AP Statistics Semester One Review Part 1 Chapters 1-5

AP Statistics Topics

Describing Data
 Producing Data
 Probability
 Statistical Inference

Describing Data

- Ch I: Describing Data: Graphically and Numerically
- Ch 2: The Normal Distributions
- Ch 3: Describing BiVariate
 Relationships
- Ch 4: More BiVariate Relationships

Chapter 1: Describing Data

Our Introductory Chapter taught us how to describe a set of data graphically and numerically. Our focus in this chapter was describing the Shape, Outliers, Center, and Spread of a dataset.

Describing Data

- When starting any data analysis, you should first
 PLOT your data and describe what you see...
 - 🖗 Dotplot
 - 🖗 Stemplot
 - 🖗 Box-n-Whisker Plot
 - 🖗 Histogram

Describe the SOCS

- After plotting the data, note the SOCS:
 Shape: Skewed, Mound, Uniform, Bimodal
 - **Outliers**: Any "extreme" observations
 - Senter: Typical "representative" value
 - Spread: Amount of variability

Numeric Descriptions

DataDesk

Summaryof No Selector	spending
Percentile :	25
Coun	t 50
Mea	n 34.7022
Media	n 27.8550
StdDe	v 21.6974
Mi	n 3.11000
Ma	x 93.3400
Lowerith %til	e 19.2700
Upperith %til	e 45.4000

While a plot provides a nice visual description of a dataset, we often want a more detailed numeric summary of the center and spread.

Minitab

Descr:	ipt:	ive :	Stat	ist:	ics
--------	------	-------	------	------	-----

Variable	N	Mean	Median	TrMean	StDev	SEMean
spending	50	34.70	27.85	32.92	21.70	3.07
Variable spending	Min 3.11	Max 93.34	Q1 19.06	Q3 45.72		

l-Var Stats
x=35.4375
$\Sigma x = 567$
$\overline{\Sigma}x^2 = 22881$
Sx=13.63313977
σx=13.20023082
n=16

Measures of Center

When describing the "center" of a set of data, we can use the mean or the median.

Mean: "Average" value $\overline{x} = \frac{\sum x}{n}$ **Median**: "Center" value Q2

Measures of Variability

- When describing the "spread" of a set of data, we can use:
 - Range: Max-Min
 - □ InterQuartile Range: /QR=Q3-Q/
 - **Standard Deviation**: $\sigma = \sqrt{\frac{\sum (x \overline{x})^2}{n 1}}$

Numeric Descriptions

- When describing the center and spread of a set of data, be sure to provide a numeric description of each:
 - Mean and Standard Deviation
 - 5-Number Summary: Min, Q1, Med, Q3, Max {Box-n-Whisker Plot}

Determining Outliers

- When an observation appears to be an outlier, we will want to provide numeric evidence that it is or isn't "extreme"
- We will consider observations outliers if:
 - More than 3 standard deviations from the mean.
 - Or
 - More than I.5 IQR's outside the "box"

٢	-[_		-
-	_	Ω	}		

(a)

1	69
2	455
3	3344
3	77
4	02
4	69
5	
5	
6	
6	
7	3

Chapter 1 Summary

Chapter 2: Normal Distributions

Many distributions in statistics can be described as approximately Normal.

In this chapter, we learned how to identify and describe normal distributions and how to do Standard Normal Calculations.

Density Curves

A Density Curve is a smooth, idealized mathematical model of a distribution.

> The area under every density curve is I.

The Normal Distribution

- Many distributions of data and many statistical applications can be described by an approximately normal distribution.
 - Symmetric, Bell-shaped Curve
 - \Box Centered at Mean μ
 - \Box Described as $N(\mu, \sigma)$

Empirical Rule

- One particularly useful fact about approximately Normal distributions is that
 - 68% of observations fall
 within one standard
 deviation of µ
 - 95% fall within 2 standard deviations of µ
 - 99.7% fall within 3 standard deviations of µ

Standard Normal Calculations

The empirical rule is useful when an observation falls exactly 1,2,or 3 standard deviations from µ. When it doesn't, we must standardize the value {zscore} and use a table to calculate percentiles, etc.

$$z = \frac{x - \mu}{\sigma}$$

Assessing Normality

- To assess the normality of a set of data, we can't rely on the naked eye alone - not all mound shaped distributions are normal.
- Instead, we should make a Normal Quantile Plot and look for linearity.
 Plot1 Plot2 Plot3
 - \Box Linearity \rightarrow Normality

Chapter 3 Describing BiVariate Relationships

In this chapter, we learned how to describe bivariate relationships. We focused on quantitative data and learned how to perform least squares regression.

Bivariate Relationships

- Like describing univariate data, the first thing you should do with bivariate data is make a plot.
 - Scatterplot
 - Note Strength, Direction, Form

Correlation "r"

We can describe the strength of a linear relationship with the Correlation Coefficient, r

□ -|≤r≤|

 The closer r is to 1 or -1, the stronger the linear relationship between x and y.

Least Squares Regression

- When we observe a linear relationship between x and y, we often want to describe it with a "line of best fit" y=a+bx.
 - We can find this line by performing least-squares regression.
 - We can use the resulting equation to predict y-values for given xvalues.

Assessing the Fit

If we hope to make useful predictions of y we must assess whether or not the LSRL is indeed the best fit. If not, we may need to find a different model.

Residual Plot

Making Predictions

If you are satisfied that the LSRL provides an appropriate model for predictions, you can use it to predict a y-hat for x's within the observed range of x-values.

$$\Box \quad \hat{y} = a + bx$$

- Predictions for observed x-values can be assessed by noting the residual.
 - \Box Residual = observed y predicted y

Chapter 3 Summary Plot your data. Scatterplot Interpret what you see: direction, form, strength. Linear? Numerical summary? 8. 9. 0, 0, and 19 Mathematical model? Regression line?

Chapter 4 More BiVariate Relationships

In this chapter, we learned how to find models that fit some nonlinear relationships. We also explored how to describe categorical relationships.

NonLinear Relationships

- If data is not best described by a LSRL, we may be able to find a Power or Exponential model that can be used for more accurate predictions.
 - **D** Power Model: $\hat{y} = 10^a x^b$
 - **Exponential Model:** $\hat{y} = 10^{a} 10^{bx}$

Transforming Data

- \Box If (x,y) is non-linear, we can transform it to try to achieve a linear relationship.
 - If transformed data appears linear, we can find a LSRL and then transform back to the original terms of the data
- \Box (x, log y) LSRL > Exponential Model
- $\Box \ (\log x, \log y) \ LSRL > Power Model$

The Question of Causation

Just because we observe a strong relationship or strong correlation between x and y, we can not assume it is a causal relationship.

Relations in Categorical Data

When categorical data is presented in a two-way table, we can explore the marginal and conditional distributions to describe the relationship between the variables.

	Age group				
Education	25 to 34	35 to 54	55+	Total	
Did not complete high school	4,474	9,155	14,224	27,853	
Completed high school	11,546	26,481	20,060	58,087	
1 to 3 years of college	10,700	22,618	11,127	44,445	
4 or more years of college	11,066	23,183	10,596	44,845	
Total	37,786	81,435	56,008	175,230	

Chapter 5 Producing Data

In this chapter, we learned methods for collecting data through sampling and experimental design.

Sampling Design

- Our goal in statistics is often to answer a question about a population using information from a sample.
- Observational Study vs. Experiment
 - □ There are a number of ways to select a sample.
 - We must be sure the sample is representative of the population in question.

Sampling

- If you are performing an observational study, your sample can be obtained in a number of ways:
 - Convenience Cluster
 - □ Systematic
 - Simple Random Sample
 - Stratified Random Sample

ran	dInt	(0)	, 9	,5)		
	{ 5	6	5	7	1}	į.
ran	dInt	:(1,	, 6	,7)		
	{5 6	5 5	5	3	4	1}
ran	dInt	:(0,	,99	9,1	0)	
{81	23	86	2	40	•••	•

Experimental Design

- In an experiment, we impose a treatment with the hopes of establishing a causal relationship.
- Experiments exhibit 3 Principles
 - Randomization
 - Control
 - Replication

Experimental Designs

- Like Observational Studies, Experiments can take a number of different forms:
 - Completely Controlled Randomized Comparative Experiment
 - Blocked
 - Matched Pairs

THE PRACTICE of STATISTICS

Chapters 6-9 Tomorrow