

Advanced Digital Chips

An Embedded Microprocessor Company

Mar. 2007

adchips is

- a fabless semiconductor company offering MCU IP and SoC
- a MCU core-embedded microprocessor developer,
- a MCU IP business
- a leading ASIC company
- a SoC ASSP development

Advanced Digital Chips (ADC), a Korean KOSDAQ company began developing a next generation CPU architecture technology in 1998.

This state of the art CPU, called EISC, is designed as a embedded MCU
 solution.

Company Overview

Business Units	: Semiconductor Design Company
	- Multimedia/Consumer/Game
	System on Chip (SoC) ASSP Development
	- Intellectual Property (IP) Licensing
Location	: Seoul, Korea
Overseas Presence	: Silicon Valley Subsidiary (March 2002)
	Pennsylvania Subsidiary (September 2003)
	China Subsidiary (April 2006)
Founding Date	: April 16, 1996
KOSDAQ Shares	: 5,200,000 Shares @ 500 won par value
Employees	: 75 (30 Involved in R & D Related Activities)

Business area

- 1. Developing a next generation CPU architecture technology in 1998 to offer a smaller, faster and cheaper solution.
- 2. ADC introduces the EISC technology to the industry in two ways, firstly through the sale of multimedia SoC incorporating the EISC MCU, and secondly by licensing its EISC MCU as IP.

Invention of new ISA

EISC (Extendable Instruction Set Computer) is a new ISA (Instruction Set Architecture) and computer architecture developed by ADC (Advanced Digital Chips Inc).

it combines key advantages of two leading architectures:

Reduced Instruction Set Computer (or RISC) and Complex Instruction Set Computer (or CISC)

Microprocessor

ac

• Development Cycle in Microprocessor

EISC is a next generation architecture that has advantages over the existing RISC and CISC architectures.

next generation Microprocessor EISC

- ADC is the only house with own its proprietary commercially-proven architecture
- The EISC technology is patented in U.S., Taiwan and Korea with patents pending worldwide.

Bench mark Results

	AE32000	SE3208	8	ARM7TDMI	MIPS-R3000
Technology	0.5um	0.5un	n CMOS	0.5um(0.35um)	0.5um CMOS
Clock Frequency	50Mhz	50N	/hz@5V	33Mhz(55Mhz)	
Code Size	100		-	100	177.7
Gate count	34K		20K	42K	-
Power consumption			200mW	330mW(0.6mw/Mhz)	-
Chip size		1000x100	0(target)	1892x1168	-
Performance	0.8		0.634	0.7	

- * Better core density
- * Simple Instruction set
- * Smaller silicon (half that of ARM) die size, hence,cheaper.
- * "Extendible"=more flexible

EISC benefits

	CISC	RISC	EISC
Major Features	- for high-end computers	- 32-bit fixed code	 Post-PC Devices Scalable = 16, 32, 64 Bit Solutions
Code Instruction	Complex	Simple	Simple
Relative Program Size	130-140	160-180	100
Performance	Low	High	High
Embedded	Not Suitable	High	Ideal
Weaknesses	 Complex code and hardware Difficult to develop-high-end MCU (64-bit and higher) 	 Difficult to develop 16-bit MCU Not efficient for 64bit MCU 	1 C

Source : Company Data

C Object Size Comparison

Advantage of both CISC and RISC 1.Simple Instruction Set 2.Less Memory 3.Simple Hardware

4.Less Power

Lower Development Cost Faster Time to Market Higher Performance / \$

Embedded MCU Soft core IP

SE 1608	SE 3208	AE 32000 B/C	AE 64000
 16 bit ALU/Data/Address 64K byte address 60MHz@0.35um 8K Gate Count 	 32 bit ALU/Data/Address 4G byte address 60MHz@0.35um 24K Gate Count 	 32 bit ALU/Data/Address 4G byte address DSP FPU 120~150 MHz @ 0.18um 	 64 bit ALU/Data/Address 4T byte address FPU SIMD-DSP 100 MHz@0.18um 140K Gate Count
8GPR/6SPR, 3 Stage Pi	peline	16GPR/7SPR, 5 Stage F	Pipeline,
MMU, Harvard Architecture 4 Co-Processors			
BPR for Debug	On-Chip Debugger(On Silicon ICE)		
Load-Store Instruction Set			
16 bit Fixed Length Instruction Set & Extendable Instruction Set(LERI)			

IP LIST

Microprocessor
* 16bit EISC Microprocessor - SE1608A
32bit EISC Microprocessor - SE3208A
32bit EISC Microprocessor - AE32000B
64bit EISC Microprocessor – AE64000
♦ 64bit SIMD/DSP
♦ 64bit FPU
Unified Cache Controller
Harvard Cache Controller (TLB)
Memory Management Unit
Low power Cache Controller

H.264 CODEC/ JPEG CODEC

H.264 encoder/decoder

MJPEG encoder/decoder

IP LIST

Special Peripherals			
ADPCM	ADPCM Decoding Engine (CCITT G.726)		
Bit Block Transfer controller	Screen to screen block transfer & sprite		
Sound Engine	32 channel, 16bit, ~44.1₩ stereo PCM, 8bit, U-Law/PCM, 16bit PCM		
2D Graphic based on 3D	Rotation/Zoo In-out Texture and Tile map Transparency, Alpha Blending		
Video Encoder	Hue Program Control, RGB to YCbCr Converter Programmable C-Filter Bandwidth Programmable Multi-Standard Format		

Peripherals			
B-INTC	Basic Interrupt Controller		
B-TIMER	Basic Timer		
SMC	Static Memory Controller		
GDMAC	General DMA Controller		
UART	Universal Asynchronous Receiver/Transmitter		

IP LIST

Peripherals			
PWM	Pulse Width Modulation		
РРМ	Pulse Period Measurement		
I2C	Inter IC Bus Controller		
12S	Inter IC Sound Bus Controller		
WDT	Watch Doc Timer		
GPIO	General Purpose Input Output Controller		
PINTC	Priority Programmable Interrupt Controller		
SIO	Sync. IO Bus Controller		
RTC	Real Time Clock		
Key Scan	Key Input Scan Controller		
SPI	Serial Peripheral Interface Controller		
HDLC	High Level Data Link Controller		

Peripherals			
IEEE1284-Host	Parallel Bus Master Controller		
IEEE1284-Device	Parallel Bus Slave Controller		
NOR-FMC	Nor Type Flash Memory Controller		
NAND-FMC	Nand Type Flash Memory Controller		
PCMCIA	PCMCIA Host Bus Adapter		
IDE	IDE Controller for HDD Interface		
LCDC	Mono/STN LCD Controller		

SoC Platform

Platform embodiment based on AMBA/AHB

EISC EVM Board

1) 16Bit Embedded Board (16S310)

2) 32Bit Training Board (Jupiter)

15 4) 32Bit Game Board (Amazon)

EISC EVM Board

1) I/O Control board for Game

2) 16bit Training Kit

ADC's SoC Productions

Partnership EISC's key strength

Successful SoC products SEISC

SoC Successful Story

(Reference Story)

EISC is a proven technology

1. KORITECH

- -. Being applied to the handy Karaoke
- -. A strategic product for overseas Market

- -. Being applied to the handy Karaoke
- -. Overseas export product

SoC Taekwon Robot board

1) Taekwon Robot board $\frac{24}{24}$

SoC TANK Robot Board

2) Tank Robot Brain Board

Training Kit

Training Kit

GMX1000 training kit

3D animation training kit

EISC EVM Board

1) 16Bit Embedded Board (16S310)

2) 32Bit Training Board (Jupiter)

4) 32Bit 3D Game Training Board (Amazon)

EISC EVM Board

1) I/O Control board for Game

2) 16bit Training Kit

4) 32Bit Game Board (Amazon)

-. Being applied to the handy Karaoke, Game and etc.

GMX1000

License contract signed with Metel (2004)

Under developing wireless chip set for MP3 and mobile phone.

Mixed microprocessor with OP amp Writing with supersonic wave's pen.

II. IP License Contract

1. License contract signed on 32bit EISC with LG Electronics (1999.11)

- Effective date: November, 2001
- A transfer of 32bit EISC technology

2. License contract signed with STA in Australia.(2000.9)

- Effective date: September, 2000
- A transfer of 32bit EISC technology

3. Licensed contract signed with SWIP in China.(2001.03)

- Effective date: March, 2001
- A transfer of 16bit EISC technology

4. Licensed contract with Anam Semiconductor Korea. (2001.12)

- Effective date: December, 2001 /May, 2002
- A transfer of 32bit EISC technology, A transfer of 16/64bit EISC technology

5. Licensed contract with Amerix group in U.S.A (2002.3)

- Effective date: March, 2002
- A transfer of 16/32/64bit EISC technology (Allowance of master license)

III. Other Activities

Contribute EISC CPU to the university

Seoul Nat'l University (2002.5.7) KAIST (2002. 6.27) ICU (2002.6.27) Kyunghee University(2002.7.24) KJIST (2003.3) Korea University(2003.9) Yunsei University(2003.10) HanYankg University(2005.5) Contribute evaluation board to the university

Hong Ik University (2003.5) SIPAC (2002.9)

EISC Cooperative Education

Korea Univ. (Professor Oh.) Korea Univ. (Professor Choi.) Yunsei Univ. (Professor Lee.) BuKyung Univ. (Professor Cho.) Oregon state Univ. (Professor Ben Lee) Cheju National Univ.(Professor Lim)

ETRI (Manager Cho) KAIST SIPAC (Professor Yu) ICU (Professor Park)

and SoC Development

Research Institute of EISC Platform

Successful SoC products

EISC Tech. Bechmarking & Biz. Strategy

Embedded Microprocessor Market

Comparison Table

Comparison of ARM7 with SE3208

	SE3208(Jupiter)	ARM7TDMI	MIPS-R3000
Technology	0.35 um CMOS	0.35 um CMOS	0.35 um CMOS
Clock Frequency	60Mhz @ 3.3V	55Mhz	
Code Size	100	113.9(ARM7:165)	166.7
Gate count	24K	42K	?
Power consumption	300 mW(target)	330mW (0.6mw/Mhz)	?
Chip size	1000x1000(target)	1829x1168	?

Clock frequency can be improved by customizing the cache block.

Comparison of i8051 and Z80 with SE1608

		SE1608(16bit)	i8051 (8bit MCU)	Z80 (8bit MCU)
Gate count 4~0N 8K 10K	Gate count	4~6K	8K	10K
Architecture RISC Type CISC Type CISC Type	Architecture	RISC Type	CISC Type	CISC Type

Comparison Table

Comparison of ARM9 with AE32000

	ARM920T	AE32000(Angel)	Remark
Code Size	?	Good	
IPC	0.67(ARM7=0.53)	0.87	Based on Dhrystone 2.1
Pipeline	5 stage pipeline	5 stage pipeline	
Cache	Harvard architecture	Harvard architecture	
MMU	Support	Support	
Performance	200MHZ(0.18µ)	120MHZ(0.18µ) (not optimize of cache block Layout)	
Area	2,500K Tr.	1,348K Tr.	

Comparison Table

Comparison of Code Size

	AE32000	Mips-r3000	ARM7TDMI
Relative Code Density	100	171	110
	SH-3(Hitachi) V850(NEC) MC5200(Motorol	130 118 a) 139(coldfire)	

Platform : Linux (Window-95/98, Window-NT)

Compiler : GCC-2.95.2 (FSF GNU GCC)

Object Program : ANSI C library programmed by Cygnus

C Math library programmed by Sun used at Sun workstation

C++ Standard Template Library by SGI used at SGI workstation

Compiled machine code size : 381,560 bytes at MIPS-R3000

Technology Advantage - Comparison

	CISC	RISC	EISC
Major Features	- for high-end computers	- 32-bit fixed code	 Post-PC Devices Scalable = 16, 32, 64 Bit Solutions
Code Instruction	Complex	Simple	Simple
Relative Program Size	130-140	160-180	100
Performance	Low	High	High
Embedded	Not Suitable	High	Ideal
Weaknesses	 Complex code and hardware Difficult to develop-high-end MCU (64-bit and higher) 	 Difficult to develop 16-bit MCU Not efficient for 64bit MCU 	R

Source : Company Data

Strategy for overcoming the ARM market \forall EISC

Marketing Strategy of EISC CPU

- 1) Free offer and open to the public of compiler, development environment, source code of RTOS
- 2) The supply of 32bit EISC CPU board for education (Use for education of university and institute)
- 3) The open to the public of embedded Linux
- 4) Open a competitive exhibition which is included the robot football and robot war, and grant of premium and prize for the winning team
- 5) The joint ownership of technology through the organization of EISC CPU group

