
COMBINATORIAL OBJECTS FOR q-EXPONENTIAL FUNCTIONS

HEESUNG SHIN

Abstract. There are eq and Eq as q-analogues of exponential function. We introduce a
third q-exponential function Eq which is closely related to the Askey-Wilson operators. We
survey some properties of Eq. There is the well-known identity related to the Eq function
and the q-Hermite polynomials Hn(x|q), i.e.

(qt2; q2)∞Eq(x; t) =

∞X
n=0

qn2/4tn

(q; q)n
Hn(x|q).

We define the combinatorial objects and the map on them which prove the previous identity
combinatorially.

1. Preliminaries

For complex number a and q, |q| < 1, let (a; q)n =
∏n−1

k=0(1−aqk) for the q-shifted factorials.
We use the standard notations for the q-binomial coefficients

[
n

k

]

q

=
(q; q)n

(q; q)k(q; q)n−k
, n ∈ Z.

and for the q-basic hypergeometric series

rΦs

[
a1, a2, . . . , ar

b1, b2, . . . , bs
; q, z

]
=

∞∑

n=0

(a1, a2, . . . , ar; q)n

(q, b1, b2, . . . , bs; q)n

[
(−1)nq(

n
2)

]1+s−r
zn

where (a1, a2, . . . , ak; q)n = (a1; q)n(a2; q)n · · · (ak; q)n.

2. q-Exponential Functions

There are two q-analogues eq and Eq of exponential function as follows:

eq(x) =
∑

n≥0

xn

(q; q)n
=

1
(x; q)∞

Eq(x) =
∑

n≥0

q(
n
2) xn

(q; q)n
= (−x; q)∞.

By calculating easily, limq→1− eq(x(1 − q)) = limq→1− Eq(x(1 − q)) = exp(x) and eq(x) ·
Eq(−x) = 1. But two addition theorems for eq and Eq is false: eq(A + B) 6= eq(A)eq(B) and
Eq(A + B) 6= Eq(A)Eq(B).
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Definition 2.1. Eq is called a q-exponential function and sometimes a curly for short and
defined by

Eq(x, y; α) =
(α2; q2)∞
(qα2; q2)∞

∞∑

n=0

qn2/4αn

(q; q)∞
e− i nφ(−q(1−n)/2ei(φ+θ),−q(1−n)/2e− i(φ−θ); q)n

where x = cos θ, y = cosφ. Denote Eq(x; α) = Eq(x, 0;α) (See [2, 5, 10])

Proposition 2.2. The Eq function have the addition theorem

Eq(x, y;α) = Eq(x;α)Eq(y; α).

This is a q-analogue of exp(α(x+y)) = exp(αx) exp(αy). Thus, it is symmetric as Eq(x, y; α) =
Eq(y, x;α)

Different proofs of this relation were given in [4, 5]. This q-exponential function satisfies
the followings:

(1) lim
q→1−

Eq(x;
1− q

2
α) = exp(αx)

(2) Eq(x; α) is a q-analogue of exp(αx) but is not symmetric in x and α.

(3) lim
q→1−

Eq(x, y;
1− q

2
α) = exp(α(x + y))

(4) Eq(x, y;α) is a q-analogue of exp(α(x + y)), symmetric in x and y.

Theorem 2.3 (Ismail & Zhang, 1994). The generating function for the continuous q-Hermite
polynomials Hn(x|q) is

(qt2; q2)∞Eq(x; t) =
∞∑

n=0

qn2/4tn

(q; q)n
Hn(x|q)

which is obtained in [2] and discussed in [3, 4, 5]

3. q-Hermite Polynomials

Definition 3.1. The q-Hermite polynomials Hn(x|q) is defined by

H(x, r) =
∞∑

n=0

Hn(x|q)
(q; q)n

rn =
∞∏

k=0

(1− 2xrqk + r2q2k)−1

As usual, Hn(x|q) = Hn(x) = Hn for short.

H(cos θ, r) =
1

(rei θ)∞(re− i θ)∞
and Hn(cos θ|q) =

n∑

k=0

[
n

k

]

q

ei(2k−n)θ are found in [1, 3, 8].

Now, we shall construct the objects for q-Hermite polynomials using the recurrence relation.
In other words, we shall make the set Hn such that Hn(x|q) =

∑
G∈Hn

w(G).

Proposition 3.2. The q-Hermite Polynomials Hn(x) satisfies the following recurrence rela-
tion: {

Hn(x) = 2xHn−1(x) + (qn−1 − 1)Hn−2(x) for n ≥ 2
H0(x) = 1, H1(x) = 2x

(3.1)



q-EXPONENTIAL FUNCTIONS 3

1 2 3 4 5 6 7 8 9
u u u u u u u u u
α α αq2 − 1 q4 − 1 q7 − 1

Figure 1. Example of H9

We define the set Hn of graphs with vertex set {1, 2, . . . , n} for q-Hermite polynomials. By
the recurrence (3.1) of Hn(x), Hn is the disjoint union of two sets; the one is the pairs of
Hn−1 and one vertex n with the weight α(= 2x) and Hn−2 and the other one is the pairs of
Hn−2 and one edge (n − 1, n) with the weight qn−1 − 1. Hence vertices of these graphs are
zero or one and edges are adjacent. The weights of the vertex is α with degree zero and 1
withe degree one. The weights of the edges (i, i + 1) is qi − 1. In the sequel, as figure 1, the
set Hn of graphs and the weight function w is defined by

Hn = {G = (V,E) : V = [n], E ⊂ En,deg(v) ≤ 1, ∀v ∈ V }
w(G) =

∏

v∈V (G)

α1−deg(v)
∏

e∈E(G)

w(e)

where En = {(i, i + 1) : i = 1, . . . , n− 1} and w(e) = qi−1 for e = (i, i+1). Thus, Hn(x|q) =∑
G∈Hn

w(G). As usual, H =
⋃

n≥0Hn.

4. Combinatorial Obejects

Recall the theorem of Ismail and Zhang.

(qt2; q2)∞Eq(x; t) =
∞∑

n=0

qn2/4tn

(q; q)n
Hn(x|q)

Dividing both sides by (t2; q2)∞ and comparing only the coefficients of t2m and t2m+1 with
some calculation using the definition of Eq, we obtain two identities

m−1∏

k=0

((q2k+1 − 1)2 + α2q2k+1) =
m∑

i=0

(q; q2)m

(q; q2)i
H2i(x|q)qi2

[
m

i

]

q2

(4.1)

α

m−1∏

k=0

((q2k+2 − 1)2 + α2q2k+2) =
m∑

i=0

(q; q2)m+1

(q; q2)i+1
H2i+1(x|q)qi2+i

[
m

i

]

q2

(4.2)

where α = 2x. In this paper, we aim to prove above identities. First of all, let us find a
combinatorial proof of the identity (4.1).

Let Fn(or Gn) be the right(or left)-hand side of (4.1) respectively, i.e.

Fn =
m∑

i=0

(q; q2)m

(q; q2)i
H2i(x|q)qi2

[
m

i

]

q2

Gn =
m−1∏

k=0

((q2k+1 − 1)2 + α2q2k+1)

We shall prove Fn = Gn combinatorially. Since Gn is a product, it has a simple recurrence

Gn+1 = Gn × ((q2n+1 − 1)2 + α2q2n+1).



4 H. SHIN

1 2 3 4 5 6 7 8 9 10
u u u u u u u u u un n n

G G′

X = {3, 5, 9}

α α

q3 q5 q9

q2 − 1 q4 − 1 1− q7 1− q9

Figure 2. Example of F5,3.

If we prove that for all n ≥ 0,

Fn+1 = Fn × ((q2n+1 − 1)2 + α2q2n+1)
= Fn × ((1− q2n+1) + q2n+1(q2n+1 − 1) + α2q2n+1)

then Fn = Gn for all n, since F0 = G0 = 1.
We define the set Fn of graphs with n vertices for Fn. Since Fn is the sum of terms which

is product of three pieces, Fn is the disjoint union of sets Fn,i whose elements are triple

(G,G′, X). G is the combintorial objects for H2i(x|q), G′ for
(q; q2)m

(q; q2)i
and X for

[
m

i

]

q2

. In

the sequel, as figure 2, the set Fn,k of graphs is defined by

Fn,i = {F = (G,G′, X) : G ∈ H2i, G
′ = (Vn,i, En,i), X ⊂ On, |X| = i}

where

On = {1, 3, . . . , 2n− 1} ,

Vn,i = {2i + 1, 2i + 2, . . . , 2n} and
En,i = {(2i + 1, 2i + 2), (2i + 3, 2i + 4), . . . , (2n− 1, 2n)} .

and a weight function w by

w(F ) = w(G)w(G′)w(X)

=
∏

v∈V (G)

α1−deg(v)
∏

e∈E(G)

w(e)
∏

e′∈E(G′)

w(e′)
∏

i∈X

qi

where

w(e) = qi − 1 for e = (i, i + 1) ∈ E(G) and

w(e′) = 1− qi for e′ = (i, i + 1) ∈ E(G′).

As usual, Fn =
⋃

0≤i≤nFn,i.

5. Main Proof

We shall construct a weight-preserving bijection

Ψ : Fn+1 → Fn × {a, b, c}
such that

w(F ) = w(Ψ(F )), ∀F ∈ Fn+1
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where

a =
2n + 1 2n + 2s s , w(a) = 1− q2n+1

b =
2n + 1 2n + 2s si , w(b) = q2n+1(q2n+1 − 1)

c =
2n + 1 2n + 2s si , w(c) = q2n+1α2.

If we make such Ψ map, then we get what we want as follows:

w(Fn+1) = w(Fn)w({a, b, c})
Fn+1 = Fn × ((1− q2n+1) + q2n+1(q2n+1 − 1) + α2q2n+1)

= Fn × ((q2n+1 − 1)2 + α2q2n+1)

and F0 = G0 = 1; thus Fn = Gn for all n ≥ 0. Now, we make the Ψ map.

• Case 1: 2n + 1 6∈ X
2n 2n + 1 2n + 2

· · · t t t t t t t t

Ψ=⇒
2n 2n + 1 2n + 2

· · · t t t t t t t t
a

• Case 2: 2n + 1 ∈ X and deg(2k) = 1 where 2k = V (G)
2k 2n 2n + 1 2n + 2

· · · t t t t t t t tl

Ψ=⇒
2k 2n 2n + 1 2n + 2

· · · t t t t t t t tl
b

Especially,
2n + 1 2n + 2

· · · t tl Ψ=⇒
2n + 1 2n + 2

· · · t tl
b

Lemma 5.1 (Weight-sum of some graphs).

w

(
· · · t t t t · · · t t t

2i 2i + 2 2n 2n + 1 2n + 2
)

+ w

(
· · · t t t t · · · t t t

2i 2i + 2 2n 2n + 1 2n + 2
)

= w

(
· · · t t t t · · · t t t

2i 2i + 2 2n 2n + 1 2n + 2
)

• Case 3: 2n + 1 ∈ X and deg(2k) = 0 where 2k = V (G) by using Lemma 5.1.
2i + 1 2n 2n + 1 2n + 2

· · · t t t t t t t ti
· · · t t t t t t t ti
· · · t t t t t t t ti
· · · t t t t t t t ti
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=⇒
2i + 1 2n 2n + 1 2n + 2

· · · t t t t t t t ti (a)

· · · t t t t t t t ti (b)

· · · t t t t t t t ti (c)

· · · t t t t t t t ti (d)

=⇒
2i + 1 2n 2n + 1 2n + 2

· · · t t t t t t t ti (a)+(b)

· · · t t t t t t t ti (c)

· · · t t t t t t t ti (d)

=⇒
2i + 1 2n 2n + 1 2n + 2

· · · t t t t t t t ti (a)+(b)+(c)

· · · t t t t t t t ti (d)

Ψ=⇒
2i + 1 2n 2n + 1 2n + 2

· · · t t t t t t t ti (a)+(b)+(c)+(d)

c

We construct the map Ψ, but it is not a bijection. However, it is a weight-preserving
surjective map, in the other sense,

∑

Ψ(F ′)=(F,δ)

w(F ′) = w(F, δ)

for all (F, δ) ∈ Fn × {a, b, c}. Therefore,

w(Ψ−1(F, δ)) = w(F, δ).

So there is no problem using the map ψ. Finally, we get Fn = Gn for all n ≥ 0 combinatorially.

Theorem 5.2. The following identity (4.1) has a combinatorial interpretation.

m−1∏

k=0

((q2k+1 − 1)2 + α2q2k+1) =
m∑

i=0

(q; q2)m

(q; q2)i
H2i(x|q)qi2

[
m

i

]

q2

where α = 2x.

6. Further Study

The other equation (4.2) could be proved similarly combinatorially with α = 2x.

α
m−1∏

k=0

((q2k+2 − 1)2 + α2q2k+2) =
m∑

i=0

(q; q2)m+1

(q; q2)i+1
H2i+1(x|q)qi2+i

[
m

i

]

q2

.

If so, how to prove the identity of Ismail and Zhang combinatorially?

(qt2; q2)∞Eq(x; t) =
∞∑

n=0

qn2/4tn

(q; q)n
Hn(x|q)

Can we find more combinatorial properties of Eq(x; t) and then interpret them combinatori-
ally?
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