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1l

4.1 | MAXIMUM AND MINIMUM VALUES

29-44 Find the critical numbers of the [unction.

36. hip) =
. I } p— =
P) ="

(P> +4)(1)-(p-1)(2p) p*+4-20"+2p -p*+2p+4

(sol) #(p) = (12 1 4)? (p? +4)2 (p? +4)2

—2 + /4416 =
9 =SS

— Rip)=0 = p= 5.

The critical numbers are 1 -+ /5. [R'(p) exists for all real numbers.]
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|

40, g(x) = " — x

1 23 2 -5i3 1 - x+2

Y / 3/3
50l — — = — = —
( Jg (%) 3 X +3x 3 ¥ (x+2) 35’;3 .
X

/ / . . . . N
g (-2)=0 and ¢ (0) does not exist, but 0 1s not in the domain of g .

so the only critical number 1s 2.
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44. f(x) =x "Inx

(sol) f'(z) =a7%(1/z)+ (Inz)(—22"?)

. B 1-2Inz
= =2 lnz=2"%(1-2Ing) = ==
T

fizg) =0 = 1—2nz=0 = ].Il.l?:%

s

5 = &= e'’? =~ 1.65. f°(0) does not exist,

g =

but 0 is not in the domain of [, so the only critical number 1s Ve.
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47-62 Find the absolute maximum and absolute minimum values
of f on the given interval.

== X 4 :
54. f(x) = 3 s [—-—L -—LJ

(x*+4) 0 (" 4)20) 162

(sol) [ (x)— =0 < x=0.

() ()

2

f(£4)= i[]:;: and f(0)=1.

3. .
So f(+£4)= SIS the absolute maximum value and

f(0)=1 1s the absolute mmimum value.
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§0. flx)=x—Inx, [' f’-]

(sol) f(z) =z —Inz, [%}Q]_ f!(I):l—% _ z—1

f'(x)=0 = x=1. [Note that0 isnotin the domain of f.]

f(z) =

baj—

—Inz ~1.19, f(1) =1,and f(2) =2—In2~ 1,31.
So f(2) = 2 — In 2 is the absolute maximum value and

f(1) = 1 is the absolute minimum value.
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62. f(x) =e*— e, [0,1]

X

(sol) [ (=€ (D-e (2= % - it_ = 2_7‘1 0= e =2 =x=In 2~ 0.69.
XX 2
/(0)=0.

In2 -2In2 { m2\-! { m2\2 -1 2 1 1 1
f(In2)=e -e —(e ) —(e‘ ) =2 2 =311
f()=¢ - ‘~0233
So f(In2)== 1s the absolute maximum value and

4

f(0)=0 1s the absolute minimum value.
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75. Prove that the function
flx)=x"" 4+ '+ x+ 1

has netther a local maximum nor a local minimum.
y 101 51 _ / 100 _. 50
(pf) f(x)=x +x +x+l=f (x)=10lx +5Ix +1>1forall x .

/ :
so f (x)=0 has no solution.
Thus, f(x) has no critical number,

so f(x) can have no local maximum or minimum.
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Il

42| THE MEAN VALUE THEOREM

=14 Verity that the function satisfies the hypotheses of the
Mean Value Theorem on the given interval. Then find all numbers
¢ that satisfy the conclusion of the Mean Value Theorem.

13. f(x) =¢ ', [0.3]
(s0l) f is continuous and differentiable on R .

so it is continuous on [0.3] and differentiable on (0.3) .

i (5) f (ﬂ) D A N B ( | )
&—2c=In

fer T T3 T T 6
| R
| l-e .
= =3 In c ~0.897 , which 1s in (0.,3).
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15. Let f(x) = (x — 3) °. Show that there is no value of ¢ in
(1, 4) such that £(4) — /(1) = f'(¢)(4 — 1). Why does this
not contradict the Mean Value Theorem?

(pf) flo)=(z—-3)"% = fl(z)=-2(z— 3,

/ 1 1 2
W~ =FOE-1) = 5757 = egp
3‘ __ﬁ . ‘3
= == I ~3=-2
1 (c_3) =5 [« 3) H = ¢

= ¢ = 1, which is not in the open interval (1, 4).

This does not  contradict the Mean Value Theorem

since [ is not continuous at » = 3.
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18. Show that the equation 2x — 1 — sin x = 0 has exactly one

real rool.
(pf) Let f(x)=2x-1-sinx . Then f(0)=—1<0 and f(7/2)=1-2>0 .
f 1s the sum of the polynomial 2x-1

and the scalar multiple (-1) - sin x of the trigonometric function sin x .

so f 1s continuous (and differentiable) for all x.

By the Intermediate Value Theorem.

there is a number ¢ in (0.7/2) such that f(¢)=0.

. E

Thus, the given equation has at least one real root.
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If the equation has distinct real roots @ and b with a<b . then f(a)=f(b)=0 .
Since f is continuous on [a.b] and differentiable on (a.b) .
Rolle's Theorem implies that there is a number » in (a,b) such that £ (#)=0 .

But / (r)=2-cosr >0 since cosr < 1.
This contradiction shows that the given equation can't have two distinct real roots.

so 1t has exactly one real root.
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22. (a) Suppose that f is differentiable on & and has two roots.
Show that /" has at least one root.

(pf) Suppose that f(a)=f(b)=0 where a<b.
By Rolle's Theorem applied to / on [a.b]
there 1s a number ¢ such that a<c<b and [ E(C):U .

(b) Suppose f is twice differentiable on R and has three
roots. Show that f” has at least one real root.

(pf) Suppose that f(a)=f(b)=/(c)=0 where a<b<c .
By Rolle's Theorem applied to f(x) on [a.b] and [b.c]

: / /
there are numbers a<d<b and b<e<c with /' (d)=0 and [ (¢)=0 .
By Rolle's Theorem applied to f (x) on [d.e]
there 1s a number g with d<g<e such that f f ":(g)=0 :
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(c) Can you generalize parts (a) and (b)?

(50l ) Suppose that 1 1s n times differentiable on R and has »n+1 distinct real roots.

n)
Then f ) has at least one real root.
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24. Suppose that 3 = f'(x) =< 5 for all values of x. Show that
186 =< f(8) — f(2) = 30.

. /
(pf) I3<f (x)<5forallx, then by the Mean Value Theorem.

F@®)-f2)=f ;(c)- (8-2) for some ¢ 1n [2.8].

( f 1s differentiable for all x . so, in particular,

f 1s differentiable on (2.8) and continuous on [2.8] .

Thus, the hypotheses of the Mean Value Theorem are satistied.)
Since f(8)-f(2)=6f (c)and 3<f (¢)<5.

it follows that 6- 3<<6f ,.-'(C){_: 6-5= 18< f(8)-f(2)< 30.

SEECS KNU Tutorial Lab 4 April 8-10, 2008 (15/42)



[=HOtE ]

26. Suppose that f and g are continuous on [a, b| and differentiable
on (a, b). Suppose also that f(a) = g(a) and f'(x) < ¢'(x) for
a < x < b, Prove that f(b) < g(b). [Hint: Apply the Mean
Value Theorem to the function & = f — g.]
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27. Show that /1 + x < | + 3 xif x > 0.

, 1
(pf) We use Exercise 26 with fi (.xr):-\’ I+x . g(x)=1+ 3. and a=0.

L 1
21+ 2

Notice that £(0)=1=g(0) and 1 (x)= —o ' (x) for x>0.

1
So by Exercise 26, f(b)<g(b)=  l+b<1+ 3 b for b>0.

Another method. Apply the Mean Value Theorem directly to

. 1 _
either f1 (x)=1+§ x—wJ l+x or g(x)=~,’ 1+x on [0.b].
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29. Use the Mean Value Theorem to prove the inequality

| sinag —sinb|=|a—» for all @ and b

(pf) Let f(x)=sin x and let b<a .
Then f(x) is continuous on [b.,a] and differentiable on (b.a) .
By the sin a-sin b=f(a)-f(b)=f f(c)(a—b)Z(cos c)(a-b) .
Thus, |sin a-sin b]<|cos ¢| |b-al<|a-b| .
If a<b . then |sin a-sin b|=|sin b-sin a|<|b-al=|a-b| .

If a=b . both sides of the inequality are 0.
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36. A number « is called a fixed point of a function f 1if
f(a) = a. Prove that if f'(x) # 1 for all real numbers x, then
{ has at most one fixed point.

(pf) Assume that 7 is differentiable (and hence continuous) on R

and that f f(x);&l for all x.

Suppose J has more than one fixed pont.

Then there are numbers a and 5 such that a<b . f(a)=a . and f(b)=b.

Applying the Mean Value Theorem to the function / on [a.b] .

f(b)-f(a)
h—a '

: . /
we find that there 1s a number ¢ in (a,b) such that f (c)=

/ b-
But thenf (c)= . z—l X

: : / .
contradicting our assumption that f (x)#1 for every real number x .

This shows that our supposition was wrong.

that 1s, that " cannot have more than one fixed point.
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— 4.3 | HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH

9-18

(a) Find the intervals on which f is increasing or decreasing.
(b) Find the local maximum and minimum values of f.

(c) Find the intervals of concavity and the inflection points.

A

12. f(x) = —5——
Io= s

(.1’.‘2+3) (23;?)—3:2(2,1?) _ bx |
(szrS) ’ (x2+3) ’

- The denominator 1s positive so the sign of f f(x) is determined by the sign of x.

(o) (a) f /()=

/ /
Thus, f (x)=0=x>0and f (x)<0<x<0.

So f 1s increasing on (0,00) and f 1s decreasing on (—o0,0).
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(b) f changes from decreasing to mcreasing at x=0.

Thus. f(0)=0 1s a local minimum value.

o Pe3) 6)-6x2(243) 20 6(x3) 344
. |:(:-:2+3)2:|2 (xzﬁ) !
C6(3-3x7)  18(e+ D)D)
(x2+3) : (I_‘Z-l—?r) ’ |

/ ;(A’.‘):zzzw(}@—lfiixfril and f ;:(A’.‘)‘*U«{:}J:**i—l or x>1.

Thus. f 1s concave upward on (-1.1) and concave
downward on (—oo,-1) and (1,00).
. . . 1
There are inflection poimts at | £ 1. 1)
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16. f(x) = x*Inx

(sol) (@) f(z) =z*Inz = f'(2)=2z%(1/z)+ (In x)(2x)
=g 2z lng = ol +2laz).

The domain of f is (0, o), so the sign of f' is determined solely by the factor 1 + 21In a.

Flz) >0 < lhes —:;- & zr>e Y2 [=061] and f'(z) <0
o O<z<e /2

So f s increasing on (=112, ~3) and f is decreasing on (0, e~ 1/?).
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(b) f changes from decreasing to increasing at = e~ /2,
Thus, f(e™ /%) = (e~ 1/2)? In{e™""*) = e~ (—-1/2) = —1/(2¢)
|~ —0.18] 1s a local minimum value.
©) fi(z)=x(l+2Inz) =
' (z) =22/2) +(1+2lnz)-1=2+1+2nz=3+2Inz

ffz) >0 & 342lnz>0 « lnz>-3/2& z>e %2 [x022)
Thus, f is concave upward on (e /2, 00)

and f is concave downward on (0, ¢ 3/2)
Ffle=R) =le PP e = ¢ 3(-3/9) — -3/(2¢%) [~ —0.07].

There 1s a point of inflection at ({-! R f{_s—"?’f?)) = (r.—ﬂfﬂﬁ —3/{24:33))_
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24-29 Sketch the graph of a function that satisfies all of the
given conditions.

29. f'(x) < 0and f“(x) < O for all x i

(sol) The function must be always decreasing — ———~_

(since the first derivative is always negative) \
W X
and concave downward

(since the second derivative is always negative).
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45-52

(a) Find the vertical and horizontal asymptotes.

(b) Find the intervals of increase or decrease.

(¢) Find the local maximum and minimum values.

(d) Find the intervals of concavity and the inflection points.
(e) Use the information from parts (a)—(d) to sketch the graph

of f.
1 + x°
45. [(x) = -
f ="
- R - . |
I = :—*ED'——]_ g ;
Sl F. S g 5o o= aaatbl
lim l+$2—m b 1+$2——m
Jr—r'l_].—ﬂ:g_x ? I‘f'—l-l‘|'1_.’ﬂ'2_ v
: 1 4 &* I ]l G
—_— im — 0.
:E—l-l?fill_ 1 — 2 = p—a—1+ 1 — T2

Sox = 1and x = —1 are VA.
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2

B 4r
- (1-22)?

I

. 2 ) 7
(b}f("r)_l—:r:z__l—{_l—:ﬁi = ) =l

< x>0 [z $# 1], s0 f increases on (0, 1), (1, o0)

and decreases on (—oo, —1), (—1,0).

(¢) f(0) = 11s a local minimum.
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Y 4(1 —2%)® — 4z -2(1 — 2?)(—2z) _ 4(1+32%) .
(d) /" (z) = d-z) (1:.'2()4 20 ) (['1 j:}:;)g) Since the

numerator is always positive, the sign of f" (z) is the same as the sign of

1 —z* Thus, f"(z) >0 < 1-22>0 & <1 & —1zzel

so fisCUon(—1,1) and (e) A
on (—oc, —1) and (1, o). 5

There 1s no IP since &z = +1

___________________

are not in the domain of f.
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49. f(x) = In(l — Inx)

(g01) S(X)=In(1-In x) 1s detined when x>0 (so that In x 1s defined)
and 1-In x>0 [so that In(1-In x) 1s defined].
The second condition 1s equivalent to 1=Inx < x<e . so f has domain (0.e).
(a) As x— 0 ,Inx——00, so 1-In x— co and f(x)— 0.

Asx—e Inx—1.so0 1-lnx—0 and f(x)——o0 .

Thus. x=0 and x=¢ are vertical asymptotes. There is no horizontal asymptote.

| 1 1 |
(b) f f(x): (‘ - )Z— (1 ) <0 on (0.e).

I-lIn x X

Thus, f 1s decreasing on its domain, (0.e).
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(¢) f (x)=0 on (0.e), so f has no local maximum or mmimum value.

_ —_[ x(1-In AT)E _ x(=1/x)+(1-In x)

@ ' :
S [x(1-In x)] ? xz( 1-In x)°
___ Inx
xz( I-In .ar:)2 (e)

so f ":I(.x') >0<In x<0& 0<x<1.

Thus, f1sCUon (0.1) and CD on (1.e).

There 1s an inflection point at (1.0).
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68. For what values of the numbers a and b does the [unction
flx) = axe™

have the maximum value f(2) = 17

2

o by bx b (2
(sol) f (x)za[.m S 2bxte l]zae 1 (2bx +l) .
/
For f(2)=1 to be a maximum value, we must have /° (2)=0.
4b ab
f2)=l=1=2ae and f (2)=0= 0=(8b+1)ae .

1 nY |
So 8b+1=0[a#0]= b= < and now [=2ae = JE [ 2.

8
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81. Show that the function g(x) = x|x| has an inflection point at
(0, 0) but ¢g"(0) does not exist.

(pf) Using the fact that |x|=\’ X

we have that g(x)= ﬂj_:;-g (x)= \/x +\/1 —2\l_—2|x|

) 2x |
= g (1) 2x( ﬁ <0 for x< Uandg (1) -0 for x>0 ,

so (0.0) 1s an inflection point.

/] |
But £ (0) does not exist.
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44| INDETERMINATE FORMS AND L'HOSPITAL'S RULE

ll

5-64 Find the limit. Use I"'Hospital’s Rule where appropriate. 1f
there is a more elementary method, consider using it. If ['Hospital’s
Rule doesn’t apply, explain why.

x4+ x—6
6. lim
=g =2
T* 4 £ —6 (z + 3)(z — 2)
Iil : — |1 i — 14 o ¥ = -
(sol) = il_% = —i@é(hr.+3}_2+3_5
o osin4x
10. lim -
—0 [an 2 X

lim sindr u s dcosdr  4(1) 4
(sol) 720 tanbz o0 5sec?(5x) 5(1)2 5
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(an x

14. lim
t—mw X

5 . tan r L
(szol) im i A E = ();
=TT T T iy

L"Hospital’s Rule does not apply because the denominator doesn’t approach 0.

_ In x
20. lim —
v—1 S11 TTX
¥ Inx = . 1/x | |
(sol) ey SInax Ly mcosax mw(-l) &

SEECS KNU Tutorial Lab 4 April 8-10, 2008 (33/42)



22. lim ;
1 wl ) .Ill.--
X 2 X X o X
. e —1l-x—x /2 B _. e -1-x B . e -1 H e 1
(s0]) lm ; = lim — =lim o =lim YR
r—0 x‘ ¥—0 3.17- r—0 X x—0
. X —Smx
24. lim

v—0 X — fan x

Y lim £ sinr o . l —cosx H lim —{—5nz)
im — lim - = [ :
{SGIJ r—0 1 —tanx z—0 1 —sec®x r—0 —28ecT (Ht‘C T tan I}
. (CDS s )
S1I1 0 . ¢
-|* Ty S H -\.-.!' A 1 '-! —— 1
— _}- lim ST = —‘% lim cos” & = “_*_;IZ]} = =l§
2 2—0 sec? x~—0
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44, |im (1 — tan x)sec x

(sol) lim (l-tanx)sec 3=(1-1)y2=0 . L'Hospital's Rule does not apply.

Y— 7T _1

48.] lim (csc x — cot x)
| —=1)

- . 1  cosx . l-cosx H = smux
(sol) lim (csc x—cotx)=lim ( —— - = =llm ——— =Ilm — =0
v 0 o \ sInx smx o SInX v 0 COSX
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54.

(zol)

lim (tan 2x)!

r —a{]™

.
y=(tan 2x) = In y=x-In tan 2x .

. : , . . Intan 2x
so lm Iny _ jiy xIn tan 2x=lim —
) x—0 x—0
_ .. (l/tan 2x)(2sec 2x) _.. —2X COS 2x
= lim > =lim -
Y0 ~1/x + 0" sin 2xcos 2x
. 2x _ —X
=lm = lim =1.0=0
. s 2x L COS 2x
¥—0 r—0

. X .. Inv 0
= lim (tan 2x) =lm e "=e =1 .

+ L
x—0 x—0
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, | a \™
56. lim (1 + —)

; bx ,
(sol) _J;:<1+Et> = In y=bxIn <1+§> e

lim In y=lim
X— o0 X— 00

I/x

= lim
X— 00

(mon ) (-4
bln (1+alx) ® I+arx e ab

: a \ o« . Iny ab
= lim l+; =lm e "=e .

X— 20

SEECS KNU
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62. lim (2 — x)tntm/2)

£

(sol) ¥=@2—z)"""% = Iny= taxl(ﬁ;) In(2 — z)

— lim Iny = lim [tdn( ;) In(2 - fﬂ)}

w—r1 x—1

= lim(2 .L)“a“‘r”fﬂ — lim e!™¥ = e(2/m)

T—1

t—rl
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76. A metal cable has radius r and is covered by insulation, so
that the distance from the center of the cable to the exterior of
the insulation is R. The velocity v of an electrical impulse 1n

the cable 18
r 31(;-)
— e W] S n—
v ¢ R R

where ¢ is a positive constant. Find the following limits and
interpret your answers.

(a) ,11.}_1:"1 U (b) .“_'},1 v
(s0l) (a) lim v = lim —-f':(l)i3 In (i) — —¢er? lim l ) In (L)
R—sr+ R—spt R R R—sr+ R R
= —{:?"2-—5+]]‘£1 = —c-0=10
T

As the insulation of a metal cable becomes thinner.

the velocity of an electrical impulse in the cable approaches zero.
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» 82 £ =
(b) lim v= lim —r'(?—> In (L) = —< lim [?'2 hl(?—ﬂ [form is 0 - oo]
r— LT r— ()T R 11—[' HE r—s QT R
- )
R

-

3
R 1

H i B :

= —— lim <+

= 2
R _ _ ¢ i L
R?2 .o+ —2 R? -;-l_lplél+ ( 2 ) .

3

In

Ty

¢ i
— —— limi
R% .o+

[form is 20 /0]

P

As the radius of the metal cable approaches zero,

the velocity of an electrical impulse 1n the cable approaches zero.
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77. The first appearance in print of I’Hospital’s Rule was in
the book Analvse des Infiniment Petits published by the
Marquis de 1'Hospital in 1696. This was the first calculus
texthook ever published and the example that the Marquis
used in that book to illustrate his rule was to find the limit
of the function

J2a*x — x* — a~/aax
y = o 5
4 e

= AJ X

as x approaches a, where a > 0. (At that time it was common
to write aa instead of @.) Solve this problem.

(sol)  We see that both numerator and denominator approach 0 .

so we can use I'Hospital's Rule:
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1 (.3 4\-12(_3 3 1 2/3 2
o ,2;:?3.1’.‘—3’.‘4—&33 [ Ho 3 (2;3:—}:4) [2:::%—4}:%)—& < 3 ) (aax) %

X—a _ 4 3 Y—a l . ,3- —3/4 L 2
a— ax — 4 ax 2dX
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