
Building Scalable
PHP

Applications
George Schlossnagle

What is Scalability
Systemwide Metrics

Ability to accept increased traffic in a graceful
and controlled manner
Efficient delivery of content and services.

Individual Metrics
Minimal Interdependencies
Low Latency
Fast Delivery

This is often used synonymously with
‘performant’, but they aren’t necessarily the
same.

Why Performance Is
Important to You

Efficient resource utilization
More satisfying user experience
Easier to manage

Why PHP
(or: Shouldn’t we be using Java for this?)

PHP is a completely runtime language.
Compiled, statically typed languages are
faster.
BUT
Most bottlenecks are not in user code.
PHP’s heavy lifting is all done in C.
PHP is fast to learn.
PHP is fast to write.
PHP is easy to extend.

Knowing When To
Start

Premature optimization is the root of all
evil
- Donald Knuth
Without direction and goals, optimization
will only make your code obtuse with a
minimal chance of actual improvement.
Design for easy refactoring, but follow the
YAGNI principle.

Knowing When to Stop
Optimizations get exponentially more expensive as they
are accrued.
Striking a balance between performance and features.
Unless you can ‘go live’, all the performance in the
world is useless.

No Fast = True
Optimization takes work.
There are some optimizations which are easy, but there
is no ‘silver bullet’ to make your site faster.
Be prepared to get your hands dirty.

Ahmdal’s Law

0

62.5

125.0

187.5

250.0

Initial
Improve Object Overhead
 by 1000%

Improve Mysql
by 20%

Network Transfer Mysql
Object Overhead

A Lesson From
Open Source

Even if your projects aren’t open source,
you can try and take a lesson from the
community:
Every part of the system can be open for
change, so look for the greatest impact you
can make, whether it’s in PHP, Apache,
your RDBMS, or wherever.

Contents
General Best Practices

Low Hanging Fruit

General Techniques

Profiling

Best Practices

10 Best Practices
1.Use a compiler cache.
2.Control your include trees to no more than 10

includes. (Yes, that number is made-up.)
3.Be mindful of how you use your RDBMS.
4.Be mindful of all network resources.
5.Use regular expressions cautiously.
6. Always build with caching in mind.
7.Output buffering and compression are good.
8.Watch for resource exhaustion.
9.Profile early, profile often.
10.Dev-Ops cooperation is essential.

1. Compiler Caches
On every request, PHP will compile and execute the
indicated scripts.
This compilation stage is expensive, and can rightfully
be avoided.

2. Control Your Includes
Including a file is expensive, even when
using a compiler cache.
Path resolution must be performed, resulting
in at least one stat() and a realpath() call.
A reasonable number of includes is fine
(and promotes good code organization),
but 25, 50, 100+ will impose a real
performance penalty.
I stick to 10 as my personal metric.

3. Mind Your
RDBMSThe number one bottleneck I see in most

systems is making poorly tuned (or poorly
strategized) queries.
No matter how was your PHP code, if it
take a second to pull your data from your
database, your scripts will take at least as
long to execute.

4. Mind Your Network
UsageDon’t forget that reaching network-

available data is expensive. SOAP and
other RPC mechanisms may be sexy, but
they:

are slow
tie your quality of service to external services.

5. Use Regexs Cautiously
With great power comes great responsibility - Uncle Ben
Regular expressions are an extremely
powerful mini-language for matching and
modifying text.
As such, they can be very slow if you
evaluate complex patterns.
Nevertheless, they are tuned for the job
they do. Use them but be mindful.

6. Proactively Support
CachingCaching (at the PHP level) is your most

powerful optimization tool.
While you want to avoid premature
optimization, make sure that you write
your applications so as to make integrating
caching later on easy.
Modifiable, refactorable code is good.

7. Small is Beautiful
Output buffering and compression allow you to optimize
the amount of content you send to your clients.
This has two positive effects:

Less bandwidth == lower costs
Smaller pages == faster transfer times
Smaller pages == optimized networking

8. Exhaustion
It is easy to exhaust resources, even without being CPU
bound

Having your Apache processes due something slow.
Surpassing the concurrency setting on your RDBMS.
Saturating your internal network.

9. Profile O ften
Profiling is essential to understand how an application
will perform under load, and to make sound design
choices.
Benchmarking is good.
Use realistic data.
If possible, profile on ‘live’ data as well.

10. Dev-Ops Cooperation
Production problems are both time-critical and almost
always hard to diagnose.
Build team unity before emergencies, not during them.
It is essential that operations staff provide good feedback
and debugging information to developers regarding
what code is working and what is not.
Similarly, it is essential that development staff heed both
pre-emptive and post-facto warnings from operations
staff.
Strict launch time-windows and oncall developer
escalations help ease angsty operations teams.

Low-Hanging
Fruit

Compile-Time
Options

Compile Options
(modules)

For fastest results either:
Compile mod_php statically
Compile as a DSO, but with
--prefer-non-pic

I prefer non-PIC DSOs, as they have equivalent speed
metrics to the static libraries while still allowing flexible
recompilation of PHP and extension addition.

Compile Options
(arch specific)

Distro vendors tend to ship code that will run on a
wide variety of platforms, and thus must avoid
architecture specific optimizations.

-O3 (full optimizations)
-arch/-mcpu
-funroll_loops

Compile Options
(be a minimalist)

--disable-all is a good place to start to decrease your
instance memory footprint.
Since I run non-PIC DSOs, I compile in only core
extensions I know I need everywhere, and load others
through php.ini.

INI
Optimizations

Minimize Variable
Setting

variables_order = ‘GPC’
register_argc_argv = Off
register_globals = Off
always_populate_raw_post_data = Off

Minimize Variable
Manipulation

magic_quotes_gpc = Off
Filter data with a custom treat_data function.

Optimize File Searches
Keep include_path to a minimum.
Fully qualify all pathnames where possible
include_once(”$LIB/Auth.php”);
vs.
include_once(”Auth.php”);
open_basedir = Off

Minimize Error Logging
Error logging, especially to syslog, is quite slow. Enable
logging on your development server, and rectify all
warnings there. Disable it in production.

Compiler Caches

1. Compiler Caches
How PHP Works

PHP is a ‘runtime’
language in that all
scripts are compiled
and executed anew
on every request.
Compilation is not
cheap, but is
amortizable.

Script Entry

zend_compile

zend_execute

function call
include /
require

1. Compiler Caches

PHP’s internal
compilation calls are
intercepted and checked
for the cached compiled
version, which is stored in
shared memory.
There are still some
associated costs:
Reinstantition
Path resolution
include guards function call

include /
require

Script Entry

zend_compile

store op tree

zend_execute

retrieve optree
from cache

Cached
Uncached

1. Compiler Caches
There is a smorgasborg of compiler caches:

ZPS
Turck MMCache
IonCube
APC

Apache
Optimizations

Never do DNS Lookups
inside Apache

DNS resolution for logging should always be done as a
post-process.

HostnameLookups Off
Also, use IPs in mod_access acls.
This applies to PHP scripts as well. If you need to
reference network entities (RDBMSs, for instance) it is
more efficient to use IPs.

Avoid Excessive Path
Exploration

Eliminate (potentially recursive) .htaccess searching with
AllowOverride None
Avoid expensive file permission checks with
Options FollowSymLinks

Process Sizing
Determining an optimal setting for MaxClients is
difficult. Ideally you want to size it so that the server is
almost fully CPU-utilized when that many clients are
performing average accesses. This is highly application-
dependent.
As a rule of thumb I start with 25*#cpus, and work
up from there, looking for the load to hover around
#cpus while the system is heavily utilized.

Process Sizing
To prevent a thundering-herd effect, set StartServers and
MinSpareServers high. Ideally processes should always
be created in advance.
Set MaxRequestsPerChild to a large number.

Minimize Logging
Disable discretionary logging where possible. Verbose
logs are nice for debugging, but resign that to your
development server and true emergencies.

Disable Keepalives
HTTP/1.1 keepalives are designed to enhance
performance by avoiding the setup cost on TCP
connections for subsequent requests. Unfortunately, if
you have more active clients than MaxClients, it is also a
fabulous way to DoS yourself.

The Keepalive Problem
Let’s optimize based on average page service
time for a user. Assume:

N objects on a page.
t1 seconds for TCP connection.
t2 seconds per page.
K seconds keepalive timeout.

Non-keepalive: N*(t1 + t2)

Keepalive: N*(t2) + t1 + K

So, for keepalive connections to be a win: K < t1* (N - 1)

lingerd
Due to some implementations in TCP/IP, when an
Apache request has been served, its socket can not be
immediately closed. Instead Apache must linger on the
socket to ensure its send buffer is successfully sent.
lingerd allows Apache to hand off the lingering socket
to a simple daemon whose sole purpose is handling
closes (and thus can do so very efficiently).

Aligning Output
Buffers

Matching Your IO Sizes

The goal is to pass off as much work to
the kernel as efficiently as possible.
Optimizes PHP<->OS Communication
Reduces Number Of System Calls

The Path Of Data in
PHP

PHP Apache OS Client

Small writes Individual writes
(buffered internally at 4K)

Unbuffered Writes

The Path Of Data in
PHP

PHP Apache OS Client

Large writes Triggers use of writev()
(more efficient)

Buffered Writes

PHP Apache OS Client

OS > Client Communciation

Regulated by OS tcp
Buffer Size

The Path Of Data in
PHP

PHP Apache OS Client

The Final Picture

The Path Of Data in
PHP

Regulated By PHP Controlled by Apache and OS Kernel

Ouput Buffering

•Efficient
•Flexible
•In your script with ob_start()
•Everywhere with output_buffering =

On (php.ini)

Compressing
Content

Content Compression
Most modern browsers support the ability to receive
content compressed with gzip or compress and to
decompress it for display.
Browsers advertise this support with the Accept-
Encoding header.
Compressing content costs in CPU (up to 10% more
CPU intensive), but can shrink text-type contents by
up to 90%. This allows for more aggressive buffer sizing
and fewer packets on the wire (i.e. faster downloads!)

Content Compression
(the PHP way)

In php.ini
•zlib.output_compression = On
or
•output_handler = ob_gzhandler

Handling compression inside PHP is convenient and
efficient, but lacks the flexibility of an external solution.

Content Compression
(mod_gzip)

mod_gzip is an Apache module that allows for
highly configurable content compressions.
In addition to negotiated sessions, you can modify it’s
behavior based on file names, browser settings and
MIME types.

Content Compression
(other resources)

In Apache 1.3:
mod_deflate

In Apache 2.0
mod_gz
mod_deflate

Optimizing
Content

Optimizing content the ‘old-fasioned way’ is benefitial,
even in conjunction with content compression.

Use CSS (often reduces page sizes by 30 %).
Remove comments and whitespace.
Use Javascript to generate repetitive HTML.
Use shortened URLs.
Cut corners on well-formedness.

Optimizing HTML

General
Techniques

Architectural
Concerns
Static vs.

Dynamic Content

Static vs. Dynamic
mod_php is not a lightweight process. Each Apache
child uses:

A fair chunk of memory.
Persistent resources like DB connections.

mod_php is optimized for serving dynamic content.
Serving static content with it results in the expensive
portions of the process being squandered

Static vs. Dynamic
Ideally, all static content should be served off of a server
optimized for that task.

thttpd
tux
X15
ZPS

Static vs. Dynamic
Even if you don’t have the resources now, you can
prepare yourself fro serving static content separately as
follows:
$STATIC = "http://www.example.com";
<img src="<? $STATIC ?>/sample.gif" />

This simple technique will save you massive amounts of
heartache if you ever decide to serve static content
independently. Just change the value of $STATIC in one
place and you’re done.

Architectural
Concerns

Shared Nothing

What is Shared Nothing?
Shared Nothing is a buzz-word.
Shared Nothing isn’t an architecture.
Shared Nothing is the philosophy that a web application
should not maintain it’s own statefulness.
Shared Nothing says that statefulness and inter-request
communication should be done through the data storage
layer.

Shared Nothing is a Lie
(kinda)

Shared nothing is a bit tricksy. It says that you
shouldn’t maintain statefulness in PHP apps, but instead
do it through things like the file system or a database.
This may seem like an evasion of responsibility (it is),
but it is also a sound idea. The point is that RDBMS
vendors spend huge amounts of time and effort solving
the general problem of making data visible to clients in a
consistent fashion. Its hubris (and a waste of time) to
try and tackle the problem more efficiently.

What Does Shared
Nothing Buy You?

Effectively infinte horizontal scalability (assuming your
data store can scale with you).
Fully transparent failover capability.
Less hardcore business logic in your code.

PHP

Load Balancer

Read-Only DB
(Slave)

Write DB
(Master)Read-Only DB

(Slave)
Replication

PHP PHP Static Content

$_SESSION

Cautious Sessions
PHPs session extension does not violate Shared
Nothing, but it certainly leads you down the path of
temptation.
Standard session handlers use fast local storage (files,
shared memory) to handle session data.
To move from one machine to many and still have
sessions work, you need to move to a centralized storage
system which may not be as fast.

Playing Safe With
Sessions

Never use session.auto_start.
Never set session.use_trans_sid.
Only use sessions when necessary.
Alternative: Use cookies as your session data store!

Use Internal
Functions

Internal Functions
Internal functions are implemented in C, and thus
always faster than functions written in PHP to do the
same job.
This is true of any VM: executing on the underlying
hardware machine will always be faster.

Internal Functions
To demonstrate the difference, let’s compare a hand-coded
version of bin2hex() to the real thing.
function mybin2hex ($temp) {
 $len = strlen($temp);
 $data = '';
 for ($i=0; $i<$len; $i++) {
 $data.=sprintf("%02x",ord(substr($temp,$i,1)));
 }
 return $data;
}

I would claim this was contrived if I hadn’t pulled the
function from a recent posting to the PHP user manual
notes.

Benchmark_Iterate
Benchmark_Iterate is a nice PEAR class for comparing
the performance of function implementations.
require_once("Benchmark/Iterate.php");
foreach(array('mybin2hex', 'bin2hex') as $func) {
 $b = new Benchmark_Iterate;
 $b->run('1000', $func, $test_str);
 $result = $b->get();
 print "$func\t";
 printf("Clock Time: %1.6f\n",$result['mean']);
}

The Results!
Testing this on a random 512 byte string, the following
results are quite telling:
$test_str = '';
for($i=0; $i < 512; $i++) {
 $test_str .= chr(rand(0, 128));
}

...

mybin2hex Clock Time: 0.006157
bin2hex Clock Time: 0.000069

Regexes: Not
Your Enemy

Regular Expressions
Regular expressions are unfairly maligned. PCREs are a
mini-language to themselves. They breed the same bad
code as any other language.

“(\w+|\s{1,2})*“

“(\w+|\s{1,2})*+“

Matches words and spaces inside a quoted string.

The same, but with backtracking disabled. Much faster on
partially successful matches.

Databases

Minimize Round Trips

Avoid database (and any external
resource) lookups whenever possible.
If you store configuration data in your
DB, use a caching scheme to manage it.

Fetch Only What You
Need

Lazy initialization is your friend - if you aren’t sure
you’re going to need it, don’t pull it.
Beware of platform-specific nuances:

In MySQL fetching a column value forces a read of the entire
row, so aggressively fetching contents there makes sense.
In Oracle, you can return a indexed column in an IOT
without ever looking in the table proper, and CLOBs are
stored out-of-line, so it is cheaper to be selective in what you
fetch.

Use Prepared Statements

On systems that support them at the database/
driver level, prepared statements can give a
significant performance boost.
On all systems, prepared statements can help
protect you against SQL injection attacks by
managing the escaping of your inputs.

EXPLAIN
EXPLAIN is the SQL keyword for instructing the
RDBMS to show you how it plans to execute a query

mysql> explain SELECT itemid FROM member_queue WHERE member_id = "4001" ORDER BY rank;+--------------+------
+---------------+------+---------+------+--------+-----------------------------+
| table | type | possible_keys | key | key_len | ref | rows | Extra |
+--------------+------+---------------+------+---------+------+--------+-----------------------------+
| member_queue | ALL | NULL | NULL | NULL | NULL | 110123 | Using where; Using filesort |
+--------------+------+---------------+------+---------+------+--------+-----------------------------+
1 row in set (0.00 sec)

mysql> create index mem_id on member_queue(member_id);
Query OK, 110123 rows affected (4.32 sec)
Records: 110123 Duplicates: 0 Warnings: 0

mysql> explain select itemid from member_queue where member_id = "4001" ORDER BY rank;
+--------------+------+---------------+--------+---------+-------+------+-----------------------------+
| table | type | possible_keys | key | key_len | ref | rows | Extra |
+--------------+------+---------------+--------+---------+-------+------+-----------------------------+
| member_queue | ref | mem_id | mem_id | 5 | const | 1 | Using where; Using filesort |
+--------------+------+---------------+--------+---------+-------+------+-----------------------------+
1 row in set (0.00 sec)

With an Index

Non-Indexed Joins can
be Disastorous

Here we have a join on two tables where the pivot is not
on either table, This results in n*m (or
206160500000) rows being scanned.
mysql> explain select orderdetail.decription from orders, orderdetail where orders.userid = 1001 and orders.orderid =
orderdetail.orderid and available = 'y';
+-------------+------+---------------+------+---------+------+--------+-------------+
| table | type | possible_keys | key | key_len | ref | rows | Extra |
+-------------+------+---------------+------+---------+------+--------+-------------+
| orders | ALL | NULL | NULL | NULL | NULL | 500000 | Using where |
| orderdetail | ALL | NULL | NULL | NULL | NULL | 412321 | Using where |
+-------------+------+---------------+------+---------+------+--------+-------------+

How To Find Bad
Queries

MySQL
Enable slow query logging
--log-long-format will report all non-indexed queries.

Oracle
Query against v$session_wait for current queries
Query against v$sqlarea for cpu and i/o intensive queries.

Indexing Gotchas
The LIKE operator will only hit an index on its
leading static part.
Only a single index will be used for a given table
during query execution. If you need index hits on
more than one column, you need a multi-column index.
Sorting based on a function is slow (usually requires a
result set scan unless your database supports function-
based indexes)
Outer joins are much more costly than inner joins.
Indexes make lookups faster, but writes slower.

External Network
Resources

Referencing External
Data

SOAP
XML-RPC
Trackback/Pingback
Content validation
Co-Registration

Asynchronous is Good
The goal with handling any external resource should be
to make it asynchronous. This decouples your display
functionality and web cluster resources from the third-
party data source.

If you can’t decouple the data fetch from
your application, you’re in bad shape.
This can easily de-stabilize your
application as all your resources become
allocated to handling these slow-feeders.
If the data is for display only, one last
hope is to remove all semblance of
proxying from your application and have
it included for display via Javascript or
some other client-side language.

Caching

Caching Categories
Methodologies

Cache-on-Write
Cache-on-Demand

Scope
Full Page
Partial Page
Algorithmic

Cache on Demand
PHP Passthru

Here we use PEAR’s Cache_Lite to cache the entire
page:

$cache = new Cache_Lite_Output($options);
if(!$cache->start(__FILE__)) {
 // perform page logic here
}

We should also incorporate important $_GET variables here.

Cache on Demand
Writing out Static Files
This is a classic PHP ‘trick’. It’s usually done with an
Apache ErrorDocument handler, but that does funny
things to your logs, requires you to manually set many
headers, and is generally inflexible.

mod_rewrite was made for this sort of task:
RewriteEngine On
RewriteCond /path/to/docroot/%{REQUEST_FILENAME} !-f
RewriteRule ^/(.*).html /generate.php?page=$1

Caching with APC
APC also provides functions for storing and fetching
user content from its shared memory cache:
if($data = apc_fetch($key)) {
 // generate $data
} else {
 apc_store($key, $data);
}

also primitives for storing constants:
if(!apc_load_constants("CONST::".__FILE)) {
 $constants = array('const1' => $value);
 apc_define_constants("CONST::".__FILE__, $constants);
}

Caching with APC
You could alos use these to implement a simple content
cache.
if($page = apc_fetch("PAGE::".__FILE__)) {
 echo $page;
 exit;
}
ob_start();
// do normal work
$page = ob_get_flush();
apc_store("PAGE::".__FILE__, $page);

Distributed Caching
With memcached

In some applications, cluster-wide cache coherency is
critical. In these situations, local caches are difficult to
use because they cannot be centrally expunged.
memcached is a network caching server that stores basic
key/value pairs. It’s quite fast, and very popular,
especially for page fragment caching.

$memcache = memcache_connect('localhost', 11211);
if($memcache && ($fragment = $memcache->get($key))) {
 // do something with fragment
} else {
 // generate fragment
 $memcache && $memcache->set($key, $fragment);
}

Profiling

Stages of Profiling

Script Identification (logs / strace)

Script Profiling (APD / XDebug / DTrace / Strace)

Systems Investigation

Why Profiling Helps
Profiling targets your efforts by finding the expensive
portions of your code.
Even if your code was tuned when you wrote it,
changing data disposition can render old tuning
decisions obsolete.
Profiling helps you understand how your application
works in practice.

Essential qualities.
Transparency.
Low overhead.
Global overview statistics.
In-depth local statistics.

PHP Profiling tools
APD
mod_log_config
XDebug
Zend IDE
strace
Benchmark_Profiler

PECL Install
Almost as simple as:
pear install apd
It’s a Zend extension, so you need to add in your ini
file:
zend_extension=/path/to/apd.so

First Example

An RSS Reader
require_once 'Onyx/RSS.php';
function rss_entries($url)
{
 $feed = array();
 $parser = &new Onyx_RSS;
 $parser->parse($url);
 $meta = $parser->getData(ONYX_META);
 $feed['title'] = $meta['title'];
 while($item = $parser->getNextItem()) {
 $entry = array();
 if(isset($item['pubdate'])) $date = $item['pubdate'];
 else if (isset($item['dc:date'])) $date = $item['dc:date'];
 else $date = "now";
 $entry['ts'] = strtotime($date);
 $entry['date'] = gmdate('Y-m-j H:i:00+0000', $entry['ts']);
 if(isset($item['description']))
 $entry['description'] = $item['description'];
 else if(isset($item['content:encoded']))
 $entry['description'] = $item['content:encoded'];
 $entry['title'] = (string) $item['title'];
 $entry['link'] = (string) $item['link'];
 $feed['items'][] = $entry;
 }
 return $feed;
}

Analyzing Its Performance
<?php

apd_set_pprof_trace();
require_once 'Onyx/RSS.php';
rss_entries("gs.rss");
?>

To profile it, add the
apd_set_pprof_trace() call.
This will profile the script
from that point forward, and
dump a trace file in your
dumpdir.

> ls /tmp/traces/
pprof.25401.0

Parsing The Tracefile

> pprofp -R /tmp/traces/pprof.24917.0

Trace for /Users/george/phpworks/02.php
Total Elapsed Time = 0.45
Total System Time = 0.02
Total User Time = 0.26

 Real User System secs/ cumm
%Time (excl/cumm) (excl/cumm) (excl/cumm) Calls call s/call Name
--
100.0 0.00 0.45 0.00 0.26 0.00 0.02 1 0.0001 0.4480 main
 97.3 0.00 0.44 0.00 0.24 0.00 0.02 1 0.0000 0.4361 rss_entries
 93.7 0.00 0.42 0.00 0.24 0.00 0.02 1 0.0000 0.4199 ONYX_RSS->parse
 93.1 0.00 0.42 0.00 0.24 0.00 0.02 7 0.0000 0.0596 xml_parse
 65.6 0.05 0.29 0.01 0.20 0.01 0.02 1051 0.0001 0.0003 ONYX_RSS->cdata
 30.2 0.14 0.14 0.09 0.09 0.00 0.00 1051 0.0001 0.0001 trim
 25.6 0.00 0.11 0.01 0.03 0.00 0.00 164 0.0000 0.0007 ONYX_RSS->tag_open

Generating a Calltree
> pprofp –cmT /tmp/traces/pprof.24917.0
...
0.02 ONYX_RSS->cdata C: ./Onyx/RSS.php:133
0.02 trim C: ./Onyx/RSS.php:203
0.02 strlen C: ./Onyx/RSS.php:203
0.02 ONYX_RSS->tag_open C: ./Onyx/RSS.php:133
0.02 strtolower C: ./Onyx/RSS.php:176
0.02 sizeof C: ./Onyx/RSS.php:191
0.02 ONYX_RSS->cdata C: ./Onyx/RSS.php:133
0.02 trim C: ./Onyx/RSS.php:203
...

Looking into the source
Here is the location of the call in question. Luckily,
trim() is used improperly here. What this code wants
to do is test if $cdata contains non-whitespace. A
regex is appropriate for this.

function cdata($parser, $cdata)
{
 if(strlen(trim($cdata)) && $cdata != "\n")
 switch ($this->type)
 {

Correct and Re-Profile
function cdata($parser, $cdata)
{
 if(preg_match(’/\S/’,$cdata))
 switch ($this->type)
 {

Trace for /Users/george/phpworks/02.php
Total Elapsed Time = 0.23
Total System Time = 0.02
Total User Time = 0.18
 Real User System secs/ cumm
%Time (excl/cumm) (excl/cumm) (excl/cumm) Calls call s/call Name
--
100.0 0.00 0.23 0.00 0.18 0.00 0.02 1 0.0001 0.2299 main
 92.1 0.00 0.21 0.00 0.17 0.00 0.02 1 0.0000 0.2118 rss_entries
 89.3 0.00 0.21 0.00 0.17 0.00 0.01 1 0.0000 0.2054 ONYX_RSS->parse
 88.0 0.00 0.20 0.00 0.17 0.00 0.01 7 0.0000 0.0289 xml_parse
 73.8 0.04 0.17 0.05 0.14 0.00 0.01 1051 0.0000 0.0002 ONYX_RSS->cdata
 34.2 0.08 0.08 0.07 0.07 0.01 0.01 1051 0.0001 0.0001 preg_match

Replacing the strlen(trim()) calls with a non-whitespace regex match, yields almost a 30% speed-up.

Lessons to Learn
The right tool is usually the one designed for the job.
Regexes get a bad rap, but if you need their functionality,
they are almost always faster than cobbling that
functionality together by hand.
Always measure your changes. A poor optimization can
reduce your performance. Without testing, you may
never know.

Configuration
Options

pprofp summary flags
-R Sort by real time, and include all child calls. This is useful
for finding top-level routines that take a long time.

-r Sort by real time, excluding child calls. This is useful for
identifying base-level functions which are expensive.

-Z Sort by (user+system) time, including child calls. This
finds computationally expensive code blocks, and can
filter out noise from slow network readers or process
contention.

-z Like -Z but excluding child calls.

-u,-U,-s,-S Sort on user or system time respectively.

-l Sort by number of calls

-O <N> Display N entries.

pprofp calltree flags
-T Display an un-compressed calltree.
-t Display a calltree, compressing repeated calls to the same
function.
-c Display the execution times alongside the calltree listing.
-m Display call location (__FILE__:__LINE__) in the
calltree.

pprofp INI Options

apd.dumpdir
The location where trace files will be dumped.
apd.statement_tracing
Enable tracing on a per-statement level, instead
of per-function. The default is Off. This is
currently only used in the kcachegrind viewer.

KCachegrind

Beautiful!

Log Analysis

Websites have more pages than you think.
Remember that performance effects are aggregate.

Mild performance issues on frequently accessed
pages.
Bad performance issues on infrequently accessed
pages.
Poisoning shared resources (database buffer caches,
etc.)

Pinpointing Pages with
mod_log_config

http://www.schlossnagle.org/~george/apache/
high_granularity.diff

Apache 1.3 only supports
low resolution timings, but
you can patch it.

Apache 2.0 natively
supports fine grain timings.

Some Real World
Examples

A Tricky Case

The Initial Profile
> pprofp -R pprof.07384.44

Trace for /reports/headlines.php
Total Elapsed Time = 1.50
Total System Time = 0.01
Total User Time = 0.11
 Real User System secs/ cumm
%Time (excl/cumm) (excl/cumm) (excl/cumm) Calls call s/call Name
--
100.0 0.00 1.50 0.00 0.11 0.00 0.01 1 0.0003 1.4981 main
 99.6 0.00 1.49 0.00 0.11 0.00 0.01 1 0.0000 1.4926 include
 66.1 0.00 0.99 0.00 0.04 0.00 0.00 202 0.0000 0.0049 db_mysqlstatement::fetch_assoc
 65.2 0.98 0.98 0.03 0.03 0.00 0.00 207 0.0047 0.0047 is_resource
 29.3 0.44 0.44 0.00 0.00 0.00 0.00 2 0.2195 0.2195 mysql_query
 29.3 0.00 0.44 0.00 0.00 0.00 0.00 1 0.0000 0.4387 db_mysql::execute

That can’t be right.

is_resource() does an extremely simple
check. There’s no way that it can be
consuming 60% of a real script.
Is APD broken?

 65.2 0.98 0.98 0.03 0.03 0.00 0.00 207 0.0047 0.0047 is_resource

pprof format
To investigate, we’ll need to peak into the raw trace file.

#Pprof [APD] v0.9.1
caller=/reports/headlines.php

END_HEADER

! 1 /reports/headlines.php

& 1 main 2

+ 1 1 2

& 2 apd_set_pprof_trace 1

+ 2 1 2

@ 1 2 3999 1000 5203

 -
 2 50331648

Start Token Meaning

! A file is encountered. It is assigned an
index (1 here).

&
A function is encountered, it is assigned
an index (1) and is noted as a userspace
function (2).

+ A function is called. Function 1 called
from file 1 at line 2.

@
A timing is recorded at file 1, line 2.
3999 user usecs, 1000 system usecs,
5203 wall-clock usecs.

-
A function call ends. Function (2).
Script memory usage is also recorded
(but near worthless).

Looking into the trace
Looking for is_resource, we find it’s declaration:
& 13 is_resource 1

Next we go looking for it’s actual calls. There are many
(207), but here is one:

+ 22 7 224

+ 13 7 113

@ 7 113 0 0 226

- 13 50331648

APD times on function exit, so it’s possible that
function 22 (mysql_db::fetch_assoc)is leaking in a bit of time,
but this is still not near the 4700 usec average quoted
back from APD.

Finding the Outliers
Let’s look for the outliers that are weighting the average
time. Here are a sample of the timings that are being
reported for is_resource().
@ 7 113 0 0 196
...
@ 7 113 999 0 229
...
@ 7 113 0 0 196
...
@ 7 113 1000 0 286
...
@ 7 113 0 0 197
...
@ 7 113 0 0 197
...
@ 7 113 0 0 274140
...
@ 7 113 0 0 123

Looking at caller’s context
Here is the context that is calling is_resource():
function fetch_assoc() {

 if(!is_resource($this->result)) {

 return false;

 }

 return mysql_fetch_assoc($this->result);

}

That looks fine, let’s go one step up the callstack:
while($y = $sth->fetch_assoc()) {

 // lots of stuff

 // lots of printing

}

Aha!
To solve our mystery we need
two hints:

(Without statement
tracing) APD traces
function calls, not language
constructs.
Timings are done at
function exit.

So there is a cost in print
which is being miscategorized
into is_resource().

Print Stuff

Call fetch_assoc

Call is_resource
Record time

while($y = $sth->fetch_assoc()) {
 // lots of stuff
 // lots of printing
}

Buffering Issues

So, the problem is that PHP is blocking while the
OS flushes it’s TCP buffer on the client socket.
To handle this you can:

Enable output buffering in PHP and attempt to
size the buffer chain (PHP => Apache => OS =>
Client) to allow the entire page to fit in a single
TCP buffer.
Enable output compression to help the pages fit
into a reasonable buffer size.

After Adding Buffering
Always measure your changes! Here is the same page
with output buffering and compression on:

Much better!

Trace for /reports/headlines.php
Total Elapsed Time = 0.15
Total System Time = 0.00
Total User Time = 0.08

Proactive Profiling

The Initial Call

> pprofp -R pprof.10089.0

Trace for /reports/bank/us/index.php
Total Elapsed Time = 0.07
Total System Time = 0.01
Total User Time = 0.06
 Real User System secs/ cumm
%Time (excl/cumm) (excl/cumm) (excl/cumm) Calls call s/call Name
--
 97.3 0.00 0.07 0.00 0.05 0.00 0.01 1 0.0008 0.0693 main
 48.3 0.00 0.03 0.00 0.03 0.00 0.00 1 0.0000 0.0344 generatepagexsl
 48.2 0.01 0.03 0.01 0.03 0.00 0.00 4 0.0029 0.0086 require_once
 32.7 0.02 0.02 0.02 0.02 0.00 0.00 1 0.0233 0.0233
fastxsl_prmcache_transform
 11.9 0.01 0.01 0.01 0.01 0.00 0.00 1 0.0085 0.0085 fastxsl_xml_parsestring
 10.8 0.01 0.01 0.01 0.01 0.00 0.00 1 0.0077 0.0077 apd_set_pprof_trace
 7.9 0.00 0.01 0.00 0.00 0.00 0.00 5 0.0000 0.0011 db_mysql::execute
 6.2 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0000 0.0044 report->getalertsxml
 5.9 0.00 0.00 0.00 0.00 0.00 0.00 6 0.0007 0.0007 mysql_query
 5.6 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0001 0.0040 generatepagexml

Subsequent Calls
> pprofp -R pprof.10089.6

Trace for /reports/bank/us/index.php
Total Elapsed Time = 0.05
Total System Time = 0.01
Total User Time = 0.04

 Real User System secs/ cumm
%Time (excl/cumm) (excl/cumm) (excl/cumm) Calls call s/call Name
--
 92.1 0.00 0.04 0.00 0.03 0.00 0.01 1 0.0011 0.0418 main
 19.7 0.00 0.01 0.00 0.01 0.00 0.00 1 0.0001 0.0089 generatepagexsl
 14.8 0.00 0.01 0.00 0.01 0.00 0.00 1 0.0000 0.0067 report->getalertsxml
 14.0 0.00 0.01 0.00 0.00 0.00 0.00 5 0.0000 0.0013 db_mysql::execute
 12.2 0.00 0.01 0.00 0.00 0.00 0.00 1 0.0000 0.0055 generatepagexml

19.7% of script runtime in XSLT Templatization.
Not Shabby.

Thank You!

Questions? Feel free to mail me anytime at

george@omniti.com

Detailed notes will be available soon. I will see

they are mailed to you.

