Xen and the State of
Open Source Virtualisation

Sung Min David Joo
Senior Technical Account Manager,
Red Hat Korea

What's Virtualisation?

* Running different Virtual Machines (VMs) on a single
machine.

* Different isolated guest operating systems with different
applications on same physical hardware.

HARDWARE

" A supervising master
program called a
Hypervisor manages
these Virtual Machines.

HARDWARE

------- DOM U -~ -DOM U ------ =~

HARDWARE

Benefits of Virtualisation

* Reduced cost

* Dramatic lowering i

of TCO
= Security

* Continuous

availability
= Aglllty ﬁ 80% UTILIZED

. 15%-20%
* Operational UTILIZED

scalability

Virtualisation Models

* Single Kernel Image (SKi)
* Full Virtualisation (FV)

- Processor Emulation
- “Native” Virtualisation
- Hardware Assisted

* Para-virtualisation (PV)

Virtualisation Models - |

* Single Kernel Image (SKi)

— Light weight virtualisation where a shared host operating
system spawns multiple user spaces.

— Each virtual operating systemmust be identical.
- Examples:

= Solaris Zones
= SWsoft Virtuozzo
* Linux-VServer

Virtualisation Models - i

* Full Virtualisation (FV)

— Two categories

* Processor Emulation
* “Native” Emulation
- Two classes of hardware to be emulated

* Processor & supporting chipset
* Hardware

- 10 Controllers — Storage, network, etc.
- Video card

- USB
- etc.

Virtualisation Models - i

* Full Virtualisation (FV): Processor Enulation

- Uses software to emulate CPU
- All “guest” calls to CPU are handled by software
- Allows emulation to cross hardware platforms.

* eg. Run Windows on Mac hardware.

* Emulate x86 hardware using software running on
PowerPC

— Disadvantage

* Very slow!
- Examples

* Bochs, Qemu, VirtualPC (PowerPC version)

Virtualisation Models - i

* Full Virtualisation (FV): N ative™Virtualisation

Requires same chip architecture
Some CPU instructions executed directly

Kernel / Real-mode CPU instructions are dynamically re-
written

Binary on-the-fly patching/rewrite of those calls
No modifications required for guest operating systens
Disadvantage

* Slow performance
Examples

* VMware, VirtualPC, VirtualServer

Virtualisation Models - i

Full Virtualisation (FV): Hardware Assist

CPU emulation difficult in x86 architecture

* The x86 architecture not designed with virtualisation in mind.
Kernel expected to run in “ring 0”

Existing approaches incur performance penalties

CPU vendors developing Hardware extensions to support
virtualisation

* Intel - VMX extensions (vanderpool)
— CoreDuo, Pentium D 900 series, Pentium4 662 & 672
* AMD SVM (pacifica)
Provides on-chip support for virtualisation

* Still requires Hypervisor

Virtualisation Models - llI

* Para-Virtualisation (PV)

- Idea born fromresearch project at University of Cambridge,
England

— Requires minor changes to guest operating system
- Make Operating systemVirtualisation aw are”

* Guest operating system €oo perates’w ith Hypervisor
* No need to emulate hardware and CPU instructions

* Operating system talks to Hypervisor instead of enulation
layer

- Advantage

* Near Native speeds 0.5%-> 3% overhead

Xen Virtualisation Technology

* Open Source project founded by Gmbridge University

* Developed by the open source conmunity

* Supported by leading software and hardware vendors
— XenSource, Red Hat, IBM, Intel, AMD, Novell

* Widely accepted by open source conmunity
* Not just Linux
- *BSD, Open Solaris, Plan 9

Xen Virtualisation Technology

Almost native performance

Creates an apparent”
independent server for each
guest operating system

— Completely and securely
isolated

— Allows multiple workloads
to co-exist safely

Migrate guests quickly as
required.

Clone guests without
adding cost or complexity.

HARDWARE

HARDWARE

"GUEST 0S

1 -

DOM U ------- -~

HARDWARE

Xen Architecture - Host

Domain 0 HARDWARE

The master domain, which
provides hardware support as

well as interfacing to guests
and management tools.

Xen Hypervisor
Provides low-level hardware
control, scheduling, and
communications. This allows

transparent sharing of resources
and enforcing resource limits.

HARDWARE

== HARDWARE

Power o

Open Source
Architecture

Xen Architecture - Guests

HARDWARE

Dom U
The Virtual Machine

that runs the guest
operating system.

HARDWARE

-

|

: '.

|

NET BSD !

HARDWARE

Power o
Open Source
Architecture

Xen Architecture - Memory

* Memory Management
— Works in cooperation with Hypervisor

* Memory Balloon™D river
= Set minimum and maximum memory allocation for a domain
— Domain can request more memory (up to it's maximum)

— Returns unused memory back to the pool

Xen Architecture

* Typically hardware accessed by Domain O

- DomU's use “front end’drivers

* Devices can be hidden rom Domain 0

— Allow a device to be directly connected to bbmU
- eg. Network card, specialized I/O card

* A dedicated R esource Domain’can be created

— Moves some or all devices fromDomain O
— Creates a more stable Domain O

* Moves Su spect’ device drivers from DomO
* |f Resource domain(s) crash they can be quickly restarted

Xen Architecture - Block
Device

* Block Devices (disks) are connected to donains

- File in Domain 0
* eg. /opt/vm/disk.img

* Disk image can be a single file systemor complete disk
image including patrtitions

* Simple to implement but bottleneck for high I/O
deployments

— Physical device
* eg. /dev/sdab
— Logical volume
* Using LVM
— Devices appear as sinple virtual disks in Dom U

Xen Architecture - Network
Device

* Virtual Interfaces are created.

= Virtual interface in Dom0 maps to interface in Dom U
* Multiple virtual devices can be created in bm U
* Virtual interfaces can be connected in tvo ways
- Bridging

* Uses bridge-utils to bridge the Dom0, DomU and 'real’
interface

— Routing
* Uses network routing & iptables
— Direct access to NIC card

* eg. For firewall appliance.

Xen Performance

1.1

567
56
‘ 554
b50
263
b71
172
1714
418
518
514

1faa
4oo

1.0

0.9 -

| i

0.8 -

3

0.6 H

| 535

0.5 H

Relative score to Linux

0.3 H

0.2 -

I B B B B B B B E—

0.0

< K
1 | I
= |55

-

L X v U L X v u L

B

X v u L X v U L X v U
SPEC INT2000 (score) Linux build time (s) QSDB-IR (tup/s) QOSDB-0OLTP (tup/s) dbench (scare) SPEC WEB99 (score)

Relative performance of native Linux (L), XenoLinux (X), VMware workstation 3.2 (V) and User-Mode Linux (U).

Power o
Open Source

Architecture SO u rC e : Xe n SO U rce

Xen Architecture

* Virtual machines (domU's) don't access hardware directly
* They see only the front end drivers
* Not tied to a particular physical nachine

— Unless hardware is directly connected (unconmon)
* Comprised of
- Configuration file, disk inage, memory image
* Domains can be Migrated”
- Moved between physical machines
— Can be performed Live'w ithout suspending guest

- “down time” between 60ms and 300ms!!!

Live Migration

Domain 1 running on physical machine A is to
be moved to Machine B

Currently users are accessing

Machine A

Red Hat Enterprise Linux
Xen Hypervisor
Hardwar

Red Hat Enterprise Linux
Xen Hypervisor
Hardwar

CPU(s) 10 Memory CPU(s) 10 Memory

oo Machine A Machine B

Open Source
Architecture

Live Migration

Step 1:
Mirror block devices (disk) on
Machine B

Red Hat Enterprise Linux Red Hat Enterprise Linux
Xen Hypervisor Xen Hypervisor
Hardwar Hardwar

CPU(s) 10 Memory CPU(s) 10 Memory

» Machine A Machine B

Live Migration

Step 2:
Initialize container on Machine B

5

Red Hat Enterprise Linux Red Hat Enterprise Linux
Xen Hypervisor Xen Hypervisor
Hardwar Hardwar

CPU(s) 10 Memory CPU(s) 10 Memory

oo Machine A Machine B

Open Source
Architecture

Live Migration

Step 3:

Machine A commits ~10% of
resources to migration

Start shadow paging

F

o) L&

Red Hat Enterprise Linux Red Hat Enterprise Linux
Xen Hypervisor Xen Hypervisor
Hardwar Hardwar

CPU(s) 10 Memory CPU(s) 10 Memory

» Machine A Machine B

Live Migration

Step 4

Start copying memory image from
Machine A to Machine B

Changed memory pages marked
as “dirty”

e f
g

Red Hat Enterprise Linux Red Hat Enterprise Linux
Xen Hypervisor Xen Hypervisor
Hardwar Hardwar

CPU(s) 10 Memory CPU(s) 10 Memory

» Machine A Machine B

Live Migration

Step 5-> x:

Copy dirty pages.

Step completed multiple times
until number of dirty pages does
not decrease

e f
=

Red Hat Enterprise Linux
Xen Hypervisor
Hardwar

Red Hat Enterprise Linux
Xen Hypervisor
Hardwar

CPU(s) 10 Memory CPU(s) 10 Memory

» Machine A Machine B

Live Migration

Step 6:

Domain 1 is suspended on
Machine A. Remaining “dirty”
pages copied

e ff
=

Red Hat Enterprise Linux
Xen Hypervisor
Hardwar

Red Hat Enterprise Linux
Xen Hypervisor
Hardwar

CPU(s) 10 Memory CPU(s) 10 Memory

» Machine A Machine B

RHEL

Red Hat Enterprise Linux
Xen Hypervisor
Hardwar

CPU(s) 10 Memory

» Machine A

Live Migration

Step 7 :

ARP redirect used to point network
traffic to machine B

Domain 1 restarted on Machine B

F
:

Red Hat Enterprise Linux
Xen Hypervisor

Hardwar
CPU(s) 10 Memory
Machine B

Live Migration

Migration requires high speed network connectivity

- Same Layer 2 network preferred

Application profile effects migration performance

- High number of dirty pages -> Longer to transfer

* Potential for longer downtime

On average 60 -> 300ns downtime

Changes to disk image during transfer need to be handled

- Recommend using Shared file system
* GFS, SAN/NAS

Migration Performance

Effect of Migration on Web Server Transmission Rate
1000

870 Mbit/sec , 1st precopy, 62 secs further iterations,
Al L e i UEEY 765 Mbit/sec .

’J — (f ”: g " S R D PHERTTeR LT I | - LI ! I, W .-
3 500 ! & i SR i ek s gt 2 s d TRE
b ki 'i‘ 3 - . S .
§ 600 — it
=2 694 Mbit/sec]
5 !
3 .
=] 400 -
9 — }— 165ms total downtime
e .
= 200 :

512Kb files _ * Sample over 100ms

100 concurrent clients ' * Sample over 500ms

0 | | | | | | | | | T | | |
0 10 20 30 40 50 60 70 80 90 100 110 120 130

Elapsed time (secs)

Source: XenSource

Power o
Open Source
Architecture

Management API

* libvirt
- Stable API for tool/app developnent
* CIM providers

* Python, C bindings, scriptable

— Hypervisor agnostic (Xen,
QEMU, ...)

— Local VM functionality

* Start, stop, pause, ...

* Support for hot and cold
migration

- http://www.libvirt.org

Red Hat's Added Value

* Server/operating systemvirtualisation
- Xen (integrated into kernel and OS platforn
* Storage virtualisation
- Red Hat Global File SystenyCLVM
* System management, provisioning, resource management

- Red Hat Network, libvirt

* Application environment consistency with non-virtualised
environments

Red Hat's Added Value

* |nstallation tools

- Anaconda

* The “Red Hat Installer” is virtualisation-aware.
* Eases virtualisation setup and installation
* ISV and IHV Certification

- World's leading open source Linux provider has the largest
network of certified software applications and hardware
systems

Solving Real Problems

HARDWARE

* Failure Isolation

— Failing mail server does
not impact the other
servers.

* Prevent major crashes.

HARDWARE

* |In the event of a security
failure, contain leaks or
theft.

HARDWARE

Solving Real Problems

HARDWARE

* Control without constraints

— IT locks down one guest,
user is empowered to
manage the other.

—~ — USER VISIBLE —

1

1

1

T i

I

1

“CAPABILITY OS" :

-

=USER VISIBLE '= = = == e

* The value of user-based
innovation.

HARDWARE

- USER HIDDEN - - = - - —

HARDWARE

Solving Real Problems

* Live migration
= Virtual Machine relocation enables

* High Availability:
machine maintenance

* Load Balancing:

HARDWARE HARDWARE

statistical
multiplexing guercian B I I IS e
. N APP1 ’ ‘. : v
gdain N\ Mo
NN\ £ LA
g oW § NN\ -
/3N /AR
| ! P
sk sk
e VAN

MACHINE 1

MACHINE 2

Solving Real Problems

HARDWARE

* Freedom from upgrades

- Preserve the version X
environment and its
applications, deploy on
version X+1 when it
makes sense.

HARDWARE

— The hypervisor runs on
version X+1 to gain
maximum benefit from the
new hardware and
software.

HARDWARE

Solving Real Problems

HARDWARE

* Development and QA
environments

* Secure and
compartmentalized
instances; think Chroot” jail.

* Simplify test scripting and
execution for qualifications.

HARDWARE

* Simplify test simulation.

* Carve out resources and
return when finished.

HARDWARE

Consider the Possibilities

HARDWARE

HARDWARE

HARDWARE

HARDWARE

HARDWARE

HARDWARE

HARDWARE

L - =DOMU - 2,
- 1

-

5 RUNTIME RHEL 5 RUNTIME RHEL 5 RUNTIME RHEL 5 RUNTIME RHEL 5 RUNT
RHEL 5 RUNTIME RHEL ITINESSHE TIME = .. SRUNTIME RHELSR
El JNTIME RHE N M R L ‘'« ME F EL RUNTIME RHEL 5 RU

HEL 5 RUNTIME RHEL - wordTIMc aHEL 3 AUGTIME R 5 RUNTIME RHEL SR

NTIME RHEL 5 RUNTIME RHEL 5 RUNTIME RHEL 5 RUNTIME RHEL 5 RUNTI
5 RUNTIME RHEL 5 RUNTIME RHEL 5 RUNTIME RHEL 5 RUNTIME RHEL 5 F
HARDWARE

HARDWARE

Power o
Open Source
Architecture

Sung Min David Joo
dioo @redhat com

