
Brand New Information / 23

Brand New Information

What modern literature has to say about code

review; what studies do and don’t agree on.

An Amazon search for books on “code inspection” turns up only
one item1: The 1974, out-of-print, 29-page article by Michael Fagan
of IBM. In that year, IBM sold the model 3330-11 disk drive for
$111,600. A megabyte of RAM would set you back $75,000. The
PDP-11 was still the best-selling minicomputer.

Everything has changed since then: programming languages,
development techniques, application complexity and organization,
levels of abstraction, and even the type of person who decides to
enter the field.

But there hasn’t been much change to the accepted wisdom
of how to conduct proper code inspections. Some of Fagan’s

1 Ignoring two “technical articles” and books on home and construction

inspections.

24 / Best Kept Secrets of Peer Code Review

ideas are as applicable as ever, but surely there must be something
new. Inspecting assembly code in OS/360 is nothing like running
down the implications of a code change in an object-oriented
interpreted language running in a 3-tier environment. Calling
inspection meetings with 5 participants doesn’t work in the world
of remote-site development and agile methodologies.

This essay is a survey of relatively recent studies on peer re-
view and inspection techniques. We point out results common to
all studies and results that vary widely between studies.

There is an emphasis here on the timeliness of the study.
You won’t see the seminal works of Fagan, Gilb, and Wiegers2.
Some of the original ideas are still as applicable as ever, but of
course some things have changed. We don’t want to parrot the
accepted wisdom of the great men who started the theory of code
reviews, but instead to survey what appears to be the state of
affairs in the modern world of software development.

2 Nothing here should be construed as a slight against the excellent work,

tradition, and success established by these men. The author of this
essay highly recommends Wieger’s 2002 Peer Reviews in Software as the
most readable, practical guide to formal reviews.

Brand New Information / 25

Votta 19933, Conradi 20034, Kelly 20035: Are review meetings

necessary?

One of the most controversial questions in code review is: Does
every inspection need a meeting? Michael Fagan, the father of
code inspection, has insisted since 1976 that the inspection
meeting is where defects are primarily detected, but research in
intervening thirty years has not been so strongly conclusive.

The first, most famous attack on the value traditionally asso-
ciated with meetings came from Lawrence Votta from AT&T Bell
Labs in 1993. He identified the five reasons most cited by both
managers and software developers in support of inspection
meetings:

1. Synergy. Teams find faults that no individual re-
viewer would be able to find.

2. Education. Less experienced developers and review-
ers learn from their more experienced peers.

3. Deadline. Meetings create a schedule that people
must work towards.

4. Competition. Ego leads to personal incentive to con-
tribute and improve.

3 Lawrence G. Votta, Jr., Does every inspection need a meeting?,

Proceedings of the 1st ACM SIGSOFT symposium on Foundations of software
engineering, p.107-114, December 08-10, 1993, Los Angeles, California,
United States

4 Reidar Conradi, Parastoo Mohagheghi, Tayyaba Arif, Lars Christian
Hegde, Geir Arne Bunde, and Anders Pedersen; Object-Oriented
Reading Techniques for Inspection of UML Models – An Industrial
Experiment. In European Conference on Object-Oriented Programming
ECOOP'03. Springer-Verlag, Darmstadt, Germany, pages 483-501

5 Kelly, D. and Shepard, T. 2003. An experiment to investigate interacting
versus nominal groups in software inspection. In Proceedings of the 2003
Conference of the Centre For Advanced Studies on Collaborative Research (To-
ronto, Ontario, Canada, October 06 - 09, 2003). IBM Centre for
Advanced Studies Conference. IBM Press, 122-134.

26 / Best Kept Secrets of Peer Code Review

5. Process. Inspections simply require meetings. That’s
the official process.

However, in his 1993 seminal paper based on his own re-
search and that of others, Votta argued that:

1. Synergy. Meetings tend to identify false-positives
rather than find new defects. (More below.)

2. Education. Education by observation is usually un-
successful; some researchers condemn it completely.

3. Deadlines. Process deadlines are important but
could be enforced without meetings per se, or at
least without heavy-weight meetings.

4. Competition. Competition is still achieved with any
peer review. Some competition destroys teamwork,
e.g. between designers and testers.

5. Process. Process is important but facts, not “tradi-
tion,” should be used to form and improve the
process.

Furthermore, although Votta agreed with the prevailing
claims that code inspections save time by detecting defects early in
the development process, he pointed out that the founders of
inspection did not properly consider the amount of time consumed
by the inspection meeting. For example, one study of formal
inspection showed that 20% of the requirements and design phase
was spent just waiting for a review to start! The time spent in
preparing, scheduling, and waiting for reviews is significant and
grows with the number of meeting participants, yet this time is
ignored in the usual cost-benefit analysis.

Recall that “meeting synergy” was cited most often by both
developers and managers as well as by the literature as the primary
advantage of inspection meetings. Here “synergy” refers to the
team effect that a group of people performs better than any of its

Brand New Information / 27

members; in particular, that a group-inspection will necessarily
uncover more defects than the reviewers individually.

Votta set out to test this hypothesis by measuring the per-
centage of defects found in inspection meetings as opposed to the
private code readings that precede those meetings. His findings
are summarized in Figure 3.

Defects Found By Inspection Phase

0

10

20

30

40

50

60

70

80

90

100

13 Inspection Trials

P
er

ce
nt

ag
e

of
 T

ot
al

 D
ef

ec
ts

Defects from Reading Defects from Meeting

Figure 3: Votta's results demonstrating that in-
spection meetings contribute only an additional
4% to the number of defects already found by pri-
vate code-readings.

28 / Best Kept Secrets of Peer Code Review

As it turned out, meetings contributed only 4% of the defects
found in the inspections as a whole. Statistically larger than zero,
but Votta asks “Is the benefit of ~4% increase in faults found at
the collection meeting (for whatever reason) worth the cost of
Tcollection [wasted time6] and the reviewer’s extra time? The answer
is no.”

Strong words! But surely there are other benefits to inspec-
tion meetings besides just uncovering defects?

In 2003, Diane Kelly and Terry Shepard at the Royal Military
College of Canada set up an experiment comparing reviewers in
isolation versus group meetings. Would the results support or
contradict Votta? And besides the quantity of defects, would there
be a difference in other important factors such as the rate at which
defects were uncovered or a reduction in false-positives that waste
authors’ time?

In Kelly’s case, groups of developers read code individually to
detect as many defects as possible. Then each group got together
in an inspection meeting. If proponents of traditional inspections
are correct, significant numbers of defects will be found during the
meeting phase, especially compared with the reading phase. If
Votta’s conclusions are correct, we should expect to see few
defects detected in the meeting but some thrown out during the
meeting (i.e. removal of false-positives or confusing points in the
code).

6 Votta identifies three components to wasted time: (1) hazard cost of

being later to market, (2) carrying cost of development when developers
are in meetings instead of writing code, and (3) rework cost when
authors continue to develop the work product only to have the work
later invalidated by faults found in inspection.

Brand New Information / 29

In total, 147 defects were found during the reading phases7.
Of these, 39 (26%) were discarded during meetings. Although
some of these were due to false-positives (i.e. the reviewer was
incorrect in believing there was a defect) there were also a signifi-
cant number of cases where poor documentation or style in the
code lead the reviewer to believe there was a problem. Kelly
suggests that these should probably be considered “defects” after
all.

So the meeting did throw out false-positives – a useful thing –
but what about uncovering new defects? Votta would guess that
very few new defects would be found. With Kelly the meeting
phases added only 20 new defects to the existing 147. Further-
more, of those 20, two-thirds were relatively trivial in nature. So
not only did the meeting phases not contribute significantly to
overall defect counts, the contribution was generally of a surface-
level nature rather than logic-level or algorithmic-level.

Perhaps we should not be surprised by all this. Detecting
problems in algorithms generally requires concentration and
thought – a single-minded activity that isn’t encouraged in the
social milieu of a meeting. Are you more likely to discover the bug
in a binary-search algorithm by debate or by tracing through code-
paths by yourself?

Besides the quantity of defects, it is also useful to consider
how much time was consumed by each of these phases. After all,
if the review meeting is very fast, the elimination of the false-
positives would make it worthwhile even if no additional defects
are found.

Kelly found that about two-thirds of total person-hours were
spent in reading and one-third in meetings. This leads to a defect

7 Developers inspecting code in isolation will find duplicate defects; we

probably don’t want to count these in the analysis. The researchers
found only 10 of the 147 were duplicates.

30 / Best Kept Secrets of Peer Code Review

discovery rate of 1.7 defects per hour for reading and 1.2 for
meeting. Reading is 50% more efficient in finding defects than are
meetings.

Yet another direct test of Votta’s contentions came from a
different angle in 2003 from a joint effort conducted by Reidar
Conradi between Ericsson Norway and two Norwegian colleges,
NTNU and Agder University. The goal of the experiments was to
measure the impact of certain reading techniques for UML model
inspections. Votta experimented with design reviews, Kelly with
source code, and now Conradi would examine architecture
reviews.

The stated goal of the study was to determine the effective-
ness of “tailored Object-Oriented Reading Techniques” on UML
inspections. They collected separate data on defect detection
during the reading phase and the meeting phase. Their purpose
was not to support or invalidate Votta’s results, but their data can
be applied to that purpose. Indeed, in their own paper they
causally mention that their data just happens to be perfectly in line
with Votta’s.

In particular, in 38 experimentally-controlled inspections they
found that 25% of the time was spent reading, 75% of the time in
meetings, and yet 80% of the defects were found during reading!
They were 12 times more efficient at finding defects by reading
than by meeting. Furthermore, in their case they had 5-7 people in
each meeting – several more than Kelly or Votta or even Fagan
recommends – so the number of defects found per man-hour was
vanishingly small.

Brand New Information / 31

Other research confirms these results8. Because the reduction
of false-positives appears to be the primary effect of the inspection
meeting, many researchers conclude that a short meeting with two
participants – maybe even by e-mail instead of face-to-face –
should be sufficient to get the benefits of the meeting without the
drawbacks. The value of detecting false-positives in the first place
is questioned because often this is a result of poorly-written code
and so often shouldn’t be discarded anyway. Given all this, some
even suggest that the extra engineering time taken up by imple-
menting fixes for so-called false-positive defects is still less than
the time it takes to identify the defects as false, and therefore we
should dispense with meetings all together!

Blakely 1991: Hewlett Packard9

Hewlett Packard has a long history of code inspections. In 1988 a
company-wide edict required a 10x code quality improvement – a
tall order for any development organization, but at least it was a
measurable goal. They turned to design and code inspections as
part of their effort to achieve this, and management sanctioned a
pilot program implemented by a development group in the
Application Support Division.

8 For example, see L. Land, C. Sauer and R. Jeffery’s convincing 1997

experiment testing the role of meetings with regard to finding additional
defects and removing false-positives. Validating the defect detection
performance advantage of group designs for software reviews: report of
a laboratory experiment using program code. In Proceedings of the 6th
European Conference Held Jointly with the 5th ACM SIGSOFT international
Symposium on Foundations of Software Engineering (Zurich, Switzerland,
September 22 - 25, 1997). M. Jazayeri and H. Schauer, Eds. Founda-
tions of Software Engineering. Springer-Verlag New York, New York,
NY, 294-309.

9 Frank W. Blakely, Mark E. Boles, Hewlett-Packard Journal, Volume 42,
Number 4, Oct 1991, pages 58-63. Quoting and copying herein is by
permission of the Hewlett-Packard Company.

32 / Best Kept Secrets of Peer Code Review

Their conclusion: “Based on the data collected about the use
of code inspections, and the data concerning the cost of finding
and repairing defects after the product has been released to the
customer, it is clear that the implementation of code inspections as
a regular part of the development cycle is beneficial compared to
the costs associated with fixing defects found by customers.”

This pilot study involved a single project with 30 develop-
ment hours and 20 review hours – 13 hours in pre-meeting
inspection and 7 hours in meetings. They restricted their inspec-
tion sizes to 200 lines of code per hour as per the guidelines set out
by Fagan and Gilb. 21 defects were uncovered giving the project a
defect rate of 0.7 per hour and 100 per thousand lines of code.

This study went further than most to quantify how many de-
fects found in code review would not have been otherwise found
in testing/QA. After all, if you’re trying to reduce overall defect
numbers, it’s not worth spending all this time in review if testing
will uncover the problems anyway.

Because they knew this issue was important from the start,
they collected enough information on each defect to determine
whether each could have been detected had the testing/QA
process been better. In particular, for each defect they answered
this question: “Is there any test that QA could have reasonably
performed that would have uncovered this defect?” Perhaps it
would be more efficient to beef up testing rather than reviewing
code.

The result was conclusive: Only 4 of the 21 defects could
conceivably been caught during a test/QA phase. They further
postulate that it would have taken more total engineering hours to
find and fix those 4 in QA rather than in inspection.

Brand New Information / 33

Dunsmore 2000: Object-Oriented Inspections10

What inspection techniques should be used when reviewing object-
oriented code? Object-oriented (OO) code has different structural
and execution patterns than procedural code; does this imply code
review techniques should also be changed, and how so?

Alastair Dunsmore, Marc Roper, and Murray Wood sought to
answer this question in a series of experiments.

The first experiment with 47 participants uncovered the first
problem with traditional code inspections: Understanding a snippet
of OO code often requires the reader to visit other classes in the
package or system. Indeed, a large number of defects were rarely
found by the reviewers because the defect detection required
knowledge outside the immediate code under inspection. With
traditional sit-down with code-in-hand inspections the readers
didn’t have the tools to investigate other classes, and therefore had
a hard time finding the defects.

They explored a way to address this problem in the second
experiment. The reviewers were given a reading plan that directed
their attention to the code in a certain order and supplied addi-
tional information according to a systematic set of rules. The rules
were a rough attempt at pulling in related code given the code
under review. The theory was that, if this technique was better,
one could conceivably make a tool to collect the information
automatically. This “systematic review” was performed by 64
reviewers and the results compared with those from the first study.

The systematic review was better. Some defects that weren’t
found by anyone in the first test were found in the second.
Furthermore, both reviewers and the creators of the reading plan

10 Dunsmore, A., Roper, M., Wood, M. Object-Oriented Inspection in

the Face of Delocalisation, appeared in Proceedings of the 22nd Inter-
national Conference on Software Engineering (ICSE) 2000, pp. 467-
476, June 2000.

34 / Best Kept Secrets of Peer Code Review

reported that they enjoyed creating and having the plan because it
led to a deeper understanding of the code at hand. Indeed, the
plans could be used as documentation for the code even outside
the context of a code review. Reviewers also reported feeling
more comfortable having a strict reading plan rather than having to
wade through a complex change and “wander off” into the rest of
the system.

In the third experiment, the researchers compared three dif-
ferent approaches to the review problem in a further attempt to
identify what techniques work best in the OO context:

1. The “checklist review” gives the reviewers a specific
list of things to check for at the class, method, and
class-hierarchy levels. The checklist was built using
the experience of the first two experiments as a guide
for what types of problems reviewers should be look-
ing for.

2. The “systematic review” technique of the second ex-
periment, with more refinement.

3. The “use-case review” gives the reviewers a set of
ways in which we expect the code to be used by
other code in the system. This is a kind of checklist
that the code behaves in documented ways, “plays
nice” when under stress, and works in a few specific
ways that we know will be exercised in the current
application.

The result of this experiment is shown in Figure 4. Clearly
the checklist method was the most successful, uncovering more
defects in less time than the other two techniques, 30% better than
the worst in the rate at which defects were uncovered. However it
should be mentioned that the defects found in each of the three
techniques didn’t overlap completely. The authors therefore
suggested using more than one approach to over the most ground,

Brand New Information / 35

although the amount of pre-review time it would take to prepare
for all these techniques is probably prohibitive.

Checklist Systematic Use-Case
Defects (of 14) 7.3 6.2 5.7
False-Positives 3.4 3.2 2.9
Inspection Time 72.1 77.0 81.9
Defect Rate 6.07 4.83 4.18

Figure 4: Comparing results from three types of
reviews. Inspection time is in minutes. Defect
rate is in defects per hour.

In this third experiment they also kept track of the exact time
that each of the defects were found during the inspection. Are
most defects found quickly? Is there a drop-off point after which
defects are no longer found? Is there a difference between the
three types of review?

The results are shown in Figure 5.

36 / Best Kept Secrets of Peer Code Review

Figure 5: Elapsed time versus cumulative number
of defects found for each of the three types of re-
view.

The defect rate is constant until about 60 minutes
into the inspection at which point it levels off with
no defects found at all after 90 minutes.

In all three review types the pattern is the same. Defects are
found at relatively constant rates through the first 60 minutes of
inspection. At that point the checklist-style review levels off
sharply; the other review styles level off slightly later. In no case is
a defect discovered after 90 minutes.

This is direct and conclusive evidence that reviews should be
limited to around one hour, not to exceed two hours.

Brand New Information / 37

Uwano 2006: Analysis of eye movements during review11

Four researchers at the Nara Institute of Science and Technology
have completed a unique study of the eye movements of a reviewer
during a code review. It’s always both fascinating and eerie to get a
glimpse into our subconscious physiological behaviors.

It turns out that certain eye scanning patterns during review
correlate with being better at finding the defect. Although this is
not really something you can teach someone, it does point out
ways in which source code could be organized to facilitate com-
prehension. That is, specific coding standards could make it easier
for developers to understand code in general and for reviewers to
find defects in particular.

The researchers used a custom-built system that displayed a
short C-language program on a screen while an eye scanner
recorded all “fixations” – times when the eye stayed within a 30
pixel radius for longer than 1/20th of a second. Furthermore,
because they controlled the display of the source code, fixations
were matched up with line numbers. The result is a plot of which
line of code was looked at over time.

Six different C snippets were used, each between 12 and 23
lines, each an entire function or small set of functions viewable
without scrolling. Five subjects were subjected to each snippet
yielding 27 trials (three of the 30 had to be discarded because the
subject was distracted during the trial).

11 Uwano, H., Nakamura, M., Monden, A., and Matsumoto, K. 2006.

Analyzing individual performance of source code review using review-
ers' eye movement. In Proceedings of the 2006 Symposium on Eye Tracking
Research & Applications (San Diego, California, March 27 - 29, 2006).
ETRA '06. ACM Press, New York, NY, 133-140 © 2006 ACM, Inc.
Figures reprinted by permission.

38 / Best Kept Secrets of Peer Code Review

Brand New Information / 39

40 / Best Kept Secrets of Peer Code Review

The general pattern is the reviewer would read lines from top
to bottom in a “bumpy slope.” That is, generally straight-through
but with short, brief “back-tracks” along the way. They called this
the “first scan.” Typically 80% of the lines are “touched” during
this first scan. Then the reviewer concentrates on a particular
portion of the code – 4 or 5 lines – presumably where the reviewer
believed the problem was most likely to be.

Other patterns were observed depending on the nature of the
code. For example, with code examples containing two functions
instead of one, frequently there was a very fast “header scan”
where the eyes rested on function declaration lines before the usual
“first scan” began. It was also common to see a second scan
similar to the first before the concentration begins.

Closer inspection of the eye movements reveals interesting
insights into how anyone reads source code for comprehension.
For example, the eyes rest on initial variable declarations consis-
tently throughout the session. The mind needs a constant
refresher on what these variables mean. Even when there are only
two or three local variables, all integers, nothing special or difficult
to retain, the pattern is the same. The researchers called this eye
movement “retrace declaration.” What this means for code
structure is that local variable declarations should also be visible on
the same screen as code that uses them. Otherwise the reader will
have to scroll back and forth. A common way to enforce this is to
limit the number of lines of code in a function. We’ve all heard
the arguments for limiting function length for general readability;
here’s evidence that cements that notion.

As another example, loops have a tremendous fixation rate,
far more even than other control structures such as conditionals.
Perhaps this is partly a function of the review task – loops are a
common location for errors and just the fact that a section of code
repeats makes it more difficult to analyze. The lesson for coding

Brand New Information / 41

standards is that loop conditionals should be as simple as possible.
For example, avoid setting variables inside the conditional and try
to simplify complex compound Boolean expressions.

But back to reviews. The researchers had initially set out to
answer the question: Is there anything about eye movements that
can be correlated with review effectiveness or efficiency? The
answer turned out to be yes.

There is a negative correlation between the amount of time it
takes for the “first scan” and defect detection speed. That is, the
more time the reviewer spends during that “first scan” period, the
faster the reviewer will be at finding the defect. This seems
contradictory – the reviewer spends more time scanning the code,
yet he finds the defect faster than someone who doesn’t bother.

The key is that it’s the first, preliminary scan that the reviewer
must spend more time on. When a reviewer doesn’t take enough
time to go through the code carefully, he doesn’t have a good idea
of where the trouble spots are. His first guess might be off – he
might have completely missed a section that would have set off
warning bells. The reviewer that takes more time with the initial
scan can identify all the trouble spot candidates and then address
each one with a high probability of having selected the right area of
code to study.

This result has a few ramifications. First, slow down! As we
talked about in the conclusion section, the longer you take in
review, the more defects you’ll find. Haste makes waste.

Second, a preliminary scan is a useful technique in code re-
view. This experiment demonstrates that a reasonably careful
“first scan” actually increases defect detection rates.

42 / Best Kept Secrets of Peer Code Review

Laitenberger 1999: Factors affecting number of defects12

Under what circumstances would we expect to find more or fewer
defects during a review? Does the size of the code under inspec-
tion matter? How about the amount of time reviewers spend
looking at it? What about the source code language or the type of
program?

All of these things are “a factor,” but can we state something
stronger than that? Perhaps some things matter more than others.

In 1999, three researchers performed an analysis of 300 re-
views from Lucent’s Product Realization Center for Optical
Networking (PRC-ON) in Nuremberg, Germany. This group
spends 15% of their total development time in reviews, but were
they using their time wisely? Were they detecting as many defects
per hour as possible? If not, what specifically should they do to
maximize the defect detection rate?

These were the questions Laitenberger set out to answer. A
survey of other studies suggested the two most likely factors in the
number of defects found during a review: (a) time spent in
preparation, and (b) the size of the code under inspection. So they
came up with a causal model – that is, a theoretical model of how
they expected these two factors might influence the number of
defects. This model is shown in Figure 6.

But drawing a diagram doesn’t prove anything! How can we
test whether this model is accurate and how can we measure just
how important each of those causal links are?

12 Evaluating a Causal Model of Review Factors in an Industrial Setting.

Oliver Laitenberger, Marek Leszak, Dieter Stoll, and Khaled El-Emam,
National Research Council Canada.

Brand New Information / 43

Figure 6: Causal model for the two largest factors
that determine the number of defects found during
review.

Arrows indicate a causal link. The “E” values rep-
resent external factors not accounted for by the
model.

As you might expect, there’s a statistical system that can do
exactly this. It’s called Path Analysis. Given the model above and
raw data from the individual reviews, we can determine how each
of those arrows really matter13.

13 Each review contains three pieces of data: code size, reading time, and

number of defects. Then each of those variables is compared pair-wise;
the beta coefficient from a logarithmic least-squares analysis is used as
the measure of the pair-wise correlation strength. Correlations must be
significant at the 0.01 level to be accepted.

Code Size

Reading Time # Defects

E1 E2

44 / Best Kept Secrets of Peer Code Review

Figure 7: Results of Laitenberger’s path analysis
for code reviews. Numbers represent percent of
total influence.

Results are similar for design and specification re-
views.

The results are shown in Figure 7. There are two important
things to notice.

First, reading time is twice as influential as code size14. This is
unexpected – with more code under the magnifying glass you
would expect to find more defects. But in fact it’s the amount of

14 It may appear that reading time influence is four times larger than code

size (35÷8), but note that code size also influences reading time, thereby
indirectly influencing number of defects through that path. Thus the
total code size influence is 0.08 + 0.23*0.35 = 16%.

Code Size

Reading Time # Defects

E1 E2

77%

35%

57%

23% 8%

Brand New Information / 45

time you spend looking at the code – no matter how big or small
the code is – that determines how many defects you find.

Second, the “external factors” are far more important than
any of the others. Code size alone predicts only 8% of the
variation in number of defects found; reading time predicts 35%,
but most of the variation comes from elsewhere. Reviews of new
code are different than maintenance code. Complex algorithms
differ from complex object relationships which differ from simple
procedural code. Languages differ. The experience level of the
author and reviewer matters. These external effects collectively
constitute the most important factor in how many defects you can
expect to find during a review.

This has several implications. First, if you want to find more
defects, spend more time reviewing. You could also reduce the
amount of code under inspection, but that’s less important. Even
though various external factors are collectively more influential, the
individual reviewer often cannot control those factors; reading
time is something that can be controlled directly.

Second, you cannot average all your metrics and say “We
should find X defects per 1000 lines of code.” Each project,
language, module, even class could be different. It might be worth
breaking your metrics down at these levels in an attempt to find
some real patterns.

Ultimately the most influential variable that you can actually
control in your review process is inspection time. That’s the knob
you turn when you want to find more defects.

Conclusions

Each study in this survey has a different story to tell and uncovers
unique insights in the process, but what general information can be
gleaned from the literature?

46 / Best Kept Secrets of Peer Code Review

Review for at most one hour at a time.
Although not every study addressed this issue, a common re-

sult is that reviewers’ effectiveness at finding defects drops off
precipitously after one hour. This is true no matter how much
material is being reviewed at once. Some studies specifically test
for this, seeing how many defects are discovered after 15, 30, 45,
60, 75, 90, and 120 minutes devoted to the task. In all cases there
is roughly linear increase in number of defects found up to one
hour, then a significant leveling-off after that. This result has been
echoed in other studies not covered by this survey.

Study Review Minutes
Dunsmore, 2000 60
Blakely, 1991 90
Cohen, 2006 90

Figure 8: Cut-off point where further review pro-
duced no (significant) benefit.

There are at least two explanations for this effect. First, each
reviewer is capable of finding only a certain set of defects. No
matter how long you stare at the code, there are some problems
that you just don’t know how to find. This is especially true if the
review is being driven by checklist – the reviewer often focuses on
the checklist and anything significantly outside that list is not in
scope.

Brand New Information / 47

The second explanation is that after an hour the human mind
becomes saturated. The reviewer cannot process more possibilities
because his brain refuses to concentrate. “I’ve been looking at this
for too long. I’m sick of it” is a common complaint during
extended reviews. This second point could be tested by having
reviewers return to the code the next day to see if the same person
can find more defects after a “reset.” No study did this, however,
and perhaps it doesn’t matter because taking that much time is
impractical.

To detect more defects, slow down code readings.
The more time spent in review, the more defects are detected.

This might sound obvious; what’s not obvious is that this is by far
the dominant factor in the number of defects detected.

This is also true whether or not your private code readings are
followed up by an inspection meeting.

Inspection meetings need not be in person.
For the sensitive reader accustomed to institutional formal

inspections descended from the legacy of Fagan, Gilb, and
Wiegers, this statement is heresy. Traditionally the in-person
moderator-directed inspection meeting is considered the lynchpin
of a successful process. The synergy15 arising from a properly-
conducted meeting produces results that could never be obtained
by any reviewer individually, even with training.

In the past fifteen years this effect has been questioned in
many studies and from many perspectives. Several conclusions on
this point are clear from all the studies in this survey and many
others.

First, the vast majority of defects are found in the pre-
meeting private “reading” phase. By the time the meeting starts, all

15 Fagan’s evocative “phantom inspector.”

48 / Best Kept Secrets of Peer Code Review

questionable aspects of the code are already identified. This makes
sense; it would be difficult to determine whether a complex
algorithm was implemented correctly by discussion rather than by
concentrated effort.

Second, the primary result of a meeting is in sifting through
and possibly removing false-positives – that is, “defects” found
during private code readings which turn out to not actually be
defects. Even then, false-positives are often the result of poorly
documented or organized code; if a reader is confused, perhaps the
code should be changed anyway to avoid future confusion, even if
this just means introducing better code comments.

The result is that short meetings with just a few participants
(or even just the author and a single reviewer) appear to provide
the benefits of the inspection meeting (identifying false-positives
and knowledge transfer) while keeping inspection rates high (not
wasting time). And these “meetings” are just as effective over e-
mail or other electronic communication medium.

Defects per line of code are unreliable.
It’s the forecaster’s dream. How many defects are lurking in

these 5000 lines of code? No problem, just take our standard
number of defects per kLOC during review and multiply. 12
defects/kLOC? Expect to find 60 defects. If you’ve only found
30 so far, keep looking.

Unfortunately, this is a pipe dream. Studies agree to disagree:
this ratio is all over the map. It is possible that more careful study
broken out by file type, project, team, or type of application might
reveal better numbers16. But for now, give up the quest for the
“industry standard” density of defects.

16 Our own in-depth analysis of 2500 reviews revealed two significant

factors: time spent in review (more time increased defect density) and

Brand New Information / 49

Study Defects/kLOC
Kelly 2003 0.27
Laitenberger 1999 7.00
Blakely 1991 105.28
Cohen 2006 10-120

Figure 9: Defects per 1000 lines of code as re-
ported by various studies. The pattern is… there
is no pattern.

Omissions are the hardest defects to find.
It’s easy to call out problems in code you’re staring at; it’s

much more difficult to realize that something isn’t there at all.
Although most studies mentioned this, none measured this

problem specifically. The informal consensus is that a checklist is
the single best way to combat the problem; the checklist reminds
the reviewer to take the time to look for something that might be
missing.

For example, in our own experience the utility of a checklist
item like “make sure all errors are handled” is of limited usefulness
– this is an obvious thing to check for in all code. But we forgot to
kick the build number before a QA session started about 30% of
the time. After installing a release checklist we haven’t forgotten
since.

Studies are too small.
An unfortunate common element to these studies is that they

are almost all too small to have statistical significance. It’s rare to
find more than 100 reviews or 100 defects in any of them. Most
are along the lines of “In our 21 reviews, we found that…”

author preparation comments (reduced defect density). See that essay
in this collection for details.

50 / Best Kept Secrets of Peer Code Review

Twenty-one reviews are not statistically significant, no matter what
data you collect!

This doesn’t completely invalidate the studies; it just means
that we need to consider all the studies in aggregate, not any one
by itself. Also, in each the authors make observations which are
interesting and relevant regardless of the metrics they collected.

Study # Participants Review Hours # Defects
Uwano 2006 5 2.5 6
Blakely 1991 7.6 21
Conradi 2003 10 17.3 64
Kelly 2003 7 48.0 147
Dunsmore 2000 64 58.0 7
Laitenberger 1999 3045

Figure 10: Various statistics from each study.
Blank cells where data not available.

The small numbers show that almost none of the
studies are large enough by themselves to be sta-
tistically significant.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

