
The Design and Implementation Of An Object-Oriented Toolkit
For 3D Graphics And Visualization

William J. Schroeder
Kenneth M. Martin

William E. Lorensen
GE Corporate Research & Development

Abstract

The Visualization Toolkit (vtk) is a freely available C++
class library for 3D graphics and visualization. In this
paper we describe core characteristics of the toolkit. This
includes a description of object-oriented models for
graphics and visualization; methods for synchronizing
system execution; a summary of data representation
schemes; the role of C++; issues in portability across PC
and Unix systems; and how we automatically wrap the
C++ class library with interpreted languages such as
Java and Tcl. We also demonstrate the capabilities of the
system for scalar, vector, tensor, and other visualization
techniques.

1.0 Introduction

Two important trends are emerging in the computer indus-
try. These are the development of object-oriented systems
and the use of more complex user interface methods, espe-
cially the use of 3D computer graphics and visualization.
Object-oriented systems offer the possibility to create bet-
ter, more maintainable systems with reusable software
components. Computer graphics offers a window into the
computer and the virtual worlds created there; and when
coupled with visualization, enables users to rapidly
explore and understand complex systems. Taken together,
these two trends will be major forces as the computer
industry moves into the 21st century.

It is clear that 3D graphics and visualization are enter-
ing mainstream use. As evidence of this we cite the wide-
spread use of 3D graphics in the entertainment and
gaming industries, and its support on the PC. For example,
there are now several 3D graphics software API’s on the
PC, including OpenGL [1], and hardware boards ranging
in cost from hundreds to thousands of US dollars.

Object-oriented (OO) methods are now widely recog-
nized as effective software design and implementation
tools. Design methodologies from such researchers as
Rumbaugh [2] and Booch [3] are receiving widespread
attention, while C++ [4], SmallTalk [5], and other object-
oriented languages have become widely successful soft-
ware tools. Also, a variety of class libraries are available,
ranging from standard data structures to mathematics and
numerical equation solvers.

These trends have only recently converged (in the last
half-decade) into object-oriented tools for 3D graphics
and visualization. They have influenced commercial sys-

tems such as AVS [6], IBM Data Explorer [7], and Iris
Explorer [8], which exhibit object-oriented features such
as modular and extensible components. However, despite
such features, not all systems are implemented using OO
techniques and languages, and are often difficult to use
independent of their graphical user environment.

In this paper we describe our efforts towards building a
object-oriented toolkit, referred to asvtk , for 3D graphics
and visualization [9]. We begin by listing our design
goals and follow with an overview of our object design.
In the implementation section we discuss many important
issues such as graphics portability; design for an inter-
preted language; and our method for updating the visual-
ization network. We conclude with examples to
demonstrate central features of our design.

2.0 Design Goals

From the inception of the toolkit, we had a series of high-
level design goals. These goals were based on our previ-
ous work with a proprietary system we referred to as
LYMB/VISAGE [10][11], as well as our experience deal-
ing with user’s of visualization systems. These goals are
described in the subsections that follow.

2.1 Toolkit Philosophy

One important lesson we learned is that building large,
monolithic systems is detrimental to software flexibility.
As a result, we wanted to create a sharply focused object
library that we could easily embed and distribute into our
applications. Figure 1(a) illustrates the basic idea. Tool-
kits enable complex applications to be built from small
pieces. The key here is that the pieces must be well
defined with simple interfaces. In this way they can be
readily assembled into larger systems.

Figure 1 System architecture

Application Level

Toolkits

Low Level

a) Building applications
with toolkits

b) Toolkit architecture

C++ Class
Library

(compiled)

Tcl/Tk (or Java)
Interpreted Interface



2.2 Interpreted Language Interface

Computer languages are usually one of two types: com-
piled or interpreted. Compiled languages are usually
higher performing than interpreted languages, but inter-
preted languages offer greater flexibility. Our experience
has shown that interpreted applications can be built signif-
icantly faster than compiled applications, mainly through
the elimination of the compile/link cycle. (Shared libraries
and incremental compilation techniques are improving the
interactivity of compiled systems, but the gap remains.)
Also, interpreted applications are often written at a higher
level than compiled languages. This results in simpler,
more compact code that is faster to write and debug. Com-
piled systems, however, are absolutely necessary when
creating high-performing visualization applications. Com-
piled systems also offer low-level access to computer sys-
tem resources.

We wanted our system to have the best of both the com-
piled and interpreted approaches (Figure 1(b)). As a
result, we decided to build the core computational objects
using a compiled language, and the higher level applica-
tions using an interpreted language. We also wanted to
make sure that there was a crisp boundary between the
compiled core and the interpreted language. This require-
ment ensured that the compiled core could be easily sepa-
rated from the interpreted language and easily imbedded
into applications.

2.3 Standards Based

In our prior work with the LYMB/VISAGE system, we
used our own special methodology and the C program-
ming language to build an object-oriented system. This
system also featured our own interpreted scripting lan-
guage. While this system served us well for over a dozen
years, we soon found that it was an uphill battle to encour-
age others to adopt our methodology. We also found that
the software support and maintenance burden increased
dramatically as the system grew in complexity. As a
result, we decided that the new system must use standard
components and languages.

2.4 Portable

Years of experience with computer graphics has made us
skeptical that any single graphics library will become a
standard. Even OpenGL, which is a widely accepted 3D
standard, may be supplemented or even superceded by the
recent flurry of interest in 3D games, multi-media, and
internet access. Consequently, we wanted a high-level
abstraction for 3D graphics that would be independent of
new incarnations of graphics libraries. In this way applica-
tions written in the system could be easily ported as new
standards become available.

Compatibility issues also arise due to differing window-
ing systems on Unix, PC, and other platforms. Another
important design goal was to keep the core system inde-
pendent of windowing systems.

2.5 Freely Available

A pragmatic lesson of the computer industry is that for
software to succeed, it must be widely used and sup-

ported. As researchers we decided that the best way to
accomplish this was to make the source code freely avail-
able. Anticipated benefits of this approach include the
ability to better disseminate our algorithms, collaborate
with other researchers, develop credibility in the graphics
and visualization fields, and offer tools for educational
and research purposes. We also knew that outside users
would offer bug fixes and valuable suggestions to improve
the system.

2.6 Simple

We often find that concepts that we take for granted in
computer science and graphics are not always easily trans-
ferable to users of our visualization tools.These users are
typically overwhelmed with their own work load (e.g.,
design, analysis, etc.), and cannot afford the time to learn
and maintain a working knowledge base of computer
graphics and visualization. Hence we have adopted the
following quote from Albert Einstein as our credo:
“Everything should be as simple as possible, but not sim-
pler.” By keeping the system simple, we expect to encour-
age wider use of visualization and 3D graphics. Other
benefits of this philosophy include reduced effort to main-
tain, extend and interface to the toolkit.

3.0 Object Models

There are two distinct parts to our object design. The first
is the graphics model, which is an abstract model for 3D
graphics. The second is the visualization model, which is
a data-flow model of the visualization process.

3.1 The Graphics Model

The graphics model captures the essential features of a 3D
graphics system in a form that is easy to understand and
use. The abstraction is based on the movie-making indus-
try, with some influence from current graphical user inter-
face (GUI) windowing systems.There are nine basic
objects in the model.

1. Render Master - coordinates device-independent meth-
ods and creates rendering windows.

2. Render Window - manages a window on the display
device. One or more renderers draw into a render win-
dow to generate a scene (i.e., final image).

3. Renderer - coordinates the rendering of lights, cam-
eras, and actors.

4. Light - illuminates the actors in a scene.

5. Camera - defines the view position, focal point, and
other camera characteristics.

6. Actor - an object drawn by a renderer in the scene.
Actors are defined in terms of mapper, property, and a
transform objects.

7. Property - represents the rendered attributes of an actor
including object color, lighting (e.g., specular, ambi-
ent, diffuse), texture map, drawing style (e.g.,
wireframe or shaded); and shading style.



8. Mapper - represents the geometric definition of an
actor and maps the object through a lookup table.
More than one actor may refer to the same mapper.

9. Transform - an object that consists of a 4x4 transfor-
mation matrix and methods to modify the matrix. It
specifies the position and orientation of actors, cam-
eras, and lights.

Figure 2 illustrates these concepts in concrete form. Note
that derived objects of these base classes are available to
extend the functionality of the toolkit. For example, the
assembly object is a type of actor that enables hierarchical
grouping of objects for purposes of property specification
or collective transformation. Other objects, such as color
lookup tables, also play an important role in the visualiza-
tion system, but are not described here for brevity.

To achieve portability of this design we developed the
concept ofdevice objects. These objects are derived
classes of abstract superclasses, or extend the functional-
ity of graphics classes in a device dependent way. An
example of a derived device class is the OpenGL renderer.
The OpenGL renderer is a subclass of the abstract super-
class renderer. When the user constructs a generic ren-
derer and rendering window in the system using the render
master class, the render master instantiates the appropriate
device-specific renderer. For example, on a Sun Unix sys-
tem, the following code

vtkRenderMaster rm;
renderWindow = rm.MakeRenderWindow();
aRen = renderWindow->MakeRenderer();

creates a device-dependent render window appropriate to
the system’s windowing system (i.e., X Windows), and a
device-dependent renderer appropriate to the graphic
library (i.e., Sun’s XGL). The same code run on a PC,
however, would create a Windows rendering window, and
an OpenGL renderer.

Lights, cameras, properties, and actors are examples of
generic objects that have device-dependent counterparts
(e.g., OpenGL actor, OpenGL light, etc.). When these
generic objects are created, device dependent objects are
created automatically that interface to the appropriate
graphics library. This is generally transparent to the user,
and ensures that all applications are completely indepen-

dent of the particular graphics library. In fact, to port an
application to a new graphics library, only the device
dependent objects need be coded. The application itself
remains unchanged.

Our graphics design compares favorably to Open Inven-
tor [12], which is a commercial toolkit available from
SGI. In the Inventor model, the abstract model is based on
a scene graph. A scene graph is an acyclic, directed graph
of nodes, where nodes correspond to such objects as
actors, lights, cameras, properties, and transforms. The
major difference is that the Inventor model closely follows
the state-machine based, graphics engine that is imple-
mented in OpenGL. The rendering process is a traversal of
the graph, where each node affects the current state of the
rendering process. Thus, the order of the nodes in the
graph has significant impact on the final image. Although
the state-based traversal is powerful and efficient, it does
violate a fundamental tenet of object-oriented design. That
is, the behavior of every object is completely determined
from its inputs and local instance variables. In a scene
graph, changes to a node in the graph can affect objects
downstream of the graph traversal. Also, the scene graph
model is not intuitive to many graphics programmers.

3.2 The Visualization Model

Thevtk  model is based on the data-flow paradigm
adopted by many commercial systems. In this paradigm,
modules are connected together into a network. The mod-
ules perform algorithmic operations on data as it flows
through the network. The execution of this visualization
network is controlled in response to demands for data
(demand-driven) or in response to user input (event-
driven). The appeal of this model is that it is flexible, and
can be quickly adapted to different data types or new algo-
rithmic implementations.

Our visualization model consists of two basic types of
objects: process objects and data objects (see Figure 3).
Process objects are the modules, or algorithmic portions
of the visualization network. Data objects, also referred to
as datasets, represent and enable operations on the data
that flows through the network.

Process objects may be further classified into one of
three types: sources, filters, and mappers. Source objects
initiate the network and generate one or more output
datasets. Filters require one or more inputs and generate
one or more outputs. Mappers, which require one or more
inputs, terminate the network.

In our toolkit we initially selected five types of data as

Render master
creates rendering

windows

Figure 2 Graphics model

Instances of render window

Renderer instances

Actor instances

Camera defines view

Lights illuminate
scene

Mapper (geometry)

Property
Transform

Figure 3 Visualization model. Process objects A, B, C input
and/or output one or more data objects. Data objects
represent and provide access to data; process objects
operate on the data. Objects A, B, and C are source,
filter, and mapper objects, respectively.

A C

dataset A

B

dataset B

output

input



shown in Figure 4. As indicated by this figure, an abstract
interface to data is specified by the dataset object. Sub-
classes of dataset include polygonal data (corresponding
to the graphics data vertices, lines, polygons, and triangle
strips), structured points (representing both 2D images
and 3D volumes), and structured and unstructured grids
(e.g., finite difference grids and finite element meshes). In
addition, it was convenient to define another abstract
object, point set, which is a superclass of objects with
explicit point coordinate representation. The fifth data
type, unstructured points, was not implemented because it
could be represented by one or more of the other types.
(Unstructured points are point locations without an topo-
logical relationship to one another.)

An important feature of our data model is the concept of
cells. A dataset consists of one or more cells. Each cell is
considered to be atomic visualization primitive. Cells rep-
resent topological relationships between the points that
compose the dataset. The primary function of cells is to
locally interpolate data or compute derivatives of data. In
vtk , twelve cell types ranging from the 0D vertex to the
3D hexahedron are recognized. Each is a subclass of the
abstract cell class, and additional cell types may be easily
derived. Note that cells are not necessarily explicitly rep-
resented by datasets. For example, the voxel cells in a vol-
ume (i.e., structured points dataset) are not explicitly
represented since this would incur a severe storage pen-
alty. Instead, when the system requests a particular voxel,
the voxel is built on the fly from the dimensions, origin,

and aspect ratio of the volume, and the cell id of the voxel.
One nice feature of our object-oriented design is that we

can take advantage of the dataset inheritance hierarchy to
construct generic or specific process objects. Generic pro-
cess objects operate on datasets - the particular type of
dataset is immaterial to the operation of the filter. On the
other hand, process objects can be specially constructed
for a particular dataset type. For example, the contour fil-
ter operates on any dataset type, generating point, line,
and surface primitives depending upon the input type. The
decimation filter, however, has been specifically con-
structed to operate on polygonal data, allowing the imple-
mentor to make performance enhancing assumptions
about the nature of the data. This allows the implementor
of process objects to make a trade-off between generality
and efficiency.

3.3 Object-Oriented Design Issues

To the OO purist, the design of our visualization system
poses some problems. In usual OO design, data structures
and methods are encapsulated into objects. In our design,
algorithms (i.e., methods) and datasets (i.e., data struc-
tures) are encapsulated separately.

Our departure from what might be considered a purer
OO design is based on three factors. First, combining
complex algorithms and datasets into a single object
would result in excessively large objects. The simplicity
and modularity of the resulting design would be compro-
mised. Second, combining algorithms and datasets into
objects would result in repeating code, since the imple-
mentation of an algorithm for different data types often
differs only in regions of data access. Third, users natu-
rally view algorithms as objects that operate on data
objects. Thus the design is comfortable to users, which is
a key element of good system design.

Other researchers disagree with our view. In particular
Favre [13] has presented a design that encapsulates data
objects and algorithms into single objects. We expect that
this will remain an open research issue as visualization
systems becomes more widely used.

4.0 Implementation Issues

While a high-level object design goes a long way towards
creating useful systems, the implementation details often
make or break the user acceptance of a system. In this sec-
tion we describe some key issues we addressed to make
our system easier to use.

4.1 Programming Languages

Our choice of compiled language was predicated on the
need for an efficient, object-oriented core. C++ fulfills
these requirements [4]. In addition, C++ offers other
important features. It is widely used with a large selection
of development tools and compilers. C++ is also a
strongly typed language. This feature is used in our toolkit
to enforce (at compile time) correct connectivity between
process and data objects in the visualization network.

We constrained our use of C++ to conservative features.
Multiple inheritance was abandoned early due to the

Figure 4 Dataset types. a) polygonal data,
b) structured points, c) structured grid,
d) unstructured grid, e) unstructured points, f) object
diagram using OMT [2] notation.

a) b) c)

d) e)

vtkDataSet

vtkStructuredGrid vtkPolyData

vtkUnstructuredGrid

vtkStructuredPoints vtkPointSet

f)



resulting complexity and problems with compilers.
Advanced features like templates and exception handling
were also ignored, mainly due to the fact that the compil-
ers we used at the time we started implementation were
unreliable. (Since the initial implementation we have used
templates effectively.) We found the language easy to
work with when used this way.

Since we architected our toolkit to include an inter-
preted language completely independent of the core com-
piled language, we had a number of possible interpreted
languages to choose from. Our initial choices were Tcl,
Python, and Perl, languages used by many software devel-
opers. For our initial interpreted language we decided to
use Tcl [14]. Our choice was based on the relative popu-
larity of Tcl, and because of the Tcl-based Tk widget set.
Tcl/Tk is a powerful development environment offering
portable GUI development on Unix and Windows sys-
tems. Since we choose Tcl/Tk, we are able to build com-
plex user interfaces on top of our toolkit, as well as
interface to the many Tcl/Tk packages.

The size of our compiled toolkit (100,000+ LOC) made
it infeasible to manually “wrap” it with Tcl. Instead, we
built a simplified C++ parser to automatically generate Tcl
wrapper code [15]. Because the parser recognized certain
coding conventions we had adopted, it was easier to create
than a formal C++ parser. Well over 90% of the public
methods are automatically wrapped in this way. (A small
hints file was created to help the parser correctly interpret
ambiguous or more complex statements.) Approximately
70,000 lines of wrapper code were generated using this
approach.

Since the implementation of our Tcl/Tk interpreted
layer, Java [16] has emerged as arguably the best known
interpreted language. Using our simple parser, we were
able to wrap our library with Java over the course of two
months (most of the time was spent learning the internals
of Java.) Our ability to wrap the core with Java validated
our toolkit architecture, and indicates that using other
interpreted languages is an open possibility.

4.2 Conventions

We adopted a number of conventions that accelerated our
implementation efforts, including documentation efforts.
Some simple conventions include using a standard, long,
and descriptive naming scheme for objects, methods, and
variables; adopting standard templates and styles for cod-
ing; and applying avtk  prefix to object names to avoid
namespace collision with other C++ class libraries. How-
ever, the two most important conventions we used were
embedding of documentation directly into the source code
and the use of standardSet/Get  methodology to read
and write object instance variables.

Embedding the documentation directly in the code
served two important functions. First, it allows developers
to directly pursue on-line source and header files for infor-
mation about particular objects. Second, it allows us to
automatically generate manual pages and HTML web
documents. The benefit is that the chore of documentation
is distributed into the implementation of the object. Thus
documentation is just part of coding an object. When

updated documents are required, a simple procedure is ini-
tiated that can generate the documents automatically.

For reading and setting the value of object instance vari-
ables, we used a standard array ofSet/Get  macros.
These macros provide a uniform interface to objects, as
well as enforce uniform object behavior. For example, one
important feature of our system is that every object main-
tains an internal modification time. (This fact will become
important when we discuss network execution shortly.)
TheSet  macros insure that the modification time is cor-
rectly maintained. When setting an instance variable,
these macros compare old values with new ones, only
updating the modification time of the object if the value of
the instance variable has changed. In addition, the macros
can be enabled to print out debugging information, if
desired.

4.3 Network Topology and Execution

Building visualization networks is a process of connecting
process and data objects (Figure 5(a)). The major issue
here is to make sure that the input(s) to a process object
are of the correct type, and that non-terminating loops in
the network are correctly managed. Once a proper net-
work is constructed, a mechanism is required to update the
network as input data or object parameters change.

The strong type checking of C++ plays an important
role here. TheSetInput()  method of a filter only
accepts the specified dataset class or its subclasses. To
connect the output of filter A to the input of filter B, a con-
struct of the following form is used (expressed in C++):

B->SetInput( A->GetOutput() );

Thus A’s output type must be the same as B’s input type,
or a subclass of B’s input type.

Looping in a network occurs when the input to an object
B is the output of an object D, where D depends on the
output of B (Figure 5(b)). Although such situations are not
common, in some cases they can be used to advantage.
For example, numerical integration of a set of points
through a vector field can be simulated by the network of

A B C

D

b) Network with loop

A B C

D

a) Update: C to B to (A and D)
Execute (If A modified): A then B then C

Figure 5 Network execution

probe velocity move point

select points



Figure 5(b). Here, the motion of the point set P is con-
trolled by the vector values at P, and as P moves, vector
values are resampled at P’s new positions. The process
repeats, moving P through the dataset.

In vtk , infinite looping is prevented by setting an inter-
nal flag. Process objects set this flag when they begin to
execute. This flag prevents infinite recursion from occur-
ring if the execution of the network happens to return to
the object. Thus, loops are allowed but only executed once
per network execution.

The execution of the network is based on an implicit
scheme. In this scheme each process object maintains an
internal modification time and execution time. Then, when
output from a process object A is requested, A compares
its internal modified time and the modified time of its
inputs against its last execution time. If A has been modi-
fied, or its inputs modified more recently than its last
recorded compute time, then A will re-execute. There are
two parts to updating the network using this implicit
scheme: anupdate pass that compares modified and exe-
cution times, and anexecution pass in which process
objects may be re-executed to bring them up to date.

Most commercial systems use a graphical interface to
select, connect, and execute visualization networks. While
extremely powerful, the graphical interface is often an
obstacle to creating networks with branching or condi-
tional execution, or it complicates embedding visualiza-
tion networks into an application. Although solutions have
been proposed for this problem [17], the implementation
of our toolkit using procedural languages makes selective
network execution easy to program and control. It also
simplifies embedding our toolkit into applications.

4.4 Memory Management

A major concern when implementing visualization in
data-flow form is the amount of memory consumed. The
toolkit addresses this issue by implementing a reference-
counting scheme, and allowing the user to tailor the net-
work to favor computation or memory.

Reference counting allows process objects to share data
objects, or portions of data objects. As the top half of Fig-
ure 6 illustrates, if portions of data are passed through the
network unchanged, the data can be referenced by other
objects without duplication. The key to this approach is to
keep track of the number of objects referring to a refer-
ence counted object. When the reference count goes to
zero, the referenced object automatically deletes itself.

In some applications memory resources are scarce,
while in others the cost to compute the output of a filter or
network is high. The toolkit provides facilities to accom-
modate these needs. Networks can be tailored to favor
memory preservation at the expense of additional compu-
tation, or computation can be favored at the expense of
additional memory requirements, or a combination of
both. These capabilities are implemented by providing
flags to control the automatic deletion of output data as the
network executes. For example, as the bottom half of
Figure 6 illustrates, if the flag is enabled and memory
resources are favored, after the process object B finishes
execution, it signals its input process object A to delete its

output data. Favoring memory means that A will always
re-execute if any part of the network that depends on A
needs to re-execute. On the other hand, if computation is
favored, A will not re-execute unless it or its input data is
modified. Instead, A maintains its output in memory, and
can provide it without computation to B when necessary.

4.5 Issues in Object-Oriented Implementation

A major criticism of object-oriented systems is that often
they are slower performing than equivalent systems imple-
mented in conventional procedural languages. This is due
to the requirement to copy data between objects to pre-
serve object encapsulation, the access of object instance
variables through formal methods, and the overhead of
constructing and deleting objects.

While we have found this performance penalty to be
real, its effect can be minimized in three ways. First, the
system must not create and destroy large numbers of
objects. For example, invtk  there is a points object that
represents an array ofx-y-zcoordinates. An inefficient
implementation would represent each point with a sepa-
rate object, requiring excessive constructor/destructor
overhead and data access. Second, the amount of data
copying must be minimized. Instead, large pieces of data
(i.e., datasets), are encapsulated as an object, and then a
references to this object are exchanged as the data moves
through the system. Finally, C++ offers aninline  capa-
bility. This can greatly improve system performance by
eliminating function call overhead. However, theinline
capability has no effect if the methods are dynamically
bound, or if the compiler chooses to ignore theinline
directive, so this capability is often limited.

5.0 Examples

The following examples illustrate the use of the toolkit in
practical application.

local datalocal data

Favor Memory
A executes
B executes

B releases memory
C executes
D executes

B releases memory

Figure 6 Memory management. (top) reference counting,
(bottom) memory/computation trade-off

A B C

local data

A

B

DC

Favor Computation:
A executes
B executes
C executes
D executes

(ref. count=3)

(ref. count=1)

points (shared)



5.1 Hello Cone - C++ version

In this example we create and render a cone represented with
a polygonal mesh. (The original idea for this example is
adapted from Wernecke’sInventor Mentor[12].) The exam-
ple is implemented in C++ and shows a simple pipeline with
no intermediate filters.

#include "vtk.hh"

main ()
{

vtkRenderMaster rm;
vtkRenderWindow *win=rm.MakeRenderWindow();
vtkRenderer *ren=win->MakeRenderer();
vtkRenderWindowInteractor *iren=

win->MakeRenderWindowInteractor();

//create an actor and give it cone geometry
vtkConeSource *cone = new vtkConeSource;

cone->SetResolution(8);
vtkPolyMapper *mapper = new vtkPolyMapper;

mapper->SetInput(cone->GetOutput());
vtkActor coneActor = new vtkActor;

coneActor->SetMapper(mapper);

// assign our actor to the renderer
ren->AddActors(coneActor);

// draw the resulting scene
win->Render();

//start event loop
iren->Start();

}

There are some important features of this example. First,
thevtkRenderWindowInteractor  is a 3D widget. It
captures mouse and keystroke events in the rendering win-
dow. Typical functions include wireframe/surface display,
picking, and a toggle into 3D stereo viewing. Second,
because lights and a camera are not created, the system auto-
matically creates them. Finally, this source code will compile
and run on any Unix (using OpenGL, GL, Sun’s XGLR, or
HP’s Starbase renderer), or Windows 95 or NT system (using
OpenGL). The system automatically selects the correct ren-
derer based on what’s available on the system. Also notice
the use of theSetInput()/GetOutput()  methods to
construct the visualization pipeline.

5.2 Hello Cone - Tcl/Tk version

In this example, the previous example is repeated except that
it is implemented using the Tcl interpreter. Note that a special
Tk interface is included (i.e.,vtkInt.tcl ). This is an inter-
preter widget and allows interactive modification to the appli-
cation.

source vtkInt.tcl

# create a rendering window and renderer
vtkRenderMaster rm;
set win [rm MakeRenderWindow];
set ren [$win MakeRenderer];
set iren [$win MakeRenderWindowInteractor];

# create an actor and give it cone geometry
vtkConeSource cone;

cone SetResolution 8;
vtkPolyMapper mapper;

mapper SetInput [cone GetOutput];
vtkActor coneActor;

coneActor SetMapper mapper;

# assign our actor to the renderer
$ren AddActors coneActor;

# enable user interface interactor
$iren SetUserMethod \

{wm deiconify .vtkInteract};
$iren Initialize;

# suppress tk window; start the event loop
wm withdraw .

Color Plate 1 shows the output of this example including the
Tcl/Tk interpreter.

5.3 Generate An Isosurface

In the next example we show a portion of a network used to
read 16-bit medical data and generate isosurfaces [18] for
skin and bone. The example is implemented in C++ and the
results are shown in Color Plate 2.

// read the volume
vtkVolume16Reader *v16=new vtkVolume16Reader;

v16->SetDataDimensions(64,64);
v16->SwapBytesOn();
v16->SetFilePrefix

("../../../data/headsq/quarter");
v16->SetImageRange(1, 93);
v16->SetDataAspectRatio (3.2, 3.2, 1.5);

// extract the skin
vtkMarchingCubes *skin=new vtkMarchingCubes;

skin->SetInput(v16->GetOutput());
skin->SetValue(0, 500);

5.4 Decimate and Smooth Polygonal Mesh

In this example we read a Cyberware laser digitizer file, deci-
mate (i.e., reduce polygon count) [19], and Laplacian smooth
[20] the polygonal mesh. (Surface normals are also calcu-
lated.) A portion of the network implemented in Tcl is
shown. The resulting image is shown in Color Plate 3.

vtkCyberReader cyber;
cyber SetFilename “../../data/fran_cut”

vtkDecimate deci;
deci SetInput [cyber GetOutput];
deci SetTargetReduction 0.9;
deci SetAspectRatio 20;
deci SetInitialError 0.0002;
deci SetErrorIncrement 0.0005;
deci SetMaximumIterations 6;

vtkSmoothPolyFilter smooth;
smooth SetInput [deci GetOutput];
smooth SetNumberOfIterations 20;



vtkPolyNormals normals;
normals SetInput [smooth GetOutput];

vtkPolyMapper cyberMapper;
cyberMapper SetInput [normals GetOutput];

vtkActor cyberActor;
cyberActor SetMapper cyberMapper;
eval [cyberActor GetProperty]

SetColor 1.0 0.49 0.25;

5.5 Other Examples

The Visualization Toolkit is comprised of over 300 classes.
Visualization techniques for scalar, vector, and tensor visual-
ization are available. Modelling algorithms such as decima-
tion, implicit modelling, extrusion, texture cutting, Delaunay
triangulation, splatting, and glyphing can also be used to cre-
ate complex visual displays.

Color Plates 4 through 10 demonstrate capabilities ofvtk .
Plate 4 shows a cut plane through a structured grid. Plate 5
shows streamtubes in a vector flowfield. Plate 6 is the visual-
ization of a quadric function showing 2D and 3D contours
and cut planes. Plate 7 shows four hyperstreamlines [21] in a
tensor field. The tensor field is generated from a point load in
a semi-infinite domain. In Plate 8 is an example of multi-
dimensional, unstructured data visualization for financial
loan data. The axes are monthly payment, interest rate, and
loan amount. The grayish wireframe surface shows the total
data population, and the red surface show accounts that are
delinquent on loan payment. Plate 9 shows the application of
transparent textures [22] to cut-away and reveal the inner
structure of a mechanical assembly.

6.0 Conclusion

We have developed a toolkit for 3D graphics and visualiza-
tion. The toolkit core is implemented as a compiled C++
class library, and an interpreted application layer has been
implemented in Tcl/Tk. We have successfully built applica-
tions in both C++ and Tcl, and have been able to embed the
C++ toolkit into other systems. As anticipated, we have
found the toolkit easy to use, extend, and maintain, and found
that applications are portable across Unix and PC’s.

The software is freely available and can be found at
http://www.cs.rpi.edu/~martink  . We welcome all
comments, suggestions, bug reports, and contributions.

References

[1] J. Neider, T. Davis, Mason Woo.OpenGL Programming Guide. Addi-
son-Wesley, 1993.

[2] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object-Oriented Modeling and Design. Prentice-Hall, Englewood
Cliffs, New Jersey, 1991.

[3] G. Booch. Object-Oriented Design with Applications. Benjamin/
Cummings Publishing Co., Redwood City, CA, 1991.

[4] B. Stroustrup.The C++ Programming Language. Addison-Wesley,
Reading, MA, 1986.

[5] A. Goldberg. “Smalltalk-80: The Interactive Programming Envi-
ronment.” Addison-Wesley, Reading, MA, 1984.

[6] C. Upson, T. Faulhaber Jr., D. Kamins and others. “The Applica-
tion Visualization System: A Computational Environment for Sci-
entific Visualization.” IEEE Computer Graphics and
Applications.9(4):30-42, July, 1989.

[7] Data Explorer Reference Manual, IBM Corp, Armonk, NY.,
1991.

[8] IRIS Explorer User’s Guide, Silicon Graphics Inc., Mountain
View, CA, 1991.

[9] W. Schroeder. K. Martin, W. Lorensen.The Visualization Toolkit
An Object-Oriented Approach to 3D Graphics. Prentice Hall,
Upper Saddle River, NJ, 1996.

[10] W. J. Schroeder, W. E. Lorensen, G. D. Montanaro and B. Yam-
rom. “A Run-Time Interpreted Environment for Rapid Applica-
tion Development.” GE Corporate R&D Report No. 91CRD266.
January, 1991.

[11] W. J. Schroeder, W. E. Lorensen, G.D. Montanaro, and C. R.
Volpe. “VISAGE: An Object-Oriented Visualization System.”
Proc. of Visualization ‘92, pp. 219-226, IEEE Computer Society
Press, Los Alamitos, CA, 1992.

[12] J. Wernecke.The Inventor Mentor. Addison-Wesley, 1994.
[13] J. M. Favre and J. Hahn. “An Object Oriented Design for the Visu-

alization of Multi-Variate Data Objects.”Proc. of Visualization
‘94, pp. 319-325, IEEE Computer Society Press, Los Alamitos,
CA, 1994.

[14] J. K.Ousterhout.Tcl and the Tk Toolkit. Addison-Wesley Publish-
ing Company, Reading, MA, 1984.

[15] K. Martin. “An Approach to the Automatic Wrapping of a C++
Class Library into Tcl.” Submitted to Tcl/Tk Workshop ‘96.

[16] T. Ritchey.Java! New Riders Publishing, Indianapolis, IN., 1995.
[17] G. Abram and L. Treinish. “An Extended Data-Flow Architecture

for Data Analysis and Visualization.” InProceedings of Visualiza-
tion ‘95, pp. 363-370, IEEE Computer Society Press, Los Alami-
tos, CA, 1995.

[18] W. E. Lorensen and H. Cline. “Marching Cubes: A High Resolu-
tion 3D Surface Construction Algorithm.”Computer Graphics,
21(4):163-169, July, 1987.

[19] W. Schroeder, J. Zarge, and W. Lorensen. “Decimation of Trian-
gle Meshes.”Computer Graphics, 25(3), (Proc. SIGGRAPH `92),
July, 1992.

[20] G. Taubin. “A Signal Processing Approach to Fair Surface
Design.”Proc. SIGGRAPH ‘95. pp. 351-358, August 1995.

[21] T. Delmarcelle and L. Hesselink. “Visualizing Second-Order Ten-
sor Fields with Hyperstreamlines.”IEEE Computer Graphics and
Applications, 13(4):25-33, 1993.

[22] W. Lorensen. “Geometric Clipping with Boolean Textures.”Proc.
of Visualization ‘93, pp. 268-274, IEEE Computer Society Press,
Los Alamitos, CA, Press, October 1993.



Plate 1- “Hello Cone” example showing rendering window and Tcl/Tk interpreter.

Plates 2-4- Isosurfaces from medical dataset; decimated and smoothed mesh; cut plane in structured grid.

Plates 5 & 6- Streamtubes in flow around post; visualization of quadric function.

Plates 7-9- Hyperstreamlines around point load; splatted multi-dimensional data; texture cutting to reveal inner
structure of assembly.


