
1

Patterns and OOP in PHP
George Schlossnagle
<george@omniti.com>

2

Patterns (I)

3

“Each pattern describes a
problem which occurs over and
over again in our environment
and then describes the core of
the solution to that problem, in
such a way that you can use this
solution a million times over,
without ever doing it the same
way twice.”

—Christopher Alexander, The
Timeless Way of Building, 1979

So what are patterns?

What are Patterns?

4

Patterns catalog solutions to
categories of problems

They consist of

A name

A solution to a problem

A description of the solution

An assessment of the pros and cons
of the pattern

What are Patterns, really?

5

An algorithm.

An implementation.

The same every time you see them.

What are Patterns Not?

6

Not so much. Patterns sources outside OOP include:

Architecture (the originator of the paradigm)

User Interface Design (wizards, cookie crumbs, tabs)

Cooking (braising, pickling)

What do patterns have to do
with OOP?

7

Problem: Make lean meat jucier

Solution: Submerge the meat in a salt
and flavor infused liquid.

Discussion: Salt denatures the meat
proteins, allowing them to trap liquid
between them more efficiently.

Example: Mix 1C of table salt and 1C of
molasses into 1G of water. Bring to a
boil to dissolve. Submerge pork roast
for 2 days.

Brining: A tasty design pattern

8

A non-OO example:
Authentication

Problem: You need to provide session
authentication.

Solution: Use a secret that the user
presents you to identify the user.

Discussion: A reference example uses a
cookie to hold the secret. The cookie is
transmitted on each request to your site.
The secret can be used to verify the users
identity.

9

Why are patterns associated
with OOP?

Brought into the industry in a time when
OOP was über-hot.

Reference implementations become
more useful when they can be derived
from directly.

10

Patterns are Useful
I have a DB wrapper class I use frequently

class DB_Mysql {
 protected $user;
 protected $pass;
 protected $dbhost;
 protected $dbname;
 protected $dbh;

 function __construct($user, $pass, $dbhost, $dbname) {
 $this->user = $user;
 $this->pass = $pass;
 $this->dbhost = $dbhost;
 $this->dbname = $dbname;
 }
 function connect() { //...

I don’t like having to pass in the connection parameters at instatiation
time, and I would like to be able to globally set options for a given
database (for example, to enable debugging).

11

Patterns are Useful
The Solution: The Template Pattern

Discussion: The template pattern uses a base class as a template for
a series of children, each of whom will supply the necessary
information to complete it.

My implementation:
class DB_Mysql_Foo extends DB_Mysql {
 protected $user = "foo";
 protected $pass = "bar";
 protected $dbhost = "10.1.1.3";
 protected $dbname = "Foo";

 function __construct() {
 if(strncmp($_ENV['HOSTNAME'], 'devel-1', strlen('devel-1')) == 0) {
 $this->dbhost = '127.0.0.1:3308';
 }
 }
}

12

Patterns are Useful

Now, whenever I need to make a connection to the Foo database, I
only need to do:

$dbh = new Foo;

In addition to looking very clean:

Connection parameters are hidden from the user.

Debugging can be enabled by overloading individual functions.

13

Intro to OOP

14

OOP is paradigm more than a feature set.

Everyone is a bit different, and they all think they're right

The classic difference

click(button)
vs.
button.click()

What is OOP?

15

Let’s try to define OOP through the values it tries to promote.

Allow compartmentalized refactoring of code

Promote code reuse

Promote extensability

Is OOP the only solution for this?

Of course not.

Rephrase: What is its
motivation?

16

Encapsulation is about grouping of related properties and
operations into classes.

Classes represent complex data types and the operations that act
on them. An object is a particular instance of a class. For example
‘Dog’ may be a class (it’s a type of thing), while Grendel (my dog) is
an instance of that class.

Encapsulation

17

Classses as dictionaries are a common idiom, seen in C:

typedef struct _entry {
 time_t date;
 char *data;
 char *(*display)(struct _entry *e);
} entry;
e->display(e);

You can see this idiom in Perl and Python, both of which prototype
class methods to explicitly grab $this (or their equivalent).

Are Classes Just Dictionaries?

18

PHP is somewhat different , since PHP functions aren't really first
class objects. Still, PHP4 objects were little more than arrays.

The difference is coherency. Classes can be told to automatically
execute specific code on object creation and destruction.

 class Simple {
 function __construct() {/*...*/}
 function __destruct() { /*...*/}
 }

Are Classes Just Dictionaries?

19

Leaving a Legacy

A class can specialize (or extend) another class and inherit all its
methods, properties and behaviors.

This promotes

Extensibility

Reusability

Code Consolidation

20

A Simple Inheritance Example

class Dog {
 public function __construct($name) {/*...*/}
 public function bark() { /*...*/ }
 public function sleep() { /*...*/}
 public function eat() { /*...*/}
}
class Rottweiller extends Dog {
 public function intimidate($person);
}

21

Inheritance and the issue of
Code Duplication

Code duplication is a major problem for maintainability. You often
end up with code that looks like this:

function foo_to_xml($foo) {
 // generic stuff
 // foo-specific stuff
}

function bar_to_xml($bar) {
 // generic stuff
 // bar specific stuff
}

22

The Problem of Code
Duplication

You could clean that up as follows:

function base_to_xml($data) { /*...*/ }
function foo_to_xml($foo) {
 base_to_xml($foo);
 // foo specific stuff
}

function bar_to_xml($bar) {
 base_to_xml($bar);
 // bar specific stuff
}

But it’s hard to keep base_to_xml() working for the disparate foo and
bar types.

23

The Problem of Code
Duplication

In an OOP style you would create classes for the Foo and Bar classes
that extend from a base class that handles common functionality.

class Base {
 public function toXML() { /*...*/ }
}
class Foo extends Base {
 public function toXML() {
 parent::toXML();
 // foo specific stuff
 }
}

class Bar extends Base {
 public function toXML() {
 parent::toXML();
 // Barspecific stuff
 }
}

Sharing a base class promotes sameness.

24

Multiple inheritance is confusing. If you inherit from ClassA and
ClassB, and they both define method foo(), whose should you inherit?

Interfaces allow you to specify the functionality that your class must
implement.

Type hints allow you to require (runtime checked) that an object
passed to a function implements or inherits certain required facilities.

Multiple Inheritance

25

interface Displayable {
 public function display();
}
class WeblogEntry implements Displayable {
 public function display() { /*...*/}
}
function show_stuff(Displayable $p) {
 $p->display();
}

vs.

function show_stuff($p) {
 if(is_object($p) && method_exists($p, 'display')) {
 $p->display();
 }
}

Problem is those checks need to be added in every function. vs.

Multiple Inheritance

26

Abstract classes provide you a cross between a ‘real’ class and an
interface. They are classes where certain methods are defined, and
other methods are only prototyped.

Abstract classes are useful for providing a base class that should
never be instantiated, or for abstract (incomplete) pattern
implementations.

abstract class CalendarEntry {
 abstract function display();
 public function fetchDetails() { /*...*/}
 public function saveDetails() {/*...*/}
}

Abstract Classes

27

One of the notions of OOP is that your package/library should have a
public API that users should interact with. What happens behind the
scenes is none of their business, as long as this public API is stable.
This separation is often referred to as ‘data hiding’ or ‘implementation
hiding’.

Some languages (Perl, Python) rely on a ‘gentleman’s contract’ to
enforce this separation, while other languages enforce it as a
language feature.

Public Relations

28

PHP implements strict visibility semantics. Data hiding eases
refactoring by controlling what other parties can access in your code.

public anyone can access it

protected only descendants can access it

private only you can access it

final no one can re-declare it.

Why have these in PHP? Because sometimes self-discipline isn’t
enough.

Data Hiding

29

Suppose we have a calendar that is a collection of entries.
Procedurally dislpaying all the entries might look like:

foreach($entries as $entry) {
 switch($entry->type) {
 case 'professional':
 display_professional_entry($entry);
 break;
 case 'personal':
 display_personal_entry($entry); break;
 }
}

Minimizing Special Case
Handling

30

In an OOP paradigm this would look like:

foreach($entries as $entry) {
 $entry->display();
}

The key point is we don't have to modify this loop to add new types.
When we add a new type, that type gets a display() method so it know
how to display itself, and we’re done.

(p.s. this is a good case for the aggregate pattern, shown later)

Simplicity Through
Polymorphism

31

The PHP5 OOP Feature List
Objects are referenced by identifiers
Constructors and Destructors
Static members
Default property values
Constants
Visibility
Interfaces
Final and abstract members
Interceptors
Exceptions
Reflection API
Iterators

32

Patterns by Example

33

Singleton

34

Problem: You only want one instance of an object to ever exist at
one time

Solutions:

PHP4: Use a factory method with static cache

PHP4: Use a global cache and runtime instance mutability

PHP5: Use static class attributes

Singleton Pattern

35

Description: You need a class that can only have a single instance at
any time.

class Singleton {
 static private $instance;
 private function __construct() {}
 static public function getInstance() {
 if(!self::$instance) {
 self::$instance = new Singleton();
 }
 return self::$instance;
 }
}

Singleton Pattern

36

Singleton in Use

$s1 = Singleton::getInstance();
$s2 = Singleton::getInstance();

$s1->foo = 'bar';
echo $s2->foo; // prints "bar"

37

Factory

38

Factory Pattern

The Factory Pattern lets you create
instances of multiple classes based on
runtime input.

39

Factory Pattern Applied
A calendaring app needs
to support arbitrary item
types.

Items have unified IDs,
so when you fetch an
item, you don’t apriori
know what type it is.

class CalendarItem {
 public function getCalendarItemByID($id)
 {
 $dbh = new DB_Calendar;
 $sth = $dbh->execute("SELECT type
 FROM calendar_items
 WHERE id = $id");
 if($data = $sth->fetch_assoc()) {
 $item = new $data['type']($data['id']);
 }
 }
 protected __construct() {}
}

class RecurringEvent extends CalendarItem {
 public function __contruct($id)
 {
 // class-specific constructor
 parent::__construct();
 }
}

40

Factory in Use

$sth = $dbh->query("SELECT id from calendar_items
 WHERE start_time < date_add(now(), '2 weeks'))";
while(list($id) = $sth->fetch()) {
 $items[] = CalendarItem::getCalendarItemByID($id);
}

41

Aggregate Pattern

42

You have collections of items that you operate on frequently with lots
of repeated code. The Aggregate Pattern gives you an efficient
manner for dealing with collections.

Remember our calendars:
foreach($items as $item) {
 $item->display();
}

Solution: Create a container that implements the same interface, and
perfoms the iteration for you.

Aggregate Pattern

43

class CalendarAggregate extends CalendarItem {
 protected $items;
 public function add(CalendarItem $item) {
 $items[] = $item;
 }
 public function display() {
 foreach($this->items as $item) {
 $item->display();
 }
}

By extending CalendarItem, the aggregate can actually stand in any
place that did, and can itself contain other aggregated collections.

Aggregator Pattern

44

Aggregate in Use

$sth = $dbh->query("SELECT id from calendar_items
 WHERE start_time < date_add(now(), '2 weeks'))";
$cal = new CalendarAggregate;
while(list($id) = $sth->fetch()) {
 $cal->add(CalendarItem::getCalendarItemByID($id));
}

// ...

$cal->display();

45

Iterator

46

The Iterator Pattern
provides a way to iterate
through an object in a
proscribed fashion.

Iterator Pattern

47

Why not just collect your items in an array and use:
foreach($aggregate as $item) { /*...*/ }

Aren't we making life more difficult than need be?

No! For simple aggregations the above works fine (though it’s slow),
but not everything is an array. What about:

Values and Keys in an array
Text lines in a file
Database query results
Files in a directory
Elements or Attributes in XML
Bits in an image
Dates in a calendar range

Aren’t Iterators Pointless in
PHP?

48

Reading an INI File
class DbaReader implements Iterator {
 protected $db = NULL;
 private $key = false, $val = false;

 function __construct($file, $handler) {
 if (!$this->db = dba_open($file, 'r', $handler))
 throw new exception('Could not open file ' . $file);
 }
 function __destruct() { dba_close($this->db); }
 function rewind() {
 $this->key = dba_firstkey($this->db);
 $this->fetch_data();
 }
 function next() {
 $this->key = dba_nextkey($this->db);
 $this->fetch_data();
 }
 private function fetch_data() {
 if ($this->key!==false)
 $this->val = dba_fetch($this->key, $this->db);
 }
 function current() { return $this->val; }
 function valid() { return $this->key !== false; }
 function key() { return $this->key; }
}

49

Reading an INI File

$d = new DbaReader("/etc/php/php.ini", "inifile");
foreach($d as $k => $v) {
 print "$k => $v\n";
}

50

Its output contains all the commented entries.

[PHP]enable_dl => On
[PHP]; cgi.force_redirect => 1
[PHP]; cgi.nph => 1
[PHP]; cgi.redirect_status_env => ;
[PHP]; fastcgi.impersonate => 1;
[PHP];cgi.rfc2616_headers => 0

That’s not terribly useful.

The Problem with the INI
Reader

51

Decorator

52

Decorator

The Decorator pattern provides a way to add
additional functionality to an object at runtime. The
Decorator object wraps the object to be decorated,
proxying certain calls and handling others on its
own.

53

FilterIterator
FilterIterator is a builtin
Iterator class that uses
the Decorator pattern to
wrap another iterator and
returns only select
elements of the inner
iterator. FilterIterator is
implemented in C, but if it
was in PHP it would look
like it does on the right.

Notice here how all the
calls are proxied except
next().

abstract class FilterIterator implements Iterator {
 private $iterator;
 function __construct(Iterator $iterator) {
 $this->iterator = $iterator;
 }
 abstract function accept();
 function getInnerIterator() { return $this->iterator; }
 function rewind() { return $this->iterator->rewind(); }
 function key() { return $this->iterator->key(); }
 function current() { return $this->iterator->current(); }
 function valid() { return $this->iterator->valid(); }
 function next() {
 $next;
 do {
 $this->iterator->next();
 while($this->accept() == 0)
 }
}

!

54

IniFilter
class IniFilter extends FilterIterator {
 function accept() {
 $val = preg_replace("/^\[[^]]*]/", "",
 $this->getInnerIterator()->key());
 $val = preg_replace("/[;#].*/", "", $val);
 return $val?1:0;
 }
}

$d = new DbaReader("/etc/php/php.ini", "inifile");
$filter = new IniFilter($d);

foreach($filter as $k => $v) {
 print "$k => $v\n";
}

55

Proxy

56

Problem: You need to provide access to
an object, but it has an interface you don’t
know at compile time. This is very typical
of RPC-type facilities like SOAP where
you can interface with the service by
reading in a definitions file of some sort at
runtime.

Proxy Pattern

57

class SOAP_Client {
 public $wsdl;
 public function __construct($endpoint) {
 $this->wsdl = WSDLManager::get($endpoint);
 }
 public function __call($method, $args) {
 $port = $this->wsdl->getPortForOperation($method);
 $this->endpoint = $this->wsdl->getPortEndpoint($port);
 $request = SOAP_Envelope::request($this->wsdl);
 $request->addMethod($method, $args);
 $data = $request->saveXML();
 return SOAP_Envelope::parse($this->endpoint, $data);
 }
}

Proxy Pattern in PEAR SOAP

58

SOAP in Use

$soap = new SOAP_Client("http://www.example.com/service.wsdl");
$soap->SomeFunction($data);

59

Observer

60

The Observer pattern shows a flexible way
for objects to notify interested parties on
certain events.

Observer Pattern

61

The Problem wit PEAR_Error
if ($this->mode & PEAR_ERROR_TRIGGER) {
 trigger_error($this->getMessage(), $this->level);
}
if ($this->mode & PEAR_ERROR_DIE) {
 $msg = $this->getMessage();
 if (is_null($options) || is_int($options)) {
 $format = "%s";
 if (substr($msg, -1) != "\n") {
 $msg .= "\n";
 }
 } else {
 $format = $options;
 }
 die(sprintf($format, $msg));
}
if ($this->mode & PEAR_ERROR_CALLBACK) {
 if (is_callable($this->callback)) {
 call_user_func($this->callback, $this);
 }
}
if ($this->mode & PEAR_ERROR_EXCEPTION) {
 trigger_error("PEAR_ERROR_EXCEPTION is obsolete, use class PEAR_ErrorStack for exceptions", E_USER_WARNING);
 eval('$e = new Exception($this->message, $this->code);$e->PEAR_Error = $this;throw($e);');
}

What happened to single responsibility?

62

A More Flexible Solution
Let handlers be registered and called out to on error:

interface ErrorObserver {
 function update(PEAR_Error $e);
}
class PEAR_Error {
 private static $handlers;
 function addHandler(ErrorObserver $h) {
 self::$handlers[] = $h;
 }
 function raiseError() {
 foreach(self::$handlers as $h) {
 $h->update($this);
 }
 }
}

63

Advantages
The core error class doesn’t need to be modified if you want to add a
new possible error reaction.

Custom handlers are very easy:

class MailError implements ErrorObserver {
 private $to;
 function __construct($to) {
 $this->to = $to;
 }
 function update(PEAR_Error $e) {
 mail($this->to, "Error Occured", $e->getMessage());
 }
}
PEAR_Error::addHandler(new MailError('george@example.com'));

64

Serializer

65

Serializer

The serializable pattern describes a
standard way of marshalling and
unmarshalling object data.

66

Unserializer

PHP provides native support through this
pattern via __sleep(), __wakeup(), and
unserialize_callback_func.

67

Serializer in Use

class DB_Mysql {
 function __sleep() {
 unset($this->dbh);
 }
 function __wakeup() {
 $this->connect();
 }
}

function _wakeup_helper($class) {
 include_once("$class.inc");
}
ini_set('unserialize_callback_func', '_wakeup_helper');

68

THANKS!
Slides for this talk will be available shortly
at http://www.omniti.com/~george/talks/

Shameless book plug: Buy my book, you’ll
like it. I promise.

