefore, you must
avoid this situation in the components or classes that you create.

2. Do not create two namespaces with names that differ only by case. For example, a case
insensitive language cannot distinguish between the following two namespace declarations.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

10C#/VB .NET Coding Guidelines

Namespace IridiumSoftware
Namespace iridiumsoftware

3. Do not create a function with parameter names that differ only by case. The following

example is incorrect.

void MyFunction(string a, string A)

4. Do not create a namespace with type names that differ only by case. In the following

example, Point p and POINT p are inappropriate type names because they differ only by
case.

System.Windows.Forms.Point p
System.Windows.Forms.POINT p

5. Do not create a type with property names that differ only by case. In the following example,

int Color and int COLOR are inappropriate property names because they differ only by
case.

int Color {get, set}
int COLOR {get, set}

6. Do not create a type with method names that differ only by case. In the following example,

calculate and Calculate are inappropriate method names because they differ only by
case

void calculate()
void Calculate()

3.4 Abbreviations
To avoid confusion and guarantee cross-language interoperation, follow these rules regarding the
use of abbreviations:

7. Do not use abbreviations or contractions as parts of identifier names. For example, use
GetWindow instead of GetWin.

8. Where appropriate, use well-known acronyms to replace lengthy phrase names. For
example, use UI for User Interface and OLAP for On-Line Analytical Processing.

9. Do not use acronyms that are not generally accepted in the computing field. (For example,
XML, TTL, DNS, UI, IP and IO are all OK.)

10. When using acronyms, use Pascal case or camel case for acronyms more than two
characters long. For example, use HtmlButton or HTMLButton. However, you should
capitalize acronyms that consist of only two characters, such as System.IO instead of
System.Io.

11. Do not use abbreviations in identifiers or parameter names. If you must use abbreviations,
use Camel Case for abbreviations that consist of more than two characters, even if this
contradicts the standard abbreviation of the word.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

11C#/VB .NET Coding Guidelines

3.5 Word Choice
Avoid using class names that duplicate commonly used .NET Framework namespaces. For
example, do not use any of the following names as a class name: System, Collections, Forms, or
UI. See the MSDN topic class library for a list of .NET Framework namespaces.

In addition, avoid using identifiers that conflict with the following keywords.

As Assembly Auto Base Boolean

ByRef Byte ByVal Call Case

Catch CBool CByte CChar CDate

CDec CDbl Char CInt Class

CLng CObj Const CShort CSng

CStr CType Date Decimal Declare

Default Delegate Dim Do Double

Each Else ElseIf End Enum

Erase Error Event Exit ExternalSour
ce

False Finalize Finally Float For

Friend Function Get GetType Goto

Handles If Implements Imports In

Inherits Integer Interface Is Let

Lib Like Long Loop Me

Mod Module MustInherit MustOverride MyBase

MyClass Namespace New Next Not

Nothing NotInheritab
le

NotOverridab
le

Object On

Option Optional Or Overloads Overridable

Overrides ParamArray Preserve Private Property

Protected Public RaiseEvent ReadOnly ReDim

Region REM RemoveHandle
r

Resume Return

Select Set Shadows Shared Short

Single Static Step Stop String

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/cpref_start.asp

12C#/VB .NET Coding Guidelines

Structure Sub SyncLock Then Throw

To True Try TypeOf Unicode

Until volatile When While With

WithEvents WriteOnly Xor eval extends

instanceof package var

3.6 Avoid Type Name Confusion
Different programming languages use different terms to identify the fundamental managed types.
Class library designers must avoid using language-specific terminology. Follow the rules described
in this section to avoid type name confusion.

Use names that describe a type's meaning rather than names that describe the type. In the rare
case that a parameter has no semantic meaning beyond its type, use a generic name. For
example, a class that supports writing a variety of data types into a stream might have the
following methods.

Visual Basic

Sub Write(value As Double)
Sub Write(value As Single)
Sub Write(value As Long)
Sub Write(value As Integer)
Sub Write(value As Short)

C#

void Write(double value);
void Write(float value);
void Write(long value);
void Write(int value);
void Write(short value);

Do not create language-specific method names, as in the following example.

Visual Basic

Sub Write(doubleValue As Double)
Sub Write(singleValue As Single)
Sub Write(longValue As Long)
Sub Write(integerValue As Integer)
Sub Write(shortValue As Short)

C#

void Write(double doubleValue);
void Write(float floatValue);
void Write(long longValue);
void Write(int intValue);
void Write(short shortValue);

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

13C#/VB .NET Coding Guidelines

In the extremely rare case that it is necessary to create a uniquely named method for each
fundamental data type, use a universal type name. The following table lists fundamental data type
names and their universal substitutions.

 Type Name

C# Visual Basic Jscript VC++ Ilasm Universal

sbyte SByte sByte char int8 SByte

byte Byte byte unsigned
char

unsigned
int8

Byte

short Short short short int16 Int16

ushort UInt16 ushort unsigned
short

unsigned
int16

UInt16

int Integer int Int int32 Int32

uint UInt32 uint unsigned
int

unsigned
int32

UInt32

long Long long __int64 int64 Int64

ulong UInt64 ulong unsigned
__int64

unsigned
int64

UInt64

float Single float float float32 Single

double Double double double float64 Double

bool Boolean boolean bool bool Boolean

char Char char wchar_t char Char

string String string String string String

object Object object Object object Object

For example, a class that supports reading a variety of data types from a stream might have the
following methods. As should be noted, it is generally better practice to use .NET native data types
rather than the language specific ones: in VB Integer would be Int32 and Long would be
Int64. This both aids cross platform development, but also inform the developer at a glance of
the size of the data type.

Visual Basic

ReadDouble() As Double
ReadSingle() As Single
ReadInt64() As Long
ReadInt32() As Integer
ReadInt16() As Short

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

14C#/VB .NET Coding Guidelines

Visual Basic - preferred

ReadDouble() As Double
ReadSingle() As Single
ReadInt64() As Int64
ReadInt32() As Int32
ReadInt16() As Int16

C#

double ReadDouble();
float ReadSingle();
long ReadInt64();
int ReadInt32();
short ReadInt16();

The preceding example is preferable to the following language-specific alternative.

Visual Basic

ReadDouble() As Double
ReadSingle() As Single
ReadLong() As Long
ReadInteger() As Integer
ReadShort() As Short

C#

double ReadDouble();
float ReadFloat();
long ReadLong();
int ReadInt();
short ReadShort();

3.7 Namespace Naming Guidelines
The general rule for naming namespaces is to use the company name followed by the technology
name and optionally the feature and design as follows.

CompanyName.TechnologyName[.Feature][.Design]

For example:

IridiumSoftware.IridiumX
IridiumSoftware.IridiumX.Design

Prefixing namespace names with a company name or other well-established brands avoids the
possibility of two published namespaces having the same name. For example,
Microsoft.Office is an appropriate prefix for the Office Automation Classes provided by
Microsoft.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

15C#/VB .NET Coding Guidelines

Use a stable, recognised technology name at the second level of a hierarchical name. Use
organisational hierarchies as the basis for namespace hierarchies. Name a namespace that
contains types that provide design-time functionality for a base namespace with the .Design
suffix. For example, the System.Windows.Forms.Design namespace contains designers and related
classes used to design System.Windows.Forms based applications.

A nested namespace should have a dependency on types in the containing namespace. For
example, the classes in the System.Web.UI.Design depend on the classes in System.Web.UI.
However, the classes in System.Web.UI do not depend on the classes in System.Web.UI.Design.

You should use Pascal Case for namespaces, and separate logical components with periods, as in
Microsoft.Office.PowerPoint. If your brand employs non-traditional casing, follow the
casing defined by your brand, even if it deviates from the prescribed Pascal case. For example,
the namespaces NeXT.WebObjects and ee.IridiumSoftware illustrate appropriate
deviations from the Pascal Case rule. Use plural namespace names if it is semantically
appropriate. For example, use System.Collections rather than System.Collection.
Exceptions to this rule are brand names and abbreviations. For example, use System.IO rather
than System.IOs.

Do not use the same name for a namespace and a class. For example, do not provide both a
Debug namespace and a Debug class.

Finally, note that a namespace name does not have to parallel an assembly name. For example, if
you name an assembly MyCompany.MyTechnology.dll, it does not have to contain a
MyCompany.MyTechnology namespace.

3.8 Class Naming Guidelines
The following rules outline the guidelines for naming classes:

1. Use a noun or noun phrase to name a class.

2. Use Pascal Case.

3. Use abbreviations sparingly.

4. Do not use a type prefix, such as c or class, on a class name. For example, use the class
name FileStream rather than CFileStream.

5. Do not use the underscore character (_).

6. Occasionally, it is necessary to provide a class name that begins with the letter I, even
though the class is not an interface. This is appropriate as long as I is the first letter of an
entire word that is a part of the class name. For example, the class name IdentityStore
is appropriate.

7. Where appropriate, use a compound word to name a derived class. The second part of the
derived class's name should be the name of the base class. For example,
ApplicationException is an appropriate name for a class derived from a class named
Exception, because ApplicationException is a kind of Exception. Use
reasonable judgment in applying this rule. For example, Button is an appropriate name

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwindowsformsdesign.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwindowsforms.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuidesign.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebui.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebui.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwebuidesign.asp

16C#/VB .NET Coding Guidelines

for a class derived from Control. Although a button is a kind of control, making Control
a part of the class name would lengthen the name unnecessarily.

 The following are examples of correctly named classes.

Visual Basic

Public Class FileStream
Public Class Button
Public Class String

C#

public class FileStream
public class Button
public class String

3.9 Interface Naming Guidelines
The following rules outline the naming guidelines for interfaces:

1. Name interfaces with nouns or noun phrases, or adjectives that describe behaviour. For
example, the interface name IComponent uses a descriptive noun. The interface name
ICustomAttributeProvider uses a noun phrase. The name IPersistable uses an
adjective.

2. Use Pascal Case.

3. Use abbreviations sparingly.

4. Prefix interface names with the letter I, to indicate that the type is an interface.

5. Use similar names when you define a class/interface pair where the class is a standard
implementation of the interface. The names should differ only by the letter I prefix on the
interface name.

6. Do not use the underscore character (_).

The following are examples of correctly named interfaces.

Visual Basic

Public Interface IServiceProvider
Public Interface IFormatable

C#

public interface IServiceProvider
public interface IFormatable

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

17C#/VB .NET Coding Guidelines

The following code example illustrates how to define the interface IComponent and its standard
implementation, the class Component.

Visual Basic

Public Interface IComponent
 ' Implementation goes here.
End Interface

Public Class Component
 Implements IComponent

 ' Implementation goes here.
End Class

C#

public interface IComponent
{
 // Implementation goes here.
}

public class Component : IComponent
{
 // Implementation goes here.
}

3.10 Attribute Naming Guidelines
You should always add the suffix Attribute to custom attribute classes. The following is an
example of a correctly named attribute class.

 Visual Basic

Public Class ObsoleteAttribute

C#

public class ObsoleteAttribute{}

3.11 Enumeration Type Naming Guidelines
The enumeration (Enum) value type inherits from the Enum Class. The following rules outline the
naming guidelines for enumerations:

1. Use Pascal Case for Enum types and value names.

2. Use abbreviations sparingly.

3. Do not use an Enum suffix on Enum type names.

4. Use a singular name for most Enum types, but use a plural name for Enum types that are bit
fields.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemenumclasstopic.asp

18C#/VB .NET Coding Guidelines

5. Always add the FlagsAttribute to a bit field Enum type.

3.12 Static Field Naming Guidelines
The following rules outline the naming guidelines for static fields:

1. Use nouns, noun phrases, or abbreviations of nouns to name static fields.

2. Use Pascal Case.

3. Use a Hungarian notation prefix on static field names.

4. It is recommended that you use static properties instead of public static fields whenever
possible.

3.13 Parameter Naming Guidelines
The following rules outline the naming guidelines for parameters:

1. Use descriptive parameter names. Parameter names should be descriptive enough that the
name of the parameter and its type can be used to determine its meaning in most scenarios.

2. Use Camel Case for parameter names.

3. Use names that describe a parameter's meaning rather than names that describe a
parameter's type. Development tools should provide meaningful information about a
parameter's type. Therefore, a parameter's name can be put to better use by describing
meaning. Use type-based parameter names sparingly and only where it is appropriate.

4. Do not use reserved parameters. Reserved parameters are private parameters that might be
exposed in a future version if they are needed. Instead, if more data is needed in a future
version of your class library, add a new overload for a method.

5. Do not prefix parameter names with Hungarian type notation.

The following are examples of correctly named parameters.

Visual Basic

GetType(typeName As String) As Type
Format(format As String, args As Object()) As String

C#

Type GetType(string typeName)
string Format(string format, object[] args)

3.14 Method Naming Guidelines
The following rules outline the naming guidelines for methods:

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

19C#/VB .NET Coding Guidelines

1. Use verbs or verb phrases to name methods.

2. Use Pascal Case.

The following are examples of correctly named methods.

RemoveAll()
GetCharArray()
Invoke()

3.15 Property Naming Guidelines
The following rules outline the naming guidelines for properties:

1. Use a noun or noun phrase to name properties.

2. Use Pascal Case.

3. Do not use Hungarian notation.

4. Consider creating a property with the same name as its underlying type. For example, if you
declare a property named Color, the type of the property should likewise be Color. See
the example later in this topic.

The following code example illustrates correct property naming.

Visual Basic

Public Class SampleClass
 Public Property BackColor() As Color
 ' Code for Get and Set accessors goes here.
 End Property
End Class

C#

public class SampleClass
{
 public Color BackColor
 {
 // Code for Get and Set accessors goes here.
 }
}

The following code example illustrates providing a property with the same name as a type.

Visual Basic

Public Enum Color
 ' Insert code for Enum here.
End Enum

Public Class Control
 Public Property Color As Color

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemdrawingcolorclasstopic.asp

20C#/VB .NET Coding Guidelines

 Get
 ' Insert Code Here
 End Get
 Set(ByVal Value As Color)
 ' Insert Code Here
 End Set
 End Property
End Class

C#

public enum Color
{
 // Insert code for Enum here.
}

public class Control
{
 public Color Color
 {
 get {// Insert Code Here}
 set {// Insert Code Here}
 }
}

The following code example is incorrect because the property Color is of type Integer.

Visual Basic

Public Enum Color
 ' Insert code for Enum here.
End Enum

Public Class Control
 Public Property Color As Integer
 Get
 ' Insert Code Here
 End Get
 Set(ByVal Value As Integer)
 ' Insert Code Here
 End Set
 End Property
End Class

C#

public enum Color
{
 // Insert code for Enum here.
}

public class Control
{
 public int Color
 {
 get {// Insert Code Here}
 set {// Insert Code Here}
 }
}

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

21C#/VB .NET Coding Guidelines

In the incorrect example, it is not possible to refer to the members of the Color enumeration.
Color.XXX will be interpreted as accessing a member that first gets the value of the Color
property (type Integer in Visual Basic or type int in C#) and then accesses a member of that
value (which would have to be an instance member of System.Int32).

3.16 Event Naming Guidelines
The following rules outline the naming guidelines for events:

1. Use an EventHandler suffix on event handler names.

2. Specify two parameters named sender and e. The sender parameter represents the
object that raised the event. The sender parameter is always of type object, even if it is
possible to use a more specific type. The state associated with the event is encapsulated in
an instance of an event class named e. Use an appropriate and specific event class for the
e parameter type.

3. Name an event argument class with the EventArgs suffix.

4. Consider naming events with a verb.

5. Use a gerund (the “ing” form of a verb) to create an event name that expresses the concept
of pre-event, and a past-tense verb to represent post-event. For example, a Close event that
can be cancelled should have a Closing event and a Closed event. Do not use the
BeforeXX/AfterXXX naming pattern.

6. Do not use a prefix or suffix on the event declaration on the type. For example, use Close
instead of OnClose.

7. In general, you should provide a protected method called OnXXX on types with events that
can be overridden in a derived class. This method should only have the event parameter e,
because the sender is always the instance of the type.

The following example illustrates an event handler with an appropriate name and parameters.

Visual Basic

Public Delegate Sub MouseEventHandler(sender As Object, _
 e As MouseEventArgs)

C#

public delegate void MouseEventHandler(object sender,
 MouseEventArgs e);

The following example illustrates a correctly named event argument class.

Visual Basic

Public Class MouseEventArgs
 Inherits EventArgs

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemint32classtopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemobjectclasstopic.asp

22C#/VB .NET Coding Guidelines

 Public Sub New MouseEventArgs(x As Int32, y As Int32)
 Me.x = x
 Me.y = y
 End Sub

 Public ReadOnly Property X As Int32
 Get
 Return x
 End Get
 End Property
 Private x As Int32

 Public ReadOnly Property Y As Int32
 Get
 Return y
 End Get
 End Property
 Private y As Int32
End Class

C#

public class MouseEventArgs : EventArgs
{
 public MouseEventArgs(int x, int y)
 {
 this.x = x;
 this.y = y;
 }

 public int X
 {
 get { return x; }
 }
 int x;

 public int Y
 {
 get { return y; }
 }
 int y;
}

3.17 Control Naming Guidelines
Although not considered entirely correct, the choice to prefix design-time controls with a
predetermined string is a sound one. It allows the developer to distinguish easily between design-
time controls and other object kinds.

All controls must be changed from their default name to an appropriate replacement value. This
will assist future development; and simply looks better. This must be done regardless of how
insignificant the control appears.

You should consider taking the time to rename all controls prior to starting development of the form,
this will likely speed up you work. In addition, if you select a control and choose to write code
within an event of this control – whilst it will still work, the default name would be the original
control name. If you do rename controls after adding event code, you must also modify the default
event method names.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

23C#/VB .NET Coding Guidelines

Controls have their own set of prefixes. They are used to identify the type of control so that code
can be visually checked for correctness. They also assist in making it easy to know the name of a
control without continually needing to look it up.

3.17.1 Specifying Particular Control Variants
In general, it is NOT a good idea to use specific identifiers for variations on a theme. For
example, whether you are using a third-party button or a standard button generally is invisible to
your code - you may have more properties to play with at design time to visually enhance the
control, but your code usually traps the Click() event and maybe manipulates the Enabled and
Caption properties, which will be common to all button-like controls.

Using generic prefixes means that your code is less dependent on the particular control variant that
is used in an application and therefore makes code re-use simpler. Only differentiate between
variants of a fundamental control if your code is totally dependent on some unique attribute of that
particular control. Otherwise, use the generic prefixes where possible.

3.17.2 Table of Standard Control Prefixes
The following table is a list of the common types of controls you will encounter together with their
prefixes:

Prefix Control

lbl Label

llbl LinkLabel

but Button

txt Textbox

mnu MainMenu

chk CheckBox

rdo RadioButton

grp GroupBox

pic PictureBox

grd Grid

lst ListBox

cbo ComboBox

lstv ListView

tre TreeView

tab TabControl

dtm DateTimePicker

mon MonthCalendar

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

24C#/VB .NET Coding Guidelines

sbr ScrollBar

tmr Timer

spl Splitter

dud DomainUpDown

nud NumericUpDown

trk TrackBar

pro ProgressBar

rtxt RichTextBox

img ImageList

hlp HelpProvider

tip ToolTip

cmnu ContextMenu

tbr ToolBar

frm Form

bar StatusBar

nico NotifyIcon

ofd OpenFileDialog

sfd SaveFileDialog

fd FontDialog

cd ColorDialog

pd PrintDialog

ppd PrintPreviewDialog

ppc PrintPreviewControl

err ErrorProvider

pdoc PrintDocument

psd PageSetupDialog

crv CrystalReportViewer

pd PrintDialog

fsw FileSystemWatcher

log EventLog

dire DirectoryEntry

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

25C#/VB .NET Coding Guidelines

dirs DirectorySearcher

msq MessageQueue

pco PerformanceCounter

pro Process

ser ServiceController

rpt ReportDocument

ds DataSet

olea OleDbDataAdapter

olec OleDbConnection

oled OleDbCommand

sqla SqlDbDataAdapter

sqlc SqlDbConnection

sqld SqlDbCommand

dvw DataView

• Menu controls are subject to additional rules as defined below.

• There is no need to distinguish orientation.

• There is often a single Timer control in legacy projects, and it is used for a number of
things. That makes it difficult to come up with a meaningful name. In this situation, it is
acceptable to call the control simply “Timer”.

3.17.3 Menu Controls
Menu controls should be named using the tag “mnu” followed by the complete path down the menu
tree. This has the additional benefit of encouraging shallow menu hierarchies, which are generally
considered to be “A Good Thing” in user interface design.

Here are some examples of menu control names:

mnuFileNew
mnuEditCopy
mnuInsertIndexAndTables
mnuTableCellHeightAndWidth

3.18 Data Naming Guidelines
As important as all the preceding rules are, the rewards you get for all the extra time thinking about
the naming of objects will be small without this final step, something I call “data naming”. The
concept is simple but it is amazingly difficult to discipline yourself to do it without fail.

Essentially, the concept is simply an acknowledgment that any given data item has exactly one
name. If something is called a CustomerCode, then that is what it is called EVERYWHERE. Not

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

26C#/VB .NET Coding Guidelines

CustCode. Not CustomerID. Not CustID. Not CustomerCde. No name except
CustomerCode is acceptable.

Now, let's assume a customer code is a numeric item. If I need a customer code, I would use the
name CustomerCode. If I want to display it in a text box, that text box must be called
txtCustomerCode. If I want a combo box to display customer codes, that control would be
called cboCustomerCode. If you need to store a customer code in a module level variable then it
would be called mCustomerCode. If you want to convert it into a string (say to print it out later)
you might use a statement like:

Dim mCustomerCode As String = CustomerCode.ToString()

I think you get the idea. It's really very simple. It's also incredibly difficult to do EVERY time, and
it's only by doing it EVERY time that you get the real payoffs. It is just SO tempting to code the
above line like this:

Dim mCustCode As String = CustomerCode.ToString()

3.18.1 Fields in Databases
As a general rule, the usual Property Naming Guidelines when naming fields in a database.

This may not always be practical or even possible. If the database already exists (either because
the new program is referencing an existing database or because the database structure has been
created as part of the database design phase) then it is not practical to apply these tags to every
column or field. Even for new tables in existing databases, do not deviate from the conventions
(hopefully) already in use in that database.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

27C#/VB .NET Coding Guidelines

4 Class Member Usage Guidelines

4.1 Property Usage Guidelines
Determine whether a property or a method is more appropriate for your needs. For details on
choosing between properties and methods, see Properties vs. Methods.

Choose a name for your property based on the recommended Property Naming Guidelines. Avoid
creating a property with the same name as an existing type. Defining a property with the same
name as a type causes ambiguity in some programming languages. For example,
System.Windows.Forms.Control has a color property. Since a Color Structure also exists, the
System.Windows.Forms.Control color property is named BackColor. It is a more meaningful
name for the property and it does not conflict with the Color Structure name.

There might be situations where you have to violate this rule. For example, the
System.Windows.Forms.Form class contains an Icon property even though an Icon class also
exists in the .NET Framework. This is because Form.Icon is a more straightforward and
understandable name for the property than Form.FormIcon or Form.DisplayIcon.

When accessing a property using the set accessor, preserve the value of the property before you
change it. This will ensure that data is not lost if the set accessor throws an exception.

4.1.1 Property State Issues
Allow properties to be set in any order. Properties should be stateless with respect to other
properties. It is often the case that a particular feature of an object will not take effect until the
developer specifies a particular set of properties, or until an object has a particular state. Until the
object is in the correct state, the feature is not active. When the object is in the correct state, the
feature automatically activates itself without requiring an explicit call. The semantics are the same
regardless of the order in which the developer sets the property values or how the developer gets
the object into the active state.

For example, a TextBox control might have two related properties: DataSource and
DataField. DataSource specifies the table name, and DataField specifies the column name.
Once both properties are specified, the control can automatically bind data from the table into the
Text property of the control.

The following code example illustrates properties that can be set in any order.

Visual Basic

Dim txtData As New TextBox()
txtData.DataSource = "Publishers"
txtData.DataField = "AuthorID"
' The data-binding feature is now active.

C#

TextBox txtData = new TextBox();
txtData.DataSource = "Publishers";
txtData.DataField = "AuthorID";
// The data-binding feature is now active.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwindowsformscontrolclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemdrawingcolorclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwindowsformscontrolclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemdrawingcolorclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwindowsformsformclasstopic.asp

28C#/VB .NET Coding Guidelines

You can set the DataSource and DataField properties in any order. Therefore, the preceding
code is equivalent to the following.

Visual Basic

Dim txtData As New TextBox()
txtData.DataField = "AuthorID"
txtData.DataSource = "Publishers"
' The data-binding feature is now active.

C#

TextBox txtData = new TextBox();
txtData.DataField = "AuthorID";
txtData.DataSource = "Publishers";
// The data-binding feature is now active.

You can also set a property to null (Nothing in Visual Basic) to indicate that the value is not
specified.

Visual Basic

Dim txtData As New TextBox()
txtData.DataField = "AuthorID"
txtData.DataSource = "Publishers"
' The data-binding feature is now active.
txtData.DataSource = Nothing
' The data-binding feature is now inactive.

C#

TextBox txtData = new TextBox();
txtData.DataField = "AuthorID";
txtData.DataSource = "Publishers";
// The data-binding feature is now active.
txtData.DataSource = null;
// The data-binding feature is now inactive.

The following code example illustrates how to track the state of the “data binding” feature and
automatically activate or deactivate it at the appropriate times.

Visual Basic

Public Class TextBox

 Public Property DataSource() As String
 Get
 Return mDataSource
 End Get
 Set(ByVal value As String)
 If value <> mDataSource Then
 ' Set the property value first,
 ' in case activate fails.
 mDataSource = value

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

29C#/VB .NET Coding Guidelines

 ' Update active state.
 SetActive((Not (mDataSource Is Nothing) And _
 Not (mDataField Is Nothing)))
 End If
 End Set
 End Property
 Private mDataSource As String

 Public Property DataField() As String
 Get
 Return mDataField
 End Get
 Set(ByVal value As String)
 If value <> mDataField Then
 ' Set the property value first,
 ' in case activate fails.
 mDataField = value
 ' Update active state.
 SetActive((Not (mDataSource Is Nothing) AndAlso _
 Not (mDataField Is Nothing)))
 End If
 End Set
 End Property
 Private mDataField As String

 Sub SetActive(value As Boolean)
 If value <> mActive Then
 If value Then
 Activate()
 Text = mDataBase.Value(dataField)
 Else
 Deactivate()
 Text = ""
 End If
 ' Set active only if successful.
 mActive = value
 End If
 End Sub
 Private mActive As Boolean

 Sub Activate()
 ' Open database.
 End Sub

 Sub Deactivate()
 ' Close database.
 End Sub
End Class

C#

public class TextBox

 public string DataSource
 {
 get
 {
 return mDataSource;
 }
 set
 {
 if (value != mDataSource)
 {
 // Set the property value first,
 // in case activate fails.
 mDataSource = value;

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

30C#/VB .NET Coding Guidelines

 // Update active state.
 SetActive(mDataSource != null && mDataField != null);
 }
 }
 }
 string mDataSource;

 public string DataField
 {
 get
 {
 return m DataField;
 }
 set
 {
 if (value != m DataField)
 {
 // Set the property value first,
 // in case activate fails.
 mDataField = value;
 // Update active state.
 SetActive(mDataSource != null && mDataField != null);
 }
 }
 }
 string m DataField;

 void SetActive(Boolean value)
 {
 if (value != mActive)
 {
 if (value)
 {
 Activate();
 Text = mDataBase.Value(dataField);
 }
 else
 {
 Deactivate();
 Text = "";
 }
 // Set active only if successful.
 mActive = value;
 }
 }
 bool mActive;

 void Activate()
 {
 // Open database.
 }

 void Deactivate()
 {
 // Close database.
 }
}

In the preceding example, the following expression determines whether the object is in a state in
which the data-binding feature can activate itself.

Visual Basic

(Not (mDataSource Is Nothing) AndAlso Not (mDataField Is Nothing))

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

31C#/VB .NET Coding Guidelines

C#

mDataSource != null && mDataField != null

You make activation automatic by creating a method that determines whether the object can be
activated given its current state, and then activates it as necessary.

Visual Basic

Sub UpdateActive()
 SetActive((Not (mDataSource Is Nothing) AndAlso _
 Not (mDataField Is Nothing)))
End Sub

C#

void UpdateActive()
{
 SetActive mDataSource != null && mDataField != null);
}

If you do have related properties, such as DataSource and DataMember, you should consider
implementing the ISupportInitialize interface. This will allow the designer (or user) to call
the ISupportInitialize.BeginInit and ISupportInitialize.EndInit methods when
setting multiple properties to allow the component to provide optimizations. In the above example,
ISupportInitialize could prevent unnecessary attempts to access the database until setup is
correctly completed.

The expression that appears in this method indicates the parts of the object model that need to be
examined in order to enforce these state transitions. In this case, the DataSource and
DataField properties are affected. For more information on choosing between properties and
methods, see Properties vs. Methods.

4.1.2 Raising Property-Changed Events
Components should raise property-changed events if they want to notify consumers when the
component's property changes programmatically. The naming convention for a property-changed
event is to add the Changed suffix to the property name, such as TextChanged. For example, a
control might raise a TextChanged event when its text property changes. You can use a
protected helper routine Raise<Property>Changed, to raise this event. However, it is probably
not worth the overhead to raise a property-changed event for a hash table item addition. The
following code example illustrates the implementation of a helper routine on a property-changed
event.

Visual Basic

Class Control
 Inherits Component

 Public Property Text() As String
 Get
 Return mText
 End Get
 Set(ByVal value As String)

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemcomponentmodelisupportinitializeclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemcomponentmodelisupportinitializeclassbegininittopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemcomponentmodelisupportinitializeclassendinittopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemcomponentmodelisupportinitializeclasstopic.asp

32C#/VB .NET Coding Guidelines

 If Not mText.Equals(value) Then
 mText = value
 RaiseTextChangedEvent()
 End If
 End Set
 End Property
 Private mText As String
End Class

C#

class Control : Component
{
 public string Text
 {
 get
 {
 return mText;
 }
 set
 {
 if (!mText.Equals(value))
 {
 mText = value;
 RaiseTextChangedEvent();
 }
 }
 }
 string mText;
}

Data binding uses this pattern to allow two-way binding of the property. Without
<Property>Changed and Raise<Property>Changed events, data binding works in one
direction; if the database changes, then the property is updated. Each property that raises the
<Property>Changed event should provide metadata to indicate that the property supports data
binding.

It is recommended that you raise changing/changed events if the value of a property changes as a
result of external forces. These events indicate to the developer that the value of a property is
changing or has changed as a result of an operation, rather than by calling methods on the object.

A good example is the Text property of an Edit control. As a user types information into the
control, the property value automatically changes. An event is raised before the value of the
property has changed. It does not pass the old or new value, and the developer can cancel the
event by throwing an exception. The name of the event is the name of the property followed by the
suffix Changing. The following code example illustrates a changing event.

Visual Basic

Class Edit
 Inherits Control

 Public Property Text() As String
 Get
 Return mText
 End Get
 Set(ByVal value As String)
 If Not mText.Equals(value) Then
 OnTextChanging(Event.Empty)

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

33C#/VB .NET Coding Guidelines

 mText = value
 End If
 End Set
 End Property
 Private mText As String
End Class

C#

class Edit : Control
{
 public string Text
 {
 get
 {
 return mText;
 }
 set
 {
 if (!mText.Equals(value))
 {
 OnTextChanging(Event.Empty);
 mText = value;
 }
 }
 }
 string mText;
}

An event is also raised after the value of the property has changed. This event cannot be
cancelled. The name of the event is the name of the property followed by the suffix Changed. The
generic PropertyChanged event should also be raised. The pattern for raising both of these
events is to raise the specific event from the OnPropertyChanged method. The following
example illustrates the use of the OnPropertyChanged method.

Visual Basic

Class Edit
 Inherits Control

 Public Property Text() As String
 Get
 Return mText
 End Get
 Set(ByVal value As String)
 If Not mText.Equals(value) Then
 OnTextChanging(Event.Empty)
 mText = value
 RaisePropertyChangedEvent(Edit.ClassInfo.text)
 End If
 End Set
 End Property
 Private mText As String

 Protected Sub OnPropertyChanged(e As PropertyChangedEvent)
 If e.PropertyChanged.Equals(Edit.ClassInfo.text) Then
 OnTextChanged(Event.Empty)
 End If
 If Not (onPropertyChangedHandler Is Nothing) Then
 onPropertyChangedHandler(Me, e)
 End If
 End Sub

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

34C#/VB .NET Coding Guidelines

End Class

C#

class Edit : Control
{
 public string Text
 {
 get
 {
 return mText;
 }
 set
 {
 if (!mText.Equals(value))
 {
 OnTextChanging(Event.Empty);
 mText = value;
 RaisePropertyChangedEvent(Edit.ClassInfo.text);
 }
 }
 }
 string mText;

 protected void OnPropertyChanged(PropertyChangedEvent e)
 {
 if (e.PropertyChanged.Equals(Edit.ClassInfo.text))
 OnTextChanged(Event.Empty);
 if (onPropertyChangedHandler != null) Then
 onPropertyChangedHandler(Me, e);
 }
}

There are cases when the underlying value of a property is not stored as a field, making it difficult
to track changes to the value. When raising the changing event, find all the places that the
property value can change and provide the ability to cancel the event. For example, the previous
Edit control example is not entirely accurate because the Text value is actually stored in the
window handle. In order to raise the TextChanging event, you must examine Windows
messages to determine when the text might change, and allow for an exception thrown in
OnTextChanging to cancel the event. If it is too difficult to provide a changing event, it is
reasonable to support only the changed event.

4.1.3 Properties vs. Methods
Class library designers often must decide between implementing a class member as a property or a
method. Use the following guidelines to help you choose between these options.

1. Use a property when the member is a logical data member. In the following member
declarations, Name is a property because it is a logical member of the class.

Visual Basic

Public Property Name As String
 Get
 Return mName
 End Get
 Set(ByVal value As String)
 mName = value

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

35C#/VB .NET Coding Guidelines

 End Set
End Property

C#

public string Name
 get
 {
 return mName;
 }
 set
 {
 mName = value;
 }
}

2. Use a method when:

• The operation is a conversion, such as Object.ToString().

• The operation is expensive enough that you want to communicate to the user that they
should consider caching the result.

• Obtaining a property value using the get accessor would have an observable side effect.

• Calling the member twice in succession produces different results.

• The order of execution is important. Note that a type's properties should be able to be set
and retrieved in any order.

• The member is static but returns a value that can be changed.

• The member returns an array. Properties that return arrays can be very misleading.
Usually it is necessary to return a copy of the internal array so that the user cannot change
internal state. This, coupled with the fact that a user can easily assume it is an indexed
property, leads to inefficient code. In the following code example, each call to the
Methods property creates a copy of the array. As a result, 2n+1 copies of the array will
be created in the following loop.

Visual Basic

Dim MyType As Type = ' Get a type.
Dim LoopCounter As Int32

For LoopCounter = 0 To MyType.Methods.Length - 1
 If MyType.Methods(LoopCounter).Name.Equals("text") Then
 ' Perform some operation.
 End If
Next LoopCounter

C#

Type MyType = // Get a type.
for (int i = 0; i < MyType.Methods.Length; i++)
{
 if (MyType.Methods[i].Name.Equals("text"))
 {
 // Perform some operation.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

36C#/VB .NET Coding Guidelines

 }
}

The following example illustrates the correct use of properties and methods.

Visual Basic

Class Connection
 ' The following three members should be properties
 ' because they can be set in any order.
 Property DNSName() As String
 ' Code for get and set accessors goes here.
 End Property

 Property UserName() As String
 ' Code for get and set accessors goes here.
 End Property

 Property Password() As String
 'Code for get and set accessors goes here.
 End Property

 ' The following member should be a method
 ' because the order of execution is important.
 ' This method cannot be executed until after the
 ' properties have been set.
 Function Execute() As Boolean
 End Function
End Class

C#

class Connection
 // The following three members should be properties
 // because they can be set in any order.
 string DNSName {get{}; set{};}

 string UserName {get{}; set{};}

 string Password {get{}; set{};}

 // The following member should be a method
 // because the order of execution is important.
 // This method cannot be executed until after the
 // properties have been set.
 bool Execute();
}

4.1.4 Read-Only and Write-Only Properties
You should use a read-only property when the user cannot change the property's logical data
member. Do not use write-only properties.

4.1.5 Indexed Property Usage
The following rules outline guidelines for using indexed properties:

1. Use only one indexed property per class, and make it the default-indexed property for that
class.

2. Do not use nondefault-indexed properties.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

37C#/VB .NET Coding Guidelines

3. Name an indexed property Item. For example, see the DataGrid.Item property. Follow this
rule, unless there is a name that is more obvious to users, such as the Chars property on the
String class.

4. Use an indexed property when the property's logical data member is an array.

5. Do not provide an indexed property and a method that are semantically equivalent to two or
more overloaded methods. In the following code example, the Method property should be
changed to GetMethod(string) method.

Visual Basic

' Change the MethodInfo Type.Method property to a method.
Property Type.Method(name As String) As MethodInfo
Function Type.GetMethod(_
 name As String, _
 ignoreCase As Boolean) As MethodInfo

C#

// Change the MethodInfo Type.Method property to a method.
MethodInfo Type.Method[string name]
MethodInfo Type.GetMethod (string name, bool ignoreCase)

Visual Basic

' The MethodInfo Type.Method property is changed to
' the MethodInfo Type.GetMethod method.
Function Type.GetMethod(_
 name As String) As MethodInfo
Function Type.GetMethod(_
 name As String, _
 ignoreCase As Boolean) As MethodInfo

C#

// The MethodInfo Type.Method property is changed to
// the MethodInfo Type.GetMethod method.
MethodInfo Type.GetMethod (string name)
MethodInfo Type.GetMethod (string name, bool ignoreCase)

4.2 Event Usage Guidelines
The following rules outline the usage guidelines for events:

1. Choose a name for your event based on the recommended Event Naming Guidelines.

2. Do not use Hungarian notation.

3. When you refer to events in documentation, use the phrase, “an event was raised” instead of
“an event was fired” or “an event was triggered.”

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwindowsformsdatagridclassitemtopic.asp

38C#/VB .NET Coding Guidelines

4. In languages that support the void keyword, use a return type of void for event handlers,
as shown in the following C# code example.

public delegate void MouseEventHandler(object sender, MouseEventArgs
e);

5. Event classes should extend the System.EventArgs class, as shown in the following example.

Visual Basic

Public Class MouseEventArgs
 Inherits EventArgs
 ' Code for the class goes here.
End Class

C#

Public Class MouseEventArgs : EventArgs
{
 // Code for the class goes here.
}

6. Implement an event handler using the public EventHandler Click syntax. Provide an

add and a remove accessor to add and remove event handlers. If your programming
language does not support this syntax, name methods add_Click and remove_Click.

7. If a class raises multiple events, the compiler generates one field per event delegate instance.
If the number of events is large, the storage cost of one field per delegate might not be
acceptable. For those situations, the .NET Framework provides a construct called event
properties that you can use together with another data structure (of your choice) to store
event delegates. Unfortunately this feature is not available with Visual Basic .NET. The
following code example illustrates how the Component class implements this space-efficient
technique for storing handlers.

public class MyComponent : Component
{
 static readonly object EventClick = new object();
 static readonly object EventMouseDown = new object();
 static readonly object EventMouseUp = new object();
 static readonly object EventMouseMove = new object();

 public event MouseEventHandler Click
 {
 add
 {
 Events.AddHandler(EventClick, value);
 }
 remove
 {
 Events.RemoveHandler(EventClick, value);
 }
 }
 // Code for the EventMouseDown, EventMouseUp, and
 // EventMouseMove events goes here.

 // Define a private data structure to store the
 // event delegates
}

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemeventargsclasstopic.asp

39C#/VB .NET Coding Guidelines

8. Use a protected (Protected in Visual Basic) virtual method to raise each event. This technique
is not appropriate for sealed classes, because classes cannot be derived from them. The
purpose of the method is to provide a way for a derived class to handle the event using an
override. This is more natural than using delegates in situations where the developer is
creating a derived class. The name of the method takes the form OnEventName, where
EventName is the name of the event being raised. For example:

Visual Basic

Public Class Button
 Private onClickHandler As ButtonClickHandler

 Protected Overridable Sub OnClick(e As ClickEvent)
 ' Call the delegate if non-null.
 If Not (onClickHandler Is Nothing) Then
 onClickHandler(Me, e)
 End If
 End Sub
End Class

C#

public class Button
{
 ButtonClickHandler onClickHandler;

 protected virtual void OnClick(ClickEvent e)
 {
 // Call the delegate if non-null.
 if (onClickHandler != null)
 onClickHandler(Me, e);
 }
}

The derived class can choose not to call the base class during the processing of OnEventName.
Be prepared for this by not including any processing in the OnEventName method that is
required for the base class to work correctly.

9. You should assume that an event handler could contain any code. Classes should be ready
for the event handler to perform almost any operation, and in all cases the object should be
left in an appropriate state after the event has been raised. Consider using a try/finally
block at the point in code where the event is raised. Since the developer can perform a
callback function on the object to perform other actions, do not assume anything about the
object state when control returns to the point at which the event was raised. For example:

Visual Basic

Public Class Button
 Private onClickHandler As ButtonClickHandler

 Protected Sub DoClick()
 ' Paint button in indented state.
 PaintDown()
 Try
 ' Call event handler.
 OnClick()

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

40C#/VB .NET Coding Guidelines

 Finally
 ' Window might be deleted in event handler.
 If Not (windowHandle Is Nothing) Then
 ' Paint button in normal state.
 PaintUp()
 End If
 End Try
 End Sub

 Protected Overridable Sub OnClick(e As ClickEvent)
 If Not (onClickHandler Is Nothing) Then
 onClickHandler(Me, e)
 End If
 End Sub
End Class

C#
public class Button
{
 ButtonClickHandler onClickHandler;

 protected void DoClick()
 {
 // Paint button in indented state.
 PaintDown();
 try
 {
 // Call event handler.
 OnClick();
 }
 finally
 {
 // Window might be deleted in event handler.
 if (windowHandle != null)
 // Paint button in normal state.
 PaintUp();
 }
 }

 Protected virtual void OnClick(ClickEvent e)
 {
 If (onClickHandler != null)
 onClickHandler(Me, e);
 }
}

10. Use or extend the System.ComponentModel.CancelEventArgs class to allow the developer to

control the default behaviour of an object. For example, the TreeView control raises a
CancelEvent when the user is about to edit a node label. The following code example
illustrates how a developer can use this event to prevent a node from being edited.

Visual Basic

Public Class Form1
 Inherits Form
 Private treeView1 As New TreeView()

 Sub treeView1_BeforeLabelEdit(source As Object, _
 e As NodeLabelEditEvent)
 e.cancel = True
 End Sub
End Class

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemcomponentmodelcanceleventargsclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemwindowsformstreeviewclasstopic.asp

41C#/VB .NET Coding Guidelines

C#
public class Form1: Form
{
 TreeView treeView1 = new TreeView();

 void treeView1_BeforeLabelEdit(object source,
 NodeLabelEditEvent e)
 {
 e.cancel = true;
 }
}

Note that in this case, no error is generated to the user. The label is read-only.

The CancelEvent is not appropriate in cases where the developer would cancel the operation
and return an exception. In these cases, the event does not derive from CancelEvent. You
should raise an exception inside of the event handler in order to cancel. For example, the user
might want to write validation logic in an edit control as shown.

Visual Basic

Public Class Form1
 Inherits Form
 Private edit1 As Edit = New Edit()

 Sub edit1_TextChanging(source As Object, e As Event)
 Throw New RuntimeException("Invalid edit")
 End Sub
End Class

C#
public class Form1: Form
{
 Edit edit1 = new Edit();

 void edit1_TextChanging(object source, Event e)
 {
 throw new RuntimeException("Invalid edit");
 }
}

4.3 Method Usage Guidelines
Method overloading occurs when a class contains two methods with the same name, but different
signatures. This section provides some guidelines for the use of overloaded methods.

1. Use method overloading to provide different methods that do semantically the same thing.

2. Use method overloading instead of allowing default arguments. Default arguments do not
version well and therefore are not allowed in the Common Language Specification (CLS).
The following code example illustrates an overloaded String.IndexOf method.

Visual Basic

Function String.IndexOf(name As String) As Int32
Function String.IndexOf(name As String, _
 startIndex As Integer) As Int32

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

42C#/VB .NET Coding Guidelines

C#
int String.IndexOf (String name);
int String.IndexOf (String name, int startIndex);

3. Use default values correctly. In a family of overloaded methods, the complex method should
use parameter names that indicate a change from the default state assumed in the simple
method. For example, in the following code, the first method assumes the search will not be
case-sensitive. The second method uses the name ignoreCase rather than
caseSensitive to indicate how the default behaviour is being changed.

Visual Basic

' Method #1: ignoreCase = false.
Function Type.GetMethod(name As String) As MethodInfo
' Method #2: Indicates how the default behaviour of
' method #1 is being changed.
Function Type.GetMethod(name As String, _
 ignoreCase As Boolean) _
 As MethodInfo

C#
// Method #1: ignoreCase = false.
MethodInfo Type.GetMethod(String name);
// Method #2: Indicates how the default behaviour of
// method #1 is being changed.
MethodInfo Type.GetMethod (String name,
 Boolean ignoreCase);

4. Use a consistent ordering and naming pattern for method parameters. It is common to
provide a set of overloaded methods with an increasing number of parameters to allow the
developer to specify a desired level of information. The more parameters that you specify,
the more detail the developer can specify. In the following code example, the overloaded
Execute method has a consistent parameter order and naming pattern variation. Each of
the Execute method variations uses the same semantics for the shared set of parameters.

Visual Basic

Public Class SampleClass
 Private defaultForA As String = "default value for a"
 Private defaultForB As String = "default value for b"
 Private defaultForC As String = "default value for c"

 Overloads Public Sub Execute()
 Execute(defaultForA, defaultForB, defaultForC)
 End Sub

 Overloads Public Sub Execute(a As String)
 Execute(a, defaultForB, defaultForC)
 End Sub

 Overloads Public Sub Execute(a As String, b As String)
 Execute(a, b, defaultForC)
 End Sub

 Overloads Public Overridable Sub Execute(a As String, _

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

43C#/VB .NET Coding Guidelines

 b As String, _
 c As String)
 With Console
 .WriteLine(a)
 .WriteLine(b)
 .WriteLine(c)
 .WriteLine()
 End With
 End Sub
End Class

C#
public class SampleClass
{
 readonly string defaultForA = "default value for a";
 readonly string defaultForB = "default value for b";
 readonly string defaultForC = "default value for c";

 public void Execute()
 {
 Execute(defaultForA, defaultForB, defaultForC);
 }

 public void Execute (string a)
 {
 Execute(a, defaultForB, defaultForC);
 }

 public void Execute (string a, string b)
 {
 Execute (a, b, defaultForC);
 }

 public virtual void Execute (string a,
 string b,
 string c)
 {
 Console.WriteLine(a);
 Console.WriteLine(b);
 Console.WriteLine(c);
 Console.WriteLine();
 }
}

This consistent pattern applies if the parameters have different types. Note that the only method
in the group that should be virtual is the one that has the most parameters.

5. Use method overloading for variable numbers of parameters. Where it is appropriate to
specify a variable number of parameters to a method, use the convention of declaring n
methods with increasing numbers of parameters. Provide a method that takes an array of
values for numbers greater than n. For example, n=3 or n=4 is appropriate in most cases.
The following example illustrates this pattern.

Visual Basic

Public Class SampleClass

 Overloads Public Sub Execute(a As String)
 Execute(New String() {a})
 End Sub

 Overloads Public Sub Execute(a As String, b As String)

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

44C#/VB .NET Coding Guidelines

 Execute(New String() {a, b})
 End Sub

 Overloads Public Sub Execute(a As String, _
 b As String, _
 c As String)
 Execute(New String() {a, b, c})
 End Sub

 Overloads Public Overridable Sub Execute(_
 args() As String)
 Dim s As String
 For Each s In args
 Console.WriteLine(s)
 Next s
 End Sub
End Class

C#
public class SampleClass
{
 public void Execute(string a)
 {
 Execute(new string[] {a});
 }

 public void Execute(string a, string b)
 {
 Execute(new string[] {a, b});
 }

 public void Execute(string a, string b, string c)
 {
 Execute(new string[] {a, b, c});
 }

 public virtual void Execute(string[] args)
 {
 foreach (string s in args)
 {
 Console.WriteLine(s);
 }
 }
}

6. If you must provide the ability to override a method, make only the most complete overload
virtual and define the other operations in terms of it. The following example illustrates this
pattern.

Visual Basic

Public Class SampleClass
 Private mTestString As String

 Public Sub New(testString As String)
 Me.mTestString = str
 End Sub

 Overloads Public Function IndexOf(s As String) _
 As Integer
 Return IndexOf(s, 0)
 End Function

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

45C#/VB .NET Coding Guidelines

 Overloads Public Function IndexOf(s As String, _
 startIndex As Int32) _
 As Int32
 Return IndexOf(s, startIndex, _
 mTestString.Length - startIndex)
 End Function

 Overloads Public Overridable Function IndexOf(_
 s As String, _
 startIndex As Int32, _
 count As Int32) _
 As Int32
 Return mTestString.IndexOf(s, startIndex, count)
 End Function
End Class

C#
public class SampleClass
{
 private string mTestString;

 public MyClass(string testString)
 {
 this. mTestString = testString;
 }

 public int IndexOf(string s)
 {
 return IndexOf (s, 0);
 }

 public int IndexOf(string s, int startIndex)
 {
 return IndexOf(s, startIndex,
 mTestString.Length - startIndex);
 }

 public virtual int IndexOf(string s,
 int startIndex,
 int count)
 {
 return mTestString.IndexOf(s, startIndex, count);
 }
}

4.3.1 Methods With Variable Number of Arguments
You might want to expose a method that takes a variable number of arguments. A classic example
is the printf method in the C programming language. For managed class libraries, use the
params (ParamArray in Visual Basic) keyword for this construct. For example, use the following
code instead of several overloaded methods.

Visual Basic

Sub Format(formatString As String, ParamArray args() As Object)

C#
void Format(string formatString, params object [] args)

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

46C#/VB .NET Coding Guidelines

You should not use the VarArgs calling convention exclusively because the Common Language
Specification does not support it.

For extremely performance-sensitive code, you might want to provide special code paths for a small
number of elements. You should only do this if you are going to special case the entire code path
(not just create an array and call the more general method). In such cases, the following pattern is
recommended as a balance between performance and the cost of specially cased code.

Visual Basic

Sub Format(formatString As String, arg1 As Object)
Sub Format(formatString As String, arg1 As Object, arg2 As Object)

Sub Format(formatString As String, ParamArray args() As Object)

C#
void Format(string formatString, object arg1)
void Format(string formatString, object arg1, object arg2)

void Format(string formatString, params object [] args)

4.4 Constructor Usage Guidelines
The following rules outline the usage guidelines for constructors:

1. Provide a default private constructor if there are only static methods and properties on a
class. In the following example, the private constructor prevents the class from being
created.

Visual Basic

NotInheritable Public Class Environment
 ' Private constructor prevents the class from
 ' being created.
 Private Sub New()
 ' Code for the constructor goes here.
 End Sub
End Class

C#
public sealed class Environment
{
 // Private constructor prevents the class from
 // being created.
 private environment()
 {
 // Code for the constructor goes here.
 }
}

2. Minimize the amount of work done in the constructor. Constructors should not do more than
capture the constructor parameter or parameters. This delays the cost of performing further
operations until the user uses a specific feature of the instance.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

47C#/VB .NET Coding Guidelines

3. Provide a protected (Protected in Visual Basic) constructor that can be used by types in a
derived class.

4. It is recommended that you not provide an empty constructor for a value type structure.
If you do not supply a constructor, the runtime initializes all the fields of the structure to
zero. This makes array and static field creation faster.

5. Use parameters in constructors as shortcuts for setting properties. There should be no
difference in semantics between using an empty constructor followed by property set
accessors, and using a constructor with multiple arguments. The following three code
examples are equivalent:

Visual Basic

' Example #1.
Dim SampleClass As New Class()
SampleClass.A = "a"
SampleClass.B = "b"

' Example #2.
Dim SampleClass As New Class("a")
SampleClass.B = "b"

' Example #3.
Dim SampleClass As New Class("a", "b")

C#
// Example #1.
Class SampleClass = new Class();
SampleClass.A = "a";
SampleClass.B = "b";

// Example #2.
Class SampleClass = new Class("a");
SampleClass.B = "b";

// Example #3.
Class SampleClass = new Class ("a", "b");

6. Use a consistent ordering and naming pattern for constructor parameters. A common pattern
for constructor parameters is to provide an increasing number of parameters to allow the
developer to specify a desired level of information. The more parameters that you specify,
the more detail the developer can specify. In the following code example, there is a
consistent order and naming of the parameters for all the SampleClass constructors.

Visual Basic

Public Class SampleClass
 Private Const defaultForA As String = _
 "default value for a"
 Private Const defaultForB As String = _
 "default value for b"
 Private Const defaultForC As String = _
 "default value for c"
 Private a As String
 Private b As String
 Private c As String

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

48C#/VB .NET Coding Guidelines

 Public Sub New()
 MyClass.New(defaultForA, defaultForB, defaultForC)
 Console.WriteLine("New()")
 End Sub

 Public Sub New(a As String)
 MyClass.New(a, defaultForB, defaultForC)
 End Sub

 Public Sub New(a As String, b As String)
 MyClass.New(a, b, defaultForC)
 End Sub

 Public Sub New(a As String, b As String, c As String)
 Me.a = a
 Me.b = b
 Me.c = c
 End Sub
End Class

C#
public class SampleClass
{
 private const string defaultForA =
 "default value for a";
 private const string defaultForB =
 "default value for b";
 private const string defaultForC =
 "default value for c";

 private string a;
 private string b;
 private string c;

 public MyClass():this(defaultForA,
 defaultForB,
 defaultForC) {}
 public MyClass (string a) : this(a,
 defaultForB,
 defaultForC) {}
 public MyClass (string a,
 string b) : this(a, b, defaultForC) {}
 public MyClass (string a, string b, string c)
 {
 this.a = a;
 this.b = b;
 this.c = c;
 }
}

4.5 Field Usage Guidelines
The following rules outline the usage guidelines for fields:

1. Do not use instance fields that are public, internal, protected or protected internal (Public,
Friend or Protected in Visual Basic). If you avoid exposing fields directly to the developer,
classes can be versioned more easily because a field cannot be changed to a property
without creating a breaking change. Consider providing get and set property accessors
for fields instead of making them public. The presence of executable code in get and set
property accessors allows later improvements, such as creation of an object on demand,
upon usage of the property, or upon a property change notification. The following code

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

49C#/VB .NET Coding Guidelines

example illustrates the correct use of private instance fields with get and set property
accessors.

Visual Basic

Public Structure Point

 Public Sub New(x As Int32, y As Int32)
 Me.mXValue = x
 Me.mYValue = y
 End Sub

 Public Property X() As Int32
 Get
 Return mXValue
 End Get
 Set(ByVal value As Int32)
 mXValue = value
 End Set
 End Property
 Private mXValue As Integer

 Public Property Y() As Int32
 Get
 Return mYValue
 End Get
 Set(ByVal value As Int32)
 mYValue = value
 End Set
 End Property
 Private mYValue As Int32
End Structure

C#
public struct Point
{
 public Point(int x, int y)
 {
 this.mXValue = x;
 this.mYValue = y;
 }

 public int X
 {
 get
 {
 return mXValue;
 }
 set
 {
 mXValue = value;
 }
 }
 private int mXValue;

 public int Y
 {
 get
 {
 return mYValue;
 }
 set
 {
 mYValue = value;
 }

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

50C#/VB .NET Coding Guidelines

 }
 private int mYValue;
}

2. Expose a field to a derived class by using a Protected property that returns the value of the
field. This is illustrated in the following code example.

Visual Basic

Public Class Control
 Inherits Component

 Protected ReadOnly Property Handle() As Int32
 Get
 Return mHandle
 End Get
 End Property
 Private mHandle As Int32
End Class

C#
public class Control: Component
{
 protected int Handle
 {
 get
 {
 return mHandle;
 }
 }
 private int mHandle;
}

3. It is recommended that you use read-only static fields instead of properties where the value is
a global constant. This pattern is illustrated in the following code example.

Visual Basic

Public Structure Int32
 Public Const MaxValue As Int32 = 2147483647
 Public Const MinValue As Int32 = -2147483648
 ' Insert other members here.
End Structure

C#
public struct int
{
 public static readonly int MaxValue = 2147483647
 public static readonly int MinValue = -2147483647
 // Insert other members here.
}

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

51C#/VB .NET Coding Guidelines

4. Spell out all words used in a field name. Use abbreviations only if developers generally
understand them. Do not use uppercase letters for field names. The following is an example
of correctly named fields.

Visual Basic

Class SampleClass
 Private mURL As String
 Private mDestinationURL As String
End Class

C#
Class SampleClass
{
 string mURL;
 string mDestinationURL;
}

5. Do not use Hungarian notation for field names. Good names describe semantics, not type.

6. Do not apply a prefix to field names or static field names. Specifically, do not apply a prefix
to a field name to distinguish between static and non-static fields. For example, applying a
g_ or s_ prefix is incorrect.

7. Use public static read-only fields for predefined object instances. If there are predefined
instances of an object, declare them as public static read-only fields of the object itself. Use
Pascal Case because the fields are public. The following code example illustrates the correct
use of public static read-only fields.

Visual Basic

Public Structure Color
 Public Shared Red As New Color(&HFF)
 Public Shared Green As New Color(&HFF00)
 Public Shared Blue As New Color(&HFF0000)
 Public Shared Black As New Color(&H0)
 Public Shared White As New Color(&HFFFFFF)

 Public Sub New(rgb As Int32)
 ' Insert code here.
 End Sub

 Public Sub New(r As Byte, g As Byte, b As Byte)
 ' Insert code here.
 End Sub

 Public ReadOnly Property RedValue() As Byte
 Get
 Return Color
 End Get
 End Property

 Public ReadOnly Property GreenValue() As Byte
 Get
 Return Color
 End Get
 End Property

 Public ReadOnly Property BlueValue() As Byte

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

52C#/VB .NET Coding Guidelines

 Get
 Return Color
 End Get
End Structure

C#
public struct Color
{
 public static readonly Color Red =
 new Color(0x0000FF);
 public static readonly Color Green =
 new Color(0x00FF00);
 public static readonly Color Blue =
 new Color(0xFF0000);
 public static readonly Color Black =
 new Color(0x000000);
 public static readonly Color White =
 new Color(0xFFFFFF);

 public Color(int rgb)
 { // Insert code here.}

 public Color(byte r, byte g, byte b)
 { // Insert code here.}

 public byte RedValue
 {
 get
 {
 return Color;
 }
 }

 public byte GreenValue
 {
 get
 {
 return Color;
 }
 }

 public byte BlueValue
 {
 get
 {
 return Color;
 }
 }
}

4.6 Parameter Usage Guidelines
The following rules outline the usage guidelines for parameters:

1. Check for valid parameter arguments. Perform argument validation for every public or
protected method and property set accessor. Throw meaningful exceptions to the
developer for invalid parameter arguments. Use the System.ArgumentException class, or a
class derived from System.ArgumentException. The following example checks for valid
parameter arguments and throws meaningful exceptions.

Visual Basic

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemargumentexceptionclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemargumentexceptionclasstopic.asp

53C#/VB .NET Coding Guidelines

Class SampleClass
 Private maxValue As Integer = 100

 Public Property Count() As Int32
 Get
 Return mCount
 End Get
 Set(ByVal Value As Int32)
 ' Check for valid parameter.
 If Value < 0 OrElse Value >= maxValue Then
 Throw New ArgumentOutOfRangeException(_
 "Value", _
 Value, _
 "Value is invalid.")
 End If
 mCount = Value
 End Set
 End Property
 Private mCount As Int32

 Public Sub SelectItem(start As Int32, [end] As Int32)
 ' Check for valid parameter.
 If start < 0 Then
 Throw New ArgumentOutOfRangeException(_
 "start", _
 start, _
 "Start is invalid.")
 End If
 ' Check for valid parameter.
 If [end] < 0 Then
 Throw New ArgumentOutOfRangeException(_
 "end", _
 [end], _
 "End is invalid.")
 End If
 ' Insert code to do other work here.
 Console.WriteLine("Starting at {0}", start)
 Console.WriteLine("Ending at {0}", [end])
 End Sub
End Class

C#
class SampleClass
{
 int MaxValue = 100;

 public int Count
 {
 get
 {
 return mCount;
 }
 set
 {
 // Check for valid parameter.
 if (count < 0 || count >= MaxValue)
 throw newArgumentOutOfRangeException(
 Sys.GetString(
 "InvalidArgument",
 "value",
 count.ToString()));
 }
 }
 int mCount;

 public void Select(int start, int end)

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

54C#/VB .NET Coding Guidelines

 {
 // Check for valid parameter.
 if (start < 0)
 throw newArgumentOutOfRangeException(
 Sys.GetString(
 "InvalidArgument",
 "start",
 start.ToString()));
 // Check for valid parameter.
 if (end < 0)
 throw newArgumentOutOfRangeException(
 Sys.GetString(
 "InvalidArgument",
 "end",
 end.ToString()));
 }
}

Note that the actual checking does not necessarily have to happen in the public or
protected method itself. It could happen at a lower level in private routines. The main point
is that the entire surface area that is exposed to the developer checks for valid arguments.

4.7 Type Usage Guidelines
Types are the units of encapsulation in the common language runtime. For a detailed description of
the complete list of data types supported by the runtime, see the Common Type System. This
section provides usage guidelines for the basic kinds of types.

4.8 Base Class Usage Guidelines
A class is the most common kind of type. A class can be abstract or sealed. An abstract class
requires a derived class to provide an implementation. A sealed class does not allow a derived
class. It is recommended that you use classes over other types.

Base classes are a useful way to group objects that share a common set of functionality. Base
classes can provide a default set of functionality, while allowing customization though extension.

You should add extensibility or polymorphism to your design only if you have a clear customer
scenario for it. For example, providing an interface for data adapters is difficult and serves no real
benefit. Developers will still have to program against each adapter specifically, so there is only
marginal benefit from providing an interface. However, you do need to support consistency
between all adapters. Although an interface or abstract class is not appropriate in this situation,
providing a consistent pattern is very important. You can provide consistent patterns for developers
in base classes. Follow these guidelines for creating base classes.

4.9 Base Classes vs. Interfaces
An interface type is a partial description of a value, potentially supported by many object types.
Use base classes instead of interfaces whenever possible. From a versioning perspective, classes
are more flexible than interfaces. With a class, you can ship Version 1.0 and then in Version 2.0
add a new method to the class. As long as the method is not abstract, any existing derived classes
continue to function unchanged.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconthecommontypesystem.asp

55C#/VB .NET Coding Guidelines

Because interfaces do not support implementation inheritance, the pattern that applies to classes
does not apply to interfaces. Adding a method to an interface is equivalent to adding an abstract
method to a base class; any class that implements the interface will break because the class does
not implement the new method.

Interfaces are appropriate in the following situations:

1. Several unrelated classes want to support the protocol.

2. These classes already have established base classes (for example, some are user interface
(UI) controls, and some are XML Web services).

3. Aggregation is not appropriate or practicable.

In all other situations, class inheritance is a better model.

4.9.1 Protected Methods and Constructors
Provide class customization through protected methods. The public interface of a base class should
provide a rich set of functionality for the consumer of the class. However, users of the class often
want to implement the fewest number of methods possible to provide that rich set of functionality to
the consumer. To meet this goal, provide a set of non-virtual or final public methods that call
through to a single protected method that provides implementations for the methods. This method
should be marked with the Impl suffix. Using this pattern is also referred to as providing a
Template method. The following code example demonstrates this process.

Visual Basic

Public Class SampleClass

 Private x As Integer
 Private y As Integer
 Private width As Integer
 Private height As Integer
 Private specified As BoundsSpecified

 Overloads Public Sub SetBounds(x As Int32, _
 y As Int32, _
 width As Int32,
 height As Int32)
 SetBoundsCore(x, y, width, height, Me.specified)
 End Sub

 Overloads Public Sub SetBounds(x As Int32, _
 y As Int32, _
 width As Int32, _
 height As Int32, _
 specified As BoundsSpecified)
 SetBoundsCore(x, y, width, height, specified)
 End Sub

 Protected Overridable Sub SetBoundsCore(x As Int32, _
 y As Int32, _
 width As Int32, _
 height As Int32, _
 specified As BoundsSpecified)
 ' Insert code to perform meaningful operations here.
 Me.x = x
 Me.y = y
 Me.width = width

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

56C#/VB .NET Coding Guidelines

 Me.height = height
 Me.specified = specified
 Console.WriteLine("x {0}, _
 y {1}, _
 width {2}, _
 height {3}, _
 bounds {4}",
 Me.x, Me.y, Me.width, Me.height, Me.specified)
 End Sub
End Class

C#
public class MyClass
{
 private int x;
 private int y;
 private int width;
 private int height;
 BoundsSpecified specified;

 public void SetBounds(int x, int y, int width, int height)
 {
 SetBoundsCore(x, y, width, height, this.specified);
 }

 public void SetBounds(int x,
 int y,
 int width,
 int height,
 BoundsSpecified specified)
 {
 SetBoundsCore(x, y, width, height, specified);
 }

 protected virtual void SetBoundsCore(int x,
 int y,
 int width,
 int height,
 BoundsSpecified specified)
 {
 // Add code to perform meaningful opertions here.
 this.x = x;
 this.y = y;
 this.width = width;
 this.height = height;
 this.specified = specified;
 }
}

Many compilers will insert a public or protected constructor if you do not. Therefore, for better
documentation and readability of your source code, you should explicitly define a protected
constructor on all abstract classes.

4.10 Sealed Class Usage Guidelines
The following rules outline the usage guidelines for sealed classes:

1. Use sealed classes if it will not be necessary to create derived classes. A class cannot be
derived from a sealed class.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

57C#/VB .NET Coding Guidelines

2. Use sealed classes if there are only static methods and properties on a class. The following
code example shows a correctly defined sealed class.

Visual Basic

NotInheritable Public Class Runtime
 ' Private constructor prevents the class
 ' from being created.
 Private Sub New()
 End Sub

 ' Static method.
 Public Shared Sub GetCommandLine() As String
 ' Implementation code goes here.
 End Sub
End Class

C#
public sealed class Runtime
{
 // Private constructor prevents the class
 // from being created.
 private Runtime();

 // Static method.
 public static string GetCommandLine()
 {
 // Implementation code goes here.
 }
}

4.11 Value Type Usage Guidelines
A value type describes a value that is represented as a sequence of bits stored on the stack. For a
description of all the .NET Framework's built-in data types, see Value Types. This section provides
guidelines for using the structure (struct) and enumeration (enum) value types.

4.12 Structure Usage Guidelines
It is recommended that you use a structure for types that meet any of the following criteria:

1. Act like primitive types.

2. Have an instance size under 16 bytes.

3. Are immutable.

4. Value semantics are desirable.

The following example shows a correctly defined structure.

Visual Basic

Public Structure Int32
 Implements IFormattable
 Implements IComparable

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/csref/html/vcrefvaluetypes.asp

58C#/VB .NET Coding Guidelines

 Public Const MinValue As Integer = -2147483648
 Public Const MaxValue As Integer = 2147483647

 Private intValue As Integer

 Overloads Public Shared Function ToString(i As Integer) As String
 ' Insert code here.
 End Function

 Overloads Public Function ToString(ByVal format As String, _
 ByVal formatProvider As IFormatProvider) _
 As String Implements
 IFormattable.ToString
 ' Insert code here.
 End Function

 Overloads Public Overrides Function ToString() As String
 ' Insert code here.
 End Function

 Public Shared Function Parse(s As String) As Integer
 ' Insert code here.
 Return 0
 End Function

 Public Overrides Function GetHashCode() As Integer
 ' Insert code here.
 Return 0
 End Function

 Public Overrides Overloads Function Equals(obj As Object) _
 As Boolean
 ' Insert code here.
 Return False
 End Function

 Public Function CompareTo(obj As Object) As Integer _
 Implements IComparable.CompareTo
 ' Insert code here.
 Return 0
 End Function
End Structure

C#
public struct Int32: IComparable, IFormattable
{
 public const int MinValue = -2147483648;
 public const int MaxValue = 2147483647;

 public static string ToString(int i)
 {
 // Insert code here.
 }

 public string ToString(string format,
 IFormatProvider formatProvider)
 {
 // Insert code here.
 }

 public override string ToString()
 {
 // Insert code here.
 }

 public static int Parse(string s)
 {

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

59C#/VB .NET Coding Guidelines

 // Insert code here.
 return 0;
 }

 public override int GetHashCode()
 {
 // Insert code here.
 return 0;
 }

 public override bool Equals(object obj)
 {
 // Insert code here.
 return false;
 }

 public int CompareTo(object obj)
 {
 // Insert code here.
 return 0;
 }
}

When using a structure, do not provide a default constructor. The runtime will insert a
constructor that initializes all the values to a zero state. This allows arrays of structures to be
created more efficiently. You should also allow a state where all instance data is set to zero, false,
or null (as appropriate) to be valid without running the constructor.

4.13 Enum Usage Guidelines
The following rules outline the usage guidelines for enumerations:

1. Use an enum to strongly type parameters, properties, and return types. Always define
enumerated values using an enum if they are used in a parameter or property. This allows
development tools to know the possible values for a property or parameter. The following
example shows how to define an enum type.

Visual Basic

Public Enum FileMode
 Append
 Create
 CreateNew
 Open
 OpenOrCreate
 Truncate
End Enum

C#
public enum FileMode
{
 Append,
 Create,
 CreateNew,
 Open,
 OpenOrCreate,
 Truncate
}

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

60C#/VB .NET Coding Guidelines

The following example shows the constructor for a FileStream object that uses the FileMode
enum.

Visual Basic

Public Sub New(ByVal path As String, _
 ByVal mode As FileMode)

C#
public FileStream(string path, FileMode mode);

2. Use the System.FlagsAttribute class to create custom attribute for an enum if a bitwise OR
operation is to be performed on the numeric values. This attribute is applied in the following
code example.

Visual Basic

<Flags> _
Public Enum Bindings
 IgnoreCase = &H1
 NonPublic = &H2
 Static = &H4
 InvokeMethod = &H100
 CreateInstance = &H200
 GetField = &H400
 SetField = &H800
 GetProperty = &H1000
 SetProperty = &H2000
 DefaultBinding = &H10000
 DefaultChangeType = &H20000
 [Default] = DefaultBinding Or DefaultChangeType
 ExactBinding = &H40000
 ExactChangeType = &H80000
 BinderBinding = &H100000
 BinderChangeType = &H200000
End Enum

C#
[Flags]
public enum Bindings
{
 IgnoreCase = 0x01,
 NonPublic = 0x02,
 Static = 0x04,
 InvokeMethod = 0x0100,
 CreateInstance = 0x0200,
 GetField = 0x0400,
 SetField = 0x0800,
 GetProperty = 0x1000,
 SetProperty = 0x2000,
 DefaultBinding = 0x010000,
 DefaultChangeType = 0x020000,
 Default = DefaultBinding | DefaultChangeType,
 ExactBinding = 0x040000,
 ExactChangeType = 0x080000,
 BinderBinding = 0x100000,
 BinderChangeType = 0x200000
}

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemflagsattributeclasstopic.asp

61C#/VB .NET Coding Guidelines

Note An exception to this rule is when encapsulating a Win32 API. It is common to have
internal definitions that come from a Win32 header. You can leave these with the Win32
casing, which is usually all capital letters.

3. Use an enum with the flags attribute only if the value can be completely expressed as a set
of bit flags. Do not use an enum for open sets (such as the operating system version).

4. Do not assume that enum arguments will be in the defined range. Perform argument
validation as illustrated in the following code example.

Visual Basic

Public Sub SetColor(newColor As Color)
 If Not [Enum].IsDefined(GetType(Color), newColor) Then
 Throw New ArgumentOutOfRangeException()
 End If
End Sub

C#
public void SetColor (Color color)
{
 if (!Enum.IsDefined (typeof(Color), color)
 throw new ArgumentOutOfRangeException();
}

5. Use an enum instead of static final constants.

6. Use type Int32 as the underlying type of an enum unless either of the following is true:

• The enum represents flags and there are currently more than 32 flags, or the enum might
grow to many flags in the future.

• The type needs to be different from int for backward compatibility.

7. Do not use a non-integral enum type. Use only Byte, Int16, Int32, or Int64.

8. Do not use an Enum suffix on enum types.

4.14 Delegate Usage Guidelines
A delegate is a powerful tool that allows the managed code object model designer to encapsulate
method calls. Delegates are useful for event notifications and callback functions.

4.14.1 Event notifications
Use the appropriate event design pattern for events even if the event is not user interface-related.
For more information on using events, see the Event Usage Guidelines.

4.14.2 Callback functions
Callback functions are passed to a method so that user code can be called multiple times during
execution to provide customization. Passing a Compare callback function to a sort routine is a

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

62C#/VB .NET Coding Guidelines

classic example of using a callback function. These methods should use the callback function
conventions described in Callback Function Usage.

Name end callback functions with the suffix Callback.

4.15 Attribute Usage Guidelines
The .NET Framework enables developers to invent new kinds of declarative information, to specify
declarative information for various program entities, and to retrieve attribute information in a run-
time environment. For example, a framework might define a HelpAttribute attribute that can
be placed on program elements such as classes and methods to provide a mapping from program
elements to their documentation. New kinds of declarative information are defined through the
declaration of attribute classes, which might have positional and named parameters. For more
information about attributes, see Writing Custom Attributes.

The following rules outline the usage guidelines for attribute classes:

1. Add the Attribute suffix to custom attribute classes, as shown in the following example.

Visual Basic

<AttributeUsage(AttributeTargets.All, Inherited := False, _
 AllowMultiple := True)> _
Public Class ObsoleteAttribute
 Inherits Attribute
 ' Insert code here.
End Class

C#
[AttributeUsage(AttributeTargets.All, Inherited = false,
 AllowMultiple = true)]
public class ObsoleteAttribute: Attribute {}

2. Seal attribute classes whenever possible, so that classes cannot be derived from them. (This
improves performance.)

3. Use positional arguments for required parameters.

4. Use named arguments for optional parameters.

5. Do not name a parameter with both named and positional arguments.

6. Provide a read-only property with the same name as each positional argument, but change
the case to differentiate between them.

7. Provide a read/write property with the same name as each named argument, but change
the case to differentiate between them.

Visual Basic

Public Class NameAttribute
 Inherits Attribute

 Public Sub New(username As String)

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconwritingcustomattributes.asp

63C#/VB .NET Coding Guidelines

 ' Implement code here.
 End Sub

 Public ReadOnly Property UserName() As String
 Get
 Return UserName
 End Get
 End Property

 Public Property Age() As Int32
 Get
 Return Age
 End Get
 Set (value As Int32)
 Age = value
 End Set
 End Property
 ' Positional argument.
End Class

C#
public class NameAttribute: Attribute
{
 public NameAttribute (string username)
 {
 // Implement code here.
 }

 public string UserName
 {
 get
 {
 return UserName;
 }
 }

 public int Age
 {
 get
 {
 return Age;
 }
 set
 {
 Age = value;
 }
 }
 // Positional argument.
}

4.16 Nested Type Usage Guidelines
A nested type is a type defined within the scope of another type. Nested types are very useful for
encapsulating implementation details of a type, such as an enumerator over a collection, because
they can have access to private state.

Public nested types should be used rarely. Use them only in situations where both of the following
are true:

1. The nested type logically belongs to the containing type.

2. The nested type is not used often, or at least not directly.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

64C#/VB .NET Coding Guidelines

The following examples illustrates how to define types with and without nested types:

Visual Basic

' With nested types.
ListBox.SelectedObjectCollection
' Without nested types.
ListBoxSelectedObjectCollection

' With nested types.
RichTextBox.ScrollBars
' Without nested types.
RichTextBoxScrollBars

C#
// With nested types.
ListBox.SelectedObjectCollection
// Without nested types.
ListBoxSelectedObjectCollection

// With nested types.
RichTextBox.ScrollBars
// Without nested types.
RichTextBoxScrollBars

Do not use nested types if the following are true:

1. The type is used in many different methods in different classes. The FileMode Enumeration is
a good example of this kind of type.

2. The type is commonly used in different APIs. The StringCollection class is a good example of
this kind of type.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemiofilemodeclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemcollectionsspecializedstringcollectionclasstopic.asp

65C#/VB .NET Coding Guidelines

5 Guidelines for Exposing Functionality to COM
The common language runtime provides rich support for interoperating with COM components. A
COM component can be used from within a managed type and a managed instance can be used
by a COM component. This support is the key to moving unmanaged code to managed code one
piece at a time; however, it does present some issues for class library designers. In order to fully
expose a managed type to COM clients, the type must expose functionality in a way that is
supported by COM and abides by the COM versioning contract.

Mark managed class libraries with the ComVisibleAttribute attribute to indicate whether COM
clients can use the library directly or whether they must use a wrapper that shapes the functionality
so that they can use it.

Types and interfaces that must be used directly by COM clients, such as to host in an unmanaged
container, should be marked with the ComVisible(true) attribute. The transitive closure of all
types referenced by exposed types should be explicitly marked as ComVisible(true); if not,
they will be exposed as IUnknown.

Note:

Members of a type can also be marked as ComVisible(false); this reduces exposure to COM
and therefore reduces the restrictions on what a managed type can use.

Types marked with the ComVisible(true) attribute cannot expose functionality exclusively in a
way that is not usable from COM. Specifically, COM does not support static methods or
parameterized constructors. Test the type's functionality from COM clients to ensure correct
behaviour. Make sure that you understand the registry impact for making all types cocreateable.

5.1 Marshal By Reference
Marshal-by-reference objects are Remotable Objects. Object remoting applies to three kinds of
types:

1. Types whose instances are copied when they are marshalled across an AppDomain
boundary (on the same computer or a different computer). These types must be marked with
the Serializable attribute.

2. Types for which the runtime creates a transparent proxy when they are marshalled across an
AppDomain boundary (on the same computer or a different computer). These types must
ultimately be derived from System.MarshalByRefObject class.

3. Types that are not marshalled across AppDomains at all. This is the default.

5.1.1 Marshal By Reference Guidelines
Follow these guidelines when using marshal by reference:

1. By default, instances should be marshal-by-value objects. This means that their types should
be marked as Serializable.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemRuntimeInteropServicesComVisibleAttributeClassTopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconRemotableObjects.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemmarshalbyrefobjectclasstopic.asp

66C#/VB .NET Coding Guidelines

2. Component types should be marshal-by-reference objects. This should already be the case
for most components, because the common base class, System.ComponentModel class, is a
marshal-by-reference class.

3. If the type encapsulates an operating system resource, it should be a marshal-by-reference
object. If the type implements the IDisposable Interface it will very likely have to be
marshalled by reference. System.IO.Stream derives from System.MarshalByRefObject. Most
streams, such as FileStreams and NetworkStreams, encapsulate external resources, so
they should be marshal-by-reference objects.

4. Instances that simply hold state should be marshal-by-value objects (such as a DataSet).

5. Special types that cannot be called across an AppDomain (such as a holder of static utility
methods) should not be marked as Serializable.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemcomponentmodelcomponentclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemidisposableclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemiostreamclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemmarshalbyrefobjectclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemDataDataSetClassTopic.asp

67C#/VB .NET Coding Guidelines

6 Error Raising & Handling Guidelines
The following rules outline the guidelines for raising and handling errors:

1. All code paths that result in an exception should provide a method to check for success
without throwing an exception. For example, to avoid a FileNotFoundException you
can call File.Exists. This might not always be possible, but the goal is that under
normal execution no exceptions should be thrown.

2. Exceptions classes should always be serializable.

3. End Exception class names with the Exception suffix as in the following code example.

Visual Basic
<Serializable()> _
Public Class FileNotFoundException
 Inherits Exception
 ' Implementation code goes here.
End Class

C#
[Serializable()]
public class FileNotFoundException : Exception
{
 // Implementation code goes here.
}

4. Use the three common constructors shown in the following code example when creating
exception classes in C# and the Managed Extensions for C++.

Visual Basic
Public Class XXXException
 Inherits ApplicationException

 Public Sub New()
 ' Implementation code goes here.
 End Sub

 Public Sub New(message As String)
 My.Base.New(message)
 End Sub

 Public Sub New(message As String, inner As Exception)
 My.Base.New(message, inner)
 End Sub
End Class

C#
public class XXXException : ApplicationException
{
 XxxException() {... }
 XxxException(string message) {... }
 XxxException(string message, Exception inner) {... }
}

5. In most cases, use the predefined exception types. Only define new exception types for
programmatic scenarios, where you expect users of your class library to catch exceptions of
this new type and perform a programmatic action based on the exception type itself. This is

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

68C#/VB .NET Coding Guidelines

in lieu of parsing the exception string, which would negatively impact performance and
maintenance. For example, it makes sense to define a FileNotFoundException
because the developer might decide to create the missing file. However, a
FileIOException is not something that would typically be handled specifically in code.

6. Do not derive new exceptions directly from the base class Exception. Instead, derive from
ApplicationException.

7. Group new exceptions derived from the base class Exception by namespace. For
example, there will be derived classes for XML, IO, Collections, and so on. Each of these
areas will have their own derived classes of exceptions as appropriate. Any exceptions that
other library or application writers want to add will extend the Exception class directly.
You should create a single name for all related exceptions, and extend all exceptions related
to that application or library from that group.

8. Use a localized description string in every exception. When the user sees an error message,
it will be derived from the description string of the exception that was thrown, and never
from the exception class.

9. Create grammatically correct error messages with punctuation. Each sentence in the
description string of an exception should end in a period. Code that generically displays an
exception message to the user does not have to handle the case where a developer forgot
the final period.

10. Provide exception properties for programmatic access. Include extra information (other than
the description string) in an exception only when there is a programmatic scenario where
that additional information is useful. You should rarely need to include additional
information in an exception.

11. Do not use exceptions for normal or expected errors, or for normal flow of control.
(Throwing an exception is an extremely costly operation.)

12. You should return null for extremely common error cases. For example, a File.Open
command returns a null reference if the file is not found, but throws an exception if the file is
locked.

13. Design classes so that in the normal course of use an exception will never be thrown. In the
following code example, a FileStream class exposes another way of determining if the
end of the file has been reached to avoid the exception that will be thrown if the developer
reads past the end of the file.

Visual Basic
Class FileRead
 Sub Open()
 Dim stream As FileStream = _
 File.Open("myfile.txt",FileMode.Open)
 Dim b As Byte

 ' ReadByte returns -1 at end of file.
 While b = stream.ReadByte() <> true
 ' Do something.
 End While
 End Sub
End Class

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemexceptionclasstopic.asp

69C#/VB .NET Coding Guidelines

C#
class FileRead
{
 void Open()
 {
 FileStream stream =
 File.Open("myfile.txt", FileMode.Open);
 byte b;

 // ReadByte returns -1 at end of file.
 while ((b = stream.ReadByte()) != true)
 {
 // Do something.
 }
 }
}

14. Throw the InvalidOperationException exception if a call to a property set accessor or
method is not appropriate given the object's current state.

15. Throw an ArgumentException or create an exception derived from this class if invalid
parameters are passed or detected.

16. Be aware that the stack trace starts at the point where an exception is thrown, not where it is
created with the new operator. Consider this when deciding where to throw an exception.

17. Use the exception builder methods. It is common for a class to throw the same exception
from different places in its implementation. To avoid repetitive code, use helper methods that
create the exception using the new operator and return it. The following code example
shows how to implement a helper method.

Visual Basic
Class File
 Private mFileName As String
 Public Function Read(bytes As Int32) As Byte()
 If Not ReadFile(handle, bytes) Then
 Throw New FileIOException()
 End If
 End Function

 Private Function NewFileIOException() As FileException
 Dim Descroption As String = _
 ' Build localized string, include fileName.
 Return New FileException(Descroption)
 End Sub
End Class

C#
class File
{
 string mFileName;
 public byte[] Read(int bytes)
 {
 if (!ReadFile(handle, bytes))
 throw NewFileIOException();
 }

 FileException NewFileIOException()
 {
 string description =
 // Build localized string, include fileName.
 return new FileException(description);

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsysteminvalidoperationexceptionclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemargumentexceptionclasstopic.asp

70C#/VB .NET Coding Guidelines

 }
}

18. Throw exceptions instead of returning an error code or HRESULT.

19. Throw the most specific exception possible.

20. Create meaningful message text for exceptions, targeted at the developer.

21. Set all fields on the exception you use.

22. Use Inner exceptions (chained exceptions). However, do not catch and re-throw exceptions
unless you are adding additional information and/or changing the type of the exception.

23. Do not create methods that throw NullReferenceException or IndexOutOfRangeException.
(These are hard debug when the application is in a production environment as they do not
give enough information about the runtime situation.)

24. Perform argument checking on protected (Family) and internal (Assembly) members. Clearly
state in the documentation if the protected method does not do argument checking. Unless
otherwise stated, assume that argument checking is performed. There might, however, be
performance gains in not performing argument checking.

25. Clean up any side effects when throwing an exception. Callers should be able to assume
that there are no side effects when an exception is thrown from a function. For example, if a
Hashtable.Insert method throws an exception, the caller can assume that the specified
item was not added to the Hashtable.

26. Very rarely “absorb” exceptions by having a try…catch block that does nothing.

27. Consider using try…finally without a catch block as a “last chance” option to restore
state. This is a powerful method of ensuring that locks are unlocked or that state is returned
to it’s original values when an error occurs.

28. Consider that if you overload ToString on an exception class, ASP.NET does not use
ToString to present the exception to the developer, hence any additional state information
you dump in the ToString method will not be shown.

6.1 Standard Exception Types
The following table lists the standard exceptions provided by the runtime and the conditions for
which you should create a derived class.

Exception type Base type Description Example

Exception Object Base class for all
exceptions.

None (use a derived class of this
exception).

SystemException Exception Base class for all runtime-
generated errors.

None (use a derived class of this
exception).

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemnullreferenceexceptionclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemindexoutofrangeexceptionclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemexceptionclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemsystemexceptionclasstopic.asp

71C#/VB .NET Coding Guidelines

IndexOutOfRangeException SystemException Thrown by the runtime
only when an array is
indexed improperly.

Indexing an array outside of its valid
range:

arr[arr.Length+1]

NullReferenceException SystemException Thrown by the runtime
only when a null object
is referenced.

object o = null;

o.ToString();

InvalidOperationException SystemException Thrown by methods
when in an invalid state.

Calling
Enumerator.GetNext()aft
er removing an Item from the
underlying collection.

ArgumentException SystemException Base class for all
argument exceptions.

None (use a derived class of this
exception).

ArgumentNullException ArgumentException Thrown by methods that
do not allow an
argument to be null.

String s = null;

"Calculate".IndexOf
(s);

ArgumentOutOfRangeExce
ption

ArgumentException Thrown by methods that
verify that arguments are
in a given range.

String s = "string";

s.Chars[9];

ExternalException SystemException Base class for exceptions
that occur or are
targeted at environments
outside of the runtime.

None (use a derived class of this
exception).

COMException ExternalException Exception encapsulating
COM Hresult
information.

Used in COM interop.

SEHException ExternalException Exception encapsulating
Win32 structured
Exception Handling
information.

Used in unmanaged code Interop.

6.2 Wrapping Exceptions
Errors that occur at the same layer as a component should throw an exception that is meaningful to
target users. In the following code example, the error message is targeted at users of the
TextReader class, attempting to read from a stream.

Visual Basic
Public Class TextReader
 Public Function ReadLine() As String
 Try
 ' Read a line from the stream.
 Catch e As Exception
 Throw New IOException("Could not read from stream", e)
 End Try
 End Function

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemindexoutofrangeexceptionclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemnullreferenceexceptionclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsysteminvalidoperationexceptionclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemargumentexceptionclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemargumentnullexceptionclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemargumentoutofrangeexceptionclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemargumentoutofrangeexceptionclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemruntimeinteropservicesexternalexceptionclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemruntimeinteropservicescomexceptionclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemruntimeinteropservicessehexceptionmemberstopic.asp

72C#/VB .NET Coding Guidelines

End Class

C#
public class TextReader
{
 public string ReadLine()
 {
 try
 {
 // Read a line from the stream.
 }
 catch (Exception e)
 {
 throw new IOException ("Could not read from stream", e);
 }
 }
}

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

73C#/VB .NET Coding Guidelines

7 Array Usage Guidelines
For a general description of arrays and array usage see Arrays, and the System.Array class.

7.1 Arrays vs. Collections
Class library designers might need to make difficult decisions about when to use an array and
when to return a collection. Although these types have similar usage models, they have different
performance characteristics. You should use a collection in the following situations:

1. When Add, Remove, or other methods for manipulating the collection are supported.

2. To add read-only wrappers around internal arrays.

For more information on using collections, see Grouping Data in Collections.

7.2 Using Indexed Properties in Collections
You should use an indexed property only as a default member of a collection class or interface. Do
not create families of functions in non-collection types. A pattern of methods, such as Add, Item,
and Count, signal that the type should be a collection.

7.3 Array Valued Properties
You should use collections to avoid code inefficiencies. In the following code example, each call to
the myObj property creates a copy of the array. As a result, 2n+1 copies of the array will be
created in the following loop.

Visual Basic
Dim i As Int32
For i = 0 To obj.myObj.Count - 1
 DoSomething(obj.myObj(i))
Next i

C#
for (int i = 0; i < obj.myObj.Count; i++)
 DoSomething(obj.myObj[i]);

For more information, see the Properties vs. Methods topic.

7.4 Returning Empty Arrays
String and Array properties should never return a null reference. Null can be difficult to
understand in this context. For example, a user might assume that the following code will work.

Visual Basic
Public Sub DoSomething()
 Dim s As String = SomeOtherFunc()
 If s.Length > 0 Then
 ' Do something else.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/csref/html/vclrfArraysPG.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemarrayclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpcongroupingdataincollections.asp

74C#/VB .NET Coding Guidelines

 End If
End Sub

C#
public void DoSomething()
{
 string s = SomeOtherFunc();
 if (s.Length > 0)
 {
 // Do something else.
 }
}

The general rule is that null, empty string (""), and empty (0 item) arrays should be treated the same
way. Return an empty array instead of a null reference.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

75C#/VB .NET Coding Guidelines

8 Operator Overloading Usage Guidelines
The following rules outline the guidelines for operator overloading:

1. Define operators on value types that are logical built-in language types, such as the
System.Decimal structure.

2. Provide operator-overloading methods only in the class in which the methods are defined.

3. Use the names and signature conventions described in the Common Language Specification
(CLS).

4. Use operator overloading in cases where it is immediately obvious what the result of the
operation will be. For example, it makes sense to be able to subtract one Time value from
another Time value and get a TimeSpan. However, it is not appropriate to use the or
operator to create the union of two database queries, or to use shift to write to a stream.

5. Overload operators in a symmetric manner. For example, if you overload the equality
operator (==), you should also overload the not equal operator (!=).

6. Provide alternate signatures. Most languages do not support operator overloading. For this
reason, always include a secondary method with an appropriate domain-specific name that
has the equivalent functionality. It is a Common Language Specification (CLS) requirement to
provide this secondary method. The following example is CLS-compliant.

C#
class Time
{
 TimeSpan operator -(Time t1, Time t2) { }
 TimeSpan Difference(Time t1, Time t2) { }
}

The following table contains a list of operator symbols and the corresponding alternative
methods and operator names.

C++ operator symbol Name of alternative method Name of operator

Not defined ToXXX or FromXXX op_Implicit

Not defined ToXXX or FromXXX op_Explicit

+ (binary) Add op_Addition

- (binary) Subtract op_Subtraction

* (binary) Multiply op_Multiply

/ Divide op_Division

% Mod op_Modulus

^ Xor op_ExclusiveOr

& (binary) And op_BitwiseAnd

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemdecimalclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemtimespanclasstopic.asp

76C#/VB .NET Coding Guidelines

| Or op_BitwiseOr

&& AndAlso op_LogicalAnd

|| OrElse op_LogicalOr

= Assign op_Assign

<< LeftShift op_LeftShift

>> RightShift op_RightShift

Not defined LeftShift op_SignedRightShift

Not defined RightShift op_UnsignedRightShift

== Equals op_Equality

> Compare op_GreaterThan

< Compare op_LessThan

!= Compare op_Inequality

>= Compare op_GreaterThanOrEqual

<= Compare op_LessThanOrEqual

*= Multiply op_MultiplicationAssignment

-= Subtract op_SubtractionAssignment

^= Xor op_ExclusiveOrAssignment

<<= LeftShift op_LeftShiftAssignment

%= Mod op_ModulusAssignment

+= Add op_AdditionAssignment

&= BitwiseAnd op_BitwiseAndAssignment

|= BitwiseOr op_BitwiseOrAssignment

, None assigned op_Comma

/= Divide op_DivisionAssignment

-- Decrement op_Decrement

++ Increment op_Increment

- (unary) Negate op_UnaryNegation

+ (unary) Plus op_UnaryPlus

~ OnesComplement op_OnesComplement

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

77C#/VB .NET Coding Guidelines

8.1 Guidelines for Implementing Equals and the Equality Operator
(==)
The following rules outline the guidelines for implementing the Equals method and the equality
operator (==):

1. Implement the GetHashCode method whenever you implement the Equals method. This
keeps Equals and GetHashCode synchronized.

2. Override the Equals method whenever you implement ==, and make them do the same
thing. This allows infrastructure code such as Hashtable and ArrayList, which use the
Equals method, to behave the same way as user code written using ==.

3. Override the Equals method any time you implement the IComparable interface.

4. You should consider implementing operator overloading for the equality (==), not equal (!=),
less than (<), and greater than (>) operators when you implement IComparable.

5. Do not throw exceptions from the Equals or GetHashCode methods or the equality
operator (==).

For related information on the Equals method, see Implementing the Equals Method.

8.1.1 Implementing the Equality Operator on Value Types
In most programming languages there is no default implementation of the equality operator (==) for
value types. Therefore, you should overload == any time equality is meaningful.

You should consider implementing the Equals method on value types because the default
implementation on System.ValueType will not perform as well as your custom implementation.

Implement == any time you override the Equals method.

8.1.2 Implementing the Equality Operator on Reference Types
Most languages do provide a default implementation of the equality operator (==) for reference
types. Therefore, you should use care when implementing == on reference types. Most reference
types, even those that implement the Equals method, should not override ==.

Override == if your type is a base type such as a Point, String, BigNumber, and so on. Any time
you consider overloading the addition (+) and subtraction (-) operators, you also should consider
overloading ==.

8.1.3 Implementing the Equals Method
1. Override the GetHashCode method to allow a type to work correctly in a hash table.

2. Do not throw an exception in the implementation of an Equals method. Instead, return
false for a null argument.

3. Follow the contract defined on the Object.Equals method as follows:

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemcollectionshashtableclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemcollectionsarraylistclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemicomparableclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemicomparableclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconequals.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemvaluetypeclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemdrawingpointclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemdrawingpointclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemobjectclassequalstopic.asp

78C#/VB .NET Coding Guidelines

• x.Equals(x) returns true.
• x.Equals(y) returns the same value as y.Equals(x).
• (x.Equals(y) && y.Equals(z)) returns true if and only if x.Equals(z) returns

true.
• Successive invocations of x.Equals(y) return the same value as long as the objects

referenced by x and y are not modified.
• x.Equals(null) returns false.

4. For some kinds of objects, it is desirable to have Equals test for value equality instead of

referential equality. Such implementations of Equals return true if the two objects have
the same value, even if they are not the same instance. The definition of what constitutes an
object's value is up to the implementer of the type, but it is typically some or all of the data
stored in the instance variables of the object. For example, the value of a string is based on
the characters of the string; the Equals method of the String class returns true for any
two instances of a string that contain exactly the same characters in the same order.

5. When the Equals method of a base class provides value equality, an override of Equals
in a derived class should call the inherited implementation of Equals.

6. If you are programming in a language that supports operator overloading, and you choose
to overload the equality operator (==) for a specified type, that type should override the
Equals method. Such implementations of the Equals method should return the same
results as the equality operator. Following this guideline will help ensure that class library
code using Equals (such as Hashtable and ArrayList) works in a manner that is consistent
with the way the equality operator is used by application code.

7. If you are implementing a value type, you should consider overriding the Equals method to
gain increased performance over the default implementation of the Equals method on
System.ValueType. If you override Equals and the language supports operator
overloading, you should overload the equality operator for your value type.

8. If you are implementing reference types, you should consider overriding the Equals method
on a reference type if your type looks like a base type such as a Point, String, BigNumber,
and so on. Most reference types should not overload the equality operator, even if they
override Equals. However, if you are implementing a reference type that is intended to
have value semantics, such as a complex number type, you should override the equality
operator.

9. If you implement the IComparable Interface on a given type, you should override Equals on
that type.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemcollectionshashtableclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemcollectionsarraylistclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemvaluetypeclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemdrawingpointclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemdrawingpointclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemicomparableclasstopic.asp

79C#/VB .NET Coding Guidelines

9 Guidelines for Casting Types
The following rules outline the usage guidelines for casts:

1. Do not allow implicit casts that will result in a loss of precision. For example, there should
not be an implicit cast from Double to Int32, but there might be one from Int32 to Int64.

2. Do not throw exceptions from implicit casts because it is very difficult for the developer to
understand what is happening.

3. Provide casts that operate on an entire object. The value that is cast should represent the
entire object, not a member of an object. For example, it is not appropriate for a Button to
cast to a string by returning its caption.

4. Do not generate a semantically different value. For example, it is appropriate to convert a
TimeSpan into an Int32. The Int32 still represents the time or duration. It does not, however,
make sense to convert a file name string such as "c:\mybitmap.gif" into a Bitmap object.

5. Do not cast values from different domains. Casts operate within a particular domain of
values. For example, numbers and strings are different domains. It makes sense that an
Int32 can cast to Double. However, it does not make sense for an Int32 to cast to a String,
because they are in different domains.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

80C#/VB .NET Coding Guidelines

10 Common Design Patterns

10.1 Implementing Finalize and Dispose to Clean Up Unmanaged
Resources
Class instances often encapsulate control over resources that are not managed by the runtime, such
as window handles (HWND), database connections, and so on. Therefore, you should provide
both an explicit and an implicit way to free those resources. Provide implicit control by
implementing the protected Finalize method on an object (destructor syntax in C# and the
Managed Extensions for C++). The garbage collector calls this method at some point after there
are no longer any valid references to the object.

In some cases, you might want to provide programmers using an object with the ability to explicitly
release these external resources before the garbage collector frees the object. If an external
resource is scarce or expensive, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. To provide explicit control, implement the
Dispose method provided by the IDisposable Interface. The consumer of the object should call this
method when it is done using the object. Dispose can be called even if other references to the
object are alive.

Note that even when you provide explicit control by way of Dispose, you should provide implicit
cleanup using the Finalize method. Finalize provides a backup to prevent resources from
permanently leaking if the programmer fails to call Dispose.

For more information about implementing Finalize and Dispose to clean up unmanaged
resources, see Programming for Garbage Collection. The following code example illustrates the
basic design patter for implementing Dispose.

Visual Basic

' Design pattern for a base class.
Public Class Base
 Implements IDisposable

 ' Implement IDisposable.
 Public Sub Dispose()
 Dispose(True)
 GC.SuppressFinalize(Me)
 End Sub

 Protected Overloads Overridable Sub Dispose(disposing As Boolean)
 If disposing Then
 ' Free other state (managed objects).
 End If
 ' Free your own state (unmanaged objects).
 ' Set large fields to null.
 End Sub

 Protected Overrides Sub Finalize()
 ' Simply call Dispose(False).
 Dispose (False)
 End Sub
End Class

' Design pattern for a derived class.
Public Class Derived

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemObjectClassFinalizeTopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemidisposableclassdisposetopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemidisposableclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconprogrammingessentialsforgarbagecollection.asp

81C#/VB .NET Coding Guidelines

 Inherits Base

 Protected Overloads Overrides Sub Dispose(disposing As Boolean)
 If disposing Then
 ' Release managed resources.
 End If
 ' Release unmanaged resources.
 ' Set large fields to null.
 ' Call Dispose on your base class.
 Mybase.Dispose(disposing)
 End Sub
 ' The derived class does not have a Finalize method
 ' or a Dispose method with parameters because it inherits
 ' them from the base class.
End Class

C#
// Design pattern for a base class.
public class Base: IDisposable
{
 //Implement IDisposable.
 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool disposing)
 {
 if (disposing)
 {
 // Free other state (managed objects).
 }
 // Free your own state (unmanaged objects).
 // Set large fields to null.
 }

 // Use C# destructor syntax for finalization code.
 ~Base()
 {
 // Simply call Dispose(false).
 Dispose (false);
 }

// Design pattern for a derived class.
public class Derived: Base
{
 protected override void Dispose(bool disposing)
 {
 if (disposing)
 {
 // Release managed resources.
 }
 // Release unmanaged resources.
 // Set large fields to null.
 // Call Dispose on your base class.
 base.Dispose(disposing);
 }
 // The derived class does not have a Finalize method
 // or a Dispose method with parameters because it inherits
 // them from the base class.
}

For a more detailed code example illustrating the design pattern for implementing Finalize and
Dispose, see Implementing a Dispose Method.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconimplementingdisposemethod.asp

82C#/VB .NET Coding Guidelines

10.2 Customizing a Dispose Method Name
Occasionally a domain-specific name is more appropriate than Dispose. For example, a file
encapsulation might want to use the method name Close. In this case, implement Dispose
privately and create a public Close method that calls Dispose. The following code example
illustrates this pattern. You can replace Close with a method name appropriate to your domain.

Visual Basic

' Do not make this method overridable.
' A derived class should not be allowed
' to override this method.
Public Sub Close()
 ' Call the Dispose method with no parameters.
 Dispose()
End Sub

C#
// Do not make this method virtual.
// A derived class should not be allowed
// to override this method.
public void Close()
{
 // Call the Dispose method with no parameters.
 Dispose();
}

10.2.1 Finalize
The following rules outline the usage guidelines for the Finalize method:

1. Only implement Finalize on objects that require finalization. There are performance costs
associated with Finalize methods.

2. If you require a Finalize method, you should consider implementing IDisposable to
allow users of your class to avoid the cost of invoking the Finalize method.

3. Do not make the Finalize method more visible. It should be protected, not public.

4. An object's Finalize method should free any external resources that the object owns.
Moreover, a Finalize method should release only resources that are held onto by the
object. The Finalize method should not reference any other objects.

5. Do not directly call a Finalize method on an object other than the object's base class.

6. Call the base.Finalize method from an object's Finalize method.

Note
The base class's Finalize method is called automatically with the C# and the Managed
Extensions for C++ destructor syntax.

10.2.2 Dispose
The following rules outline the usage guidelines for the Dispose method:

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

83C#/VB .NET Coding Guidelines

1. Implement the dispose design pattern on a type that encapsulates resources that explicitly
need to be freed. Users can free external resources by calling the public Dispose method.

2. Implement the dispose design pattern on a base type that commonly has derived types that
hold on to resources, even if the base type does not. If the base type has a close method,
often this indicates the need to implement Dispose. In such cases, do not implement a
Finalize method on the base type. Finalize should be implemented in any derived
types that introduce resources that require cleanup.

3. Free any disposable resources a type owns in its Dispose method.

4. After Dispose has been called on an instance, prevent the Finalize method from running
by calling the GC.SuppressFinalize method. The exception to this rule is the rare situation in
which work must be done in Finalize that is not covered by Dispose.

5. Call the base class's Dispose method if it implements IDisposable.

6. Do not assume that Dispose will be called. Unmanaged resources owned by a type should
also be released in a Finalize method in the event that Dispose is not called.

7. Throw an ObjectDisposedException when resources are already disposed. If you choose to
reallocate resources after an object has been disposed, ensure that you call the
GC.ReRegisterForFinalize method.

8. Propagate the calls to Dispose through the hierarchy of base types. The Dispose method
should free all resources held by this object and any object owned by this object. For
example, you can create an object like a TextReader that holds onto a Stream and an
Encoding, both of which are created by the TextReader without the user's knowledge.
Furthermore, both the Stream and the Encoding can acquire external resources. When
you call the Dispose method on the TextReader, it should in turn call Dispose on the
Stream and the Encoding, causing them to release their external resources.

9. You should consider not allowing an object to be usable after its Dispose method has been
called. Recreating an object that has already been disposed is a difficult pattern to
implement.

10. Allow a Dispose method to be called more than once without throwing an exception. The
method should do nothing after the first call.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemgcclasssuppressfinalizetopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemobjectdisposedexceptionclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemgcclassreregisterforfinalizetopic.asp

84C#/VB .NET Coding Guidelines

11 Callback Function Usage
Delegates, Interfaces and Events allow you to provide callback functionality. Each type has its
own specific usage characteristics that make it better suited to particular situations.

11.1 Events
Use an event if the following are true:

1. A method signs up for the callback function up front, typically through separate Add and
Remove methods.

2. Typically, more than one object will want notification of the event.

3. You want end users to be able to easily add a listener to the notification in the visual
designer.

11.2 Delegates
Use a delegate if the following are true:

1. You want a C language style function pointer.

2. You want a single callback function.

3. You want registration to occur in the call or at construction time, not through a separate Add
method.

4. The additional requirements of the event (separate event arguments class, virtual On method,
etc.) would be too heavy for the particular implementation.

11.3 Interfaces
Use an interface if the callback function requires complex behaviour.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

85C#/VB .NET Coding Guidelines

12 Time-Out Usage
Use time-outs to specify the maximum time a caller is willing to wait for completion of a method
call.

Time-outs might take the form of a parameter to the method call as follows.

Visual Basic

server.PerformOperation(timeout)

C#
server.PerformOperation(timeout);

Alternately, time-outs can be used as a property on the server class as follows.

Visual Basic

server.Timeout = timeout
server.PerformOperation()

C#
server.Timeout = timeout;
server.PerformOperation();

You should favour the second approach, because the association between the operation and the
time-out is clearer. The property-based approach might be better if the server class is designed to
be a component used with visual designers.

Historically, time-outs have been represented by integers. Integer time-outs can be hard to use
because it is not obvious what the unit of the time-out is, and it is difficult to translate units of time
into the commonly used millisecond.

A better approach is to use the TimeSpan structure as the time-out type. TimeSpan solves the
problems with integer time-outs mentioned above. The following code example shows how to use a
time-out of type TimeSpan.

Visual Basic

Public Class Server
 Public Sub PerformOperation(timeout As TimeSpan)
 ' Insert code for the method here.
 End Sub
End Class

Public Class TestClass
 Dim server As New Server();
 server.PerformOperation(New TimeSpan(0,15,0))
End Class

C#
public class Server
{
 void PerformOperation(TimeSpan timeout)
 {
 // Insert code for the method here.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemtimespanclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemtimespanclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemtimespanclasstopic.asp

86C#/VB .NET Coding Guidelines

 }
}

public class TestClass
{
 public Server server = new Server();
 server.PerformOperation(new TimeSpan(0,15,0));
}

If the time-out is set to TimeSpan(0), the method should throw an exception if the operation is not
immediately completed. If the time-out is TimeSpan.MaxValue, the operation should wait forever
without timing out, as if there were no time-out set. A server class is not required to support either
of these values, but it should throw an InvalidArgumentException if an unsupported time-out
value is specified.

If a time-out expires and an exception is thrown, the server class should cancel the underlying
operation.

If a default time-out is used, the server class should include a static defaultTimeout property to
be used if the user does not specify one. The following code example includes a static
OperationTimeout property of type TimeSpan that returns defaultTimeout.

Visual Basic

Class Server
 Private defaultTimeout As New TimeSpan(1000)

 Overloads Sub PerformOperation()
 Me.PerformOperation(OperationTimeout)
 End Sub

 Overloads Sub PerformOperation(timeout As TimeSpan)
 ' Insert code here.
 End Sub

 ReadOnly Property OperationTimeout() As TimeSpan
 Get
 Return defaultTimeout
 End Get
 End Property
End Class

C#
class Server
{
 TimeSpan defaultTimeout = new TimeSpan(1000);

 void PerformOperation()
 {
 this.PerformOperation(OperationTimeout);
 }

 void PerformOperation(TimeSpan timeout)
 {
 // Insert code here.
 }

 TimeSpan OperationTimeout
 {
 get
 {
 return defaultTimeout;

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemtimespanclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemtimespanclassmaxvaluetopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemtimespanclasstopic.asp

87C#/VB .NET Coding Guidelines

 }
 }
}

Types that are not able to resolve time-outs to the resolution of a TimeSpan should round the time-
out to the nearest interval that can be accommodated. For example, a type that can only wait in
one-second increments should round to the nearest second. An exception to this rule is when a
value is rounded down to zero. In this case, the time-out should be rounded up to the minimum
time-out possible. Rounding away from zero prevents “busy-wait” loops where a zero time-out
value causes 100 percent processor utilisation.

In addition, it is recommended that you throw an exception when a time-out expires instead of
returning an error code. Expiration of a time-out means that the operation could not complete
successfully and therefore should be treated and handled as any other run-time error. For more
information, see Error Raising and Handling Guidelines.

In the case of an asynchronous operation with a time-out, the callback function should be called
and an exception thrown when the results of the operation are first accessed. This is illustrated in
the following code example.

Visual Basic

Sub OnReceiveCompleted(ByVal sender As System.Object, _
 ByVal asyncResult As ReceiveAsyncEventArgs)
 Dim queue As MessageQueue = CType(sender, MessageQueue)
 ' The following code will throw an exception
 ' if BeginReceive has timed out.
 Dim message As Message = _
 queue.EndReceive(asyncResult.AsyncResult)
 Console.WriteLine(("Message: " + CStr(message.Body)))
 queue.BeginReceive(New TimeSpan(1, 0, 0))
End Sub

C#
void OnReceiveCompleted(Object sender,
 ReceiveAsyncEventArgs asyncResult)
{
 MessageQueue queue = (MessageQueue) sender;
 // The following code will throw an exception
 // if BeginReceive has timed out.
 Message message = queue.EndReceive(asyncResult.AsyncResult);
 Console.WriteLine("Message: " + (string)message.Body);
 queue.BeginReceive(new TimeSpan(1,0,0));
}

For related information, see Guidelines for Asynchronous Programming.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemtimespanclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconerrorraisinghandlingguidelines.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconasynchronousexecution.asp

88C#/VB .NET Coding Guidelines

13 Security in Class Libraries
Class library designers must understand code access security in order to write secure class libraries.
When writing a class library, be aware of two security principles: protect objects with permissions,
and write fully trusted code. The degree to which these principles apply will depend upon the class
you are writing. Some classes, such as the System.IO.FileStream class, represent objects that need
protection with permissions. The implementation of these classes is responsible for checking the
permissions of callers and allowing only authorised callers to perform operations for which they
have permission. The System.Security namespace contains classes that can help you perform these
checks in the class libraries that you write. Class library code often is fully trusted or at least highly
trusted code. Because class library code often accesses protected resources and unmanaged code,
any flaws in the code represent a serious threat to the integrity of the entire security system. To
minimise security threats, follow the guidelines described in this topic when writing class library
code. For more information, see Writing Secure Class Libraries.

13.1 Protecting Objects with Permissions
Permissions are defined to protect specific resources. A class library that performs operations on
protected resources must be responsible for enforcing this protection. Before acting on any request
on a protected resource, such as deleting a file, class library code first must check that the caller
(and usually all callers, by means of a stack walk) has the appropriate delete permission for the
resource. If the caller has the permission, the action should be allowed to complete. If the caller
does not have the permission, the action should not be allowed to complete and a security
exception should be raised. Protection is typically implemented in code with either a declarative or
an imperative check of the appropriate permissions.

It is important that classes protect resources, not only from direct access, but also from all possible
kinds of exposure. For example, a cached file object is responsible for checking for file read
permissions, even if the actual data is retrieved from a cache in memory and no actual file
operation occurs. This is because the effect of handing the data to the caller is the same as if the
caller had performed an actual read operation.

13.2 Fully Trusted Class Library Code
Many class libraries are implemented as fully trusted code that encapsulates platform-specific
functionality as managed objects, such as COM or system APIs. Fully trusted code can expose a
weakness to the security of the entire system. However, if class libraries are written correctly with
respect to security, placing a heavy security burden on a relatively small set of class libraries and
the core runtime security allows the larger body of managed code to acquire the security benefits of
these core class libraries.

In a common class library security scenario, a fully trusted class exposes a resource that is
protected by a permission; the resource is accessed by a native code API. A typical example of
this type of resource is a file. The File class uses a native API to perform file operations, such as a
deletion. The following steps are taken to protect the resource.

1. A caller requests the deletion of file c:\test.txt by calling the File.Delete method.

2. The Delete method creates a permission object representing the delete c:\test.txt
permission.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemiofilestreamclasstopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemsecuritycryptography.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconWritingSecureClassLibraries.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemiofileclassdeletetopic.asp

89C#/VB .NET Coding Guidelines

3. The File class's code checks all callers on the stack to see if they have been granted the
demanded permission; if not, a security exception is raised.

4. The File class asserts FullTrust in order to call native code, because its callers might not
have this permission.

5. The File class uses a native API to perform the file delete operation.

6. The File class returns to its caller, and the file delete request is completed successfully.

13.3 Precautions for Highly Trusted Code
Code in a trusted class library is granted permissions that are not available to most application
code. In addition, an assembly might contain classes that do not need special permissions but are
granted these permissions because the assembly contains other classes that do require them. These
situations can expose a security weakness to the system. Therefore, you must be take special care
when writing highly or fully trusted code.

Design trusted code so that it can be called by any semi-trusted code on the system without
exposing security holes. A stack walk of all callers normally protects resources. If a caller has
insufficient permissions, attempted access is blocked. However, any time trusted code asserts a
permission, the code takes responsibility for checking for required permissions. Normally, an
assert should follow a permission check of the caller as described earlier in this topic. In addition,
the number of higher permission asserts should be minimized to reduce the risk of unintended
exposure.

Fully trusted code is implicitly granted all other permissions. In addition, it is allowed to violate
rules of type safety and object usage. Independent of the protection of resources, any aspect of the
programmatic interface that might break type safety or allow access to data not normally available
to the caller can lead to a security problem.

13.4 Performance
Security checks involve checking the stack for the permissions of all callers. Depending upon the
depth of the stack, these operations have the potential to be very expensive. If one operation
actually consists of a number of actions at a lower level that require security checks, it might greatly
improve performance to check caller permissions once and then assert the necessary permission
before performing the actions. The assert will stop the stack walk from propagating further up the
stack so that the check will stop there and succeed. This technique typically results in a
performance improvement if three or more permission checks can be covered at once.

13.4.1 Summary of Class Security Issues
1. Any class library that uses protected resources must ensure that it does so only within the

permissions of its callers.

2. Assertion of permissions should be done only when necessary, and should be preceded by
the necessary permission checks.

3. To improve performance, aggregate operations that will involve security checks and consider
the use of assert to limit stack walks without compromising security.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

90C#/VB .NET Coding Guidelines

4. Be aware of how a semi-trusted malicious caller might potentially use a class to bypass
security.

5. Do not assume that only callers with certain permissions will call the code.

6. Do not define non-type-safe interfaces that might be used to bypass security elsewhere.

7. Do not expose functionality in a class that allows a semi-trusted caller to take advantage of
the higher trust of the class.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

91C#/VB .NET Coding Guidelines

14 Threading Design Guidelines
The following rules outline the design guidelines for implementing threading:

1. Avoid providing static methods that alter static state. In common server scenarios, static state
is shared across requests, which means multiple threads can execute that code at the same
time. This opens up the possibility for threading bugs. Consider using a design pattern that
encapsulates data into instances that are not shared across requests.

2. Static state must be thread safe.

3. Instance state does not need to be thread safe. By default, a library is not thread safe.
Adding locks to create thread-safe code decreases performance, increases lock contention,
and creates the possibility for deadlock bugs to occur. In common application models, only
one thread at a time executes user code, which minimizes the need for thread safety. For
this reason, the .NET Framework is not thread safe by default. In cases where you want to
provide a thread-safe version, use a GetSynchronized method to return a thread-safe
instance of a type. For examples, see the System.Collections namespace.

4. Design your library with consideration for the stress of running in a server scenario. Avoid
taking locks whenever possible.

5. Be aware of method calls in locked sections. Deadlocks can result when a static method in
class A calls static methods in class B and vice versa. If A and B both synchronise their static
methods, this will cause a deadlock. You might discover this deadlock only under heavy
threading stress.

6. Performance issues can result when a static method in class A calls a static method in class
A. If these methods are not factored correctly, performance will suffer because there will be
a large amount of redundant synchronisation. Excessive use of fine-grained synchronisation
might negatively impact performance . In addition, it might have a significant negative
impact on scalability.

7. Be aware of issues with the lock statement (SyncLock in Visual Basic). It is tempting to use
the lock statement to solve all threading problems. However, the
System.Threading.Interlocked class is superior for updates that must be made automatically.
It executes a single lock prefix if there is no contention. In a code review, you should watch
out for instances like the one shown in the following example.

Visual Basic
SyncLock Me
 myField += 1
End SyncLock

C#
lock(this)
{
 myField++;
}

Alternatively, it might be better to use more elaborate code to create rhs outside of the lock, as
in the following example. Then, you can use an interlocked compare exchange to update x

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemiofileclassdeletetopic.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemthreadinginterlockedclasstopic.asp

92C#/VB .NET Coding Guidelines

only if it is still null. This assumes that creation of duplicate rhs values does not cause negative
side effects.

Visual Basic

If x Is Nothing Then
 SyncLock Me
 If x Is Nothing Then
 ' Perform some elaborate code to create rhs.
 x = rhs
 End If
 End SyncLock
End If

C#
if (x == null)
{
 lock (this)
 {
 if (x == null)
 {
 // Perform some elaborate code to create rhs.
 x = rhs;
 }
 }
}

8. Avoid the need for synchronisation if possible. For high traffic pathways, it is best to avoid
synchronisation. Sometimes the algorithm can be adjusted to tolerate race conditions rather
than eliminate them.

9. For performance, use System.Threading.ReaderWriterLock whenever usage
warrants.

10. The System.Threading.Interlocked when developing synchronised code.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

93C#/VB .NET Coding Guidelines

15 Formatting Standards
The physical layout of code is very important in determining how readable and maintainable it is.
We need to come up with a common set of conventions for code layout to ensure that programs
incorporating code from various sources is both maintainable and aesthetically pleasing.

These guidelines are not hard and fast rules, less so than the variable naming conventions already
covered. As always, use your own judgement and remember that you are trying to create the best
possible code, not slavishly follow rules.

That said, you'd better have a good reason before deviating from the standard.

15.1 White Space and Indentation
Indent four spaces at a time. Four is best for a couple of reasons. You don't want to indent too
much, and I think three spaces is actually more conservative of screen real estate in the editor. The
main reason that I chose four is that this is the default number.

When writing a For statement, the natural inclination is to indent four characters:

For CurrentValue = ValueMin To ValueMax
 MsgBox ...
Next CurrentValue

For the Select Case statement, there are two commonly used techniques, both of which are
valid.

In the first technique, the Case statements are not indented at all but the code that is controlled by
each statement is indented by the standard amount of four spaces, as in:

Select Case CurrentMonth
Case 1,3,5,7,8,10,12
 DaysInMonth = 31
Case 4,6,9,11
 DaysInMonth = 30
Case 2
 If IsLeapYear(CurrentYear) Then
 DaysInMonth = 29
 Else
 DaysInMonth = 28
 End If
Case Else
 DisplayError "Invalid Month"
End Select

In the second technique, the Case statements themselves are indented as well and the statements
they control are super-indented, essentially suspending the rules if indentation:

Select Case CurrentMonth
 Case 1,3,5,7,8,10,12: DaysInMonth = 31
 Case 4,6,9,11: DaysInMonth = 30
 Case 2
 If IsLeapYear(CurrentYear) Then
 DaysInMonth = 29
 Else

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

94C#/VB .NET Coding Guidelines

 DaysInMonth = 28
 End If
 Case Else: DisplayError "Invalid Month"
End Select

Notice how the colon is used to allow the statements to appear right beside the conditions. Notice
also how you cannot do this for If statements.

Both techniques are valid and acceptable. In some sections of a program, one or the other will be
clearer and more maintainable, so use common sense when deciding.

Let's not get too hung up on indentation. Most of us understand what is acceptable and what is not
when it comes to indenting code. In .NET we can have out code indented for us by the
environment, in this case – let it do what it feels is most appropriate.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

95C#/VB .NET Coding Guidelines

16 Commenting Code
This one will be really controversial. Don't comment more than you need to. Now, here's a list of
where you definitely need to; there may be others too.

16.1 XML Comments
Every type and member should have an XML comment. This includes VB .NET code, but because
of limitations in the VS .NET 2002/2003 environment, these must be manually constructed.

16.2 In-line Comments
In-line comments are comments that appear by themselves on a line, whether they are indented or
not.

In-line comments are the Post-It notes of programming. This is where you make annotations to help
yourself or another programmer who needs to work with the code later. Use In-line comments to
make notes in your code about:

• What you are doing.

• Where you are up to.

• Why you have chosen a particular option.

• Any external factors that need to be known.

Here are some examples of appropriate uses of In-line comments:

1. What we are doing:

' Now update the control totals file to keep everything in sync

2. Where we are up to:

' At this point, everything has been validated.
' If anything was invalid, we would have exited the procedure.

3. Why we chose a particular option:

' Use a sequential search for now because it's simple to code
' We can replace with a binary search later if it's not fast
' enough
' We are using a file-based approach rather than doing it all
' in memory because testing showed that the latter approach
' used too many resources under Win2000. That's why the code
' is here rather than in XXX.VB where it belongs.

4. External factors that need to be kept in mind:

' This assumes that the INI file settings have been checked by
' the calling routine

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

96C#/VB .NET Coding Guidelines

 CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

s

Notice that we are not documenting what is self-evident from the code. Here are some examples of
inappropriate In-line comments:

' Declare local variables
Dim CurrentEmployee As Int32
' Increment the array index
CurrentEmployee += 1
' Call the update routine
UpdateRecord

Comment what is not readily discernible from the code. Do not re-write the code in English,
otherwise you will almost certainly not keep the code and the comments synchronised and that is
very dangerou . The reverse side of the same coin is that when you are looking at someone else's
code you should totally ignore any comments that relate directly to the code statements. In fact, do
everyone a favour and remove them.

16.3 End of Line Comments
End of Line (EOL) comments are small annotations tacked on the end of a line of code. The
perceptual difference between EOL comments and In-Line comments is that EOL comments are very
much focused on one or a very few lines of code whereas In-Line comments refer to larger sections
of code (sometimes the whole procedure).

Think of EOL comments like margin notes in a document. Their purpose is to explain why
something needs to be done or why it needs to be done now. They may also be used to document
a change to the code. Here are some appropriate EOL comments:

CurrentEmployee += 1 ' Keep the module level
 ' pointer synchronised
 ' for external clients

mCurrentEmployee = CurrentEmployee ' Do this first so that
UpdateProgress ' the meter ends at 100%

If CurrentEmployee < m CurrentEmployee Then ' BUG FIX 1/8/2001 SCS

Notice that EOL comments may be continued onto additional lines if necessary as shown in the first
example.

Here are some examples of inappropriate EOL comments:

CurrentEmployee += 1 ' Add 1 to loop counter
UpdateRecord ' Call the update routine

Do you really want to write every program twice?

Copyright © Iridium Software 2006 Partial © SubMain 2006

97C#/VB .NET Coding Guidelines

17 Code Reviews
Although the primary purpose for conducting code reviews throughout the development life cycle is
to identify defects in the code, the reviews can also be used to enforce coding standards in a
uniform manner. Adherence to a coding standard can only be feasible when followed throughout
the software project from inception to completion. It is not practical, nor is it prudent, to impose a
coding standard after the fact.

To this end, code reviews can provide a benefit to all systems developed by Iridium Software.

Code Reviews should be conducted under the following guidelines:

1. A section of a developers code (one or two random procedures) should be reviewed once
every fortnight. The reviewer should be a development peer. The reviewer should note the
issues and maybe address them at a coming company meeting.

2. A similar section of code should be reviewed once a month by a senior developer (or if no
senior developer exists, two peers). Again, the reviewer should make notes of issues and
bring them to the attention of the group if necessary.

3. The Architect or Analyst responsible for the current project should review general code
structure on a monthly basis.

The issues that the reviewer should be looking for could be:

• Is the code implemented appropriately for the chosen language?

• Is the chosen language appropriate for the task?

• Does the code adhere, in principle, to the guidelines laid down in this document?

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

98C#/VB .NET Coding Guidelines

18 Additional Notes for VB .NET Developers
The rest of this document addresses issues relating to coding practices. We all know that there is
no set of rules that can always be applied blindly and that will result in good code. Programming
is not an art form but neither is it engineering. It is more like a craft: there are accepted norms and
standards and a body of knowledge that is slowly being codified and formalised. Programmers
become better by learning from their previous experience and by looking at good and bad code
written by others. Especially by maintaining bad code.

Rather than creating a set of rules that must be slavishly followed, I have tried to create a set of
principles and guidelines that will identify the issues you need to think about and where possible
indicate the good, the bad and the ugly alternatives.

Ultimately, I want each programmer at Iridium Software to take responsibility for creating good
code, not simply code that adheres to some rigid standard. That is a far nobler goal - one that is
both more fulfilling to the programmer and more useful to the organisation.

The underlying principle is to keep it simple.

18.1 Procedure Length
There has been an urban myth in programming academia that short procedures of no more than “a
page” (whatever that is) are better. Actual research has shown that this is simply not true. There
have been several studies that suggest the exact opposite. For a review of these studies (and
pointers to the studies themselves) see the book “Code Complete” by Steve McConnell which is a
book well worth reading….three times.

To summarise, hard empirical data suggests that error rates and development costs for routines
decreases as you move from small (<32 lines) routines to larger routines (up to about 200 lines).
Comprehensibility of code (as measured on computer-science students) was no better for code
super-modularised to routines about 10 lines long than one with no routines at all. In contrast, on
the same code modularised to routines of around 25 lines, students scored 65% better.

What this means is that there is no sin in writing long routines. Let the requirements of the process
determine the length of the routine. If you feel that this routine should be 200 lines long, just do it.
Be careful how far you go, of course. There is an upper limit beyond which it is almost impossible
to comprehend a routine. Studies on really BIG software, like IBM's OS/360 operating system,
showed that the most error prone routines were those over 500 lines, with the rate being roughly
proportional to length above this figure.

Of course, a procedure should do ONE thing. If you see an And or an Or in a procedure name,
you are probably doing something wrong. Make sure that each procedure has high cohesion an
low coupling, the standard aims of good structured design.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

99C#/VB .NET Coding Guidelines

18.2 “If”

18.2.1 Write the nominal path through the code first, then write the exceptions
Write your code so that the normal path through the code is clear. Make sure that the exceptions
don't obscure the normal path of execution. This is important for both maintainability and
efficiency.

18.2.2 Make sure that you branch correctly on equality
A very common mistake is to use > instead of >= or vice versa.

18.2.3 Put the normal case after the If rather than after the Else
Contrary to popular thought, programmers really do not have a problem with negated conditions.
Create the condition so that the Then clause corresponds to normal processing.

18.2.4 Follow the If with a meaningful statement
This is somewhat related to the previous point. Don't code null Then clauses just for the sake of
avoiding a Not. Which one is easier to read:

If EOF(ThisFile) Then
 ' do nothing
Else
 ProcessRecord
End If

If Not EOF(ThisFile)
 ProcessRecord
End If

18.2.5 Always at least consider using the Else clause
A study of code by GM showed that only 17% of If statements had an Else clause. Later
research showed that 50 to 80% should have had one. Admittedly, this was PL/1 code and 1976,
but the message is ominous. Are you absolutely sure you don't need that Else clause?

18.2.6 Simplify complicated conditions with Boolean function calls
Rather than test twelve things in an If statement, create a function that returns True or False. If
you give it a meaningful name, it can make the If statement very readable and significantly
improve the program.

18.2.7 Don't use chains of If statements if a Select Case statement will do
The Select Case statement is often a better choice than a whole series of If statements. The
one exception is when using GetType, which does not work with Select Case statements.

18.3 “Select Case”

18.3.1 Put the normal case first
This is both more readable and more efficient.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

100C#/VB .NET Coding Guidelines

18.3.2 Order cases by frequency
Cases are evaluated in the order that they appear in the code, so if one case is going to be
selected 99% of the time, put it first.

18.3.3 Keep the actions of each case simple
Code no more than a few lines for each case. If necessary, create procedures called from each
case.

18.3.4 Use the Case Else only for legitimate defaults
Don't ever use Case Else simply to avoid coding a specific test.

18.3.5 Use Case Else to detect errors.
Unless you really do have a default, trap the Case Else condition and display or log an error
message.

18.3.6 Exceptions to the rule
When writing any construct, the rules may be broken if the code becomes more readable and
maintainable. The rule about putting the normal case first is a good example. While it is good
advice in general, there are some where it would detract from the quality of the code. For
example, if you were grading scores, so that less than 50 was a fail, 50 to 60 was an E and so
on, then the “normal” and more frequent case would be in the 60-80 bracket, then alternating like
this:

Select Case CurrentScore
 Case 70 To 79: sGrade = "C"

 Case 80 To 89: sGrade = "B"

 Case 60 To 69: sGrade = "D"

 Case Is < 50: sGrade = "F"

 Case 90 To 100: sGrade = "A"

 Case 50 To 59: sGrade = "E"

 Case Else: ' they cheated

End Select

However, the natural way to code this would be to follow the natural order of the scores:

Select Case CurrentScore
 Case Is < 50: sGrade = "F"

 Case Is < 60: sGrade = "E"

 Case Is < 70: sGrade = "D"

 Case Is < 80: sGrade = "C"

 Case Is < 90: sGrade = "B"

 Case Is <= 100: sGrade = "A"

 Case Else: ' they cheated

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

101C#/VB .NET Coding Guidelines

End Select

Not only is this easier to understand, it has the added advantage of being more robust - if the
scores are later changed from integers to allow for fractional points, then the first version would
allow 89.1 as an A which is probably not what was expected.

 On the other hand, if this statement was identified as being the bottleneck in a program that was
not performing quickly enough, then it would be quite appropriate to order the cases by their
statistical probability of occurring, in which case you would document why you did it that way in
comments. This discussion was included to reinforce the fact that we are not seeking to blindly
obey rules - we are trying to write good code. The rules must be followed unless they result in bad
code, in which case they must not be followed.

18.4 “Do”

18.4.1 Keep the body of a loop visible on the screen at once
If it is too long to see, chances are it is too long to understand buried inside that loop and should
be taken out as a procedure.

18.4.2 Limit nesting to three levels
Studies have shown that the ability of programmers to understand a loop deteriorates significantly
beyond three levels of nesting.

18.5 “For”
See Do Above

18.5.1 Never omit the loop variable from the Next statement
It is very hard to unravel loops if their end points do not identify themselves properly.

18.5.2 Try not to use i, j and k as the loop variables
Surely you can come up with a more meaningful name. Even if it's something generic like
LoopCounter it is better than i.

18.6 “Goto”
Do not use Goto statements unless they make the code simpler. The general consensus of opinion
is that Goto statements tend to make code difficult to follow but that in some cases the exact
opposite is true.

You may want to use Goto to exit from a very complex nested control structure. Be careful here; if
you really feel that a Goto is warranted, perhaps the control structure is just too complex and you
should decompose the code into smaller routines.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

102C#/VB .NET Coding Guidelines

That is not to say that there are no cases where the best approach is to use a Goto. If you really
feel that it is necessary then go ahead and use one. Just make sure that you have thought it
through and are convinced that it really is a good thing and not a hack.

18.7 “Exit Sub” / “Exit Function” And “Return”
Related to the use of a Goto is an Exit Sub (or Exit Function) statement. There are basically
three ways to make some trailing part of the code not execute:

1. Make it part of a conditional (If) statement:

Sub DoSomething()
 If CanProceed() Then
 ...
 ...
 End If
End Sub

2. Jump over it with a Goto.

Sub DoSomething()
 If Not CanProceed() Then
 Goto DoSomething_Exit
 End If
 ...
 ...
DoSomething_Exit:

End Sub

3. Exit prematurely with an Exit Sub/Function or Return.

Sub DoSomething()
 If Not CanProceed() Then
 Exit Sub
 ' or even Return
 End If
 ...
 ...
End Sub

The one that seems to be the clearest in these simple, skeletal examples is the first one and it is in
general a good approach to coding simple procedures. This structure becomes unwieldy when the
main body of the procedure (denoted by the “…” above) is nested deep inside a series of control
structures required to determine whether that body should be executed. It is not at all difficult to
end up with the main body indented half way across the screen. If that main body is itself
complex, the code looks quite messy, not to mention the fact that you then need to unwind all those
nested control structures after the main body of the code.

When you find this happening in your code, adopt a different approach: determine whether you
should proceed and, if not, exit prematurely. Both of the other techniques shown work. Although I
think that the Exit statement is more 'elegant', I am forced to mandate the use of the Goto
ExitLabel as the Iridium Software standard. The reason that this was chosen is that sometimes
you need to clean up before exiting a procedure. Using the Goto ExitLabel construct means

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

103C#/VB .NET Coding Guidelines

that you can code that cleanup code just once (after the label) instead of many times (before each
Exit statement).

If you need to prematurely exit a procedure, prefer the Goto ExitLabel construct to the Exit
Sub/Exit Function or Return statements unless there is no chance that any cleanup will be
needed before those statements.

One case where the Exit statement is very much OK is in conjunction with gatekeeper variables to
avoid unwanted recursion. Eg:

Sub txtSomething_Change()
 Static IsBusy As Integer
 If IsBusy Then Exit Sub

 IsBusy = True
 ... ' some code that may re-trigger the Change() event
 IsBusy = False
Exit Sub

18.8 “Exit Do”
These statements prematurely bail out of the enclosing Do or For loop. Do use these when
appropriate but be careful because they can make it difficult to understand the flow of execution in
the program.

On the other hand, use these statements to avoid unnecessary processing. We always code for
correctness and maintainability rather than efficiency, but there is no point doing totally
unnecessary processing. In particular, do NOT do this:

For LoopIndex = _
 Items.GetLowerBound(LoopIndex) To Items.GetUpperBound(LoopIndex)
 If Items(LoopIndex) = SearchValue Then
 Found = True
 FoundIndex = LoopIndex
 End If
Next LoopIndex

If Found Then ...
This will always loop through all elements of the array, even if the item is found in the first element.
Placing an Exit For statement inside the If block would improve performance with no loss of
clarity in the code.

Do avoid the need to use these statements in deeply nested loops. (Indeed, avoid deeply nested
loops in the first place.) Sometimes there really is no option, so this is not a hard and fast rule, but
in general it is difficult to determine where an Exit For or Exit Do will branch to in a deeply
nested loop.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

104C#/VB .NET Coding Guidelines

19 Disclaimer
This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

This document is Copyright © Iridium Software 2004. Patial © SubMain 2006. All rights reserved.

Copyright © Iridium Software 2006 Partial © SubMain 2006

CodeIt.Right – Static Code Analiysis, Naming Conventions + Auto Refactoring

	Contents
	Overview
	When Does This Document Apply
	Code changes made to existing systems not written to this st
	Code written for customers that require that their standards

	Naming Guidelines
	Overview
	Capitalisation Styles
	Pascal Case
	Camel Case
	Uppercase

	Case Sensitivity (not applicable to VB)
	Abbreviations
	Word Choice
	Avoid Type Name Confusion
	Namespace Naming Guidelines
	Class Naming Guidelines
	Interface Naming Guidelines
	Attribute Naming Guidelines
	Enumeration Type Naming Guidelines
	Static Field Naming Guidelines
	Parameter Naming Guidelines
	Method Naming Guidelines
	Property Naming Guidelines
	Event Naming Guidelines
	Control Naming Guidelines
	Specifying Particular Control Variants
	Table of Standard Control Prefixes
	Menu Controls

	Data Naming Guidelines
	Fields in Databases

	Class Member Usage Guidelines
	Property Usage Guidelines
	Property State Issues
	Raising Property-Changed Events
	Properties vs. Methods
	Read-Only and Write-Only Properties
	Indexed Property Usage

	Event Usage Guidelines
	Method Usage Guidelines
	Methods With Variable Number of Arguments

	Constructor Usage Guidelines
	Field Usage Guidelines
	Parameter Usage Guidelines
	Type Usage Guidelines
	Base Class Usage Guidelines
	Base Classes vs. Interfaces
	Protected Methods and Constructors

	Sealed Class Usage Guidelines
	Value Type Usage Guidelines
	Structure Usage Guidelines
	Enum Usage Guidelines
	Delegate Usage Guidelines
	Event notifications
	Callback functions

	Attribute Usage Guidelines
	Nested Type Usage Guidelines

	Guidelines for Exposing Functionality to COM
	Marshal By Reference
	Marshal By Reference Guidelines

	Error Raising & Handling Guidelines
	Standard Exception Types
	Description
	Example

	Wrapping Exceptions

	Array Usage Guidelines
	Arrays vs. Collections
	Using Indexed Properties in Collections
	Array Valued Properties
	Returning Empty Arrays

	Operator Overloading Usage Guidelines
	Guidelines for Implementing Equals and the Equality Operator
	Implementing the Equality Operator on Value Types
	Implementing the Equality Operator on Reference Types
	Implementing the Equals Method

	Guidelines for Casting Types
	Common Design Patterns
	Implementing Finalize and Dispose to Clean Up Unmanaged Reso
	Customizing a Dispose Method Name
	Finalize
	Note

	Dispose

	Callback Function Usage
	Events
	Delegates
	Interfaces

	Time-Out Usage
	Security in Class Libraries
	Protecting Objects with Permissions
	Fully Trusted Class Library Code
	Precautions for Highly Trusted Code
	Performance
	Summary of Class Security Issues

	Threading Design Guidelines
	Formatting Standards
	White Space and Indentation

	Commenting Code
	XML Comments
	In-line Comments
	End of Line Comments

	Code Reviews
	Additional Notes for VB .NET Developers
	Procedure Length
	“If”
	Write the nominal path through the code first, then write th
	Make sure that you branch correctly on equality
	Put the normal case after the If rather than after the Else
	Follow the If with a meaningful statement
	Always at least consider using the Else clause
	Simplify complicated conditions with Boolean function calls
	Don't use chains of If statements if a Select Case statement

	“Select Case”
	Put the normal case first
	Order cases by frequency
	Keep the actions of each case simple
	Use the Case Else only for legitimate defaults
	Use Case Else to detect errors.
	Exceptions to the rule

	“Do”
	Keep the body of a loop visible on the screen at once
	Limit nesting to three levels

	“For”
	Never omit the loop variable from the Next statement
	Try not to use i, j and k as the loop variables

	“Goto”
	“Exit Sub” / “Exit Function” And “Return”
	“Exit Do”

	Disclaimer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

