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Abstract 
 
The tutorial is an introduction to programming today’s PC graphics hardware. It covers basic hardware architecture, 
optimization, programming interfaces and languages. It presents graphics and non-graphics applications. While the 
tutorial assumes basic knowledge in programming and principles of 3D computer graphic, familiarity with PC 
graphics hardware is unnecessary.  
The tutorial notes below are complementary to the tutorial slides. 
 
 
 
 
1. Introduction and Overview 
 
In the past ten years, graphics hardware has undergone 
a true revolution: Not only has its computation power 
increased at a higher pace than the already exponential 
pace of general purpose hardware, but its cost has also 
dropped so much that it has become available in every 
personal computer on the market. Both this ubiquity 
and the formidable levels of computation power that 
have been reached over the years have prompted 
software developers to leverage graphics hardware in 
ever increasing creative ways, from the production of 
video games and computer generated movies to 
computer aided design and scientific visualization, or 
even by using it to solve non–graphics–related 
problems. 
In addition to becoming very powerful and cheap and 
continuing to do so, graphics hardware has also 
become far more flexible: It went from being a simple 
memory device to a configurable unit and relatively 
recently, to a fully programmable parallel processor. 
This tutorial presents the basic notions required for 
programming PC graphics hardware, from a low level 
point of view – architecture, programming interfaces –, 
as well as from a high level point of view – 
optimization, application. 
The first presentation – Introduction to the Hardware 
Graphics Pipeline – lays down the overall framework 
of the tutorial by describing the PC graphics hardware 
architecture and introducing the terminology and 
concepts assumed in the subsequent presentations. It 
assumes familiarity with the principles of 3D 
computer graphics. 
A graphics application that makes use of the graphics 
hardware has two components: One that gets executed 
on the main processor unit of the PC and the other one 
that gets executed on the graphics hardware itself. The 
second presentation – Controlling the GPU from the 
CPU: The 3D API – focuses on the first component 
that is in charge of controlling the graphics hardware 
by managing high level tasks, as well as the data flow 

between the two components. The third presentation – 
Programming the GPU: High-Level Shading 
Languages – focuses on the second component that 
performs all the work of computing the output from 
the graphics hardware – usually images –. Both 
presentations assume basic knowledge in software 
programming. 
The fourth presentation – Optimizing the Graphics 
Pipeline – deals with the subject of optimization that 
is obviously a key part of graphics hardware 
programming since speed is the main motivation 
behind it.  
The two last presentations are content–oriented: The 
first one – Advanced Rendering Techniques –describes 
a variety of graphics effects that current graphics 
processors are capable of rendering in real–time; the 
second one – General-Purpose Computation on GPUs 
– is devoted to non–graphics applications, how they 
manage to map to the graphics pipeline and leverage 
its computation horsepower. 
 
 
 
2. Introduction to the Hardware 
Graphics Pipeline 
 
By using graphics hardware, applications can achieve 
real–time rendering. This means that they’re able to 
compute images from a complex 3D scene at fast 
enough rates that users can comfortably interact with 
the scene. It is generally admitted that such 
interactivity starts at 10 frames per second, but the 
required minimum display rate varies from one 
application to another. 
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Figure 1: From triangles to pixels in real-time 

There are obviously several techniques to create an 
image from a 3D scene, but one that has proved to 
map very well to hardware and be most effective for 
real–time rendering is to tessellate the scene into 
triangles and process those triangles using a pipeline 
architecture. Several units are working in parallel on 
different triangles at different stages of their 
transformation into pixels. The graphics pipeline splits 
into three functional stages (figure 2): The application 
stage that outputs the 3D triangles representing the 
scene, the geometry stage that transforms these 3D 
triangles into 2D triangles, projecting them onto the 
screen based on the point of view, and the rasterization 
stage that fragments these 2D triangles into pixels and 
computes a color for each of these pixels to form the 
final image; these colors are computed from some 
attributes attached to every vertex of the initial 3D 
triangles and linearly interpolated across the triangles. 
 

 
Figure 2: The graphics hardware  pipeline 

architecture 

The bulk of the presentation describes how the 
graphics pipeline is implemented in a PC. For our 
purpose, a PC can be modeled as a mother board 
connected to a video board through a bus. The mother 
board hosts the central processor unit or CPU and the 
system memory. The graphics board hosts the graphics 
processor unit or GPU and the video memory. 
The approach taken is to follow this implementation as 
it evolved through time starting in 1995 and focus 
along the way on the various hardware units and 
features as they’ve been introduced for the first time in 
the pipeline. 
The 3dfx Voodoo is generally credited as the first 
graphics processor unit for the PC architecture. It is 
limited to processing 2D triangles only: The geometry 
stage is entirely done in the CPU. The rasterization 
stage is composed of: 

- A rasterizer that computes the pixels belonging to 
each 2D triangle being passed from system 
memory to video memory by the CPU through 

the Peripheral Component Interconnect or PCI 
bus; every pixel comes with a depth value that 
will be used subsequently to resolve visibility 
between triangles; 

- A texture unit that assigns some color to each of 
these pixels using textures that are stored in video 
memory and mapped to the triangles based on the 
triangle vertices’ texture coordinates; a final color 
for every pixel is computed by modulating the 
texture color with the interpolated vertex colors 
(Gouraud shading); 

- A raster operations unit that determines how each 
of the pixels of a given triangle affects the final 
image stored as a color buffer in a part of the 
video memory called frame buffer; the frame 
buffer also contains a depth buffer or z–buffer 
that is used to resolve visibility for opaque 
triangles at the pixel level by using the pixels’ 
depth values; the color of a new–coming pixel is 
either discarded, or is blended with or simply 
overwrites the color stored in the color buffer at 
the same position. 

In general, each unit described above and below is 
duplicated multiple times in a single GPU to increase 
parallelism. 
Visibility solving using a z–buffer and texture 
mapping are the two main features of this first GPU. 
 

 
Figure 3: Texture mapping 

Texture mapping (figure 3) consists in wrapping an 
image – a texture map – around a triangle mesh. Every 
vertex of the mesh is assigned 2D coordinates defining 
the point it maps to in the image. These texture 
coordinates are interpolated across the triangles in a 
so–called perspective–correct fashion, which means 
that the interpolation is linear in 3D space and not 2D 
screen space like it was the case on some simpler 
hardware at the time. Texture filtering is used to 
compute the color of a screen pixel based on its 
footprint in the texture map. A pixel of the texture 
map is usually referred as a texel. When a screen pixel 
covers one texel or less – texture magnification –, its 
color is taken as the closest texel from the pixel’s 
footprint center, or is computed by bilinear filtering, 
that is bilinear interpolation of the four closest texels. 
When it covers several texels – texture minification –, 
mipmapping is the preferred solution: Precomputed 
lower resolution versions of the original texture map – 



Randy Fernando, Mark Harris, Matthias Wloka and Cyril Zeller / Programming Graphics Hardware 

      © The Eurographics Association 2004 
 

3

called mipmap levels – are stored along with the full 
resolution version and the right mipmap level is 
selected to come down back to the magnification case. 
Trilinear filtering is when bilinear filtering is 
performed twice based on two consecutive mipmap 
levels and the results are averaged together. In 
addition to the filtering method, anisotropic filtering 
can also be optionally selected when performing a 
texture lookup. Anisotropic filtering increases quality 
for the cases where the pixel’s footprint is elongated in 
one direction: It consists in performing the filtering 
computations above at several points in the pixel’s 
footprint along this direction. 
In 1998, NVIDIA and ATI introduce the TNT and 
Rage GPUs respectively that come with multitexturing 
capabilities: One pixel can be colored using more than 
one texture without having to send the triangle twice. 
A very common and direct application of this feature 
is the light map technique (figure 4), which amounts to 
modulating base textures, representing the material 
colors, with textures containing precomputed lighting 
information for static lighting. 
 

 
Figure 4: Light mapping 

The bandwidth between the CPU and the GPU also 
doubles this year as the PCI bus gets replaced with the 
Accelerated Graphics Port or AGP bus which has the 
other advantages of using: 

- A serial connection, making it cheaper  and more 
scalable, 

- A point–to–point protocol, so that bandwidth 
isn’t shared among devices, 

- A dedicated piece of system memory that serves 
as non–local video memory when the system gets 
short of local video memory. 

In 1999–2000, with NVIDIA’s GeForce 256 and 
GeForce2, ATI’s Radeon 7500, and S3’s Savage3D, 
the geometry stage moves from the CPU to the GPU 
with the addition of a Transform and Lighting or TnL 
unit. The GPU is now fed with 3D triangles along with 
all the necessary information for lighting these 
triangles. Many more operations can also be 
performed at the pixel level through the new register 
combiner unit. True bump mapping (figure 5) 
becomes possible by fetching the normal at every 
pixel from a texture instead of using the interpolated 
normal. 
 

 
Figure 5: Bump mapping 

These GPUs also support new texture formats: Cube 
textures used for environment mapping (figure 6) and 
projective texture used to project textures onto the 
scene (shadows or simple decal textures). 
 

 
Figure 6: Environment mapping 

2001 is the first introduction of some programmability 
into the GPU with NVIDIA’s GeForce 3 and GeForce 
4 Ti and ATI’s Radeon 8500. Per–vertex operations 
are downloaded to the GPU in the form of a small 
program that gets executed by a vertex shader unit. 
Note that this program is also very often called vertex 
shader. The only programming feature missing from 
the programming model at this time is flow control. 
These GPUs also support volume textures that add a 
third dimension to the regular 2D texture and 
hardware shadow mapping (figure 7; available on 
NVIDIA’s GPUs only) that significantly accelerates 
the very popular shadow buffer technique used to 
compute shadows for moving objects and lights. 
 

 
Figure 7: Hardware shadow mapping 

In the context of computer graphics, antialiasing refers 
to the process of reducing image aliasing, which 
regroups all the undesirable visual artifacts due to 
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insufficient sampling of primitives, textures or shaders. 
Shader antialiasing can be tricky, especially with 
conditionals – available in GPUs after 2002 –. New 
pixel shader instructions are added to today’s GPUs 
that allows shader writers to implement their own 
filtering. Texture antialiasing is largely handled by 
proper mipmapping and anisotropic filtering. Various 
primitive antialiasing methods have been present in 
GPUs since 1995, but bad performance limited their 
usage. 2001’s GPUs come with a new method, called 
multisampling, which for the first time really enables 
primitive antialiasing without dramatically limiting 
frame rates. 
In 2002–2003, with NVIDIA’s GeForce FX Series and 
ATI’s Radeon 9000 and X800 Series, per–pixel 
operations are also now specified as a program that 
gets executed on a pixel shader unit. Full flow control 
is available for vertex shaders, but only static flow 
control for pixel shaders. Flow control is defined as 
static when the conditionals used to control the flow 
only depend on global variables that are set per batch 
of triangles, as opposed to dynamic flow control for 
which conditionals are evaluated each time the 
program is executed for a given pixel. 
 

 
Figure 8: The GeForce 6 Series architecture 

As illustrated in figure 8, the NVIDIA’s GeForce 6 
Series, introduced in 2004, unifies the GPU’s 
programming model, now referred as Shader Model 
3.0, by offering full flow control for pixel shaders and 
texture mapping capabilities for vertex shaders. 
Although supported by the previous generation of 
NVIDIA’s GPUs, 32–bit floating point precision, as 
well as the new pixel shader instructions mentioned 
earlier to help with shader antialiasing (derivative 
instructions), are now enforced with Shader Model 3.0 
as well, bringing shading quality to the next level. An 
additional nicety is the access to a special “face” 
register from the pixel shader, very precious for two–
sided lighting. 
Another major unification by the GeForce 6 Series is 
the support for 64–bit color across the entire graphics 
pipeline. A 64–bit color is made of four components 
(red, green, blue and alpha) each of them stored as a 
16–bit floating point number. The 16–bit floating 
point format implemented by NVIDIA’s GPUs is the 
same as the one specified by the OpenEXR standard. 
Using this format, as opposed to the standard 8–bit 
fixed point color format, suddenly makes real–time 
high–dynamic range imaging a reality (figure 9). The 

previous generation of GPUs has partial support for 
this format, but lacks the crucial features of texture 
filtering and frame buffer blending that the GeForce 6 
Series supports. 
 

 
Figure 9: Real-time tone mapping 

At last, 2004’s GPUs are all compliant with the new 
Peripheral Component Interconnect Express or PCIe 
bus that is the new norm for the PC architecture. PCIe 
is 16 times faster than the original AGP bus and 
supports this high bandwidth not only from the CPU 
to the GPU, but from the GPU to the CPU as well 
(unlike AGP): a must for applications that need to get 
the results of the GPU computation back to the CPU 
like non–graphics applications and video applications. 
In addition to PCIe, the GeForce 6 Series has also 
more features targeted at video applications: a video 
mixing renderer, an MPEG 1/2/4 encoder / decoder 
and HDTV output. 
The future will bring even more unified general 
programming model at primitive, vertex and pixel 
levels and some scary amounts of: 

- Floating point horsepower (2004’s high–end 
GPUs have 6 vertex shader units and 16 pixel 
shader units), 

- Video memory (2004’s high–end GPUs have 512 
MB), 

- Bandwidth between system and video memory 
(2004’s PCIe peaks at 4GB/s). 

Future GPUs will cost less and require less power to 
make 3D graphics hardware even more ubiquitous. 
 
 
 
3. Controlling the GPU from the 
CPU: The 3D API 
 

 
Figure 10: Graphics software architecture 

Figure 10 shows the various software components that 
make a graphics application and where they get 
executed in the graphics hardware pipeline. This 
presentation is about the part that is run on the CPU 
and controls the GPU by managing high–level tasks, 
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as well as the data flow between the two processors. 
This program is typically written in C or C++ and is 
made up of two parts that are compiled separately and 
link to each other dynamically: One part is 
application–specific and hardware independent and 
sits on top of the other part that deals with the 
hardware specifics. This second part is mostly made of 
what is called the hardware driver. The application can 
thus run on different GPUs and with different drivers 
without the need of recompilation. The decoupling 
between these two parts is done the usual way by 
making them communicate through an application 
programming interface or API that basically abstracts 
away the hardware and driver implementations from 
the application–specific code. 
As of today, there are two 3D APIs: DirectX and 
OpenGL. DirectX is maintained by Microsoft 
Corporation and OpenGL by the OpenGL 
Architectural Review Board or ARB composed of 
several companies (see 
http://www.opengl.org/about/arb). 
DirectX is C++–based and up until now, a new 
version of the API was released every year or so, 
although this pace seems to slow down a bit now. It is 
compatible with the Windows operating system only 
and very popular in the PC game industry.  
OpenGL is C–based and evolves through a system of 
extensions that may or may not ultimately be moved 
into the API core. It is available for most common 
operating systems and very popular in the academic 
world and all the non game–related graphics industries. 
The presentation focuses on the most common usage 
of these APIs to develop a real–time graphics 
application. Such applications generally use double–
buffering to display animation frames without tearing: 
One frame is stored into a part of video memory, 
called the front buffer, that is displayed on the monitor 
(or other output device) while the next frame is 
computed by the GPU into an invisible part of video 
memory called the back buffer; when the computation 
is done, the two buffers are swapped. The basic 
skeleton of a real–time graphics application is thus: 

- Initialization 
- For each frame: 

o Draw to the back buffer 
o Swap back buffer with front buffer 

The initialization encompasses the initialization of the 
API and the creation of all the resources needed to 
render the scene. 
The initialization of the API consists in first creating a 
window and then creating a render context or device 
that defines the mode used by the application to 
operate with the graphics hardware, including the back 
buffer pixel format, the front and back buffer 
swapping method and whether the application is in 
windowed or fullscreen mode. This initialization 
always involves code that is specific to the operating 
system. Libraries like GLUT or AUX advantageously 
complement OpenGL by providing APIs that simplify 
this initialization step and hide its operating system 
specific code. 
The resources allocated at initialization are: 

- Render targets 
- Vertex and pixel shaders 
- Textures 
- Index and vertex buffers 

Render targets are pieces of the video memory that 
can be used as color or depth buffers to compute 
intermediate images that are then used as textures to 
contribute to the final image in the back buffer. This 
process is called offscreen rendering or render–to–
texture (RTT). In DirectX, render targets are created 
as special textures. In OpenGL, several extensions 
already offer offscreen rendering capabilities, like the 
pixel buffer or pbuffer extension, and simpler and 
more efficient extensions are being designed. 
The models composing the scene are defined as a list 
of meshes; each mesh is usually defined as a list of 3D 
vertices and a list of indices specifying the triangles 
(one can use non–indexed triangles as well). The 
vertices get loaded into vertex buffers and the indices 
into index buffers. OpenGL offers several extensions 
to load the geometry this way, the most modern one 
being the vertex buffer object or VBO extension. To 
every mesh also usually corresponds a list of textures 
and shaders. Textures are read from files and loaded 
into the API; some format conversion may happen in 
the driver to make them hardware–friendly. Pixel and 
vertex shaders are programs written in a high–level 
language, most of the time. They can be either stored 
as text files – or generated within the application – and 
compiled at load time, or precompiled and stored as 
binary files in assembly code. They are loaded into the 
API and the driver often optimizes them further for the 
specific hardware the application happens to run on. 
DirectX also comes with a file format that 
encapsulates vertex and pixel shaders in one file, 
along with all the additional information necessary to 
achieve a particular graphics effect. This effect file 
format, as well as high–level languages in general, is 
described in the next presentation. 
Once the initialization is done, the application enters 
the drawing loop. For each frame, each mesh is drawn 
the following way: 

- For each rendering pass: 
o Set the vertex buffer 
o Set the index buffer 
o Set the vertex shader and its parameters 
o Set the pixel shader and its parameters 
o Set the render states 
o Set the render target 
o Draw 

Multiple rendering passes may be necessary, either 
because of hardware limitations, or for structural 
reasons because of the way the various components 
that contribute to the final rendering (lights, materials, 
etc.) are managed. Inside a rendering pass, except for 
the vertex and index buffers, all the other settings are 
optional and have default behaviors: If a shader is 
missing, the fixed function pipeline is used; if the 
render target is missing, the back buffer is used. When 
using DirectX effect’s framework, all these settings 
are actually embedded in the effect file and DirectX 
provides specific functions to render with an effect file. 
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The vertex data can be stored in various layouts in the 
vertex buffer: The vertex attributes can be interleaved 
or not, or a bit of both. Setting the vertex buffer 
involves specifying where each attribute is located in 
the buffer, so that the correct attributes are input into 
the vertex shader. 
The shader parameters correspond to the uniform 
variables defined in the shader code. One of the vertex 
shader parameters is the transformation matrix used in 
the vertex shader to project the vertices onto the 
render target. Textures are typical pixel shader 
parameters. 
Apart from the fixed function pipeline render states 
and a few other exceptions, the render states are 
essentially setting up the raster operations unit. 
Once all the setting has been done for a rendering pass, 
a draw command is sent to the GPU. Like any 
command sent by the driver to the GPU, it gets added 
to a FIFO buffer called the pushbuffer for further 
processing by the GPU. Note that OpenGL also 
natively supports a different mode of drawing called 
immediate mode: Instead of being passed as buffers, 
the vertices and their attributes are specified by issuing 
an API function call per vertex and attributes in an 
orderly and hierarchical way. 
For optimization purposes, real–time graphics 
applications usually process the scene each frame and 
before rendering it by: 

- Culling triangles that aren’t visible for the current 
point of view, 

- Sorting the remaining triangles to minimize state 
changes between draw calls and maximize the 
effectiveness of the z–buffer algorithm. 

To remain beneficial to the application this culling and 
sorting should be fast and thus, not done per triangle, 
but per reasonably large groups of triangles whose 
visibility can be efficiently determined. 
 
 
 
4. Programming the GPU: High-
Level Shading Languages 
 
The heritage of modern GPU programming languages 
comes from three sources. First, they base their syntax 
and semantics on the general-purpose C programming 
language. Second, they incorporate many concepts 
from offline shading languages such as the 
RenderMan Shading Language, as well as prior 
hardware shading languages developed by academia. 
Third, modern GPU programming languages base 
their graphics functionality on the OpenGL and 
Direct3D programming interfaces for real-time 3D. 
 
The RenderMan Interface Standard describes the best-
known shading language for noninteractive shading. 
Pixar developed the language in the late 1980s to 
generate high-quality computer animation with 
sophisticated shading for films and commercials. Pixar 
has created a complete rendering system with its 
implementation of the RenderMan Interface Standard, 

the offline renderer PRMan (PhotoRealistic 
RenderMan). The RenderMan Shading Language is 
just one component of this system. 
 
The inspiration for the RenderMan Shading Language 
came from an earlier idea called shade trees. Rob 
Cook, then at Lucasfilm Ltd., which later spun off 
Pixar, published a SIGGRAPH paper about shade 
trees in 1984. A shade tree organizes various shading 
operations as nodes within a tree structure. The result 
of a shade tree evaluation at a given point on a surface 
is the color of that point. 
 
Shade trees grew out of the realization that a single 
predefined shading model would never be sufficient 
for all the objects and scenes one might want to render. 
Shade tree diagrams are great for visualizing a data 
flow of shading operations. However, if the shade 
trees are complex, their diagrams become unwieldy. 
Researchers at Pixar and elsewhere recognized that 
each shade tree is a limited kind of program. This 
realization provided the impetus for a new kind of 
programming language known as a shading language. 
 
The RenderMan Shading Language grew out of shade 
trees and the realization that open-ended control of the 
appearance of rendered surfaces in the pursuit of 
photorealism requires programmability.  
 
Today most offline renderers used in actual production 
have some type of support for a shading language. The 
RenderMan Shading Language is the most established 
and best known for offline rendering, and it was 
significantly overhauled and extended in the late 
1990s. 
 
A hardware implementation of an algorithm is most 
efficient when the task decomposes into a long 
sequence of stages in which each stage’s 
communication is limited to its prior stage and its 
subsequent stage (that is, when it can be pipelined). 
 
The vertex-based and fragment-based pipeline is 
extremely amenable to hardware implementation. 
However, the Reyes algorithm used by PhotoRealistic 
RenderMan is not very suitable for efficient hardware 
implementation, primarily due to its higher-level 
geometry handling. Contemporary GPUs rely 
completely on a graphics pipeline based on vertices 
and fragments. 
 
Researchers at the University of North Carolina 
(UNC) began investigating programmable graphics 
hardware in the mid-1990s, when UNC was 
developing a new programmable graphics hardware 
architecture called “PixelFlow.” This project fostered 
a new line of computer graphics research into 
hardware-amenable shading languages by Marc Olano 
and others at UNC. Unfortunately, PixelFlow was too 
expensive and failed commercially. 
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Subsequently, researchers at Silicon Graphics worked 
on a system to translate shaders into multiple passes of 
OpenGL rendering. Although the targeted OpenGL 
hardware was not programmable in the way GPUs are 
today, the OpenGL Shader system orchestrates 
numerous rendering passes to achieve a shader’s 
intended effect. 
 
Researchers at Stanford University, including Kekoa 
Proudfoot, Bill Mark, Svetoslav Tzvetkov, and Pat 
Hanrahan, began building a shading language 
designed specifically for second-generation and third-
generation GPUs. This language, known as the 
Stanford Real-Time Shading Language (RTSL), could 
compile shaders written in RTSL into one or more 
OpenGL rendering passes. 
 
All these influences, combined with the pair of 
standard 3D programming interfaces, OpenGL and 
Direct3D, have shaped modern GPU programming 
languages.  
 
In the old days of 3D graphics on a PC (before there 
were GPUs), the CPU handled all the vertex 
transformation and pixel-pushing tasks required to 
render a 3D scene. The graphics hardware provided 
only the buffer of pixels that the hardware displayed to 
the screen. Programmers had to implement their own 
3D graphics rendering algorithms in software. In a 
sense, everything about vertex and fragment 
processing back then was completely programmable. 
Unfortunately, the CPU was too slow to produce 
compelling 3D effects. 
 
These days, 3D applications no longer implement their 
own 3D rendering algorithms using the CPU; they rely 
on either OpenGL or Direct3D, the two standard 3D 
programming interfaces, to communicate rendering 
commands to the GPU. 
 
4.1. The Need for Programmability 
 
Over time, GPUs have become dramatically more 
powerful in every measurable way. Vertex processing 
rates have grown from tens of thousands to hundreds 
of millions of vertices per second. Fragment 
processing rates have grown from millions of 
operations per second to tens of billions per second. 
Not only that, the features and functionality of the 
GPUs have increased as well, allowing us to describe 
and implement new rendering algorithms. The result 
of all this is, of course, substantially improved image 
quality leading us to the era of Cinematic Computing. 
 
Despite these wonderful improvements in the 
hardware and its capabilities, before the advent of 
high-level shading languages, GPUs were 
programmed using assembly code. For a 222 million 
transistor GPU like the GeForce 6800 that is capable 
of running programs tens of thousands of instructions 
long, assembly programming just doesn’t make sense. 
In addition to being hard to code, assembly 

programming isn’t conducive to code reuse or 
debugging.  
 
For all these reasons, the industry realized a need for 
high-level GPU programming languages such as 
HLSL, GLSL, and Cg.  
 
4.2. GPU Programming Languages and the 
Graphics Pipeline 
 
In the traditional fixed-function graphics pipeline, an 
application would send vertex data to the graphics 
card, and a series of operations would magically 
happen, eventually resulting in colored pixels showing 
up in the frame buffer. A few of these operations were 
configurable by the programmer, but for the most part, 
the functionality was set in stone. 
 
With the advent of programmable shading, these 
“fixed-function” operations were removed, and 
replaced with customizable processors. The first GPU 
to support this type of programmable shading was the 
GeForce3 GPU, introduced by NVIDIA in 2001. 
GeForce3 was a big step forward, but still only 
allowed customized vertex processing. It was only 
with the GeForce FX GPU in 2003 that complete 
fragment processing became a reality, with instruction 
counts of over 1,000 instructions being possible. With 
the introduction of the GeForce 6800, these limits 
have been pushed even higher, allowing branching, 
looping, and even longer programs. 
 
Using HLSL, GLSL, and Cg, you can express to the 
GPU exactly what you want it to do for each vertex 
and fragment that passes through the pipeline. In the 
future, other parts of the graphics pipeline may 
become programmable as well. 
 
4.3. Compilation   
 
Sometimes, a shading language can express more than 
your GPU is capable of (depending on your GPU). To 
address this problem, language designers have come 
up with the concept of profiles. Each profile delineates 
a specific set of functionality that a GPU supports in 
its vertex or pixel shader. That way, you’ll get an error 
if you try to compile your shader code for a profile 
that is not capable of running it. 
 
4.4. Language Syntax 
 
As you will see, the syntax for HLSL, GLSL, and Cg 
is very similar to C, but it has some enhancements that 
make it more suitable for graphics programming. For 
example, vector entities come up very often in 
graphics, and so there is native support for vectors. 
Similarly, useful graphics-oriented functions such as 
dot products, matrix multiplies, and so on are natively 
supported as well. 
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4.5. HLSL FX Framework 
 
If you’re familiar with the graphics pipeline, you may 
be wondering whether things such as texture state, 
blending state, alpha test, and so on can be controlled 
in addition to just the vertex and fragment processors. 
In HLSL (and Cg), you can package all these things 
along with vertex and fragment programs to create the 
notion of an “effect.” This allows you to apply an 
effect to any arbitrary set of geometry and textures. 
 
In addition, the .fx format confers several other 
advantages. It makes shaders easier to specify and 
exchange, allows multiple shader versions to be 
specified (for LOD, functionality, and performance 
reasons), and clearly specifies render and texture states. 
 
 
 
5. Optimizing the Graphics 
Pipeline 
 
5.1. Overview 
 
Over the past few years, the hardware-accelerated 
rendering pipeline has rapidly increased in complexity, 
bringing with it increasingly complex and potentially 
confusing performance characteristics.  What used to 
be a relatively simple matter of reducing the CPU 
cycles of the inner loops in your renderer to improve 
performance, has now become a cycle of determining 
bottlenecks and systematically attacking them.  This 
loop of Identification and Optimization is fundamental 
to tuning a heterogeneous multiprocessor system, with 
the driving idea being that a pipeline is, by definition, 
only as fast as its slowest stage.  The logical 
conclusion is that, while premature and unfocused 
optimization in a single processor system can lead to 
only minimal performance gains, in a multi-processor 
system it very often leads to zero gains. 
Working hard on graphics optimization and seeing 
zero performance improvement is no fun.  The goal of 
this article is to keep you from doing exactly that. 
 
5.1.1 Pipeline Overview 
 

 
Figure 11: The graphics pipeline 

The pipeline, at the very highest level, can be broken 
into two parts: the CPU and GPU.  While CPU 
optimization is a critical part of optimizing your 
application, it will not be the main focus of the article, 
as much of this optimization has little to do with the 
graphics pipeline. 
Figure 11 shows that within the GPU there are a 
number of functional units operating in parallel, which 
can essentially be viewed as separate special purpose 
processors, and a number of spots where a bottleneck 
can occur.  These include vertex and index fetching, 
vertex shading (transform and lighting), fragment 
shading, and raster operations (ROP). 
 
5.1.2. Methodology 
 
Optimization without proper bottleneck identification 
is the cause of much wasted development effort, and 
so we formalize the process into the following 
fundamental identification and optimization loop: 

1. Identify the bottleneck - for each stage in the 
pipeline, either vary its workload, or vary its 
computational ability (clock speed).  If 
performance varies, you’ve found a bottleneck. 

2. Optimize - given the bottlenecked stage, reduce 
its workload until performance stops improving, 
or you achieve your desired level of performance. 

3. Repeat steps 1 and 2 until the desired 
performance level is reached 

 
5.2. Locating the Bottleneck 
 

 
Figure 12: Locating the bottleneck 

Locating the bottleneck is half the battle in 
optimization, as it enables you to make intelligent 
decisions on focusing your actual optimization efforts.  
Figure 12 shows a flow chart depicting the series of 
steps required to locate the precise bottleneck in your 
application.  Note that we start at the back end of the 
pipeline, with the framebuffer operations (also called 
raster operations) and end at the CPU.  Note also that, 
while any single primitive (usually a triangle), by 
definition, has a single bottleneck, over the course of a 
frame the bottleneck most likely changes, so 
modifying the workload on more than one stage in the 
pipeline often influences performance.  For example, 
it’s often the case that a low polygon skybox is bound 
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by fragment shading or framebuffer access, while a 
skinned mesh that maps to only a few pixels on screen 
is bound by CPU or vertex processing.  For this reason, 
it often helps to vary workloads on an object-by-object, 
or material-by-material, basis. 
For each pipeline stage, we also mention the GPU 
clock that it’s tied to (core or memory).  This 
information is useful in conjunction with tools such as 
PowerStrip (http://www.entechtaiwan.com), which 
allows you to reduce the relevant clockspeed and 
observe performance changes in your application. 
 
5.2.1. Raster Operations 
 
The very backend of the pipeline, often called the 
ROP, is responsible for reading / writing depth and 
stencil, doing the depth / stencil comparisons, reading 
/ writing color, and doing alpha blending and testing.  
As you can see, much of the ROP workload taxes the 
available framebuffer bandwidth.   
The best way to test if your application is framebuffer 
bandwidth bound is to vary the bit depths of the color 
and / or depth buffers.  If reducing your bit depth from 
32-bit to 16-bit significantly improves your 
performance, then you are definitely framebuffer 
bandwidth bound. 
Framebuffer bandwidth is a function of GPU memory 
clock, so modifying memory clocks is another 
technique for helping to identify this bottleneck. 
 
5.2.2. Texture Bandwidth 
 
Texture bandwidth gets consumed anytime a texture 
fetch request goes out to memory.  Although modern 
GPUs have texture caches designed to minimize 
extraneous memory requests, they obviously still 
occur and consume a fair amount of memory 
bandwidth. 
Since modifying texture formats can be trickier than 
modifying framebuffer formats as we did when 
inspecting the ROP, we instead recommend changing 
the effective texture size by using a large amount of 
positive mipmap LOD bias.  This has the effect of 
making texture fetches access very coarse levels of the 
mipmap pyramid, which effectively reduces the 
texture size.  If this causes performance to improve 
significantly, you are bound by texture bandwidth. 
Texture bandwidth is also a function of GPU memory 
clock. 
 
5.2.3. Fragment Shading 
 
Fragment shading refers to the actual cost of 
generating a fragment, with associated color and depth 
values.  This is the cost of running the “pixel shader” 
or “fragment shader”.  Note that fragment shading and 
framebuffer bandwidth are often lumped together 
under the heading “fillrate”, since they are both a 
function of screen resolution, but they are two distinct 
stages in the pipeline, and being able to tell the 
difference between the two is critical to effective 
optimization. 

Before the advent of highly programmable fragment 
processing GPUs, it was fairly rare to be bound by 
fragment shading, it was often framebuffer bandwidth 
that caused the inevitable correlation between screen 
resolution and performance.  This pendulum is now 
starting to swing towards fragment shading, however, 
as the new found flexibility enables developers to 
spend oodles of cycles making fancy pixels. 
The first step in determining if fragment shading is the 
bottleneck is to simply change the resolution.  Since 
we’ve already ruled out framebuffer bandwidth by 
trying different framebuffer bitdepths, if changing 
resolution causes performance to change, the culprit is 
most likely fragment shading.  A supplementary 
approach would be to modify the length of your 
fragment programs, and see if this influences 
performance, while being careful to not add 
instructions that can be easily optimized away by a 
clever device driver. 
Fragment shading speed is a function of the GPU core 
clock. 
 
5.2.4. Vertex Processing 
 
The vertex transformation stage of the rendering 
pipeline is responsible for taking an input set of vertex 
attributes (e.g. model-space positions, vertex normals, 
texture coordinates, etc.) and producing a set of 
attributes suitable for clipping and rasterization (e.g. 
homogeneous clip-space position, vertex lighting 
results, texture coordinates, etc.).  Naturally, 
performance in this stage is a function of the work 
done per-vertex, along with the number of vertices 
being processed. 
With programmable transformations, determining if 
vertex processing is your bottleneck is a simple matter 
of changing the length of your vertex program.  If 
performance changes, you are vertex processing 
bound.  If you’re adding instructions, be careful to add 
ones that actually do meaningful work, otherwise the 
instructions may be optimized away by the compiler 
or driver.  For example, no-ops that refer to constant 
registers (such as adding a constant register which has 
a value of zero) often cannot be optimized away since 
the driver usually doesn’t know the value of constants 
at program compile time. 
If using fixed-function transformations, it’s a little bit 
trickier, try modifying the load by changing vertex 
work like specular lighting or texture coordinate 
generation state. 
Vertex processing is a function of the GPU core clock. 
 
5.2.5. Vertex and Index Transfer 
 
Vertices and indices are fetched by the GPU as the 
first step in the GPU part of the pipeline.  The 
performance of vertex and index fetching can vary 
depending on where the actual vertices and indices are 
placed, which is usually either system memory, which 
means they will be transferred to the GPU over a bus 
like AGP or PCI-Express, or local framebuffer 
memory.  Often, on PC platforms especially, this 
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decision is left up to the device driver instead of the 
application, though modern graphics APIs allow 
applications to provide usage hints to help the driver 
choose the correct memory type. 
Determining if vertex or index fetching is a bottleneck 
in your application is a simple matter of modifying the 
vertex format size.  
Vertex and index fetching performance is a function of 
the AGP / PCI-Express rate if the data is placed in 
system memory, and a function of the memory clock if 
placed in local framebuffer memory. 
If none of these tests influence your performance 
significantly, you are primarily CPU bound.  You may 
verify this fact by underclocking your CPU; if 
performance varies proportionally, you are CPU 
bound. 
 
5.3. Optimization 
 
Now that we have identified the bottleneck, we must 
optimize that particular stage in order to improve 
application performance.  The following tips are 
broken up depending on the offending stage. 
 
5.3.1. CPU Optimizations 
 
Many applications are CPU-bound.  This is sometimes 
due to good reason, such as complex physics or AI, 
and sometimes due to poor batching and resource 
management.  If you’ve found that your application is 
CPU-bound, try the following suggestions to reduce 
CPU work in the rendering pipeline: 
 
Reduce Resource Locking 
 
Anytime you perform a synchronous operation which 
demands access to a GPU resource, there is the 
potential to massively stall the GPU pipeline, which 
costs both CPU and GPU cycles.  CPU cycles are 
wasted because the CPU must sit and spin in a loop 
waiting for the (very deep) GPU pipeline to idle and 
return the requested resource.  GPU cycles are then 
wasted as the pipeline sits idle and has to refill. 
This can occur anytime you: 
• Lock or read from a surface you were previously 

rendering to. 
• Write to a surface the GPU is reading from, like a 

texture or a vertex buffer. 
You should, in general, avoid accessing a resource the 
GPU is using during rendering.  
 
Maximize Batch Size  
 
This tip can alternately be phrased as minimizing the 
number of batches.  We define a “batch” as a group of 
primitives rendered with a single API rendering call 
(for example, DrawIndexedPrimitive in DirectX 9).  
The “size” of a batch refers to the number of 
primitives contained in it.  As a wise man once said, 
“Batch, Batch, Batch!” – Huddy, Richard. Personal 
communication; see also Wloka, Matthias.  “Batch, 
Batch, Batch: What Does it Really Mean?.  

http://developer.nvidia.com/docs/IO/8230/BatchBatch
Batch.pdf –.  Every API function call to draw 
geometry has an associated CPU cost, so maximizing 
the number of triangles submitted with every draw call 
will minimize the amount of CPU work used for a 
given number of triangles rendered. 
Some tips to maximize the sizes of your batches: 
• If using triangle strips, use degenerate 

triangles to stitch together disjoint strips.  This 
will enable you to send multiple strips, provided 
they share material, in a single draw call. 

• Use texture pages.  Batches are frequently 
broken when different objects use different 
textures.  By arranging many textures into a 
single 2D texture and setting your texture 
coordinates appropriately, you can send geometry 
that uses multiple textures in a single draw call.  
Note that this technique can have issues with 
mipmapping and anti-aliasing.  One technique 
that sidesteps many of these issues is to pack 
individual 2D textures into each face of a 
cubemap. 

• Use GPU shader branching to increase batch 
size.  Modern GPUs have flexible vertex and 
fragment processing pipelines that allow for 
branching inside the shader.  For example, if two 
batches are separate because one requires a 4 
bone skinning vertex shader, while the other 
requires a 2 bone skinning vertex shader, you 
could instead write a vertex shader that looped 
over the number of bones required, accumulating 
blending weights, and broke out of the loop when 
the weights summed to one.  This way, the two 
batches could be combined into one.  On 
architectures that don’t support shader branching, 
similar functionality can be implemented, at the 
cost of shader cycles, by using a 4 bone vertex 
shader on everything, and simply zeroing out the 
bone weights on vertices that have fewer than 4 
bone influences. 

• Use the vertex shader constant memory as a 
lookup table of matrices.  Often batches get 
broken when many small objects share all 
material properties but differ only in matrix state 
(for example, a forest of similar trees, or a 
particle system).  In these cases, you can load N 
of the differing matrices into the vertex shader 
constant memory and store indices into the 
constant memory in the vertex format for each 
object.  Then you use this index to lookup into 
the constant memory in the vertex shader and use 
the correct transformation matrix, thus rendering 
N objects at once. 

• Defer decisions as far down in the pipeline as 
possible.  It’s faster to use the alpha channel of 
your texture as a gloss factor, rather than 
breaking the batch to set a pixel shader constant 
for glossiness.  Similarly, putting shading data in 
your textures and vertices can allow for larger 
batch submissions. 

 
5.3.2. Reducing the Cost of Vertex Transfer 
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Vertex transfer is rarely the bottleneck in an 
application, but it’s certainly not impossible.  If the 
transfer of vertices or, less likely, indices, is the 
bottleneck in your application, try the following: 
• Use the fewest number of bytes possible in 

your vertex format.  Don’t use floats for 
everything if bytes would suffice (for colors, for 
example). 

• Generate potentially derivable vertex 
attributes inside the vertex program instead of 
storing them inside of the input vertex format.  
For example, there’s often no need to store a 
tangent, binormal, and normal, since given any 
two, the third can be derived using a simple 
cross-product in the vertex program.  This 
technique trades vertex processing speed for 
vertex transfer rate. 

• Use 16-bit indices instead of 32-bit indices.  16-
bit indices are cheaper to fetch, cheaper to move 
around, and take less memory. 

• Access vertex data in a relatively sequential 
manner.  Modern GPUs cache memory accesses 
when fetching vertices.  As in any memory 
hierarchy, spatial locality of reference helps 
maximize hits in the cache, thus reducing 
bandwidth requirements. 

 
5.3.3. Optimizing Vertex Processing 
 
Vertex processing is pretty rarely the bottleneck on 
modern GPUs, but it certainly may be, depending on 
your usage patterns and target hardware. 
Try these suggestions if you’re finding that vertex 
processing is the bottleneck in your application: 
• Optimize for the post-TnL vertex cache.  

Modern GPUs have a small FIFO cache that 
stores the result of the most recently transformed 
vertices; a hit in this cache saves all transform 
and lighting work, along with all work earlier in 
the pipeline.  To take advantage of this cache, 
you must use indexed primitives, and you must 
order your vertices to maximize locality of 
reference over the mesh.  There are tools 
available, including D3DX and NVTriStrip 
(http://developer.nvidia.com/object/nvtristrip_libr
ary.html), to help you with this task. 

• Reduce the number of vertices processed.  This 
is rarely the fundamental issue, but using a 
simple level-of-detail scheme, like a set of static 
LODs, certainly helps reduce vertex processing 
load. 

• Use vertex processing LOD.  Along with using 
LODs for the number of vertices processed, try 
LODing the actual vertex computations 
themselves.  For example, it is likely not 
necessary to do full 4-bone skinning on distant 
characters, and you can probably get away with 
cheaper approximations for the lighting.  If your 
material is multi-passed, reducing the number of 
passes for lower LODs in the distance will also 
reduce vertex processing cost. 

• Pull out per-object computations onto the 
CPU.  Often, a calculation that changes once per-
object or per-frame is done in the vertex shader 
for convenience.  For example, transforming a 
directional light vector to eye space is sometimes 
done in the vertex shader, although the result of 
the computation only changes per-frame. 

• Use the correct coordinate space.  Frequently, 
your choice of coordinate space impacts the 
number of instructions required to compute a 
value in the vertex program.  For example, when 
doing vertex lighting, if your vertex normals are 
stored in object space, and the light vector is 
stored in eye space, then you will have to 
transform one of the two vectors in the vertex 
shader.  If the light vector was instead 
transformed into object space once per-object on 
the CPU, no per-vertex transformation would be 
necessary, saving GPU vertex instructions. 

• Use vertex branching to “early-out” of 
computations.  If looping over a number of 
lights in the vertex shader, and doing normal, low 
dynamic range [0..1] lighting, you can check for 
saturation to one, or if you’re facing away from 
the light, and break out of further computations.  
A similar optimization can occur with skinning, 
where you can break when your weights sum to 1 
(and therefore all subsequent weights would be 
zero).  Note that this depends on the way that the 
GPU implements vertex branching, and isn’t 
guaranteed to improve performance on all 
architectures. 

 
5.3.4. Speeding Up Fragment Shading 
 
If you’re using long and complex fragment shaders, it 
is often likely that you’re fragment shading bound.  If 
you find that to be the case, try these suggestions: 
• Render depth first.  Rendering a depth-only (no 

color) pass before rendering your primary 
shading passes can dramatically boost 
performance, especially in scenes with high depth 
complexity, by reducing the amount of fragment 
shading and framebuffer memory access that 
needs to be performed.  To get the full benefits of 
a depth-only pass, it’s not sufficient to just 
disable color writes to the framebuffer, you 
should also disable all shading on fragments, 
even shading that affects depth as well as color 
(e.g. alpha-test). 

• Help early-Z optimizations throw away 
fragment processing.  Modern GPUs have 
silicon devoted to not shading fragments you 
can’t see, but these rely on knowledge of the 
scene up to the current point, and can be 
dramatically helped out by rendering in a roughly 
front-to-back order.  Also, laying depth down 
first (see above) in a separate pass can help 
dramatically speed up subsequent passes (where 
all the expensive shading is done) by effectively 
reducing their shaded depth complexity to one. 
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• Store complex functions in textures.  Textures 
can be enormously useful as lookup tables, with 
the additional benefit that their results are filtered 
for free.  The canonical example here is a 
normalization cubemap, which allows you to 
normalize an arbitrary vector at high precision for 
the cost of a single texture lookup. 

• Move per-fragment work to the vertex shader.  
Just as per-object work in the vertex shader 
should be moved to the CPU instead, per-vertex 
computations (along with computations that can 
be correctly linearly interpolated in screen-space) 
should be moved to the vertex shader.  Common 
examples include computing vectors and 
transforming vectors between coordinate systems. 

• Use the lowest precision necessary.  APIs like 
DirectX 9 allow you to specify precision hints in 
fragment shader code for quantities or 
calculations that can work with reduced precision.  
Many GPUs can take advantage of these hints to 
reduce internal precision and improve 
performance. 

• Avoid excessive normalization.  A common 
mistake is to get overly normalization-happy and 
normalize every single vector every step of the 
way when performing a calculation.  Recognize 
which transformations preserve length (like a 
transformation by an orthonormal basis) and 
which computations do not depend on vector 
length (such as a cubemap lookup). 

• Consider using fragment shader level-of-detail.  
While not as high a bang for the buck as vertex 
LOD (simply because objects in the distance 
naturally LOD themselves with respect to pixel 
processing due to perspective), reducing the 
complexity of the shaders in the distance, along 
with reducing the number of passes over a 
surface, can reduce the fragment processing 
workload. 

• Disable trilinear filtering where unnecessary.  
Trilinear filtering, even when not consuming 
extra texture bandwidth, costs extra cycles to 
compute in the fragment shader on most modern 
GPU architectures.  On textures where miplevel 
transitions are not readily discernable, turn 
trilinear filtering off to save fillrate. 

 
5.3.5. Reducing Texture Bandwidth 
 
If you’ve found that you’re memory bandwidth bound, 
but mostly when fetching from textures, consider these 
optimizations: 
• Reduce the size of your textures.  Consider 

your target resolution and texture coordinates.  
Do your users ever get to see your highest 
miplevel?  If not, consider scaling back the size 
of your textures.  This can be especially helpful if 
overloaded framebuffer memory has forced 
texturing to occur from non-local memory (like 
system memory, over the AGP or PCI-Express 
bus).  The tool NVPerfHUD can help diagnose 

this problem, as it shows the amount of memory 
allocated by the driver in various heaps. 

• Compress all color textures.  All textures that 
are used just as decals or detail textures should be 
compressed, using one of DXT1, DXT3, or 
DXT5, depending on the specific texture’s alpha 
needs.  This will reduce memory usage, reduce 
texture bandwidth requirements, and improve 
texture cache efficiency. 

• Avoid expensive texture formats if not 
necessary.  Large texture formats, like 64-bit or 
128-bit floating point formats, obviously cost 
much more bandwidth to fetch from.  Only use 
these as necessary. 

• Always use mipmapping on any surface that 
may be minified.  In addition to improving 
quality by reducing texture aliasing, mipmapping 
improves texture cache utilization by localizing 
texture memory access patterns for minified 
textures.  If you find that mipmapping on certain 
surfaces makes them look blurry, avoid the 
temptation to disable mipmapping or add a large 
negative LOD bias.  Prefer anisotropic filtering 
instead. 

 
5.3.6. Optimizing Framebuffer Bandwidth 
 
The final stage in the pipeline, the ROP, interfaces 
directly with the framebuffer memory and is the single 
largest consumer of framebuffer bandwidth.  For this 
reason, if bandwidth is an issue in your application, it 
can often be traced to the ROP.  Here’s how to 
optimize for framebuffer bandwidth: 
• Render depth first.  Not only does this reduce 

fragment shading cost (see above), it also reduces 
framebuffer bandwidth cost. 

• Reduce alpha blending.  Note that alpha 
blending, with a destination blending factor set to 
anything other than ZERO, requires both a read 
and a write to the framebuffer, thus potentially 
consuming double the bandwidth.  Reduce alpha 
blending to only those situations that require it, 
and be wary of high levels of alpha blended depth 
complexity. 

• Turn off depth writes when possible.  Writing 
depth is an additional consumer of bandwidth, 
and should be disabled in multi-pass rendering 
(where the final depth is already in the depth 
buffer), when rendering alpha blended effects, 
such as particles, and when rendering objects into 
shadow maps (in fact, for rendering into color-
based shadow maps, you can turn off depth reads 
as well). 

• Avoid extraneous color buffer clears.  If every 
pixel is guaranteed to be overwritten in the 
framebuffer by your application, then clearing 
color should be avoided as it costs precious 
bandwidth.  Note, however, that you should clear 
the depth and stencil buffers whenever you can, 
as many early-Z optimizations rely on the 
deterministic contents of a cleared depth buffer. 
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• Render front-to-back.  In addition to the 
fragment shading advantages to rendering front-
to-back mentioned above, there are also similar 
benefits in the area of framebuffer bandwidth, as 
early-Z hardware optimizations can discard 
extraneous framebuffer reads and writes.  In fact, 
even older hardware without these optimizations 
will benefit from this, as more fragments will fail 
the depth-test, resulting in fewer color and depth 
writes to the framebuffer. 

• Optimize skybox rendering.  Skyboxes are 
often framebuffer bandwidth bound, but there is a 
decision to be made in how to optimize them.  
You can either render them last, reading (but not 
writing) depth, and allow the early-Z 
optimizations along with regular depth buffering 
to save bandwidth, or render the skybox first, and 
disable all depth reads and writes.  Which of 
these will save you more bandwidth is a function 
of the target hardware and how much of the 
skybox is visible in the final frame; if a large 
portion of the skybox is obscured, the former 
technique will likely be better, otherwise the 
latter may save more bandwidth. 

• Only use floating point framebuffers when 
necessary.  These obviously consume much 
more bandwidth than smaller integer formats.  
The same applies for multiple render targets. 

• Use a 16-bit depth buffer when possible.  
Depth transactions are a huge consumer of 
bandwidth, so using 16-bit instead of 32-bit can 
be a huge win and is often enough for small-scale 
indoor scenes that don’t require stencil.  It is also 
often enough for render-to-texture effects that 
require depth, such as dynamic cubemaps. 

• Use 16-bit color when possible.  This is 
especially applicable to render-to-texture effects, 
as many of these, such as dynamic cubemaps and 
projected color shadow maps, work just fine in 
16-bit color. 

 
5.4. Conclusion 
 
As power and programmability increase in modern 
GPUs, so does the complexity of extracting every bit 
of performance out of the machine.  Whether your 
goal is to improve the performance of a slow 
application, or look for areas where you can improve 
image quality “for free”, a deep understanding of the 
inner workings of the graphics pipeline is required.  
As the GPU pipeline continues to evolve in the 
coming years, the fundamental ideas of optimization 
will still apply: first identify the bottleneck, by varying 
the load or computational power of each of the units; 
then systematically attack those bottlenecks with an 
understanding of the behavior of the various units in 
the pipeline. 
 
 
 
 

6. Advanced Rendering Techniques 
 
This presentation showcases the effects that current 
graphics processors are capable of rendering in real-
time.  For example, NVIDIA’s latest demos include 
Nalu, the mermaid (figure 13), featuring life-like hair 
and iridescent scales that smoothly transition into skin.  
The presentation describes how to achieve these and 
other effects in detail. Along the way, we highlight the 
latest features available on current graphics hardware, 
and how to best take advantage of them. 
 

 
Figure 13: Nalu 

 
 
 
7. General-Purpose Computation 
on GPUs 
 
The graphics processor (GPU) on today's video cards 
has evolved into an extremely powerful and flexible 
processor. The latest graphics architectures provide 
tremendous memory bandwidth and computational 
horsepower, with fully programmable vertex and pixel 
processing units that support vector operations up to 
full IEEE floating point precision. High level 
languages have emerged for graphics hardware, 
making this computational power accessible. 
Architecturally, GPUs are highly parallel streaming 
processors optimized for vector operations, with both 
MIMD (vertex) and SIMD (pixel) pipelines. Not 
surprisingly, these processors are capable of general-
purpose computation beyond the graphics applications 
for which they were designed. Researchers have found 
that exploiting the GPU can accelerate some problems 
by over an order of magnitude over the CPU. These 
notes are adapted from (Harris, 2003a). 
 
7.1. Why use Graphics Hardware for 
General-Purpose Computation? 
 
GPUs are designed to be efficient coprocessors for 
rendering and shading. The programmability now 
available in GPUs such as the NVIDIA GeForce 6 
Series makes them useful coprocessors for more 
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diverse applications. Because the time between new 
generations of GPUs is currently much less than for 
CPUs, faster coprocessors are available more often 
than faster central processors. GPU performance 
tracks rapid improvements in semiconductor 
technology more closely than CPU performance. This 
is because CPUs are designed for low latency 
computations, while GPUs are optimized for high 
throughput of vertices and fragments. Low latency on 
memory-intensive applications typically requires large 
caches, which use a lot of silicon area. Additional 
transistors are used to greater effect in GPU 
architectures because they are applied to additional 
processors and functional units that increase 
throughput. In addition, programmable GPUs are 
inexpensive, readily available, easily upgradeable, and 
compatible with multiple operating systems and 
hardware architectures. 
 
7.2. A Brief History of GPGPU 
 
The use of computer graphics hardware for general-
purpose computation has been an area of active 
research for many years, beginning on machines like 
the Ikonas (England, 1978), the Pixel Machine 
(Potmesil and Hoffert, 1989), and Pixel-Planes 5 
(Rhoades et al., 1992). The wide deployment of GPUs 
in the last several years has resulted in an increase in 
experimental research with graphics hardware. 
Trendall and Steward gave a detailed summary of the 
types of computation available on GPUs circa 2000 
(Trendall and Steward, 2000). 
Within the realm of graphics applications, 
programmable graphics hardware has been used for 
procedural texturing and shading (Rhoades et al., 
1992; Olano and Lastra, 1998; Peercy et al., 2000; 
Proudfoot et al., 2001). Graphics hardware has also 
been used for volume visualization (Cabral et al., 
1994; Wilson et al., 1994; Kniss et al., 2002). Recently, 
new methods have been developed for using current 
GPUs for global illumination, including ray tracing 
(Carr et al., 2002; Purcell et al., 2002), photon 
mapping (Purcell et al., 2003), and radiosity (Carr et 
al., 2003; Coombe et al., 2004). Other researchers 
have found ways to use graphics hardware for non-
graphics applications. 
The use of rasterization hardware for robot motion 
planning was described in (Lengyel et al., 1990). Hoff 
et al. (1999) described the use of z-buffer techniques 
for the computation of Voronoi diagrams. The 
PixelFlow SIMD graphics computer (Eyles et al., 
1997) was used to crack UNIX password encryption 
(Kedem and Ishihara, 1999), and graphics hardware 
has been used in the computation of artificial neural 
networks (Bohn, 1998). 
Harris et al. (2002) used a Coupled Map Lattice 
(CML) to simulate dynamic phenomena that can be 
described by partial differential equations. Related to 
this is the visualization of flows described by PDEs, 
which has been implemented using graphics hardware 
to accelerate line integral convolution and Lagrangian-
Eulerian advection (Heidrich et al., 1999; Jobard et al., 

2001; Weiskopf et al., 2001). James (2001) has 
demonstrated the “Game of Life” cellular automata 
and a 2D physically-based water simulation running 
on NVIDIA GPUs. More recently, Kim and Lin used 
GPUs to simulate dendritic ice crystal growth (Kim 
and Lin, 2003), and Li et al. used them to perform 
Lattice Boltzmann simulation of fluid flow (Li et al., 
2003).  
Research on general-purpose uses of GPUs has seen a 
minor boom recently. Strzodka showed how to 
combine multiple 8-bit texture channels to create 
virtual 16-bit precise operations (Strzodka, 2002). 
Level set segmentation of images and volume data on 
GPUs has been demonstrated by (Strzodka and Rumpf, 
2001; Lefohn and Whitaker, 2002; Lefohn et al., 
2003). Other recent GPGPU research includes image-
based modeling (Yang et al., 2002; Hillesland et al., 
2003), collision detection (Hoff et al., 2001; 
Govindaraju et al., 2003), and computational geometry 
(Mustafa et al., 2001; Krishnan et al., 2002; Guha et 
al., 2003; Stewart et al., 2003). 
Researchers have recently embraced the power of the 
GPU for performing matrix computations. Larsen and 
McAllister used texturing operations to perform large 
matrix-matrix multiplies (Larsen and McAllister, 
2001). This work was mostly a proof-of-concept 
application, because they used GPUs without support 
for floating point textures. Thompson, et al. used the 
programmable vertex processor of an NVIDIA 
GeForce 3 GPU to solve the 3-Satisfiability problem 
and to perform matrix multiplication (Thompson et al., 
2002). Fatahalian et al. (2004) have done detailed 
analysis of matrix multiplication on the GPU and 
found that due to cache bandwidth limitations, GPUs 
are not yet as efficient for these computations as CPUs.  
Others have used the GPU to solve sparse linear 
systems, using techniques such as Red-Black Jacobi 
iteration, Conjugate Gradient and multigrid methods 
(Bolz et al., 2003; Goodnight et al., 2003; Harris et al., 
2003; Krüger and Westermann, 2003). These four 
papers also all demonstrate fluid simulation on the 
GPU. 
This wide variety of applications demonstrates that the 
GPU has become an extremely powerful 
computational workhorse. It is especially adept at 
SIMD computation applied to grid or matrix data. As 
GPGPU research has boomed, many more 
applications have appeared.  For an up-to-date source 
of information on the topic, visit 
http://www.gpgpu.org on the World Wide Web. 
 
7.3. CPU–GPU Analogies 
 
Fundamental to any computer are its memory and 
processing models, so any application must consider 
data representation and computation. Here, we’ll touch 
on the differences between CPUs and GPUs with 
regard to both of these, and draw analogies between 
them to aid in understanding GPGPU concepts. 
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7.3.1 Textures = Arrays or Data Streams 
 
GPGPU computations typically represent data in 
textures.  These textures can be thought of as arrays.  
Textures are especially well-suited to physically-based 
simulations and other computations in which data are 
represented on two- or three-dimensional grids. The 
natural representation for this grid on the CPU is an 
array. The analog of an array on the GPU is a texture. 
Although textures are not as flexible as arrays, their 
flexibility is improving as graphics hardware evolves. 
Textures on current GPUs support all the basic 
operations necessary to implement a fluid dynamics 
simulation, for example. Because textures usually 
have three or four color channels, they provide a 
natural data structure for vector data types with two to 
four components. Alternatively, multiple scalar fields 
can be stored in a single texture. The most basic 
operation is an array (or memory) read, which is 
accomplished by using a texture lookup. Thus, the 
GPU analog of an array offset is a texture coordinate.  
An alternative view is that of stream processing, in 
which data are not represented in arrays, but in data 
streams.  These streams are processed by applying 
simple programs, or kernels, to each element of the 
stream in an identical manner.  This is the approach 
taken by the Brook programming language (Buck et 
al., 2004), and it appears to be a good fit for modern 
GPUs. 
 
7.3.2 Fragment Programs = Loop Bodies or 
Kernels 
 
Imagine simulating a dynamic phenomenon, such as 
fluid dynamics, on a two-dimensional grid.  A CPU 
implementation of the simulation performs steps in the 
algorithm by looping, using a pair of nested loops to 
iterate over each cell in the grid. At each cell, the same 
computation is performed. GPUs do not have the 
capability to perform this inner loop over each texel in 
a texture. However, the fragment pipeline is designed 
to perform identical computations at each fragment. 
Conceptually, it is as if there is a processor for each 
fragment, and that all fragments are updated 
simultaneously. Thus, the GPU analog of computation 
inside nested loops over an array is a fragment 
program (or pixel shader) applied in data-parallel 
fashion to each fragment.  In stream processing, such 
as used by the Brook programming language, this 
data-parallel computation is a kernel. 
 
7.3.3 Feedback = Texture Update 
 
Certain numerical computations, such as linear 
equation solvers, use iterative techniques in which the 
result of an iteration is used as input for the next 
iteration. This feedback is common in numerical 
methods. In a CPU implementation, one typically does 
not even consider feedback, because it is trivially 
implemented using variables and arrays that can be 
both read and written. On the GPU, though, the output 
of fragment processors is always written to the frame 

buffer. Think of the frame buffer as a two-dimensional 
array that cannot be directly read. There are two ways 
to get the contents of the frame buffer into a texture 
that can be read: 

1. Copy to texture (CTT) copies from the frame 
buffer to a texture. 

2. Render to texture (RTT) uses a texture as the 
frame buffer so the GPU can write directly to it. 

These three concepts – data storage in textures 
processed by fragment programs and returned to 
texture storage via CTT or RTT – are the basis for 
most general-purpose GPU applications. 
 
7.4. Conclusion 
 
These notes have given a brief overview of GPGPU 
concepts and the history of GPGPU. The course itself 
will provide examples of these concepts, including 
fluid dynamics simulation, chemical reaction-diffusion 
simulation, and more.  For news, examples, utilities, 
and source code, please visit http://www.gpgpu.org on 
the World Wide Web. 
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