e

7

THREE YEARS AGO, WE AT HIGH MOON STUDIOS WERE IN FULL
crisis. Our first project was slipping. Nothing was working.
Customers were wondering where all their money was going.
You know, those typical project problems.

As usual, itwas the technology effort that was falling
behind, and as the new CT0, my job was on the line to
manage it. So | started to do some research. This was when |
discovered Scrum.

Scrum isn't a big secret. If you read enough project
management books, you are bound to runinto it sooner than
later. Two things struck me about Scrum: 1] it's simple, so you
can start using it right away, and 2] it makes common sense.
Everything you do in Scrum is done for a clear reason.

In short, Scrum is a methodology that's been used for project
management of software development since the early 1990s
(its origins are discussed in more detail within this article].
With management becoming less of a bottleneck, the talented
people we had on staff were able to focus, get on track, and
straighten out the project, finishing the game within six months
of the original projected date.

o

Since this experience, I've been talking about Scrum to
various developers, and dozens have adopted it. During this
time, I've heard a lot of common questions asked, a few myths,
and some stories of failures from those coming up to speed on
Scrum. This article shares some of these experiences.

FULFILLING THE SCRUM PROPHECY

Change is painful. The bigger the change or the more people it
affects, the more pain. Why would anyone want to make a huge
change to an entire company?

For High Moon Studios, we needed to make a change because
the alternatives were more painful. We were already suffering
from overtime death-marches, and we did not see a working
game until very late in our projects. Schedules slipped routinely.
We spent too much time putting out too many fires, and our
customers were becoming impatient and disappointed.

Kirsten Forbes, a producer who introduced Scrum at Radical
Entertainment, says the new methodology allowed her to
understand the process of game development in a new and
improved way. "At the end of every project, we do a huge

WWW.GDMAG.COM

postmortem. The lament that comes up most
often is that the designers change their minds
too many times during development,” she
says. "Well, they didn't change their minds.
They learned something aboutwhatwas fun
and adapted the game to accommodate that
learning. That's exactly what [designers]
should be doing. The problem is not the
designers—it's our process. We lock ourselves
into a schedule that we can't easily get out of.
To make a change in a rigid schedule means we
have to find all the tiny areas that those
changes ripple through. That's complex and
difficult, so it made us averse to change.”

In sharing the Scrum mindset, | have learned a lot from others
who have been struggling with the same problems both within
and outside the video game industry. | know one thing for sure:
As the challenge of making games grows with the complexity of
the platforms and the size of the teams, our methods for how
teamns work together and how games are developed have 1o
keep up. Just as the technology of the Nintendo 64 doesn't work
sowell on the Cell processor, the team methodology from the
1980s doesn'twork for today’s teams.

WHAT IS SCRUM?
Scrum is an agile methodology, though defining “agile” is a bit
difficult.

A few years ago, a number of prominent agile writers got
together and tried to define what agile really meant. They
came up withwhatis now called the "agile manifesto,” four
values that any methodology calling itself "agile” should
hold. (See http://agilemanifesto.org for more information.)
I've modified it slightly to reflect its use for game developers,
and what they need to value:

1. people and communication over processes and project

management tools

2. aworking game over comprehensive design documents

3. publisher collaboration over milestone definitions

4. responding to change over following a plan.

Because these values are pretty vague, it's hard to translate
them into practices. This is where Scrum comes in. Scrum is a
set of time- proven practices that translate these values into
day-to-day activities.

The term Scrum comes from rugby, specifically the formation
in which opposing teams interlock to engage and move the ball
up the field. In game development, Scrum has a small team of
developers who take ownership of small increments of product
development and discuss the product with the customers. The
method uses time-boxed iterations of development, called
sprints, that create working versions of a game, which allow the
customers to see how it is evolving, better understand where
the game is going, and have meaningful conversations with the
development team.

Scrum teams are small, typically only eight to 10 people. In
game development, one team might be dedicated to working on
one core mechanic. The team meets daily for 15 minutes, where
each member of the team discusses the work they've
completed since the last meeting, what they are working on

Prioritized
Feature List

FEBRUARY 2007 | GAME DEVELOPER

*-

FIGURE 1 In the Scrum cycle, the team creates a new verslon
of the game every two to four weeks.

New Version
of the Game

Sprint
Sprint (2-4 Weeks)
Backlog

next, and what problems are getting in the way of their progress.

After each iteration review, the team sorts its priorities for the
next iteration with the customers, breaks down the tasks, and
estimates how long it will take to reach the next iteration. Then
they tell the customer what they will deliver.

FACT VS. FICTION

There are quite a few myths about agile practices and Scrum
that come up on a regular basis, the most common of which is
that agile development is just another management fad.

“Agile” is a relatively new name for incremental and iterative
methods and other project practices that have been around for a
long time. The agile methodologists combined a number of
these ideas rather than inventing new ones. In fact, if you look
back 20 years, you'll find that game development teams were
typically so small that they practiced incremental and iterative
development out of necessity. Game developrmentwas far less
expensive and time-consuming then, too, so it was a lot more
experimental. Publishers could afford 10 failures forevery hit,
and finding the hit was more critical than nailing the budget.

Another myth is that there is no overtirme on agile projects.
Agile teams choose how much work they can commit to every
two to four weeks. The benefit is that they own their work and
aren't trying to meet a schedule they don't believe in. They
commit to a level of work that they feel they can accomplish
without overtime. However, there are too many uncertainties in
even two weeks of work, and a team can often wind up with
more work than they can complete without overtime.

Sometimes an overloaded team compensates for the heavy
workload by dropping some of its lower priorities. lterations
cannot be delayed, therefore they free developers to complete
the higher priority goals within the time frame originally
established. Other times, the team has to put in extra hours to
meet a commitment. In either case, it's often left up to the team.
A few extra hours a day for the last week of the iteration can
rmake a huge difference in what the team produces in that
iteration. The goal isn't to stop work after eight hours—it's to
produce the best possible value in a sustainable pace.

A third myth about agile development is that long-term
plans do not exist. We spend more time planning during an
agile project than we ever did in a waterfall project. The main
difference is that it's spread out over the entire project, not
just done at the start. We plan for the entire scope of the
game up front, but we don’t try to be deterministic and plan
away uncertainty. We focus on planning instead of the plan

FIGURE 2 Each feawre added In a sprint has a vertical slice
of work done for It.

because we want to be able to
embrace change and adjust
our forecast for the game
based on what we learn.

At High Moon, we set aside a
full day every three months to
refine and review the full
project plan. This allows us to
review parts of the game’s
development, such as asset
production, which can't be as
fully agile as some of the
early work done on core
mechanics—for example, we
wouldn'twant to change our
jump heights after we've built half the levels.

Anather myth 've heard is that games developed with an agile
process will be great. Of course, no methodology can ensure
great games. A bad game idea, or worse, a team that lacks
talent, will fail regardless of the methodology used. Perhaps the
only benefit of agility in these situations is that the game will fail
fast. Conversely, agile development can help talented teams
avoid many failures that other methodologies allow.

In general, the benefits of working agilely are that it can
reduce waste and allow your team and customers to make
better choices along the way. The people in your company are
your greatest asset; having a healthy company culture is
important. Because
agile development
focuses on
comrmunication,
ownership, and
commitment, a
company’s culture can
really improve as a
result of adopting an
agile approach.

One final myth is that
leads are not necessary
on agile game projects.
This particular myth
was one we fell for when we first started using Scrum. Scrum
eliminates many of the tasks required of a lead because teams
become self-organizing. Teams break down to estimate and
track their tasks at a team level, relieving the leads from doing
these sorts of jobs, which they usually dislike in the first place.

The idea of taking one of your most talented programmers and
artists and instructing them to estimate and track tasks for half
their time is not a good idea—yet, we do it all the time in our
industry. However, even an agile team still needs leadership. The
agile team lead focuses on mentaring and communicating with
the other leads about the needs of a project, ensuring that all
the teams are focused on producing a common product together.

OPENING THE SCRUM GATE

Game studios that are interesting in adopting Scrum should
start small. Don't try to convert the entire studio overnight;
instead, identify a team of approximately eight developers [no

FEBRUARY 2007 | GAME DEVELOPER

rnore than 10) who will be the Guinea pigs for this experiment.
The team should be willing to try out Scrum and be objective
about the results.

Next, identify the charmpion for Scrum, ideally someone who is
a lead or producer from the Guinea pig team. This is going to be
the Scrum expertwho learns all about Scrum. Once a champion
is chosen, have him or her read two essential books on Scrum
by Ken Schwaber [see Resources, page 26].

The most important, Yet also most controversial piece of
advice is that you start Scrum by the book with the first team,
following every practice that exists, even if you don't fully
understand the value.

The practices of Scrum are derived from very important
principles, including ownership, accountability, ransparency,
and teamwork, which amount to the central benefits of using
Scrum to make games. If you change some of the practices
without understanding the underlying philosophy, you'll never
see many of those benefits. As Schwaber says, "Every time I've
seen someone need to get rid of one of Scrum’s basic
mechanisms or rules, it is because the mechanism or rule is
making something visible that nobody wants to see. So, they
get rid of the rule and the problem becomes invisible. For
example, ‘We don't need daily scrums, so let's only have them
every week.' The daily Scrum is making visible that the team
isn't self-rmanaging and doesn't work as a team, but as a group
of individuals doing their own things. No need for information to
be interchanged because nobody cares.”

YOUR PROJECT

MANAGERS AND PRODUCERS WILL NOT BE
INTERRUPTING YOUR WORK ALL THE TIME TO ASK
FOR A GLIMPSE OF YOUR PROGRESS.

This isn't to say that the Scrum practices should never be
changed—they are meant to be changed by the teams to
improve their velocity. | also suggest that teams who are freshly
adopting a Scrum methodology attend a Scrum Master
Certification Course. It's a two-day course taught at many
Iocations and times [see Resources).

Another important step new Scrum sign-ons need to take is to
identify the customers for the tearn and define a few goals for
that team to accomplish in a prioritized list. The team must then
pick someone to be the Certified Scrum Master who will explain
the reasons behind every step of development to the customers
and the team the first time around.

Finally, the team is ready to begin the sprint cycle, the core
development phase of Scrum [see Figure 1). Sprint eycles include:
sprint planning, daily Scrum meetings, and sprint reviews. It's
outside the scope of this article to describe these practices in
detail, but plenty of information is available in the Resources.

OBSTACLES TO INITIATION
1. Team buy-in. Kirsten Forbes says she faced an initial
difficulty in getting the Radical team to accept a Scrum way of
life. “When | presented [Scrum] to the entire team, |walked
through the same process but added a few spicy advantages to
encourage them,” she says. “For team members, the benefits
are clear. Regularly scheduled status update meetings will go
away). Your project managers and producers will not be
interrupting your work all the time to ask for a glimpse of your
progress. You control how your work gets done because you
break the backlog down into tasks. And you do your own time
estimates and you learn to get it right.”

2. Management buy-in. It's easy to oversell Scrum to
management and ruin things for yourself. Working with one
team 1o evaluate Scrum for a few months is an easier sell than
asking management to convert the entire studio ovemnight.
Once the higher-ups see the level of performance from the
Scrum tearmn, the solution will sell itself.

3. Getting used to iteration. It takes a few months for the team
to get used to the pacing of Scrum sprints. The firstimpulse a
team usually shows is to treat sprints like mini waterfalls with
small design documents written at the start and working code
not coming together at the end. This is still better than
traditional waterfall, but coaching the team to keep them
cornmunicating with each other and keep the build working
(instead of writing documents] will improve performance.

4. Code iteration: how to avoid spaghetti. When the goals of a
project can change every sprint, it's hard for the code base to
keep pace and not slow the programmers down. Setting aside
time for the team 1o refactor the code on a regular basis is
valuable. Prograrmmers might want to investigate some of the
practices of Extreme Programming, such as Test-Driven
Development—a very useful way of creating code that can keep
pace in an agile environment.

5. Publisher buy-in. As with management, publishers asked to
accept Scrum should be approached in a very low-key way. The
initial hurdle for publishers is often the idea of having a mare
flexible milestone delivery list. Developers have found that if
they include the publisher as one of the customers at every
sprint review [either by having them visit or through conference
calls while they play the game), it's a very beneficial selling
paint for Scrum. Once they see how their feedback is considered
and possibly included in the next sprint review, they will
become mare enthusiastic. Publishers are well aware that the
traditional milestone-based contracts create a relationship in
which change is resisted, so they are likely to see the benefit of
Scrum firsthand.

T

CES AND TEAM SIZES

One of the main differences between Scrum and the waterfall
method is the idea that the product is kept at a state of near-
completion every sprint, and that features added every sprint

WWW.GDMAG.COM

Agile Manifesto
http://agile
manifesto.org

Suggested reading,
mailing list, and more
from the author
www.agilegame
development.com

Nonaka, lkujiro and
Takeuchi, Hirotaka.
The Knowledge-
Creating Company.
Mew York: Oxford
University Press, 1995,

Schwaber, Ken. Agile
Project Management
with Scrum. Redmaond,
Wash.: Microsoft
Press, 2004.

Schwaber, Ken and
Beedle, Mike. Agile
Software Development
with Scrum. Upper
Saddle River, M.J.:
Prentice Hall, 2001.

Ken Schwaber’s site,
with Scrurn Master
Class schedules
www.controlchaos.com

have a level of completeness that impraves the value of the final
game. The goal is to have the value of the feature proven during
every sprint. Design, coding, debugging, tuning, and assets are
alltaken into consideration.

A common misconception is that it becomes impossible to
irmplement any work that takes longer than one sprint. That's
just not true. The purpose of working this way is to show the
customers the value of the feature every two to four weeks, and
to show how it improves sprint-by-sprint.

In planning the work for each feature, the team considers a
wvertical slice (see Figure 2). Think of a vertical slice as a slice of
five layer cake: The bottom layer is design, followed by coding,
assets, debugging, and tning. With waterfall, the tearn would
create the entire bottom layer first, leaving the frosting until the
end of the project, if there's time left at all. With Scrum, the cake
is built one complete slice at a time instead of layer by layer.

Defining what a vertical slice is per feature is not easy. For
example, if a team is working on Al, does it need characters
with final models and animations to prove that Al characters
are fun? Does it want to find out how many characters
should be used in a scene before figuring out what the
character asset budgets are? What about the trade-offs
between character quantity and quality? How does anyone
know when it's done?

“‘Done’ means fully tested and integrated at each sprint,” says
Forbes, citing Radical's definition. "Early on, we found some
items that one team member considered done were
contentious. Not everyone agreed itwas done. To resolve this,
we added a column on our task board for verified,” she says.
“The customer receiving the piece of work verifies it.This would
be the artists if a tool fix is made for them, or the art directorif a
piece of artis completed, for example. The Scrum master is

responsible for making sure everything has been properly
verified before it comes off the task board.”

There are no hard and fast rules on this. Atypical example
would be the trade-off between the quality versus quantity of
characters you want in a game. If the quantity of characters is
rmore important to the customers, they would want the team to
focus on developing the Al for many characters and defer the
quality decision a bit longer. Many times this decision is made
too early, too late, or based on what the custorners might not
want. We want to avoid the situation where we have to throw out
the work we have done because it doesn't fit the budget, or chop
out key features just to ship the game.

Teams building next-generation games can exceed 70 people
in size. With Scrum, no group should exceed 10 people. What
results is seven teams focusing on different areas of one game,
which can create dependency and communication problems.

A commaon reaction is for management to jump in and solve
problems for the team, but the right thing to do is coach the
teams to self organize and lead themselves out of their
problems. Scrum methodology allows for this, but it’s
sometimes difficult for management and team members to let
go and allow the teams themselves to take ownership.

SCRUMPTIOUS RESULTS

| can't guarantee that Scrum is the solution for all project
management problems. All | can claim is that it's working well for
us at High Moon. It’s not as simple as reading a book and
applying the practices. [t's easy to start, but it takes a long time
to truly understand the ideology behind it. Since the road to
adoption is different for every studio, it's best to share
experiences with a wide range of other adopters. =

a brief history of scrum

THE TERM SCRUM ORIGINATES FROM
an article that appeared in the
January-February 1986 issue of
Harvard Business Review written by
Japanese business researchers
Hirotaka Takeuchi and Ikujiro
Nonaka. Titled “The New New Product
Development Game,” the article
explored companies in the U.S. and
Japan that were delivering
innevative products very rapidly.

The researchers found that these
companies, all of whom were
developing highly sophisticated
products such as automobiles and
consumer electronics that required a
lot of complexity in terms of design
and manufacturing, shared a

number of characteristics in their
product development processes.
Among these were self-organized
teams that were cross-functional
and the development of products on
an iterative basis. The researchers
likened the behavior to what
happens in the sport of rugby, as
mentioned in the article.

Jeff Sutherland and Ken Schwaber
began formulating the Scrum
software development process in the
early 1990s, and announced it in
1995. Their variation on the
methodology adopted common good
practices that had existed for many
years into a framework for teams
that self-organized and

FEBRUARY 2007 | GAME DEVELOPER

communicated and cooperated
closely to develop software inan
iterative and incremental way.

Schwaber and Sutherland
formalized their philosophy
throughout the 1990s, and in 2001
they gathered with other groups to
create the "Agile Manifesto” see
Resources), which defines the
values of every agile methodology,
including Scrum. Today, Schwaber is
considered the leading consultant on
certified Scrum Master training,

Over the past five years, use of
Scrum and Extreme Programming
has grown tremendously, driven in
part by studies that have shown as
much as six-fold improvement in time

and cost to create new products.
Technology innovators Google,
Yahoo, and Microsoft have adopted
it, as have companies in traditionally
more conservative industries such
as banking and insurance.

High Moon adopted Scrum in
2004 in the last year of
development of our debut game
DARKWATCH, followed by our
implementation of Extreme
Programming the subsequent year.
Since then we have seen these
methodologies spread throughout
the game industry, as dozens of
developers have chosen to
implement both methods.

