
SeeingWith OPenCV
Finding Faces in lmages

what this mouthful means. Figure 1
shows an example of OPenCV's face
detector in action.

Given an image - which can come
from a file or from live video - the face
detector examines each image location
and classi f ies i t as "Face" or "Not Face."
Classification assumes a fixed scale for
the face, say 50 x 50 pixels. Since faces
in an image might be smal ler or larger
than this, the classifier runs over the
image several t imes, to search for
faces across a range of scales. This may
seem l ike an enormous amount of
processing, but thanks to algor i thmic
tr icks (explained in the sidebar), c lassi f i -
cation is very fast, even when it's
applied at several scales.

The classifier uses data stored in
an XML file to decide how to classify
each image locat ion. The OPenCV
download includes four flavors of XML
data for frontal face detection, and
one for orofile faces. lt also includes
three non-face XML files: one for full
body (pedestrian) detection, one for
upper body, and one for lower bodY.

You'll need to tell the classifier
where to find the data file You

libnary for C/C++, ptqrcmrr€rs. lt
covercd the basics - downloading
and installing OpenCV, reading and
writing image files, capturing video,
and working with the lPllmage data
structufe.

rFhis month, l ' l l show You how to

I use OpenCV to detect faces. l ' l l
I exolain how the face detection

algorithm works, and give you tips for
getting the most out of it.

Background and
Preliminaries

OpenCV uses a tYPe of face
detector cal led a Haar Cascade
classi f ier. The sidebar, "How Face
Detection Works, or What's a Haar
Cascade Classifier, Anyhow?" explains

want i t to use. The one l ' l l be
using is called haarcascade-f rontal
face-default .xml. In OPenCV
version 1 .0, it 's located at:

IoPE]rCv-RoOTl /data/haarcascades /
haarcascade-f rontal f ace-def au1 t .
xnl

where loPn'icv-noor] is the Path
to your OpenCV installation. For
example, if you're on Windows XP

FIGURE 1. Face detection with OpenCV
using default parameters. The input
image is lenaiPg, in the samPles/c
directory.

48 srnvo oe.2ool

and you selected the default installa-
t ion locat ion, you'd use:

iOPi l {CV-ROOTI
- "C: Ptogram Fi lesr

@enCV"

(l f you're working with an older, 16-bi t
version of Windows, You'd use '\ ' as
the directory separator, instead of 'l '-)

It 's a good idea to locate the XML
file you want to use and make sure
your path to it is correct before you

code the rest of your face detectron
pro9ram.

You' l l a lso need an image to
process. The image lena. jpg is a good
one to test with. lt 's located in the
OpenCV samples/c directory. lf you
copy it to your program's working
directory, you' l l easi lY be able to
compare your Program's outPut with
the output from the code in Figure 2.

lmolementing Face
Detection, StEp by SteP

Figure 2 shows the source code to
load an image from a f i le, detect
faces in it, and display the image wrth
detected faces out l ined in 9reen.
Frgure 1 shows the display produced by
this program when it's run from the
command l ine, using:

DeLectFaces lena. jPg

Initializing (and running) the
Detector

The variable CvHaarClassi f ier
cascade * pcascade (Line 2) holds the
data from the XML file You located
earl ier. To load the XML data into
pCascade, you can use the cvloado
funct ion, as in Lines 11-13. cvloado
is a general-purpose funct ion for
loading data from files. lt takes up to

FIGURE 9. Source code to detect
faces in one image. Usaga Detect
Faces <image file>.

three input parameters. For this
example, you' l l only need the f i rst
parameter. This is the path to an
XML f i le containing a val id Haar
Cascade. Here, l 've loaded
the default frontal face detector
included with OpenCV. lf you're
coding in C, set the remaining
parameters to 0. lf you're coding in
C++, you can simply omit the
unused parameters f rom your
funct ion cal l .

Before detect ing faces in
images, you'll also need to instanti-
ate a CvMemstorage object
(pStorase, declared at Line 3). This
is a memory buffer that expands
automatically, as needed. The face
detector will put the list of detected
faces into this buffer. Since the
buffer is expandable, you won't
need to worry about overflowing it.
All you'll have to do is create it (Line
10), then release it when you're
f inished (Line 5a).

You'll often need to load data
from files with OpenCV. Since it's
easy to get a path wrong, it 's
a good idea to insert a quick check
to make sure everything loaded
and initialized properly. Lines '16-24

do a simple error check, print a
diagnost ic message, and exi t i f
in i t ia l izat ion fai ls.

Running the Detector
Lines 27-32 call cvHaarDerect

objecrs () to run the face detector.
This function takes up to seven
parameters. The f i rst three are
the image pointer, XML data, and
memory buffer. The remaining four
parameters are set to their C++
defaults. These last four parameters
are described below, in the section,"Parameters

and Tuning."

Viewing the Results
A quick way to check if your

program works is to display the results
in an OpenCV window. You can create
a d isp lay w indow us ing the
:vNamedWindowo function, as in Line
35. The f i rst parameter is a str ing,
with a window name. The second,
--lr_wrNDow_AurosrzE, is a flag that

1
2
3
4
5
6
l
8
9

1 0
1 1
12
1 3
1 A

1 5
a o

I]
1 8
1 9
2 0
2 T
2 2
2 3
1 A

2 5
2 6
2 1
2 8
2 9
3 0
3 1
32
3 3
3 4
3 5
3 6
3 1
3 8
3 9
4 0
4 L

4 3
4 4
c l

4 6

4 8
4 9
5 0
5 1
52
53
5 4

/ / declarat ions
CvHaarClassifierCascade * pCascade = 0;
CvMemstorage * pStorage = 0;
. \ / q a d * n E : . a P a - f e 6 ^ .

i n t i ;

/ / Lhe face detector
// e>pandable memory buffer
/ / hsL of detected faces

/ / initializaLions
Ipllrnage * pTnpInE = (argc > 1) ?

cvloadlrnage(argrvFl, CV_LOAD_IMAGE_COIOR) : 0;
pstoraqre - clcreateMenistorage{0) ;
pCascade = (CvHaarClassifierCascade *)cvload

((OPNCV_ROOT " /data/haarcascades /haarcascade_frontal face_defauLt . xnl ") ,
0 , 0 , 0) ;

// valj-date that everything initialized properly
i f (!p lnplmg l1 lpStorage l l lpCascade)
t

pr int f (" In i t ia l - izat ion fa i led: ?s \n, , ,
(l p l np lmg)? ' d i dn ' t l oad image f i l e " :
(lpCascade)? "didn' t load Haar cascade -- , ,

"make sure path is correct" :
" fa i led to a l locate memory for data storage, ,) ;

e x i r (- 1) ;

)

/ / detect faces in image
nFafeRpff Sao = . \ /H^Arf)ol-cef Ohiocf e

(plnplmg, pCascade, pstorage,
1 .1 , / / i n c rease sea rch sca le by 1Og each pass
3, / / drop groups of fewer tharl chree detections
CV_IAAR_DO_CANM_PRUNING, / / skip regions unlikely to contain a face
cvSize(0,O)) ; / / use)o{L defaul t for smal lest search scale

/ / crea|e a window to display detected faces
cvNamedwindow ("Haar Window,,, CV_WINDOW_AU|OSIZE) ;

/ / draw a rectangular outline around each detection
for(i=Q; iq(pFaceRectseq? pFaceRectseq->total :0) ; i++)
{

CvRect * r = (CvRect*)cvcetseqElern(pFaceRectSeq, i) ;
CvPoint pt1 = { r ->x, r ->y } ;
CvPoint pt2 = 1 r->x + r->wid[h, r->y + r->height);
c vRec tang le (p l np Img , p t1 , p t2 , CV_RGB(0 ,255 ,A) , 3 , 4 , 0 l ;

)

/ / d i c n l : r r f ^ . 6 A a t d . r '- * - , * - - - - -10ns
cvShowlnr,age ("Haar Window., plnplmgf) ;
cwva l tKey(0) ;
cvDestroywindow("Haar Window") ;

/ / clean up and release resources
cvReleaselmage (&plnpIng) ;
i f (pCascade) cvReleaseHaarClassi- f ierCascade (&pcascade) ;
i f (pStorage) cvRel-easeMemstorage (&pstorage) ;

te l ls the window to automatical ly
resize itself to fit the image you give it
to display.

To pass an image for display, call
cvShowrmageO with the name you pre-
viously assigned the window, and the
image you want it to display. The
c\,r'/airKeyO call at Line 48 pauses the
application until you close the window.
lf the window fails to close by clicking
its close icon, click inside the window's
display area, then press a keyboard key.
Also, make sure your program calls
cvDestroywindowO (Line 49) to close

the window.
Face detections are stored as a list

of CvRect srrucr pointers. Lines 38-44
access each detection rectangle and
add its outline to the prnprms variable,
wh ich ho lds the in -memory image
loaded from the f i le.

Releasing Resources
Lines 52-54 release the resources

used by the input image, the XML
data, and the storage buffer. l f
you' l l be detect ing faces in mult iple
images, you don't need to release the

r

j

l

)
)
t f

o

SERVO O2.2oO7 49

FIGURE B. The Integral lmage trick. After
integrating, the pixel at (x,y) contains
the sum of a l l p ixe l va lues in the shaded
rectangle. The sum of pixel values in
rectangle D is (x4, y4) - (x2, Y2) - (x3,
y3) + (x1, y1) .

OpenCV's face detector uses a
method that Paul Viola and Michael
Jones published in 2001' Usually called
simply the Viola-Jones method, or
even just Viola-Jones, this approach to
detecting objects in images combines
four key concepts:

. Simple rectangular features, called
Haar features.

. An Integral lmage for rapid feature
detection.

. The AdaBoost machine-learning method.

FIGURE C. The c lass i f ier cascade is a
chain of single-feature fi l ters. lmage
subregions that make it through the
entire cascade are classified as "Face."

All others are classified as "Not Face."

. A cascaded classifier to combine many
features efficiently.

The features that Viola and Jones
used are based on Haar wavelets. Haar
wavelets are single-wavelength square
waves (one high interval and one low
interval). In two dimensions, a sguare
wave is a pair of adjacent rectangles -

one light and one dark.
The actual rectangle combinations

used for visual object detection are not
tru€ Haar wavelets. lnstead, they contain
r€ctangle combinations better suited to
visual recognition tasks. Because of that
difference, these features are called Haar
features, or Haarlike features, rather than
Haar wavelets. Figure A shows the
features that OpenCV uses.

The presence of a Haar feature is
determined by subtracting the average
dark-region pixel value from the average
light-region pixel value. lf the difference is
above a threshold (set during learning),
that feature is said to be Present.

To determine the Presenc€ or
absence of hundreds of
Haar features at everY
image location and at sev-
eral scales efficiently, Viola
and Jones used a tech-
nique called an Integral
lmage. ln general, "inte'

grat ing" means adding
small units together. In this
cas€, the small units are
pixel values. The integral
value for each Pixel is the
sum of all the pixels above
it and to its left. Starting at
the top left and traversing
to the right and down, the

FIGURE A. Examples of the Haar
features used in OPenCV.

entire image can be integrated with a
tew integer operations Per Pixel.

As Figure 81 shows, after integra-
tion, the value at each pixel location,
(x,y) contains the sum of all Pixel
values within a rectangular r€gion that

has one corner at the top left of the
image and the other at location (x,y)'

To find the average pixel value in this
rectangle, you'd only need to divide the
value at (x,y) by the rectangle's area.

But what if You want to know the
summed values for some other rectangle,
one that doesn't have one corner at the
upper left of the image? Figure B9 shows
the solution to that problem. Suppose
you want the summed values in D. You
can think of that as being the sum of pixel

values in the combined rectangle, A+B
+C+D, minus the sums in rectangles A+B
and A+C, plus the sum of pixel values in
A. In other wordt

D = A+B+C+D - (A+B) - (A+C) + 4.

Conveniently, A+B+C+D is the Integral
lmage's value at location 4 A+B is the
value at location 2, A+C is the value at
location 3, and A is the value at location
1. So, with an lntegral lmage, you can find
the sum of pixel values for any rectangle
in the original image with just three
integer operations:

(x4,y4) - (x9, Y9) - (x3, Y3) + (xl, Y1).

To select the specific Haar features
to use and to set threshold levels, Viola
and Jones use a machine-learning
method called AdaBoost. AdaBoost
combines many "weak" classifiers to
cr€ate one "strong" classifier. "!(eak" here
means the classifier only gets the right
answer a little more often than random
guessing would. That's not very good. But
if you had a whole lot of these weak
classifiers and each one "pushed" the
f inal answer a l i t t le b i t in the r ight
direction, you'd have a strong, combined
lorce for arriving at the correct solution.
AdaBoost selects a set of weak

classifiers to combin€ and assigns
a weight to each. This weighted
combination is the strong
classif ier.

Viola and Jones combined
weak classifiers as a filter chain,
shown in Figure C, that's esPecial-

FIGURE D. The first two
Haar features in the or ig inal
Viola-Jones cascade.

E-
trtr

lmage
subregion

n*S
oftr,rotr""e ,

\-7
o
a
o

ffinot r""" ,
_7 trtr

flafl
50 sEnvo oe.2ool

ly elticient for classifying image regions.
Each filter is a weak classifier consisting
of one Haar feature. The threshold for
each filter is set low enough that it
passes all, or nearly all, face examples in
the training set. (The training set is a large
database of faces, maybe a thousand or
so.) During use, if any one of these filters
fails to pass an image region, that region

XML data or the buffer unt i l af ter
you're done detect ing faces.

Parameters and Tuning
T h ^ - ^ - . ^ - ^ . , ^ - - |I r tere dre 5everdt paramelers you

can adjust to tune the face detector for
your appl icat ion.

Minimum Detection Scale
The seventh parameter in the cal l

to cvHaarDereeLobjecLsl) is the size
of the smallest face to search for. In C,
you can select the default for this by
sett ing the scale to 0x0, as in Figure 2,
L ine 32 . (ln C++, s imp ly omi t th is
parameter to use the default .) But
what is the default? You can f ind out
by opening the XML f i le you' l l be using.
Look for the <size> tag. In the default
frontal face detector. it 's:

<s i ze> 24 24 < / s i ze> .

So, for this cascade, the default mini-
mum scale is 24 x 24.

Depend ing on the reso lu t ion
you're using, this default s ize may be a
very smal l port ion of your overal l
image. A face image this smal l may not
be meaningful or useful , and detect ing
it takes up CPU cycles you could use for
other purposes. For these reasons -
and also to minimize the number of
face detections your own code needs
to process - it 's best to set the
minimum detect ion scale only as smal l
as you truly need.

To set the minimum scale higher
than the de fau l t va lue , se t th is
parameter to the size you want. A
good rule of thumb is to use some
fract ion of your input image's width or
height as the minimum scale - for
example, 1/4 of the rmage width. l f
you specify a minimum scale other
than the default , be sure i ts aspect
rat io (the rat io of width to height) is
the same as the default 's. In this case.
aspec t ra t io i s 1 :1 .

is immediately classified as "Not Face."
When a filter passes an image region, it
goes to the next filter in the chain.
lmage regions that pass through all filters
in the chain are classified as "Face."

Viola and Jones dubbed this filtering
chain a cascade.

The order of filters in the cascade is
determined by weights that AdaBoost

assigns. The more heavily weighted filters
come first to eliminate non-face image
regions as quickly as possible. Figure D
shows the first two features from the
original Viola-Jones cascade super-
imposed on my face. The first one keys off
the cheek area being lighter than the eye
region. The second uses the fact th6t th€
bridge of the nose is lighter than the eyes.

Minimum Neighbors Threshold
One of the things that happens

"behind the scenes" when you cal l the
face detector is that each positive face
region actual ly generates many hi ts
from the Haar detector. Figure 3 shows
OpenCV's internal rectangle l ist for the
example image, lena. jpg . The face
region i tsel f generates the largest
cluster of rectangles. These largely
overlap. In addit ion, there's one smal l
detection to the (viewer's) left, and
two larger detections slightly above
and lef t of the main face cluster.

Usual ly, isolated detect ions are
false detections, so it makes sense to
discard these. l t a lso makes sense
to somehow merge the mul t ip le
detect ions for each face region into a
single detect ion. OpenCV does both
these before returning i ts l ist of
detected faces. The merge step first
groups rectangles that contain a large
amount of overlap, then f inds the
average rectangle for the group. l t
then replaces al l rectangles in the
group with the average rectangle.

Between isolated rectangles
a n d l a r g e g r o u p i n g s a r e s m a l l e r
groupings that may be faces, or may
be false detect ions. The minimum-
neighbors threshold sets the cutoff
level for discarding or keeping
rectangle groups based on how
many raw detect ions are in the
group. The C++ default for this
parameter is three, which means
to merge groups of three or
more and discard groups with
fewer rectangles. l f you f ind
that your face detector is missing
a lot of faces, you might
try Iowering this threshold to
two or one.

lf you set it to 0, OpenCV will
return the complete list of raw

FIGURE 3. OpenCV's internal
detection rectangles. To see these,

use min_neighbors = 0.

detect ions f rom the Haar classi f ier.
Whi le you're tuning your face detector,
i t 's helpful to do this just to see what 's
go ing on ins rde OpenCV. V iewing
the raw detections will improve your
intui t ion about the effects of changing
other parameters, which wi l l help you
tune them.

Scale Increase Rate
The fourth input parameter to

cvHaar DecectObj ecr- s I i Specif ies how
quick ly OpenCV should increase the
scale for face detections with each pass
i t makes over an image. Set t ing th is
higher makes the detector run faster
(by running fewer passes) , but i f i t 's
too h igh, you may jump too quick ly
between scales and miss faces. The
defaul t in OpenCV is i .1 , in other
words, scale increases by a factor of
1 .1 (10%) each pass.

Canny Pruning Flag
The sixth parameter to cvHaar

DeLecLobjecrs () is a f lag var iable.
There are currently only two options: 0
or cv_nAAR_Do_cANNy_pRUNrNG. lf the
Canny Pruning opt ion is se lected, the
detector sk ips image regions that are
unl ike ly to conta in a face, reducing
computat ional overhead and possib ly

SERVO O2.2oO7 51

. OpenCV on Sourceforge
http://sourc etorge.nd / groiecls /
opencvlibrary

. Official OpenCV usergroup
hfip:. / / lech.groups.yahoo.com/
group/OpenCV

. G. Bradski, A. Kaehler, and V.
Pisarevsky, "Learning-Based Computer
Vision with Intel 's OPen Source
Computer Vision LibrarY," lntel
Technology Journal, Vol 9(1), MaY 19,
9005. www.intel.com/technology/
irl / 2OO5 / v ol u me09issu eOZ / a*Ot -
learning-vision/ p01 -abstract.htm

. R.E. Schapire, "ABriet Introduction to
Boosting," Joint Conference on
Artificial lntelligence, Morgan Kauman,
San Francisco, pp. 1401-1 406, 1999.

. P. Viola and M.J. Jones, "Rapid Object
Detection using a Boosted Cascade of
Simple Features," CVPR, 9001.

e l im ina t i ng some fa l se de tec t i ons . The
reg ions to sk ip a re i den t i f i ed by
runn ing an edge de tec to r (t he Canny
edge detector) over the image before
r r rnn ino the face de tec tOr .

Again, the choice of whether or
no t t o se t t h i s f l ag i s a t r adeo f f
between speed and detect ing more
Iaces Set t ing th is f lag speeds process
ing , bu t mav cause you to m iss some
faces. In general , you can do wel l wi th

i t set , but i f you ' re havrng d i f f icu l ty
detectrng faces, c lear ing thrs f lag may
a l l ow you to de tec t more re l i ab l y .
S e t t i n g t h e m i n i m u m - n e i g h b o r s
threshold to 0 so you can v iew the raw
detectror^s wr l l he lp you bet ter gauge

the e f f ec t o f us ing Canny P run ing .

The Haar Cascade
There a re seve ra l f r on ta l f ace

de tec to r cascades i n OpenCV. The
best choice for you wi l l depend on your
set up. l t 's easy to swi tch between
them - l us t change the f i l e name. Why

no t t r y each?
I t 's a lso possib le to create Your

own , cus tom XN/L f i l e us ing the

HaarT ra in ing app l i ca t i on , i n OpenCV 's
apps d i rec to ry . Us ing tha t app l i ca t i on
i s beyond the scope o f t h i s
ar t ic le However, the inst ruct ions are

in OpenCV 's apps /haa r t ra in rng /docs
d r recto ry

Coming Up ...
Now that you've found a face, You

might want to fo l low i t around. Next

mon th , l ' l l show you how to use

Camsh i f t , OpenCV 's f ace t rack ing
method , t o do l us t t ha t Be see rng
you I

Robin Hewitt is an independent soft'
ware consultant working in the areas of
computer vision and robotics. She has
worked as a Computer Vision Algorithm
Developer at Evolution Robotics and is a
member of 5O(3), a computer'vision
research group at UC 9an Diego. She is
one of the original develoPers of
SodaVision, an experimental face-
recognition system at UC San Diego.
SodaVision was built with OPenCV.

\

52 srnvo o2.2oo:'

