How Shell Scripting works using PHP

In order to script using PHP, you first have to know a little about scripting in general. In all Shell-scripts in a UNIX-style environment, the first line will point to the interpreter that will be used to interpret the following script. In this case, you'll need to point this to your CLI-executable version of PHP as shown below:

 #!/usr/local/bin/php
 <?php

 echo "Simple PHP Shell Script - Hello world!\n";
 ?>

Of course, you may need to adjust the path to your PHP executable as necessary for the system you are working on. Note that if for some reason you are unable to use the CLI version of PHP, the CGI version may be used. However, because the CGI version of PHP will automatically display a basic header you'll need to silence it by providing the -q parameter. Finally, note that to move the displaying of input to the next line you’ll need to use the new-line character ‘\n’ as shown.

Getting Input from the user in PHP Shell Scripts

As you can see from the small example above, using the CLI-executable version of PHP to make a shell script that outputs text to the console is a very simple task. However, how do you receive input from the user? Unfortunately, PHP does not have a function that will read a line of input from the user like most other scripting languages. However, thankfully there is a work-around to this problem. In most (if not all) UNIX-style operating systems there is a pseudo-file in the /dev directory which, when opened, will read input from the user and into our PHP scripts. On Linux systems, this file is /dev/stdin and using this we can create our own trivial getInput() function in the following fashion:

 #!/usr/local/bin/php -q
 <?php

 function getInput($length = 255)
 {
 $fr = fopen("php://stdin", "r");
 $input = fgets($fr, $length);
 $input = rtrim($input);
 fclose($fr);
 return $input;
 }
 ?>

As you can see, the getInput() function we have created takes a single parameter $length (which is optional) which represents the number of characters to read from the pseudo-file php://stdin and returns the input received. There are some other small details regarding inputting text from the user that also require some explanation. First, it is important to note that because you are using the fgets() function that your input function will return in any of the following cases:

1. A new-line character is received

2. An End of File is encountered

3. The input read has exceeded the limit imposed by the $length variable

Also note that fgets() will, in the event of receiving a new-line character, still append that character to the input and must be removed through the use of a rtrim() function call as shown. If you'd like the new-line character to remain when the getInput() function returns, simply remove the line immediately following the fgets() function call in the code above. Here's a complete working example of reading input from the console in a PHP Shell Script:

 #!/usr/local/bin/php -q
 <?php
 function getInput($length = 255) {

 $fr = fopen("php://stdin", "r");
 $input = fgets($fr, $length);
 $input = rtrim($input);
 fclose($fr);
 return $input;
 }

 echo 밇nter some text (10 char max): ?/font>;
 $text = getInput(10);
 echo 밳ou entered ?text?/font>\n?/font>;
 ?>
Making your shell scripts executable

Now that we have a very simple working example of a shell script using PHP, let's briefly go over how to make your shell scripts executable. In brief, to make your shell scripts executable you'll need to set the executable flag the script file (for our purposes, I'll call it myscript.php). To do this, use the command chmod as shown below:

$ ls
myscript.php
$ chmod +x myscript.php
$

Then, to execute the script, simply type ‘./myscript.php’. When this script is executed, you’ll receive the following output:

$./myscript.php
Enter some text (10 char max): Visit zend.com!
You entered 'Visit zend.com'!
$
