Seeing With OpenCV

Finding Faces in Images

open-source computer vision
library for C/C++ programmers. It
covered the basics — downloading
and installing OpenCV, reading and
writing image files, capturing video,
and working with the Iplimage data
structure.

his month, I'll show you how to
use OpenCV to detect faces. I'll
explain how the face detection

algorithm works, and give you tips for
getting the most out of it.

Background and

Preliminaries

OpenCV uses a type of face
detector called a Haar Cascade
classifier. The sidebar, "How Face
Detection Works, or What's a Haar
Cascade Classifier, Anyhow?” explains

B Haar Window

||

48 SERVO 02.2007

what this mouthful means. Figure 1
shows an example of OpenCV's face
detector in action.

Given an image — which can come
from a file or from live video — the face
detector examines each image location
and classifies it as “Face” or “Not Face.”
Classification assumes a fixed scale for
the face, say 50 x 50 pixels. Since faces
in an image might be smaller or larger
than this, the classifier runs over the
image several times, to search for
faces across a range of scales. This may
seem like an enormous amount of
processing, but thanks to algorithmic
tricks (explained in the sidebar), classifi-
cation is very fast, even when it's
applied at several scales.

The classifier uses data stored in
an XML file to decide how to classify
each image location. The OpenCV
download includes four flavors of XML
data for frontal face detection, and
one for profile faces. It also includes
three non-face XML files: one for full
body (pedestrian) detection, one for
upper body, and one for lower body.
You'll need to tell the classifier
where to find the data file you
want it to use. The one I'll be
using is called haarcascade_frontal
face_default.xml. In OpenCV
version 1.0, it's located at:

[OPENCV_ROOT] /data/haarcascades/
haarcascade_frontalface_default.
xml

where [OPENCV_ROOT] is the path
to your OpenCV installation. For
example, if you're on Windows XP

FIGURE 1. Face detection with OpenCY,
using default parameters. The input
image is lena.jpg, in the samples/c
directory.

and you selected the default installa-
tion location, you'd use:

[OPENCV_ROOT]
OpenCVv”

= “C:/Program Files/

(If you're working with an older, 16-bit
version of Windows, you'd use '\ as
the directory separator, instead of '/".)

It's a good idea to locate the XML
file you want to use and make sure
your path to it is correct before you
code the rest of your face detection
program.

You'll also need an image to
process. The image lena.jpg is a good
one to test with. It's located in the
OpenCV samples/c directory. If you
copy it to your program’s working
directory, you'll easily be able to
compare your program’s output with
the output from the code in Figure 2.

Implementing Face
Detection, Step by Step

Figure 2 shows the source code to
load an image from a file, detect
faces in it, and display the image with
detected faces outlined in green.
Figure 1 shows the display produced by
this program when it's run from the
command line, using:

DetectFaces lena.jpg

Initializing (and running) the
Detector

The variable CvHaarClassifier
Cascade * pCascade (Line 2) holds the
data from the XML file you located
earlier. To load the XML data into
pCascade, you can use the cvioad()
function, as in Lines 11-13. cvLoad()
is a general-purpose function for
loading data from files. It takes up to

N W N ek AP VY

FIGURE 2. Source code to detect
faces in one image. Usage: Detect
Faces <image file>.

three input parameters. For this
example, you'll only need the first
parameter. This is the path to an
XML file containing a valid Haar
Cascade. Here, I've loaded
the default frontal face detector
included with OpenCV. If you're
coding in C, set the remaining
parameters to 0. If you're coding in
C++, you can simply omit the
unused parameters from your
function call.

Before detecting faces in
images, you'll also need to instanti-
ate a CvMemStorage oObject
(pStorage, declared at Line 3). This
is @ memory buffer that expands
automatically, as needed. The face
detector will put the list of detected
faces into this buffer. Since the
buffer is expandable, you won't
need to worry about overflowing it.
All you'll have to do is create it (Line
10), then release it when you're
finished (Line 54).

You'll often need to load data
from files with OpenCV. Since it's
easy to get a path wrong, it's
a good idea to insert a quick check
to make sure everything loaded
and initialized properly. Lines 16-24
do a simple error check, print a
diagnostic message, and exit if
initialization fails.

Running the Detector

Lines 27-32 call cvHaarDetect
Objects () to run the face detector.
This function takes up to seven
parameters. The first three are
the image pointer, XML data, and
memory buffer. The remaining four
parameters are set to their C++
defaults. These last four parameters
are described below, in the section,
“Parameters and Tuning.”

Viewing the Results

A quick way to check if your
program works is to display the results
in an OpenCV window. You can create
a display window wusing the
cvNamedWindow () function, as in Line
35. The first parameter is a string,
with a window name. The second,
CV_WINDOW_AUTOSIZE, is a flag that

O Jo Ui WwWN

wmmwm.bb»&»&.z>sb.J>pppuwwwuwwwwuwmwwmwmmmm;—n»-—w—-r—w—-r—-r—x»—w—l»—’
bwt\)»—lowm\!mwhLAJNb—lo&ooo\)mmﬁwwv—aotocx)\lmmbwt\)»—lomm\]mmbwt\)n—-\oxo

// declarations
CvHaarClassifierCascade * pCascade =
CvMemStorage * pStorage = 0;

CvSeq * pFaceRectSeq;

it s

// initializations
IplImage * pInpImg = (argc > 1) ?

// the face detector
// expandable memory buffer
// list of detected faces

cvLoadImage (argv[1l], CV_LOAD_IMAGE_COLOR) : 0;

pStorage = cvCreateMemStorage (0) ;

pCascade = (CvHaarClassifierCascade *)cvLoad
((OPENCV_ROOT" /data/haarcascades/haarcascade_frontalface_default.xml"),

0, 0, 0);

// validate that everything initialized properly

if(!pInpImg || !pStorage ||
{

printf("Initialization failed: %s \n",
"didn't load image file"
"didn't load Haar cascade -- "

(!pInpImg) ?
(!pCascade) ?

IpCascade)

"make sure path is correct"
"failed to allocate memory for data storage");

exit (-1);

}

// detect faces in image
pFaceRectSeq = cvHaarDetectObjects
(pInpImg, pCascade, pStorage,
i 2

// increase search scale by 10% each pass

3, // drop groups of fewer than three detections

CV_HAAR_DO_CANNY_PRUNING,
cvSize(0,0));

// skip regions unlikely to contain a face
// use XML default for smallest search scale

// create a window to display detected faces
cvNamedWindow ("Haar Window", CV_WINDOW_AUTOSIZE);

// draw a rectangular outline around each detection
for (i=0; i< (pFaceRectSeq? pFaceRectSeg->total:0); i++)

{

CvRect * r = (CvRect*)cvGetSeqElem(pFaceRectSeq, 1i);

CvPoint ptl = { r->x, r->y };

CvPoint pt2 = { r->x + r->width, r->y + r->height };
cvRectangle (pInpImg, ptl, pt2, CV_RGB(0,255,0), 3, 4, 0);

}

// display face detections
cvShowImage ("Haar Window", pInpImg);
cviWaitKey (0) ;

cvDestroyWindow ("Haar Window") ;

// clean up and release resources
cvReleaseImage (&pInplmg) ;

if (pCascade) cvReleaseHaarClassifierCascade (&pCascade);
if (pStorage) cvReleaseMemStorage (&pStorage) ;

tells the window to automatically
resize itself to fit the image you give it
to display.

To pass an image for display, call
cvShowImage () with the name you pre-
viously assigned the window, and the
image you want it to display. The
cviWaitKey () call at Line 48 pauses the
application until you close the window.
If the window fails to close by clicking
its close icon, click inside the window's
display area, then press a keyboard key.
Also, make sure your program calls
cvDestroyWindow() (Line 49) to close

the window.

Face detections are stored as a list
of CvRect struct pointers. Lines 38-44
access each detection rectangle and
add its outline to the pInpImg variable,
which holds the in-memory image
loaded from the file.

Releasing Resources

Lines 52-54 release the resources
used by the input image, the XML
data, and the storage buffer. If
you'll be detecting faces in multiple
images, you don’t need to release the

SERVO 02.2007 49

How Face Detection Wor

D
F

(x,y)

(W]

FIGURE A. Examples of the Haar
features used in OpenCV.

entire image can be integrated with a
few integer operations per pixel.

As Figure B1 shows, after integra-
tion, the value at each pixel location,
(x,y) contains the sum of all pixel

FIGURE B. The Integral Image trick. After
integrating, the pixel at (x,y) contains
the sum of all pixel values in the shaded
rectangle. The sum of pixel values in
rectangle D is (x4, y4) — (X2, y2) - (x3,
y3) + (x1, y1).

OpenCV’'s face detector uses a
method that Paul Viola and Michael
Jones published in 2001. Usually called
simply the Viola-Jones method, or
even just Viola-Jones, this approach to
detecting objects in images combines
four key concepts:

« Simple rectangular features, called
Haar features.

* An Integral Image for rapid feature
detection.

« The AdaBoost machine-learning method.

FIGURE C. The classifier cascade is a
chain of single-feature filters. Image
subregions that make it through the
entire cascade are classified as “Face.”
All others are classified as “Not Face.”

« A cascaded classifier to combine many
features efficiently.

The features that Viola and Jones
used are based on Haar wavelets. Haar
wavelets are single-wavelength square
waves (one high interval and one low
interval). In two dimensions, a square
wave is a pair of adjacent rectangles —
one light and one dark.

The actual rectangle combinations
used for visual object detection are not
true Haar wavelets. Instead, they contain
rectangle combinations better suited to
visual recognition tasks. Because of that
difference, these features are called Haar
features, or Haarlike features, rather than
Haar wavelets. Figure A shows the
features that OpenCV uses.

The presence of a Haar feature is
determined by subtracting the average
dark-region pixel value from the average
light-region pixel value. If the difference is
above a threshold (set during learning),
that feature is said to be present.

To determine the presence or

absence of hundreds of

Image
subregion

Haar features at every
image location and at sev-
eral scales efficiently, Viola

values within a rectangular region that
has one corner at the top left of the
image and the other at location (x,y).
To find the average pixel value in this
rectangle, you'd only need to divide the
value at (x,y) by the rectangle’s area.

But what if you want to know the
summed values for some other rectangle,
one that doesn’t have one corner at the
upper left of the image? Figure B2 shows
the solution to that problem. Suppose
you want the summed values in D. You
can think of that as being the sum of pixel
values in the combined rectangle, A+B
+C+D, minus the sums in rectangles A+B
and A+C, plus the sum of pixel values in
A. In other words,

D = A+B+C+D - (A+B) - (A+C) + A.

Conveniently, A+B+C+D is the Integral
Image’s value at location 4, A+B is the
value at location 2, A+C is the value at
location 3, and A is the value at location
1. So, with an Integral Image, you can find
the sum of pixel values for any rectangle
in the original image with just three
integer operations:

(x4, y4) = (x2, ¥2) - (x3, y3) + (x1, y1).

To select the specific Haar features
to use and to set threshold levels, Viola
and Jones use a machine-learning
method called AdaBoost. AdaBoost
combines many “weak” classifiers to
create one “strong” classifier. “Weak” here
means the classifier only gets the right
answer a little more often than random
guessing would. That's not very good. But
if you had a whole lot of these weak
classifiers and each one “pushed” the
final answer a little bit in the right
direction, you'd have a strong, combined
force for arriving at the correct solution.
AdaBoost selects a set of weak

classifiers to combine and assigns

Not Face and Jones used a tech-
B _—)\ nique called an Integral
Face Image. In general, “inte-
\L grating” means adding
small units together. In this
Not Face > case, the small units are
pixel values. The integral
Face value for each pixel is the
i > sum of all the pixels above
it and to its left. Starting at
@Mf&) the top left and traversing
to the right and down, the

@

-

£

a weight to each. This weighted
combination is the strong
classifier.

Viola and Jones combined

weak classifiers as a filter chain,
shown in Figure C, that's especial-

FIGURE D. The first two
Haar features in the original
Viola-Jones cascade.

50 SERVO 02.2007

ly efficient for classifying image regions.
Each filter is a weak classifier consisting
of one Haar feature. The threshold for
each filter is set low enough that it
passes all, or nearly all, face examples in
the training set. (The training set is a large
database of faces, maybe a thousand or
so.) During use, if any one of these filters
fails to pass an image region, that region

XML data or the buffer until after
you're done detecting faces.

Parameters and Tuning

There are several parameters you
can adjust to tune the face detector for
your application.

Minimum Detection Scale

The seventh parameter in the call
to cvHaarDetectObjects () is the size
of the smallest face to search for. In C,
you can select the default for this by
setting the scale to 0x0, as in Figure 2,
Line 32. (In C++, simply omit this
parameter to use the default.) But
what is the default? You can find out
by opening the XML file you'll be using.
Look for the <size> tag. In the default
frontal face detector, it's:

<size> 24 24 </size>.

So, for this cascade, the default mini-
mum scale is 24 x 24.

Depending on the resolution
you're using, this default size may be a
very small portion of your overall
image. A face image this small may not
be meaningful or useful, and detecting
it takes up CPU cycles you could use for
other purposes. For these reasons —
and also to minimize the number of
face detections your own code needs
to process — it's best to set the
minimum detection scale only as small
as you truly need.

To set the minimum scale higher
than the default value, set this
parameter to the size you want. A
good rule of thumb is to use some
fraction of your input image’s width or
height as the minimum scale — for
example, 1/4 of the image width. If
you specify a minimum scale other
than the default, be sure its aspect
ratio (the ratio of width to height) is
the same as the default’s. In this case,
aspect ratio is 1:1.

is immediately classified as “Not Face.”
When a filter passes an image region, it
goes to the next filter in the chain.
Image regions that pass through all filters
in the chain are classified as “Face.”
Viola and Jones dubbed this filtering
chain a cascade.

The order of filters in the cascade is
determined by weights that AdaBoost

Minimum Neighbors Threshold
One of the things that happens
“behind the scenes” when you call the
face detector is that each positive face
region actually generates many hits
from the Haar detector. Figure 3 shows
OpenCV's internal rectangle list for the
example image, lena.jpg. The face
region itself generates the largest
cluster of rectangles. These largely
overlap. In addition, there's one small
detection to the (viewer's) left, and
two larger detections slightly above
and left of the main face cluster.
Usually, isolated detections are
false detections, so it makes sense to
discard these. It also makes sense
to somehow merge the multiple
detections for each face region into a
single detection. OpenCV does both
these before returning its list of
detected faces. The merge step first
groups rectangles that contain a large
amount of overlap, then finds the
average rectangle for the group. It
then replaces all rectangles in the
group with the average rectangle.
Between isolated rectangles
and large groupings are smaller
groupings that may be faces, or may
be false detections. The minimum-
neighbors threshold sets the cutoff
level for discarding or keeping
rectangle groups based on how
many raw detections are in the
group. The C++ default for this
parameter is three, which means
to merge groups of three or
more and discard groups with
fewer rectangles. If you find
that your face detector is missing
a lot of faces, you might
try lowering this threshold to
two or one.
If you set it to 0, OpenCV will
return the complete list of raw

FIGURE 3. OpenCV’s internal
detection rectangles. To see these,
use min_neighbors = 0.

assigns. The more heavily weighted filters
come first, to eliminate non-face image
regions as quickly as possible. Figure D
shows the first two features from the
original Viola-Jones cascade super-
imposed on my face. The first one keys off
the cheek area being lighter than the eye
region. The second uses the fact that the
bridge of the nose is lighter than the eyes.

detections from the Haar classifier.
While you're tuning your face detector,
it's helpful to do this just to see what's
going on inside OpenCV. Viewing
the raw detections will improve your
intuition about the effects of changing
other parameters, which will help you
tune them.

Scale Increase Rate

The fourth input parameter to
cvHaarDetectObjects () specifies how
quickly OpenCV should increase the
scale for face detections with each pass
it makes over an image. Setting this
higher makes the detector run faster
(by running fewer passes), but if it's
too high, you may jump too quickly
between scales and miss faces. The
default in OpenCV is 1.1, in other
words, scale increases by a factor of
1.1 (10%) each pass.

Canny Pruning Flag

The sixth parameter to cvHaar
DetectObjects() is a flag variable.
There are currently only two options: 0
Or CV_HAAR_DO_CANNY_PRUNING. If the
Canny Pruning option is selected, the
detector skips image regions that are
unlikely to contain a face, reducing
computational overhead and possibly

B Haar Window

ot

SERVO 02.2007 51

References and
Resources
* OpenCV on Sourceforge

http://sourceforge.net/projects/
opencvlibrary

» Official OpenCV usergroup
http://tech.groups.yahoo.com/
group/OpenCVY

* G. Bradski, A. Kaehler, and V.
Pisarevsky, “Learning-Based Computer
Vision with Intel’s Open Source
Computer Vision Library,” Intel
Technology Journal, Vol 9(1), May 19,
2005. www.intel.com/technology/
itj/2005/volume09issue02/art03_
learning_vision/p01_abstract.htm

* R.E. Schapire, “A Brief Introduction to
Boosting,” Joint Conference on
Artificial Intelligence, Morgan Kauman,
San Francisco, pp. 1401-1406, 1999.

« P. Viola and M.J. Jones, “Rapid Object
Detection using a Boosted Cascade of
Simple Features,” CVPR, 2001.

Closer to real

OTIS

eliminating some false detections. The
regions to skip are identified by
running an edge detector (the Canny
edge detector) over the image before
running the face detector.

Again, the choice of whether or
not to set this flag is a tradeoff
between speed and detecting more
faces. Setting this flag speeds process-
ing, but may cause you to miss some
faces. In general, you can do well with
it set, but if you're having difficulty
detecting faces, clearing this flag may
allow you to detect more reliably.
Setting the minimum-neighbors
threshold to 0 so you can view the raw
detections will help you better gauge
the effect of using Canny Pruning.

The Haar Cascade

There are several frontal face
detector cascades in OpenCV. The
best choice for you will depend on your
set-up. It's easy to switch between
them — just change the file name. Why
not try each?

It's also possible to create your
own, custom XML file using the

Express your Creativity with
the all- around robot kit.

52 SERVO 02.2007

HaarTraining application, in OpenCV's
apps directory. Using that application
is beyond the scope of this
article. However, the instructions are
in OpenCV's apps/haartraining/docs
directory.

Coming Up ...

Now that you've found a face, you
might want to follow it around. Next

month, I'll show you how to use
Camshift, OpenCV's face tracking
method, to do just that. Be seeing
you!

About the Author

Robin Hewitt is an independent soft-
ware consultant working in the areas of
computer vision and robotics. She has
worked as a Computer Vision Algorithm
Developer at Evolution Robotics and is a
member of SO(3), a computer-vision
research group at UC San Diego. She is
one of the original developers of
SodaVision, an experimental face-
recognition system at UC San Diego.
SodaVision was built with OpenCV.

www.robotis.com

place to buy in US : www.crustcrawier.com
www.trossenrobotics.com

Be sure 1o visit us for more inforamtion
about products and distributors in your area

= Beginner kit
(14 examples)

» Comprehensive kit
(26 examples)

« Expert kit
* C language
* Wireless vision
* Wireless data communication

