
1

Rendering Hair using Pixel Blending and Shadow
Buffers

André M. LeBlanc

Russell Turner

Daniel Thalmann

Computer Graphics Laboratory
Swiss Federal Institute of Technology

CH-1015, Lausanne, Switzerland

ABSTRACT

A technique is described for adding natural-looking hair to standard rendering algorithms.
Using an explicit hair model in which each individual hair is represented by a three-
dimensional curved cylinder the technique uses pixel blending combined with Z-buffer
and shadow buffer information from the scene to yield a final anti-aliased image with soft
shadows. Although developed for rendering human hair, this technique can also be used
to render any model consisting of long filiments of sub-pixel width. The technique can be
adapted to any rendering method that outputs Z-buffer and shadow buffer information and
is amenable to hardware implementation.

KEYWORDS

Hair, Human Animation, Alpha-Blending, Shadow Buffers, Particle Systems.

1. INTRODUCTION

The rendering of natural scenes with a high degree of complex detail remains one of the
most important and difficult goals of current image synthesis research. In the field of
human animation, hair presents perhaps the most challenging rendering problem and
therefore has been one of the least satisfactory aspects of human images rendered to date.
The difficulties of rendering hair result from the large number and detailed geometry of the
individual hairs, the complex interaction of light and shadow among the hairs, and the
small scale of the hair width in comparison with the rendered image. The rendering of
hair therefore constitutes a considerable anti-aliasing problem in which many individual
hairs, reflecting light and casting shadows on each other, contribute to the shading of each
pixel.

In a more general sense, we have to ask the question: what is it that we see when we
recognize human hair? We see not only the individual hairs, but also a continuous image
consisting of regions of hair color, shadow, specular highlights and, under backlight
conditions, haloing. The hair image itself can be totally opaque or it can obscure its
background with varying degrees of transparency and cast shadows on it. Despite this
complexity, the hair image usually has a definite pattern and texture to it which indicates to
the viewer, in aggregate form, the underlying geometrical distribution of the hairs
themselves.

Although the hair rendering problem has been addressed by a number of researchers, in
some cases with considerable success, we know of no practical method in the literature
for rendering hair that is efficient enough for animation purposes and generates acceptable
results. In this paper, we will present such a method, which is based on techniques such

2

as pixel blending and shadow buffering. It uses an explicit hair model, where each
strand of hair is represented individually, and can be used to add hair to images rendered
by any technique that generates Z-buffer and shadow buffer information.

2. PREVIOUS APPROACHES

Several researchers have published methods for rendering human hair, or the more
limited problem of rendering fur. The problem itself falls into the category of rendering
naturalistic phenomena, and has a lot in common with the problem of rendering grass and
trees, which has been addressed with much success.

2.1. Hair Properties

A human hair is, geometrically, a long, thin, curved cylinder. Typically, there can be
from 100,000 to 150,000 individual hairs on a human scalp. Depending on the
individual, the hairs can vary in width from 0.05mm to 0.09mm. The strands of hair can
have any degree of waviness from perfectly straight to kinky. The hair color itself (i.e. its
diffuse reflectance) can vary from white through grey, yellow, red, and brown, to black,
depending on the degree of pigmentation. Hair also has a strong specular component.

2.2. Volume Density Models

Very good results have been obtained for the more limited problem of rendering fur,
which can be considered very short hair. Perlin and Hoffert [PERL89] employed volume
densities, controlled with pseudo-random functions, to generate soft furlike objects.

Perhaps the most impressive rendering of fur to date was achieved by Kajiya and Kay
[KAJI 89] for a teddy bear using a generalization of 3D texturing known as texels. Texels
are a type of model intermediate between a texture and a geometry. The image was
rendered using raytracing and, using 16 processors, took a total wall-clock time of 2
hours. Although the results are spectacular, it is not clear how well the method can be
applied to long hair and the rendering times are impractical for animation purposes.

2.3. Explicit Hair Models

The most obvious, brute-force approach to rendering hair is to model each individual hair
as a curved cylinder. This immediately runs into several serious problems. For most
practical scenes, the hair width is quite a bit less than the size of a pixel. This can easily
be justified with the following argument: with a common perspective matrix set at an
angle of 45 degrees, the projection of a 0.1 mm wide segment onto a screen of 1000 by
1000 resolution from a distance of 40 cm covers only slightly less than one third of a
pixel. This results in a serious aliasing problem. The sheer number of cylinder
primitives, together with the large amount of oversampling necessary to overcome aliasing
can easily overwhelm most raytracing programs. The problem of hair self-illumination
cannot normally be handled by raytracing. Using a hardware-based graphics engine can
speed up the drawing of primitives, but aliasing, shadowing and lighting problems
remain.

2.3.1. Rendering Fur and Human Hair

Csuri et al. [CSUR 79] were the first to render fur-like volumes. Each hair was modeled
as a single triangle laid out on a surface and rendered using a Z-buffer algorithm for
hidden surface removal.

Better results were obtained by Gavin Miller, who rendered furry animals [MILL88a],
[MILL88b] by rendering images made of explicit hairs. Each hair was modeled with
triangles to form a pyramid. Oversampling was used to avoid aliasing. Although the

3

number of hairs was relatively small and their thickness was large, these techniques were
nonetheless rather computationally intense. Presumably, it would become impractical
when scaled up to a full human head of finer hair.

Watanabe and Suenaga [WATA 89] modeled human hairs as connected segments of
triangular prisms and were able to render a full head of straight human hair in a reasonably
short time using a hardware Z-buffer renderer with Gouraud shading. Although the hair
model had a realistic number of hairs (more than a million primitives), the illumination
model was quite simplistic and apparently no attempt was made to deal with aliasing. As
a result, the images have a stiff, wire brush-like appearance.

2.3.2. Grass using Particle Systems

Perhaps the closest thing to a practical technique for rendering properly anti-aliased hair in
the literature to date is the Reeves and Blau's rendering of grass [REEV 85] with particle
systems. The term "particle systems" was first used by Reeves in [REEV 83] but now
encompasses a range of techniques. For our purposes, a particle system is an animation
technique based on dimensionless points which represent objects that can be smaller than
a pixel. Since the original purpose of the technique was to animate particles in motion (for
a sequence in the film "Startrek II: The Wrath of Khan"), the points were displaced along
their paths of motion during one frame to simulate motion blurr, yielding three-
dimensional line segments. Later, the same technique was used to represent static images
with thin filaments, such as grass. As a result, the term "particle" often refers, in fact, to
a filament which may have a considerable length, but are usually very thin.

Although the particle's structure is smaller than a pixel, it does manifest itself on a larger
scale by the way it reflects light, casts shadows, and obscures objects behind it.
Therefore, the subpixel structure of the particle needs to be represented only by a model
that represents these properties. A particle system is rendered by painting each particle in
succesion onto the frame buffer, calculating for each pixel what the particle's color
contribution is to that pixel and combining it with the pixel's existing color.

Using particle systems and a frame buffer, Reeves and Blau were able to render an anti-
aliased, very natural looking field of grass containing over half a million particles in a
reasonable amount of CPU time. The technique has several limitations, however. In
particular, shadowing is limited, using a stochastic model for local self-shadowing and a
simple texture map projected onto the grassy field for shadows of external objects.

3. LIGHTING MODEL

We believe that a particle system type of rendering technique, where hair filaments of sub-
pixel width are blended at each pixel to create an anti-aliased image, to be the most
promising approach to achieving natural-looking hair, and forms the starting point for our
approach. The technique has several problems, however, which have to be addressed
when applying it to the rendering of hair.

Because hair is not confined to a specific surface volume, explicit control over the hair
length, curve and orientation is necessary. An appropriate lighting model has to be
developed. It must be capable of being integrated with other existing rendering algorithms
for rendering the hairless objects and should be able to use existing frame-buffer
hardware. Most importantly, shadowing has to be handled properly.

3.1. The Geometrical Model

Simple stochastic models are not sufficient to represent the type of order in a typical
human head of hair. Therefore, we regard the problem of hairstyle modeling as a
formidable topic of research in itself and choose to work here with an explicit hairstyle

4

model in which each hair is represented individually, allowing us to concentrate on the
rendering problem.

A strand of hair is a long, curved cylinder of constant thickness. It can therefore be
represented sufficiently for rendering purposes as a three-dimensional curve segment
together with a radius. We represent this curve as a polyline with segments varying in
length depending on the waviness of the hair. The complete hairstyle data structure
therefore consists of a very large number (over one million) of three-dimensional line
segments, together with a scalar thickness value.

3.2. The Lighting Model

When viewed as an aggregate material, consisting of many strands, hair exhibits subtle
optical properties which affect its appearance. The specular highlights in particular,
owing to the geometry of the individual strands, is highly anisotropic. Furthermore, the
interaction of light between the strands of hair is highly complex. Each strand reflects
light on adjacent hairs and casts shadows. In backlighting situations, a significant amount
of light is also diffusely transmitted through the hair itself, which is partially translucent.
Finally, the hair width is small enough to cause, in some situations, noticable diffraction
effects.

All of this serves to make the problem of finding an accurate hair illumination model an
extremely difficult one. Attempting to explicitly render the individual cylindrical surfaces
of each hair is clearly impractical. Acceptable results can be achieved in most situations
by using an illuminiation model consisting of a modified anisotropic diffuse and specular
reflectance together with proper shadowing.

t

l

r

e

θ

φ

Fig. 1: Hair Lighting Geometry

3.3. Illumination Model Diagram

The hair illumination model we use, based on [KAJI89], follows directly from the
underlying cylindrical nature of the hair strand. Figure 1 shows a segment of hair and the
important vector quantities used in the model. The unit tangent vector, t, represents the
direction of the hair's axis. The light vector, l , points in the direction of the light source.

5

The reflection vector, r , points in the direction of reflected light and is the direction of
maximum specular reflection. The eye vector, e, points in the direction of the viewer.
The angles θ and φ are the angles from the tangent vector to the light vector and eye
vectors respectively.

3.4. Diffuse Component

The diffuse component of the reflectance can be obtained by integrating the Lambert
cosine law along the illuminated half of the cylinder [KAJI89] to yield a simple function
of the angle θ:

Diffuse Reflectance = KDsin(θ)

Where KD is the coefficient of diffuse reflectance. This does not take into account self-
shadowing, that is, the fact that half of the hair strand is in shadow. Therefore, for an
opaque cylinder, the diffuse component will vary with what visible fraction is in shadow,
which is dependant on the direction of the eye vector, e. However, human hairs are
actually quite translucent so that the area in shadow transmits diffusely an amount of light
comparable to the amount reflected diffusely on the non-shadow side. As a result, this
simple formula makes an approximation that works well in practice.

3.5. Specular Component

The specular component is derived essentially by taking a Phong specular distribution and
rotating it around the hair axis. This is motivated by making a symmetry-based argument
[KAJI89]. At any section along the length of the hair, there are surface normals pointing
in all directions perpendicular to the tangent vector, t . Therefore, the 180 degree semi-
circular surface of the hair which is not in shadow will directly reflect light in a cone-
shaped 360 degree radial pattern formed by rotating the r vector around the hair axis.
This cone represents the angles of maximum specular reflection. The cylindrical Phong
specular component is calculated by taking the angle between this cone and the eye vector,
e, which equals φ + θ − π, and using this as the angle for the standard Phong equation:

Specular Reflectance = KS cosn(φ + θ − π)

Theoretically, an integral should be made around the circumfrence of the hair to yield a
much more complicated expression, so this is only an approximation. However, the
Phong model itself is only an approximation and experience has shown that the
cylindrical version of the Phong model generates quite acceptible results.

3.6. Intensity Equation without Shadows

The diffuse and specular components, together with an ambient component result in a hair
intensity equation of:

H = LAKA + Σ Li (KDsin(θ) + KS cosn(φ + θ − π))

where H is the hair intensity, defined as the power emanating from the hair strand per unit
projected area per unit solid viewing angle, Li is the light intensity, defined as the power
per unit area incident on the hair strand from the light source i, KA a is the ambient
reflectance coefficient and LA is the ambient light power incident per unit area.

4. PIXEL BLENDING

6

Given the illumination model, the next task is to render the individual hairs in a manner
such that aliasing artifacts are avoided. This is accomplished using a pixel blending
technique which is similar to a method developed for particle system rendering. We will
present the technique first without shadowing and then in the next section show how full
shadowing can be incorporated into it.

4.1. The aliasing problem

Aliasing is an artifact that results whenever a source of data is sampled that contains
higher resolution information than the sampling resolution. In the case of image
synthesis, aliasing becomes a problem whenever the scene to be rendered contains detail
smaller than a pixel. This is particularly true of hair where, in a normal viewing
configuration, the thickness of a human hair is much less than a pixel width and tens or
hundreds of hair strands contribute to the intensity of a single pixel.

A straightforward solution to the aliasing problem is to treat each pixel as a square and
then consider that portion of the hair strand passing through the projection of the pixel.
The light intensity contributed by that segment of the hair strand within the boundaries of
the pixel projection is considered to be that hair's contribution to the pixel intensity.

Such an antialiasing method is called box filtering because the antialiasing filter is likened
to a box constructed above the pixel. The uniform height of the box represents equal
weight averaging over the entire pixel area.

4.1.1. Pixel Coverage of Hairs

Therefore, to correctly render a single box-filtered pixel, the light intensity contributed by
every hair passing through the projection of the pixel must be blended together properly,
along with the underlying hairless image, to form the final pixel intensity. This process is
called pixel blending.

Since the lighting model we have used represents the total intensity of the projected hair
strand, its intensity contribution to the pixel is equal to the intensity of the hair, H, times
the fractional area of the pixel that the hair occupies. The total color value of the pixel, or
pixel intensity P, therefore is:

P = FBB + Σ FjHj

where B is the intensity of the hairless image's pixel, FB is the fraction of pixel area
covered by the hairless image, Hj is the hair intensity of hair j, and Fj is the fraction of
pixel area covered by hair j. Note that the sum of all Fj plus FB is equal to one.

4.1.2. Overlapping of Hairs

As the figure 2 illustrates, there are several factors which determine the hair strand's pixel
area fraction: the width of the strand, the length of the segment within the pixel, and
overlapping strands. Because of the problem of overlapping hairs, finding the exact value
of Fj is a considerable geometrical problem and would normally be prohibitively
expensive.

7

Fig. 2: Hair Strand Pixel Coverage

4.2. Pixel Blending Solution

Fortunately, by making a simplifying assumption, it is possible to reduce the complexity
of this problem and make it amenable to standard screen-buffer rendering techniques.
This assumption is that, on average, hair intensity information is distributed evenly about
the area of the pixel projection. If this is true, then the effect on the overall pixel intensity
of laying down one hair strand on top of all the other strands is the same, on average, as
laying down one strand on top of an equivalent background of uniform intensity.

4.2.1. Blending pixel color in proportion to coverage

The assumption of uniform intensity distribution allows the complex geometry of all the
overlapping hairs to be represented by a single intensity value. This leads to a simple
iterative algorithm to blend each hair in its correct proportion. If the pixel intensity is
initialized to the hairless image's value, then each hair strand's intensity can be blended
into the pixel in back-to-front order in proportion to its projected surface area. The
intensity of the pixel Pn after blending in the nth hair strand is therfore:

Pn = (1 - An)Pn-1 + AnHn , P0 = B

where B is the hairless image intensity, Hn is the intensity of the nth hair and An is the
area of the hair strand's projection.

4.2.2. Alpha Blending

This iterative function corresponds to the "over" compositing operator [PORT 84] used in
compositing raster images with alpha channels. This compositing technique, called
"alpha-blending" allows raster operations to be performed on a frame buffer according to
an alpha channel. The alpha channel is an additional component of each pixel, along with
the red, green and blue components, which can be used to control the amount by which
new source pixel values are blended into existing destination pixels. One of the
advantages of using pixel-blending techniques is that they are easily implemented in
hardware and many advanced frame-buffer architectures incorporate an alpha channel and
pixel compositing operations.

8

Pixel blending is often used to simulate transparency effects, and it is not surprising that
the same technique can be used for rendering hair because hair as an aggregate material
has a transparent quality to it, if it is spread fairly thinly. Hair is different from a
transparent material, however, in that it saturates after reaching a certain density. In other
words, as an obscuring transparent material's thickness is increased, some percentage of
the hairless image color will always get through, while adding more hair strands will
eventually completely obscure its hairless color.

This points out a descrepancy, resulting directly from the assumption of equal intensity
distribution, between the pixel blending based algorithm, which does not saturate, and
the actual optical properties of hair, which does saturate.

4.3. Depth Information

The pixel blending based algorithm requires that, for each pixel, the hair strands are
blended in back-to-front order. Also, only visible hair strands should be blended, that is,
strands obscured by the hairless objects are not visible and therefore should not be
blended. This requires depth information at each pixel for each strand and the depth
values of the hairless object's pixels. The hair strands' pixel depths are then sorted.
Pixels with depths greater than the hairless image are discarded and the remaining pixels
are blended into the hairless image in reverse depth order.

The depth of each hair strand at its projection onto to pixel can be determined by
transforming it into the viewing coordinate system. The depth of the hairless objects must
be determined by the rendering software used to generate the hairless image. Since pixel
blending is an image composition technique, it works by post-processing an existing
image and therefore can be used on any image rendered by a method that generates depth
information for each pixel. This depth value, which is called a Z-buffer value, is then
used, together with the renderer's camera viewing parameters, to determine the hair
strand's visibility with respect to the hairless scene.

4.4. Line Color Interpolation

As described so far, the hair pixel blending algorithm has major complexity problems
brought about by the need to break each hair strand up into pixel-sized segments. Most
straight to moderately wavey hair, however, can be represented fairly accurately by
straight line segments with a projected length of many pixels. Not only are these
segments straight, but their color tends to vary fairly continuously over the length of the
segment.

A single hair can therefore be rendered quite well by simply breaking it into appropriate-
lengthed segments, calculating the hair intensity at each of the the segment end-points, and
then drawing each of the line segments into a frame buffer with linear color interpolation
between the colors at the end-points. The result is a single hair strand rendered with a
smoothly varying intensity along its length.

Rendering a hair strand in this manner takes advantage of the coherence in intensity along
the length of the strand. It also allows the use of standard anti-aliased algorithms which
have been implemented in hardware in many commercially available graphics hardware
systems. The actual hair intensity, based on the lighting model, only needs to be
calculated at the end-points of the segments and then the line-drawing and color
interpolation algorithms are used to calculate the intermediate pixel values. The same
technique can be extended to render many strands by using pixel blending and
interpolating the alpha channel as well.

5. ADDING SHADOWS

9

Shadowing is an essential part of rendering realistic looking hair. This was pointed out
by Kajiya [KAJI 89], who gave examples of fur rendered with and without shadowing.
Long hair presents a wider variety of shadow effects due to the more complex geometry
and the interaction between the hairless image and the hair. A solution to this problem is
incorporated into our algorithm for rendering hair.

5.1. The Shadowing Problem

Given the large number of hair strands involved, rendering shadows is obviously a very
difficult problem. Raytracing is usually the most accurate method of calculating shadows,
by casting secondary rays, but it is impractically expensive for rendering hair. Also, a
raytracing shadow method requires that the hair rendering be incorporated into the hairless
scene rendering algorithm, while the pixel blending algorithm allows the hair to be
rendered in a completely separate post-processing step.

To render a naturalistic human head with hair, shadows must be cast not only from the
head onto the hair, but from the hair onto the head. The hair strands can also cast
shadows on other strands and this has a quite noticable effect on the appearance of hair.

5.2. Shadow Buffer Solution

Fortunately, there exist shadow rendering techniques which operate on raster images with
depth maps. Although shadow buffer algorithms can not usually produce shadows with
sharp edges, they can create very acceptible soft shadows with penumbra. This is very
appropriate for hair because hair almost always casts somewhat diffuse shadows. Most
importantly, shadow composition is fast enough to be practical for animation purposes
[REEV 87].

For rendering hair, we combine shadow buffer algorithms and pixel blending to produce
very naturalistic results with reasonable efficiency.

5.2.1. Shadow Projection Masks

The simplest shadowing technique is to simply project a two-dimensional shadow pattern
onto an object. [REEV 85] from the point of view of each light. This method is obviously
limited to certain geometrical configurations where the three-dimensional nature of the
shadow casting objects are not significant and it is not adequate for rendering hair.

5.2.2. Shadow Buffers

By adding depth information to a shadow pattern, however, the full three-dimensional
information of the shadows is retained, resulting in a general-purpose shadowing method
[WILL 78], [REEV 87] that is quite efficient. We call a raster image containing only
depth information of a scene from a light source a shadow buffer. It is created by
projecting the scene onto a pixel array from the point of view of the light source. Only
one piece of information, the depth or Z value, is stored for each pixel.

This results in a shadow buffer which records the region of space which is visible to the
light source and therefore not in shadow. A shadow buffer is necessary for each light
source together with the projection matrix used to create it.

Using this method, it can be determined whether any point in world-cordinate space is in
shadow by projecting the point onto each of the light source's shadow buffers. If the
projected depth is greater than the depth in the shadow buffer, the pixel is in shadow for
that light source.

5.2.3. Percentage Closer Filtering

10

Compositing shadows using shadow buffers has an obvious aliasing problem due to the
sampled nature of the image and the shadow buffers themselves. In fact, Reeves et al
[REEV 87] point out that there are two aliasing problems. The first problem of aliasing is
caused by depth sampling to create the shadow buffers. This can be solved by using
stochastic sampling, or jittering, to create the depth maps.

The second aliasing problem arises when the shadow buffers themselves are sampled to
determine if a point is in shadow. The solution to this, proposed by Reeves et al, is to use
percentage closer filtering. In this technique, a region representing the pixel to be
rendered is projected back onto the shadow buffer. Generally, this will cover a region of
several pixels in the shadow buffer. Each one of these depth values is then compared to
the depth of the rendered pixel to determine if it is in shadow, resulting in a binary image
in the sample region representing the shadow's edge. This image is then filtered, using
some kind of weighted average, to obtain a gray-scale value that indicates the degree of
shadowing for that light.

Percentage closer filtering results in shadows with soft edges which resemble real
penumbra. The degree of softness can be varied to simulate a diffuse light source by
enlarging or reducing the area of the sample region.

5.3. Pixel Blending Hair with Shadows

Shadows can be added into the hair pixel blending algorithm by incorporating it into the
lighting model used to calculate the hair intensity. Taking the hair intensity equation of
section 3, we add a shadowing cooefficient, Si , which represents the amount that the ith
light should be attenuated by shadowing.

H = LAKA + Σ SiLi (KDsin(θ) + KS cosn(φ + θ − π))

The value of Si is obtained by percentage closer filtering the pixel at the hair strand's
depth value against the shadow buffer for the ith light source. The resulting hair intensity
value is then blended into the pixel using the hair blending algorithm described in section
4.

One possible drawback of this method is that shadow calculations are only made at the
endpoints of the hair segments. As a result, shadows are interpolated along the length of
each segment, resulting in a softening of the shadow boundaries. However, as long as
the shadows are fairly diffuse, so that the penumbras are larger than the hair segments,
this does not create a noticable problem.

Pixel blending hair with shadow buffers requires that the original hairless scene be
rendered in such a way that shadow buffers are generated for each light source. This
allows shadows to be cast from the scene onto the hair. To cast shadows from the hair
onto the hair requires an augmented shadow buffer that includes the hair in the depth map.

This can be done by creating a separate shadow buffer for the hair and then combining the
two depth maps. At each pixel, the depth values are compared and the lower value is
retained, resulting in a hair and scene composite shadow buffer (see figure 3c). The hair
shadow buffer can be created using any rendering technique that generates depth values,
preferably a hardware-based one because of large number of hair segments involved. The
composite shadow buffer can then be used to determine the shadowing coefficient,
resulting in shadows cast on the hair by the hair as well as by the scene.

Creating the shadow buffers seperately allows the hair buffer to be rendered using a much
more efficient technique than that used in the hairless image renderer. However, the use
of a hair shadow buffer has an obvious aliasing problem in the depth domain, analogous

11

to the aliasing problem for rendering. A single hair strand will not cast much of a
shadow, but it will leave a depth value in the shadow buffer. In most cases this is not a
problem if fairly diffuse shadowing is used.

5.4. Hair Shadows on Hairless Image

The use of composite shadow buffers in the pixel blending algorithm allows shadows to
be cast from the scene onto the hair and from the hair onto the hair, but does not account
for shadows cast from the hair onto the scene. To do this properly requires that the scene
rendering software be able to import shadow buffers to use in its rendering algorithm.
The composite scene-and-hair shadow buffer can then be fed into the renderer, generating
a scene with hair shadows but no hair (see figure 3d). Hair with shadows can then be
blended into the scene to form a final image with full shadowing (see figure 3f).

This type of shadowing is the only aspect of the hair rendering algorithm that requires
internal access to the scene rendering software. The remaining parts can all be
implemented as an image composition process on an existing rendered image.

6. HAIR RENDERING PIPELINE

The previous sections have described the various component techniques used in our hair
rendering method. The full rendering pipeline is now summarized in the following
algorithm and in figure 3.

1) Take the scene model description and project it onto each light source,
creating one scene shadow buffer for each light source. Usually the scene
rendering software can be adapted to perform this function.

2) Take the hair model and project it onto each light source, creating one hair
shadow buffer for each light source. This can be done very efficiently by
drawing each hair segment into a Z-buffer based frame buffer and
extracting the resulting depth map.

3) Composite the depth maps for the scene shadow buffer and the hair
shadow buffer, resulting in one single composite shadow buffer for each
light source.

4) Generate the scene image and its Z-buffer, using the scene model
description and the composite shadow buffers as input to the scene
renderer, resulting in a fully rendered scene with hair shadows, but no
hair.

5) Blend the hair segments into the scene image, using the scene's Z-buffer to
determine visibility and the composite shadow buffers to determine
shadowing, yielding the final image with hair and full shadows.

The hair blending algorithm mentioned in step 5 is as follows:

1) Load the scene image and its Z-buffer into the frame buffer.

2) Break each hair strand of the hair model into straight 3D line segments and
determine the tangent vector at each segment's endpoints.

4) Project all the segments for all the hairs into the viewing coordinate system
and sort by average depth.

5) Scan the hair segments in reverse depth order. For each segment:

12

a) Determine the intensity, H, of each of the segment's endpoints, using
the hair intensity equation with shadows.

b) Transform the hair segment into viewing coordinates.

c) Determine fraction of pixel coverage, F, for the line segment based on
width of hair and viewing projection. Set this as the line segments's
alpha value.

d) Draw line segment as an alpha-blended line into the frame buffer, using
Z buffering for hidden surface removal and linear color interpolation
between the intensities of the endpoints.

13

a. Scene shadow
buffer from light i.

b. Hair shadow
buffer from light i.

c. Composite shadow
buffer from light i.

d. Hairless scene rendered
using all shadow buffers.

e. Hairless scene's
z-buffer.

f. FINAL IMAGE: hair is blended
into hairless scene, using all
shadow buffers.

Figure 3. Hair Rendering Pipeline.

7. IMPLEMENTATION AND RESULTS

Our hair rendering system is implemented on a Silicon Graphics Iris Power Series
workstation with a VGX graphics board. This hardware configuration provides hardware
support for coordinate transformations, Z-buffer hidden surface removal, alpha blending
and linear color interpolation.

Because the algorithm uses so many shadow buffers and because the hair model consists
of such a large number of explicit hair segments, memory size can become an issue. The

14

hair segments themselves, which can sometimes number in the millions, are stored using
three-dimensional 16-bit integer local coordinates to conserve memory. The local hair
coordinates are multiplied by the local transformation matrix to yield their world
coordinate values. The coordinate system is normalized to the bounding volume of the
hair model to maximize the resolution.

In Figure 3, the number of hairs rendered is 101608 with a total of 810326 segments.
Three shadow buffers of 1000 by 1000 pixels resolution were used to render Figures 3d
and 3f. The shadow buffer in Figure 3b was generated using a hardware based Z-buffer
taking 24 seconds. Rendering the hairs into Figure 3f took 8 min 10 seconds (wall-clock
time). This includes 3 min 30 seconds for shading calculations distributed on four
processors, 2 min 12 seconds for sorting and 17 seconds for pixel blending using a
Silicon Graphics VGX board with anti-aliased line drawing and alpha-blending.

Figure 4 shows four balls enclosed a multiple shadowing environment.

8. CONCLUSION

We have shown that, by combining a number of existing rendering and image
composition techniques in new ways, it is possible to render naturalistic human hair free
of aliasing artifacts and with full shadowing, in a reasonable amount of CPU time. The
algorithm makes use of standard scan-conversion techniques which are available in many
graphics hardware architectures and many other aspects of the algorthm could be easily
implemented in hardware.

The technique does, however, make certain simplifiying assumptions which, in some
cases, give unsatisfactory results. In particular, the depth aliasing problem with the
shadow buffers tends to cause overly dark shadows cast by relatively transparent hair
volumes. We are continuing to investigate several possible solutions to this problem.

Ultimately, the greatest challenge in creating realistic images of human hair is in modeling
not just the optical properties but the complex mechanical behavior of hair as well. Any
such models must take into account the interaction of the strands with each other to form
an aggregate material with quite complicated properties. This remains a relatively
unexplored area of research.

ACKNOWLEDGMENTS

The authors would like to thank Gavin Miller for reviewing the text. The hairless images
were rendered using a modified version of Craig Kolb's rayshade 3.0 program. This
research was partly supported by "Le Fonds National Suisse pour la Recherche
Scientifique"

REFERENCES

[CARP 84] Carpenter L. "The A-buffer, an Antialiased Hidden Surface Method,"
Computer Graphics 18(3), 1984, pp. 103-108.

[CSUR 79] Csuri C., Hakathorn R., Parent R., Carlson W. and Howard M.
"Towards an interactive high visual complexity animation system,"
Computer Graphics 13(2), 1979, pp. 289-299.

[KAJI 89] Kajiya J.T. and Kay T.L. "Rendering Fur with Three Dimentional
Textures," Computer Graphics 23(3), 1989, pp. 271-280.

[MILL 88a] Miller Gavin S.P. "From Wire-Frame to Furry Animals," Graphics
Interface 1988 (Proc.), pp. 138-146.

15

[MILL 88a] Miller Gavin S.P. "The Motion Dynamics of Snakes and Worms,"
Computer Graphics 1988 22(4), pp. 169-178.

[PERL 89] Perlin K., Hoffert "Hypertexture," Computer Graphics 23(3), 1989, pp.
253-262.

[PORT 84] Porter T. and Duff T. "Compositing Digital Images," Computer
Graphcis 18(3), 1984, pp. 253-259.

[REEV 83] Reeves W.T. "Particle Systems - A Technique for Modeling a Class of
Fuzzy Objects," Computer Graphics 17(3), 1983, pp. 359-376.

[REEV 85] Reeves W.T. and Blau R. "Approximate and Probabilistic Algorithm for
Shading and Rendering Structured Particle Systems," Computer
Graphics 19(3), 1985, pp. 313-322.

[REEV 87] Reeves W.T., Salesin D.H. and Cook R.L. "Rendering Antialiased
Shadows with Depth Maps," Computer Graphics 21(4), 1987, pp. 283-
291.

[WATA 89] Watanabe Y. and Suenaga Y. "Drawing Human Hair Using Wisp
Model," Computer Graphics International (Proc.), 1989, pp. 691-700.

[WILL 78] Williams, L. "Casting Curved Shadows on Curved Surfaces" Computer
Graphics 12, 3 (August 1978), pp. 270-274.

