
Xen and the State of
Open Source Virtualisation

Sung Min David Joo
Senior Technical Account Manager,

Red Hat Korea

What's Virtualisation?

 Running different Virtual Machines (VMs) on a single
machine.
● Different isolated guest operating systems with different

applications on same physical hardware.

 A supervising master
program called a
Hypervisor manages
these Virtual Machines.

Benefits of Virtualisation

 Reduced cost
● Dramatic lowering

of TCO
 Security

● Continuous
availability

 Agility
● Operational

scalability

Virtualisation Models

● Single Kernel Image (SKI)

● Full Virtualisation (FV)

– Processor Emulation
– “ Native” Virtualisation
– Hardware Assisted

● Para-virtualisation (PV)

Virtualisation Models ­ I

● Single Kernel Image (SKI)

– Light weight virtualisation where a shared host operating
system spawns multiple user spaces.

– Each virtual operating system must be identical.
– Examples:

 Solaris Zones
 SWsoft Virtuozzo
 Linux-VServer

Virtualisation Models ­ II

● Full Virtualisation (FV)

– Two categories
● Processor Emulation
● “ Native” Emulation

– Two classes of hardware to be emulated
● Processor & supporting chipset
● Hardware

– IO Controllers – Storage, network, etc.
– Video card
– USB
– etc.

Virtualisation Models ­ II

● Full Virtualisation (FV): Processor Emulation

– Uses software to emulate CPU
– All “ guest” calls to CPU are handled by software
– Allows emulation to cross hardware platforms.

● eg. Run Windows on Mac hardware.
● Emulate x86 hardware using software running on

PowerPC
– Disadvantage

● Very slow!
– Examples

● Bochs, Qemu, VirtualPC (PowerPC version)

Virtualisation Models ­ II

● Full Virtualisation (FV): “Native” Virtualisation

– Requires same chip architecture
– Some CPU instructions executed directly
– Kernel / Real-mode CPU instructions are dynamically re-

written
– Binary on-the-fly patching/rewrite of those calls
– No modifications required for guest operating systems
– Disadvantage

● Slow performance
– Examples

● VMware, VirtualPC, VirtualServer

Virtualisation Models ­ II

● Full Virtualisation (FV): Hardware Assist

– CPU emulation difficult in x86 architecture
● The x86 architecture not designed with virtualisation in mind.

Kernel expected to run in “ ring 0”
– Existing approaches incur performance penalties
– CPU vendors developing Hardware extensions to support

virtualisation
● Intel – VMX extensions (vanderpool)

– CoreDuo, Pentium D 900 series, Pentium 4 662 & 672
● AMD – SVM (pacifica)

– Provides on-chip support for virtualisation
● Still requires Hypervisor

Virtualisation Models ­ III

● Para-Virtualisation (PV)

– Idea born from research project at University of Cambridge,
England

– Requires minor changes to guest operating system
– Make Operating system “virtualisation aw are”

● Guest operating system “coo perates” w ith Hypervisor
● No need to emulate hardware and CPU instructions
● Operating system talks to Hypervisor instead of emulation

layer
– Advantage

● Near Native speeds 0.5% -> 3% overhead

Xen Virtualisation Technology

● Open Source project founded by Cambridge University

● Developed by the open source community

● Supported by leading software and hardware vendors

– XenSource, Red Hat, IBM, Intel, AMD, Novell
● Widely accepted by open source community

● Not just Linux

– *BSD, Open Solaris, Plan 9

Xen Virtualisation Technology

● Almost native performance

● Creates an “apparent”
independent server for each
guest operating system.

– Completely and securely
isolated

– Allows multiple workloads
to co-exist safely

● Migrate guests quickly as
required.

● Clone guests without
adding cost or complexity.

Xen Architecture ­ Host
Domain 0
The master domain, which
provides hardware support as
well as interfacing to guests
and management tools.

Xen Hypervisor
Provides low-level hardware
control, scheduling, and
communications. This allows
transparent sharing of resources
and enforcing resource limits.

Xen Architecture ­ Guests
Dom U
The Virtual Machine
that runs the guest
operating system.

Xen Architecture ­ Memory

● Memory Management

– Works in cooperation with Hypervisor
● Memory “Balloon” D river

– Set minimum and maximum memory allocation for a domain
– Domain can request more memory (up to it's maximum)
– Returns unused memory back to the pool

Xen Architecture

● Typically hardware accessed by Domain 0

– DomU's use “ front end” drivers
● Devices can be “hidden” from Domain 0

– Allow a device to be directly connected to DomU
– eg. Network card, specialized I/O card

● A dedicated “R esource Domain” can be created

– Moves some or all devices from Domain 0
– Creates a more stable Domain 0

● Moves “su spect” device drivers from Dom0
● If Resource domain(s) crash they can be quickly restarted

Xen Architecture ­ Block
Device

● Block Devices (disks) are connected to domains

– File in Domain 0
● eg. /opt/vm/disk.img
● Disk image can be a single file system or complete disk

image including partitions
● Simple to implement but bottleneck for high I/O

deployments
– Physical device

● eg. /dev/sda6
– Logical volume

● Using LVM
– Devices appear as simple virtual disks in Dom U

Xen Architecture ­ Network
Device

● Virtual Interfaces are created.

– Virtual interface in Dom0 maps to interface in Dom U
● Multiple virtual devices can be created in Dom U

● Virtual interfaces can be connected in two ways

– Bridging
● Uses bridge-utils to bridge the Dom0, DomU and 'real'

interface
– Routing

● Uses network routing & iptables
– Direct access to NIC card

● eg. For firewall appliance.

Xen Performance

Source : XenSource

Xen Architecture

● Virtual machines (domU's) don't access hardware directly

● They see only the front end drivers

● Not tied to a particular physical machine

– Unless hardware is directly connected (uncommon)
● Comprised of

– Configuration file, disk image, memory image
● Domains can be “M igrated”

– Moved between physical machines
– Can be performed “Live” w ithout suspending guest
– “ down time” between 60ms and 300ms!!!

Live Migration

Xen Hypervisor
Red Hat Enterprise Linux

Hardwar
eCPU(s) IO Memory

RHELRHEL

A
p

p
li
c
a
ti

o
n

RHELRHEL

D
o
m

a
in

 1

Xen Hypervisor
Red Hat Enterprise Linux

Hardwar
eCPU(s) IO Memory

Machine BMachine A

Domain 1 running on physical machine A is to
be moved to Machine B
Currently users are accessing
Machine A

Live Migration
Step 1 :
Mirror block devices (disk) on
Machine B

Xen Hypervisor
Red Hat Enterprise Linux

Hardwar
eCPU(s) IO Memory

RHELRHEL

A
p

p
li
c
a
t i

o
n

RHELRHEL

D
o
m

a
in

 1

Xen Hypervisor
Red Hat Enterprise Linux

Hardwar
eCPU(s) IO Memory

Machine BMachine A

Live Migration
Step 2 :
Initialize container on Machine B

Xen Hypervisor
Red Hat Enterprise Linux

Hardwar
eCPU(s) IO Memory

RHELRHEL

A
p

p
li
c
a
t i

o
n

RHELRHEL

D
o
m

a
in

 1

Xen Hypervisor
Red Hat Enterprise Linux

Hardwar
eCPU(s) IO Memory

Machine BMachine A

RHELRHEL

D
o
m

a
in

 1

Live Migration
Step 3 :
Machine A commits ~10% of
resources to migration
Start shadow paging

Xen Hypervisor
Red Hat Enterprise Linux

Hardwar
eCPU(s) IO Memory

RHELRHEL

A
p

p
li
c
a
ti

o
n

RHELRHEL

D
o
m

a
in

 1

Xen Hypervisor
Red Hat Enterprise Linux

Hardwar
eCPU(s) IO Memory

Machine BMachine A

RHELRHEL

D
o
m

a
in

 1

Live Migration
Step 4 :
Start copying memory image from
Machine A to Machine B
Changed memory pages marked
as “dirty”

Xen Hypervisor
Red Hat Enterprise Linux

Hardwar
eCPU(s) IO Memory

RHELRHEL

A
p

p
li
c
a
t i

o
n

RHELRHEL

D
o
m

a
in

 1

Xen Hypervisor
Red Hat Enterprise Linux

Hardwar
eCPU(s) IO Memory

Machine BMachine A

RHELRHEL

D
o
m

a
i n

 1

Live Migration
Step 5 -> x :
Copy dirty pages.
Step completed multiple times
until number of dirty pages does
not decrease

Xen Hypervisor
Red Hat Enterprise Linux

Hardwar
eCPU(s) IO Memory

RHELRHEL

A
p

p
li
c
a
t i

o
n

RHELRHEL

D
o
m

a
in

 1

Xen Hypervisor
Red Hat Enterprise Linux

Hardwar
eCPU(s) IO Memory

Machine BMachine A

RHELRHEL

D
o
m

a
in

 1

Live Migration
Step 6 :
Domain 1 is suspended on
Machine A. Remaining “dirty”
pages copied

Xen Hypervisor
Red Hat Enterprise Linux

Hardwar
eCPU(s) IO Memory

RHELRHEL

A
p

p
li
c
a
t i

o
n

RHELRHEL

D
o
m

a
in

 1

Xen Hypervisor
Red Hat Enterprise Linux

Hardwar
eCPU(s) IO Memory

Machine BMachine A

RHELRHEL

D
o
m

a
in

 1

Live Migration
Step 7 :
ARP redirect used to point network
traffic to machine B
Domain 1 restarted on Machine B

Xen Hypervisor
Red Hat Enterprise Linux

Hardwar
eCPU(s) IO Memory

RHELRHEL

A
p

p
li
c
a
ti

o
n

Xen Hypervisor
Red Hat Enterprise Linux

Hardwar
eCPU(s) IO Memory

Machine BMachine A

RHELRHEL

D
o
m

a
in

 1

Live Migration

● Migration requires high speed network connectivity

– Same Layer 2 network preferred
● Application profile effects migration performance

– High number of dirty pages -> Longer to transfer
● Potential for longer downtime

● On average 60 -> 300ms downtime

● Changes to disk image during transfer need to be handled

– Recommend using Shared file system
● GFS, SAN / NAS

Migration Performance

Source: XenSource

Management API

● libvirt

– Stable API for tool/app development
● CIM providers
● Python, C bindings, scriptable

– Hypervisor agnostic (Xen,
QEMU, ...)

– Local VM functionality
● Start, stop, pause, ...
● Support for hot and cold

migration
– http://www.libvirt.orghttp://www.libvirt.org

Red Hat's Added Value

● Server/operating system virtualisation

– Xen (integrated into kernel and OS platform)
● Storage virtualisation

– Red Hat Global File System/CLVM
● System management, provisioning, resource management

– Red Hat Network, libvirt
● Application environment consistency with non-virtualised

environments

Red Hat's Added Value

● Installation tools

– Anaconda
● The “ Red Hat Installer” is virtualisation-aware.
● Eases virtualisation setup and installation

● ISV and IHV Certification

– World's leading open source Linux provider has the largest
network of certified software applications and hardware
systems

Solving Real Problems

● Failure Isolation

– Failing mail server does
not impact the other
servers.

● Prevent major crashes.
● In the event of a security

failure, contain leaks or
theft.

Solving Real Problems

● Control without constraints

– IT locks down one guest,
user is empowered to
manage the other.

● The value of user-based
innovation.

Solving Real Problems

● Live migration

– Virtual Machine relocation enables
● High Availability:

machine maintenance
● Load Balancing:

statistical
multiplexing
gain

Solving Real Problems

● Freedom from upgrades

– Preserve the version X
environment and its
applications, deploy on
version X+1 when it
makes sense.

– The hypervisor runs on
version X+1 to gain
maximum benefit from the
new hardware and
software.

Solving Real Problems

● Development and QA
environments

● Secure and
compartmentalized
instances; think “chroot” jail.

● Simplify test scripting and
execution for qualifications.

● Simplify test simulation.
● Carve out resources and

return when finished.

Consider the Possibilities

Thank you!

Sung Min David Joo
djoo@redhat.com

