COMBINATORIAL OBJECTS FOR q-EXPONENTIAL FUNCTIONS

HEESUNG SHIN

ABSTRACT. There are e_q and E_q as q-analogues of exponential function. We introduce a third q-exponential function \mathcal{E}_q which is closely related to the Askey-Wilson operators. We survey some properties of \mathcal{E}_q . There is the well-known identity related to the \mathcal{E}_q function and the q-Hermite polynomials $H_n(x|q)$, i.e.

$$(qt^2; q^2)_{\infty} \mathcal{E}_q(x; t) = \sum_{n=0}^{\infty} \frac{q^{n^2/4} t^n}{(q; q)_n} H_n(x|q).$$

We define the combinatorial objects and the map on them which prove the previous identity combinatorially.

1. Preliminaries

For complex number a and q, |q| < 1, let $(a;q)_n = \prod_{k=0}^{n-1} (1-aq^k)$ for the q-shifted factorials. We use the standard notations for the q-binomial coefficients

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{(q;q)_n}{(q;q)_k(q;q)_{n-k}}, \quad n \in \mathbb{Z}.$$

and for the q-basic hypergeometric series

$${}_{r}\Phi_{s}\begin{bmatrix}a_{1},a_{2},\ldots,a_{r}\\b_{1},b_{2},\ldots,b_{s};q,z\end{bmatrix} = \sum_{n=0}^{\infty}\frac{(a_{1},a_{2},\ldots,a_{r};q)_{n}}{(q,b_{1},b_{2},\ldots,b_{s};q)_{n}}\left[(-1)^{n}q^{\binom{n}{2}}\right]^{1+s-r}z^{n}$$

where $(a_1, a_2, \dots, a_k; q)_n = (a_1; q)_n (a_2; q)_n \cdots (a_k; q)_n$.

2. q-Exponential Functions

There are two q-analogues e_q and E_q of exponential function as follows:

$$e_q(x) = \sum_{n \ge 0} \frac{x^n}{(q;q)_n} = \frac{1}{(x;q)_{\infty}}$$
$$E_q(x) = \sum_{n \ge 0} q^{\binom{n}{2}} \frac{x^n}{(q;q)_n} = (-x;q)_{\infty}$$

By calculating easily, $\lim_{q\to 1^-} e_q(x(1-q)) = \lim_{q\to 1^-} E_q(x(1-q)) = \exp(x)$ and $e_q(x) \cdot E_q(-x) = 1$. But two addition theorems for e_q and E_q is false: $e_q(A+B) \neq e_q(A)e_q(B)$ and $E_q(A+B) \neq E_q(A)E_q(B)$.

²⁰⁰⁰ Mathematics Subject Classification. 05A15.

H. SHIN

Definition 2.1. \mathcal{E}_q is called a *q*-exponential function and sometimes a curly for short and defined by

$$\mathcal{E}_q(x,y;\alpha) = \frac{(\alpha^2;q^2)_{\infty}}{(q\alpha^2;q^2)_{\infty}} \sum_{n=0}^{\infty} \frac{q^{n^2/4}\alpha^n}{(q;q)_{\infty}} e^{-in\phi} (-q^{(1-n)/2}e^{i(\phi+\theta)}, -q^{(1-n)/2}e^{-i(\phi-\theta)};q)_n$$

where $x = \cos \theta$, $y = \cos \phi$. Denote $\mathcal{E}_q(x; \alpha) = \mathcal{E}_q(x, 0; \alpha)$ (See [2, 5, 10])

Proposition 2.2. The \mathcal{E}_q function have the addition theorem

$$\mathcal{E}_q(x, y; \alpha) = \mathcal{E}_q(x; \alpha) \mathcal{E}_q(y; \alpha).$$

This is a q-analogue of $\exp(\alpha(x+y)) = \exp(\alpha x) \exp(\alpha y)$. Thus, it is symmetric as $\mathcal{E}_q(x, y; \alpha) = \mathcal{E}_q(y, x; \alpha)$

Different proofs of this relation were given in [4, 5]. This *q*-exponential function satisfies the followings:

(1) $\lim_{q \to 1^{-}} \mathcal{E}_q(x; \frac{1-q}{2}\alpha) = \exp(\alpha x)$ (2) $\mathcal{E}_q(x; \alpha)$ is a q-analogue of $\exp(\alpha x)$ but is not symmetric in x and α . (3) $\lim_{q \to 1^{-}} \mathcal{E}_q(x, y; \frac{1-q}{2}\alpha) = \exp(\alpha(x+y))$ (4) $\mathcal{E}_q(x, y; \alpha)$ is a q-analogue of $\exp(\alpha(x+y))$, symmetric in x and y.

Theorem 2.3 (Ismail & Zhang, 1994). The generating function for the continuous q-Hermite polynomials $H_n(x|q)$ is

$$(qt^2;q^2)_{\infty}\mathcal{E}_q(x;t) = \sum_{n=0}^{\infty} \frac{q^{n^2/4}t^n}{(q;q)_n} H_n(x|q)$$

which is obtained in [2] and discussed in [3, 4, 5]

3. q-Hermite Polynomials

Definition 3.1. The *q*-Hermite polynomials $H_n(x|q)$ is defined by

$$H(x,r) = \sum_{n=0}^{\infty} \frac{H_n(x|q)}{(q;q)_n} r^n = \prod_{k=0}^{\infty} (1 - 2xrq^k + r^2q^{2k})^{-1}$$

As usual, $H_n(x|q) = H_n(x) = H_n$ for short.

$$H(\cos\theta, r) = \frac{1}{(re^{i\theta})_{\infty}(re^{-i\theta})_{\infty}} \text{ and } H_n(\cos\theta|q) = \sum_{k=0}^n \begin{bmatrix} n\\k \end{bmatrix}_q e^{i(2k-n)\theta} \text{ are found in } [1, 3, 8].$$

Now, we shall construct the objects for q-Hermite polynomials using the recurrence relation. In other words, we shall make the set \mathcal{H}_n such that $H_n(x|q) = \sum_{G \in \mathcal{H}_n} w(G)$.

Proposition 3.2. The q-Hermite Polynomials $H_n(x)$ satisfies the following recurrence relation:

$$\begin{cases} H_n(x) = 2xH_{n-1}(x) + (q^{n-1} - 1)H_{n-2}(x) & \text{for } n \ge 2\\ H_0(x) = 1, \quad H_1(x) = 2x \end{cases}$$
(3.1)

FIGURE 1. Example of \mathcal{H}_9

We define the set \mathcal{H}_n of graphs with vertex set $\{1, 2, \ldots, n\}$ for *q*-Hermite polynomials. By the recurrence (3.1) of $H_n(x)$, \mathcal{H}_n is the disjoint union of two sets; the one is the pairs of \mathcal{H}_{n-1} and one vertex *n* with the weight $\alpha(=2x)$ and \mathcal{H}_{n-2} and the other one is the pairs of \mathcal{H}_{n-2} and one edge (n-1,n) with the weight $q^{n-1}-1$. Hence vertices of these graphs are zero or one and edges are adjacent. The weights of the vertex is α with degree zero and 1 withe degree one. The weights of the edges (i, i+1) is $q^i - 1$. In the sequel, as figure 1, the set \mathcal{H}_n of graphs and the weight function *w* is defined by

$$\mathcal{H}_n = \{G = (V, E) : V = [n], E \subset E_n, \deg(v) \le 1, \forall v \in V\}$$
$$w(G) = \prod_{v \in V(G)} \alpha^{1 - \deg(v)} \prod_{e \in E(G)} w(e)$$

where $E_n = \{(i, i+1) : i = 1, ..., n-1\}$ and $w(e) = q^i - 1$ for e = (i, i+1). Thus, $H_n(x|q) = \sum_{G \in \mathcal{H}_n} w(G)$. As usual, $\mathcal{H} = \bigcup_{n \ge 0} \mathcal{H}_n$.

4. Combinatorial Obejects

Recall the theorem of Ismail and Zhang.

$$(qt^2; q^2)_{\infty} \mathcal{E}_q(x; t) = \sum_{n=0}^{\infty} \frac{q^{n^2/4} t^n}{(q; q)_n} H_n(x|q)$$

Dividing both sides by $(t^2; q^2)_{\infty}$ and comparing only the coefficients of t^{2m} and t^{2m+1} with some calculation using the definition of \mathcal{E}_q , we obtain two identities

$$\prod_{k=0}^{m-1} ((q^{2k+1}-1)^2 + \alpha^2 q^{2k+1}) = \sum_{i=0}^m \frac{(q;q^2)_m}{(q;q^2)_i} H_{2i}(x|q) q^{i^2} \begin{bmatrix} m\\i \end{bmatrix}_{q^2}$$
(4.1)

$$\alpha \prod_{k=0}^{m-1} ((q^{2k+2}-1)^2 + \alpha^2 q^{2k+2}) = \sum_{i=0}^m \frac{(q;q^2)_{m+1}}{(q;q^2)_{i+1}} H_{2i+1}(x|q) q^{i^2+i} \begin{bmatrix} m\\i \end{bmatrix}_{q^2}$$
(4.2)

where $\alpha = 2x$. In this paper, we aim to prove above identities. First of all, let us find a combinatorial proof of the identity (4.1).

Let $F_n(\text{or } G_n)$ be the right(or left)-hand side of (4.1) respectively, i.e.

$$F_n = \sum_{i=0}^m \frac{(q;q^2)_m}{(q;q^2)_i} H_{2i}(x|q)q^{i^2} \begin{bmatrix} m\\i \end{bmatrix}_{q^2}$$
$$G_n = \prod_{k=0}^{m-1} ((q^{2k+1}-1)^2 + \alpha^2 q^{2k+1})$$

We shall prove $F_n = G_n$ combinatorially. Since G_n is a product, it has a simple recurrence

$$G_{n+1} = G_n \times \left((q^{2n+1} - 1)^2 + \alpha^2 q^{2n+1} \right).$$

H. SHIN

FIGURE 2. Example of $\mathcal{F}_{5,3}$.

If we prove that for all $n \ge 0$,

$$F_{n+1} = F_n \times ((q^{2n+1} - 1)^2 + \alpha^2 q^{2n+1})$$

= $F_n \times ((1 - q^{2n+1}) + q^{2n+1} (q^{2n+1} - 1) + \alpha^2 q^{2n+1})$

then $F_n = G_n$ for all n, since $F_0 = G_0 = 1$.

We define the set \mathcal{F}_n of graphs with n vertices for F_n . Since F_n is the sum of terms which is product of three pieces, \mathcal{F}_n is the disjoint union of sets $\mathcal{F}_{n,i}$ whose elements are triple (G, G', X). G is the combinational objects for $H_{2i}(x|q)$, G' for $\frac{(q; q^2)_m}{(q; q^2)_i}$ and X for $\begin{bmatrix} m\\ i \end{bmatrix}_{q^2}$. In the sequel, as figure 2, the set $\mathcal{F}_{n,k}$ of graphs is defined by

$$\mathcal{F}_{n,i} = \{F = (G, G', X) : G \in \mathcal{H}_{2i}, G' = (V_{n,i}, E_{n,i}), X \subset O_n, |X| = i\}$$

where

$$O_n = \{1, 3, \dots, 2n - 1\},\$$

$$V_{n,i} = \{2i + 1, 2i + 2, \dots, 2n\} \text{ and}\$$

$$E_{n,i} = \{(2i + 1, 2i + 2), (2i + 3, 2i + 4), \dots, (2n - 1, 2n)\}.\$$

and a weight function w by

$$w(F) = w(G)w(G')w(X)$$

=
$$\prod_{v \in V(G)} \alpha^{1-\deg(v)} \prod_{e \in E(G)} w(e) \prod_{e' \in E(G')} w(e') \prod_{i \in X} q^i$$

where

$$w(e) = q^i - 1$$
 for $e = (i, i + 1) \in E(G)$ and
 $w(e') = 1 - q^i$ for $e' = (i, i + 1) \in E(G')$.

As usual, $\mathcal{F}_n = \bigcup_{0 \le i \le n} \mathcal{F}_{n,i}$.

5. Main Proof

We shall construct a weight-preserving bijection

$$\Psi: \mathcal{F}_{n+1} \to \mathcal{F}_n \times \{a, b, c\}$$

such that

$$w(F) = w(\Psi(F)), \quad \forall F \in \mathcal{F}_{n+1}$$

where

$$a = \begin{array}{c} 2n+1 & 2n+2 \\ \bullet \dots \bullet \\ b = \begin{array}{c} 2n+1 & 2n+2 \\ \bullet & \bullet \\ \bullet \\ 2n+1 & 2n+2 \\ \bullet \\ c = \begin{array}{c} 2n+1 & 2n+2 \\ \bullet \\ \bullet \\ \bullet \end{array}, \quad w(b) = q^{2n+1}(q^{2n+1}-1) \\ c = q^{2n+1}\alpha^2. \end{array}$$

If we make such Ψ map, then we get what we want as follows:

$$w(\mathcal{F}_{n+1}) = w(\mathcal{F}_n)w(\{a, b, c\})$$

$$F_{n+1} = F_n \times ((1 - q^{2n+1}) + q^{2n+1}(q^{2n+1} - 1) + \alpha^2 q^{2n+1})$$

$$= F_n \times ((q^{2n+1} - 1)^2 + \alpha^2 q^{2n+1})$$

and $F_0 = G_0 = 1$; thus $F_n = G_n$ for all $n \ge 0$. Now, we make the Ψ map.

• Case 1: $2n + 1 \notin X$

• Case 2: $2n + 1 \in X$ and $\deg(2k) = 1$ where 2k = V(G)

Lemma 5.1 (Weight-sum of some graphs).

b

• Case 3: $2n + 1 \in X$ and $\deg(2k) = 0$ where 2k = V(G) by using Lemma 5.1. 2i + 1 $2n \quad 2n+1 \ 2n+2$

	20 1 1			211	210 1 2	510 2
•••	•	••	••	•	-•	•
•••	•	••	••	•	•••	-•
•••	•	••	• • •	•	•••	-•
•••	•	• • •	•••	•	•••	-•

We construct the map Ψ , but it is not a bijection. However, it is a weight-preserving surjective map, in the other sense,

$$\sum_{\Psi(F')=(F,\delta)} w(F') = w(F,\delta)$$

for all $(F, \delta) \in \mathcal{F}_n \times \{a, b, c\}$. Therefore,

$$w(\Psi^{-1}(F,\delta)) = w(F,\delta).$$

So there is no problem using the map ψ . Finally, we get $F_n = G_n$ for all $n \ge 0$ combinatorially.

Theorem 5.2. The following identity (4.1) has a combinatorial interpretation.

$$\prod_{k=0}^{m-1} ((q^{2k+1}-1)^2 + \alpha^2 q^{2k+1}) = \sum_{i=0}^m \frac{(q;q^2)_m}{(q;q^2)_i} H_{2i}(x|q) q^{i^2} {m \brack i}_{q^2}$$

where $\alpha = 2x$.

6. Further Study

The other equation (4.2) could be proved similarly combinatorially with $\alpha = 2x$.

$$\alpha \prod_{k=0}^{m-1} ((q^{2k+2}-1)^2 + \alpha^2 q^{2k+2}) = \sum_{i=0}^m \frac{(q;q^2)_{m+1}}{(q;q^2)_{i+1}} H_{2i+1}(x|q) q^{i^2+i} {m \brack i}_{q^2}.$$

If so, how to prove the identity of Ismail and Zhang combinatorially?

$$(qt^2; q^2)_{\infty} \mathcal{E}_q(x; t) = \sum_{n=0}^{\infty} \frac{q^{n^2/4} t^n}{(q; q)_n} H_n(x|q)$$

Can we find more combinatorial properties of $\mathcal{E}_q(x;t)$ and then interpret them combinatorially?

q-EXPONENTIAL FUNCTIONS

References

- 1. M.E.H. Ismail, Dennis Stanton and Gérard Vennot, The combinatorics of q-Hermite polynomials and the Askey-Wilson Integral, *Europ. J. Combinatorics*, 8: 379–392, 1987.
- 2. M.E.H. Ismail and R. Zhang, Diagonalization of certain integral operators, Adv. Math. 109: 1–33, 1994.
- R. Floreanini and L. Vinet, A model for the continuous q-ultraspherical polynomials, J. Math. Phys. 36 (7): 3800-3813, 1995.
- R. Floreanini, J. LeTourneux and L. Vinet, Symmetry techniques for the Al-Salam-Chihara polynomails, Journal of Phys. A: Math. Gen., 30: 3107–3114, 1997.
- 5. M.E.H. Ismail, Dennis Stanton, Addition theorems for the q-exponential functions, q-Series from a Contemporary Perspective (Contemporary Mathematics 254), 235–245, 2000.
- 6. Sergei Suslov, Another addition theorem for the q-exponential function, Journal of Phys. A: Math. Gen., 33: 375–380, 2000.
- 7. G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, 1990.
- 8. Jiang Zeng, Combinatorics and Special Functions, ICMS in KAIST, 1998.
- 9. Richard P. Stanley, Enumerative Combinatorics Volume 2, Cambridge University Press, 1999.
- M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge University Press, 2005.

Department of Mathematics, Korea Advanced Institute of Science and Technology, Taejon, 305-701, Republic of Korea

E-mail address: H.Shin@kaist.ac.kr