SN74LS74A

Dual D-Type Positive Edge-Triggered Flip-Flop

The SN74LS74A dual edge-triggered flip-flop utilizes Schottky TTL circuitry to produce high speed D-type flip-flops. Each flip-flop has individual clear and set inputs, and also complementary Q and $\overline{\mathrm{Q}}$ outputs.

Information at input D is transferred to the Q output on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the HIGH or the LOW level, the D input signal has no effect.

MODE SELECT - TRUTH TABLE

OPERATING MODE	INPUTS			OUTPUTS	
	$\mathbf{S}_{\mathbf{D}}$	$\mathbf{S}_{\mathbf{D}}$	\mathbf{D}	\mathbf{Q}	\mathbf{Q}
Set	L	H	X	H	L
Reset (Clear)	H	L	X	L	H
*Undetermined	L	L	X	H	H
Load "" (Set)	H	H	h	H	L
Load "0" (Reset)	H	H	I	L	H

* Both outputs will be HIGH while both $\overline{\mathrm{S}}_{\mathrm{D}}$ and $\overline{\mathrm{C}}_{\mathrm{D}}$ are LOW, but the output states are unpredictable if \bar{S}_{D} and \bar{C}_{D} go HIGH simultaneously. If the levels at the set and clear are near V_{IL} maximum then we cannot guarantee to meet the minimum level for V_{OH}.

H, h = HIGH Voltage Level
L, I = LOW Voltage Level
X = Don't Care
$\mathrm{I}, \mathrm{h}(\mathrm{q})=$ Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the HIGH to LOW clock transition.

GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Typ	Max	Unit
V_{CC}	Supply Voltage	4.75	5.0	5.25	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	0	25	70	${ }^{\circ} \mathrm{C}$
I_{OH}	Output Current - High			-0.4	mA
I_{OL}	Output Current - Low			8.0	mA

ON Semiconductor

Formerfy a Division of Motorola http://onsemi.com

LOW

POWER SCHOTTKY

PLASTIC N SUFFIX CASE 646

SOIC
D SUFFIX
CASE 751A

ORDERING INFORMATION

Device	Package	Shipping
SN74LS74AN	14 Pin DIP	2000 Units/Box
SN74LS74AD	14 Pin	2500/Tape \& Reel

SN74LS74A

LOGIC DIAGRAM (Each Flip-Flop)

LOGIC SYMBOL

$V_{C C}=$ PIN 14
GND $=$ PIN 7

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter	Limits			Unit	Test Conditions	
		Min	Typ	Max			
V_{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs	
V_{IK}	Input Clamp Diode Voltage		-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$	
V_{OH}	Output HIGH Voltage	2.7	3.5		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table	
VoL	Output LOW Voltage		0.25	0.4	V	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \text { per Truth Table } \end{aligned}$
			0.35	0.5	V	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	
I_{IH}	Input High Current Data, Clock Set, Clear			$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	
	Data, Clock Set, Clear			$\begin{aligned} & \hline 0.1 \\ & 0.2 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$	
I/L	Input LOW Current Data, Clock Set, Clear			$\begin{aligned} & -0.4 \\ & -0.8 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	
Ios	Output Short Circuit Current (Note 1)	-20		-100	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	
I_{Cc}	Power Supply Current			8.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions	
		Min	Typ	Max			
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	25	33		MHz	Figure 1	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{gathered}$
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Clock, Clear, Set to Output		13	25	ns	Figure 1	
			25	40	ns		

AC SETUP REQUIREMENTS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions	
		Min	Typ	Max			
$\mathrm{t}_{\mathrm{W}}^{(H)}$	Clock	25			ns	Figure 1	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{t}_{\mathrm{W}}^{(L)}$	$\begin{aligned} & \text { Clear, Set } \\ & \hline \text { Data Setup Time - HIGH } \\ & \text { LOW } \end{aligned}$	25			ns	Figure 2	
$\mathrm{t}_{\text {s }}$	Data Setup Time - HIGH	20			ns	Figure 1	
		20			ns		
th_{h}	Hold Time	5.0			ns	Figure 1	

AC WAVEFORMS

*The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 1. Clock to Output Delays, Data Set-Up and Hold Times, Clock Pulse Width

Figure 2. Set and Clear to Output Delays, Set and Clear Pulse Widths

