
Developing Flex Applications

Trademarks

Add Life to the Web, Afterburner, Aftershock, Andromedia, Allaire, Animation PowerPack, Aria, Attain, Authorware,
Authorware Star, Backstage, Breeze, Bright Tiger, Clustercats, ColdFusion, Contribute, Design In Motion, Director, Dream
Templates, Dreamweaver, Drumbeat 2000, EDJE, EJIPT, Extreme 3D, Fireworks, Flash, Flash Lite, Flex, Fontographer,
FreeHand, Generator, HomeSite, JFusion, JRun, Kawa, Know Your Site, Knowledge Objects, Knowledge Stream, Knowledge
Track, LikeMinds, Lingo, Live Effects, MacRecorder Logo and Design, Macromedia, Macromedia Action!, Macromedia Flash,
Macromedia M Logo and Design, Macromedia Spectra, Macromedia xRes Logo and Design, MacroModel, Made with
Macromedia, Made with Macromedia Logo and Design, MAGIC Logo and Design, Mediamaker, Movie Critic, Open Sesame!,
Roundtrip, Roundtrip HTML, Shockwave, Sitespring, SoundEdit, Titlemaker, UltraDev, Web Design 101, what the web can be,
and Xtra are either registered trademarks or trademarks of Macromedia, Inc. and may be registered in the United States or in
other jurisdictions including internationally. Other product names, logos, designs, titles, words, or phrases mentioned within this
publication may be trademarks, service marks, or trade names of Macromedia, Inc. or other entities and may be registered in
certain jurisdictions including internationally.

Third-Party Information

This guide contains links to third-party websites that are not under the control of Macromedia, and Macromedia is not
responsible for the content on any linked site. If you access a third-party website mentioned in this guide, then you do so at your
own risk. Macromedia provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia
endorses or accepts any responsibility for the content on those third-party sites.

Copyright © 2004 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced,
translated, or converted to any electronic or machine-readable form in whole or in part without prior written approval of
Macromedia, Inc. Part Number ZFE10M100B

Acknowledgments

Project Management: Stephen M. Gilson

Writing: Matthew J. Horn, Mike Peterson

Editing: Linda Adler

Production Management: Patrice O’Neill

Media Design and Production: Adam Barnett, John Francis

Second Edition: July 2004

Macromedia, Inc.
600 Townsend St.
San Francisco, CA 94103

CONTENTS
PART I: Presenting Flex

CHAPTER 1: Introducing Flex . 13

About Flex. 13
Developing applications . 18
Where to next . 24

CHAPTER 2: Using MXML . 25

About MXML. 25
The relationship between MXML and ActionScript classes 37
How MXML relates to standards. 43

CHAPTER 3: Using ActionScript . 45

About ActionScript . 45
Using ActionScript in Flex applications . 48

CHAPTER 4: Developing Applications . 57

About the Flex coding process . 58
Working with a multitier application model . 60
Controlling the appearance of an application . 62
Enabling application zooming . 63
Separating ActionScript from MXML . 63
About the Flex development environment . 67
Using Flex development tools . 67
Architecting an application . 69
Improving application start-up time and performance. 78
Summary of Flex application features . 81
3

PART II: Building User Interfaces to Flex Applications

CHAPTER 5: Using Flex Components . 87

About components . 87
Class hierarchy for components . 88
Using styles . 96
Using behaviors . 97
Handling events . 97
Applying skins. 98
Sizing components . 99
Changing the appearance of a component at runtime . 99
Extending components . 101

CHAPTER 6: Using Controls . 103

About controls. 104
Working with controls. 107
Button control. 109
CheckBox control . 113
DateChooser . 116
DateField control . 123
HRule and VRule controls . 130
HSlider and VSlider controls. 133
Label control . 144
Link control . 149
Loader control. 151
NumericStepper control . 153
ProgressBar control . 156
RadioButton control . 161
ScrollBar control . 165
Text control. 166
TextArea control . 169
TextInput control . 172

CHAPTER 7: Using Data Provider Controls . 175

About data providers . 175
ComboBox control . 189
DataGrid control. 197
List control . 207
Menu control . 216
MenuBar control . 222
Tree control . 230
4 Contents

CHAPTER 8: Introducing Containers . 237

About containers . 237
Using containers . 238
Controlling component sizing and positioning in a container 246
Using scroll bars . 255
Creating component instances at runtime . 256
Configuring containers . 259

CHAPTER 9: Using the Application Container . 265

Using the Application container . 265
Application container syntax . 268
Showing the download progress of an application . 274

CHAPTER 10: Using Layout Containers . 279

About layout containers. 279
Canvas layout container . 280
Box layout container . 282
ControlBar layout container . 284
DividedBox layout container . 285
Form layout container . 290
Grid layout container . 306
Panel layout container . 311
Tile layout container . 315
TitleWindow layout container. 317

CHAPTER 11: Using Navigator Containers . 325

About navigator containers . 325
ViewStack navigator container. 326
LinkBar navigator container . 331
TabNavigator container . 335
TabBar navigator container . 338
Accordion navigator container. 343

CHAPTER 12: Dynamically Repeating Controls and Containers 351

Using a Repeater object . 351
Dynamically creating components based on data type . 359
How a Repeater object executes. 360

CHAPTER 13: Importing Images and Media . 361

Importing images . 361
Controlling image importing. 365
Using media controls. 370
Contents 5

PART III: Improving User Experience

CHAPTER 14: Building an Application with Multiple MXML Files 383

About MXML components . 383
Creating MXML components . 385
Passing component references . 390
Using interfaces . 391

CHAPTER 15: Working with ActionScript in Flex . 393

Using ActionScript in Flex. 393
Working with components . 394
About scope. 398
Changing the appearance of a component at runtime . 407
Importing external resources . 408
Using the doLater() method . 411

CHAPTER 16: Using Events . 413

About events . 413
Handling events . 415
Handling mouse events . 431
Using base class events. 433

CHAPTER 17: Creating ActionScript Components . 437

About ActionScript components . 437
Defining custom user-interface components . 439
Passing data to a custom tag . 439
Defining events in ActionScript components. 440
Adding ActionScript components to the Flex environment 441
Defining nonvisual components . 442

CHAPTER 18: Creating Cell Renderers . 447

Creating a cell renderer class . 447

CHAPTER 19: Using Styles, Fonts, and Themes . 455

About styles . 455
Using external style sheets . 474
Using local style definitions . 475
Using the StyleManager. 479
Using the setStyle() and getStyle() methods . 482
Using inline styles . 484
About fonts . 485
Using themes. 491
Skinning . 494
6 Contents

CHAPTER 20: Using Behaviors . 497

Applying behaviors . 497
Customizing an effect . 505
Defining a custom effect . 509
Defining and playing an effect in ActionScript . 512
Using a custom effect trigger . 514

CHAPTER 21: Using ToolTips . 517

About ToolTips . 517
Using ToolTips . 518
Using the ToolTipManager . 521

CHAPTER 22: Using the Cursor Manager . 525

About the Cursor Manager . 525
Cursor Manager syntax . 528

CHAPTER 23: Using the Drag and Drop Manager . 531

About the Drag and Drop Manager. 531
Using a List, Tree, or DataGrid control . 540
Drag and Drop Manager syntax . 543

CHAPTER 24: Using the History Manager . 549

About history management . 549
Using standard history management . 549
Using custom history management . 551
How the HistoryManager class saves and loads state . 554
Using history management in a custom HTML file . 555

CHAPTER 25: Applying Deferred Instantiation . 557

About deferred instantiation . 557
Using deferred instantiation . 558
Manually instantiating controls . 562
Using the childDescriptors property . 564
Starting applications incrementally . 567

CHAPTER 26: Printing from SWF Files . 571

About Printing . 571
Printing from the Flash Player context menu. 572
Using the ActionScript PrintJob class . 573
Starting a print job . 576
Contents 7

PART IV: Data Access and Interconnectivity

CHAPTER 27: Creating Accessible Applications . 583

Accessibility overview . 583
About screen reader technology . 585
Configuring Flex applications for accessibility . 585
Using accessible components and managers. 587
Creating tab order and reading order . 589
Accessibility for hearing-impaired users . 591
Testing accessible content . 591

CHAPTER 28: Managing Data in Flex . 593

About Flex data management . 593
Comparing Flex data management to other technologies. 597

CHAPTER 29: Binding and Storing Data in Flex . 601

Binding data . 601
Using data models . 610

CHAPTER 30: Validating Data in Flex . 619

Validating data . 619
Using standard validators. 628

CHAPTER 31: Formatting Data . 639

Using formatters . 639
Writing an error handler function . 640
Using the standard formatters . 640
Creating a custom formatter . 651

CHAPTER 32: Using Data Services . 655

About data services . 656
Declaring a data service . 658
Calling a data service . 659
Handling data service results . 666
Using a service with binding, validation, and event handlers 669
Handling asynchronous calls to data services . 671
Using callback URLs . 673
Generating debugging information for data services . 674
Securing data services . 675
Working with web services . 682
Working with remote object services . 688
Data service tag properties . 695
Data service whitelist tags . 700
8 Contents

PART V: Advanced Application Development and Debugging

CHAPTER 33: Debugging Flex Applications . 705

About debugging. 705
Enabling debug and warning messages . 706
Using the error-reporting mechanism . 707
Supported errors . 710
About the debugger . 712
Configuring the debugger . 714
Invoking the debugger. 715
Using the debugger . 717

CHAPTER 34: Profiling ActionScript . 729

About profiling . 729
About the Profiler . 730
Using the Profiler . 730
Analyzing data. 736
Troubleshooting . 739

CHAPTER 35: Using the Flex JSP Tag Library . 741

Introduction to the Flex JSP tag library . 741
Using the Flex JSP tag library . 742
About the Flex tags . 742
Using the <mxml> tag . 745
Using the <flash> tag . 748
Using the <param> tag . 748

PART VI: Administrating Applications

CHAPTER 36: Administering Flex . 753

Overview. 753
Using the command-line compiler . 754
Editing the flex-config.xml file . 757
Changing application server settings . 767
Configuring logging . 768

CHAPTER 37: Applying Flex Security . 773

Flex security features . 773
Flash Player security features . 775
Security concerns of an open format technology . 782
Resources . 783
Contents 9

CHAPTER 38: Deploying Applications . 785

About deploying . 785
Adding Flex to your application server. 786
Distributing components. 791
Working with Flex files . 793
About the HTML wrapper . 798
Passing request data to Flex applications . 805
Flash Player detection and deployment . 808
Managing Flash Player auto-update . 812

PART VII: Custom Components

CHAPTER 39: Working with Flash MX 2004 . 817

About creating components. 817
Working in the Flash environment . 819
Working with component symbols . 823
Exporting components . 828

CHAPTER 40: Creating Basic Components in Flash MX 2004 835

Creating simple components . 835
Working with component properties . 842
Binding properties to a custom component . 843
Adding events to custom components . 845
Setting default sizes . 849
Styling custom components. 850
Skinning custom components . 851
Creating compound components . 853

CHAPTER 41: Creating Advanced Components in Flash MX 2004 857

Creating components overview . 857
Writing the component’s ActionScript code. 858
Skinning custom controls . 881
Adding styles . 882
Making components accessible . 883
Improving component usability. 883
Best practices when designing a component . 884
ModalText.as example . 885
Troubleshooting . 888

INDEX . 891
10 Contents

P
A

R
T

 I
PART I
Presenting Flex
This part describes the Macromedia Flex Presentation Server. These chapters introduce Flex, and
the two languages that you use to develop Flex applications: MXML and ActionScript. This part
also includes an introduction to building Flex applications.

The following chapters are included:

Chapter 1: Introducing Flex. 13

Chapter 2: Using MXML . 25

Chapter 3: Using ActionScript . 45

Chapter 4: Developing Applications . 57

CHAPTER 1
Introducing Flex
This chapter introduces you to the Macromedia Flex Presentation Server, a development and
runtime environment that lets you create rich interfaces for your web applications. Macromedia
Flex defines a standards-based programming methodology for building the presentation tier of
rich Internet applications. Rich Internet applications combine the responsiveness and richness of
desktop software with the broad reach of web applications to deliver a more effective user
experience.

This chapter describes the characteristics of a typical Flex application, provides an overview of the
Flex feature set, and defines the development process that you use to create Flex applications.

Contents

About Flex . 13

Developing applications . 18

Where to next . 24

About Flex

Flex defines a development and runtime environment that lets developers familiar with server-
side technologies build rich front ends for applications that take advantage of Macromedia Flash
Player. While executing in Flash Player, your application can interact with server-side
functionality, such as databases, web services, Java objects, and other server-side services.

Flex brings the power of Flash to developers familiar with traditional programming languages and
server-side development environments. In Flex, you use a standards-based programming model to
develop an application, describe the user interface, configure user-interface controls, and define
data bindings.

Using Flex in an n-tier application model

By definition, enterprise applications are multitiered, where each tier brings specific benefits to
the application design. A tiered architecture provides natural access points for integration with
existing and future systems.
13

Each tier serves a specific purpose, and lets you divide the functionality of a business application
into discrete components that you can implement independently from each other. For example,
the following figure shows the tiers of a five-tier application model:

An n-tier architecture offers the following advantages:

• The tiers, or even components of the tiers, can be distributed across multiple hardware systems
to improve system scalability and performance.

• The client and presentation tiers shield clients from the complexities of accessing the enterprise
data store.

• You can distribute application development across your development group. For example, JSP
developers are typically concerned with information presentation rather than with
implementing business rules. Conversely, EJB developers are concerned with data access and
manipulation, but not with presentation.

In traditional n-tier applications, the presentation tier logic executes on the server, so every client
interaction requires a data transfer between the client and server.

Running on client

Running on server

Client Tier

Application clients, Flash, applets, and other GUIs

Presentation Tier

ASP, JSP, Servlets, and other UI elements

Business Tier

Connects to business objects

Integration Tier

Connectors to data and legacy systems

Resource Tier

Databases, external systems, and legacy resources
14 Chapter 1: Introducing Flex

Flex adds new functionality and options to the n-tier model. The following figure shows the same
five tiers for a Flex application:

In Flex, Flash Player provides the platform for interface development so that both client and
presentation tier logic executes on the client computer. Flex applications executing in Flash Player
process user interactions, perform data validation, issue HTTP and SOAP requests, and perform
other operations previously performed on the server. Because Flash Player runs consistently across
all major operating systems and browsers, you do not have to program your applications for a
specific browser or platform.

Note: You can still develop presentation-tier logic for the server as part of your application, and
connect to that logic from the client.

The Flex server executes on a J2EE platform or servlet container, and provides the integration
point for Flex applications to server-side functionality. The Flex server also includes the Flex
compiler, caching mechanism, and web service proxy.

You do not need to modify the business and integration tiers to integrate with Flex. This means
that you code the business and back-end functionality in the same way you did for your existing
applications. Flex lets you connect to your back-end systems and application logic using web
services, HTTP, EJBs, or other methods.

Benefits to using Flex

Historically, most Internet application interfaces are built in HTML. Because HTML
applications are page-based, they demand complete page refreshes when information is submitted
to a server, as well as when a client navigates from one page to another. Each page load uses
network bandwidth and server resources. In addition, application logic typically executes on the
server rather than on the client, which requires a server request and response to process any data.

Client and presentation tiers
running on the client

Business and integration tiers

Resource tier

Flash Player running
Flex applications

Flex server

Java BeansEJBs Web services

J2EE server/servlet container

HTTP/SOAP
About Flex 15

Applications running in Flash Player behave like desktop applications, instead of a series of linked
pages. Flash Player manages the client interface as a single, uninterrupted flow and does not
require a page load from the server when the client moves from one section of the application
to another.

Flex offers the following additional benefits to your web applications:

• Standards-based architecture Macromedia designed Flex, ActionScript, and MXML, the
Flex scripting language, and followed standards. MXML is XML-compliant, implements styles
based on the Cascading Style Sheets, level 1(CSS1) specification, and implements an event
model based on a subset of the W3C DOM Level 3 Events specification. ActionScript is an
ECMAScript-based language that provides support for object-oriented development. The Flex
server executes on standard J2EE platforms or servlet containers.

• Reduction in server load and network bandwidth Some or all of the presentation tier of a
Flex application runs in Flash Player, which means that no application server processing
resources are spent on data formatting. By off loading presentation logic to the client, and
eliminating the need for frequent page refreshes, Flex applications minimize network traffic
and server load.

• Common deployment environment Flex applications deploy on a J2EE server and execute
on Flash Player, which is platform-independent, so customers do not need to install custom
client software. Also, Flash Player runs consistently in all browsers and platforms, so you do
not have to worry about inconsistent behavior in different client environments.

Developing applications for Macromedia Flash Player

The target of a Flex application is Flash Player. Flex developers do not need any Flash authoring
background. Rather, a typical Flex developer will have more experience developing applications
using a server-based model. Flex lets you use a familiar programming model to develop the client
tier and presentation tier.

Flex supports two versions of Flash Player. Flex application users install the standard Flash Player
to run Flex applications. Flex also supports the debug version of Flash Player, called Flash Debug
Player. Flex application developers use Flash Debug Player during the development process. Flash
Debug Player supports important features for developers, including the following:

• Error reporting Lets you direct runtime error and warning messages to a log file. Flash
Debug Player can also capture the output of the trace() function and write it to the log file.
For more information, see Chapter 33, “Debugging Flex Applications,” on page 705.

• ActionScript profiling Helps to identify performance bottlenecks in your applications. The
Profiler records the time that Flash Player takes to perform tasks in ActionScript. For more
information, see Chapter 34, “Profiling ActionScript,” on page 729.

• Debugging support Lets you debug ActionScript files used by your Flex applications. For
more information, see Chapter 33, “Debugging Flex Applications,” on page 705.
16 Chapter 1: Introducing Flex

Flex application requirements

One of the most common applications using Flex lets users perform product selection and
configuration. The user works through a process to configure the features of a product, views or
inspects the configuration, and then proceed through the steps required to complete a purchase.

Many types of web applications are appropriate for development in Flex. Some of the
requirements of these applications, and how Flex supports these requirements, include
the following:

Cross-browser compatibility Web applications should run the same on all browsers and
platforms. By standardizing on Flash Player as the client environment, you are guaranteed a
consistent user experience on all platforms and browsers. For more information, see “Developing
applications for Macromedia Flash Player” on page 16.

Client data collecting Collecting user input is one of the most common uses for web
applications. Flex supports forms, and all common form elements, to let you create rich and
dynamic user experiences. Flex forms include hooks to the Flex data modeling and data validation
mechanism, and the ability to identify required input fields. For more information, see
Chapter 10, “Using Layout Containers,” on page 279.

Client-side processing of user input, including filtering and data validation Flex data
management, which includes data models, data validators, data binding, and data services, lets
you separate data representation from the way it is viewed by a user. Typically, this design pattern
is called Model-View-Controller, or MVC. Flex also provides a powerful way to validate data and
pass data between user interface controls and external data sources with little or no server
interaction. For more information, see Chapter 28, “Managing Data in Flex,” on page 593.

Multistep processes Many applications present the user with a process that includes a
sequence of steps or decisions that require user input. For example, completing a registration form
or checkout form often requires multiple steps to complete.

Ideally, you want your users to be able to navigate through multiple steps on a single page without
losing the context of where they are in the process, and without losing any of the previous
information that they have already entered. Flex supports the development of these applications
by capturing state information, supporting browser Back and Forward buttons using the History
Manager, and providing a set of user-interface controls designed explicitly for handling
procedural data. For more information, see Chapter 11, “Using Navigator Containers,” on
page 325 and Chapter 24, “Using the History Manager,” on page 549.

Information management using master-detail lists A common design pattern for web
applications is to display a list of items, and to let the user explore an item in a detailed way, while
leaving the other items unopened. This pattern is referred to as a master-detail list. A master page
typically lists database records and corresponding links for each record. When the user clicks a
link, a detail page opens that displays more information about the record. Flex supports master/
detail lists through several different controls, including the DataGrid control. For more
information, see Chapter 6, “Using Controls,” on page 103.
About Flex 17

Direct user feedback Complex tasks must provide feedback to users when the user makes
input errors or enters invalid information. Support for a feedback mechanism should also require
a minimum of server-side interactions so as not to use network bandwidth. Because your
applications execute in Flash Player on the client, the Flex feedback mechanism requires little or
no server-side logic.

Developing applications

Flex supports a component-based development model. You can use the prebuilt components
included with Flex, you can extend the Flex component library by creating new components, or
you can combine prebuilt components to create composite components.

You develop Flex applications using a combination of the MXML language and ActionScript.
MXML is a declarative language that you use to define the basic structure and contents of your
application. ActionScript is a procedural language that you use to perform runtime control and
data processing in your application.

Flex application files use the .mxml filename extension. You store these files under the web root
directory of your J2EE application.

A request to an MXML file has the following form:
http://hostname/path/filename.mxml

Upon receiving an HTTP request for an MXML file, Flex performs the following steps:

1. Compiles the MXML file to produce a SWF file.

2. Caches the compiled SWF file on the server.

3. Returns the SWF file to the client.

The SWF file executes in Flash Player. While it is executing, the Flex application makes calls to
server-side services. For example, the application might issue a SOAP request to a web service, use
AMF to connect to a Java object, or make a request to an HTTP service.

Upon subsequent requests to the MXML file, the Flex server determines whether the MXML file
has been modified since the previous request. If not, it returns the same SWF file from the cache.
If the MXML file has been modified, the Flex server recompiles the file and returns an updated
SWF file to the client.

Application model

When you build an application using Flex, you describe its user interface using containers and
controls. A container is a rectangular region of the screen that contains controls and other
containers. Examples of containers are a Form container used for data entry, a Box, and a Grid. A
control is a form element, such as a Button or Text Input field.
18 Chapter 1: Introducing Flex

For example, the following figure shows two different Box containers, each containing three
Button controls and a ComboBox control:

This figure shows the controls within a horizontal Box (HBox) container. An HBox container
arranges its controls horizontally across the Flash Player drawing surface. The figure also shows
the controls in a vertical Box (VBox) container. A VBox container arranges its controls vertically.

Containers and controls define the application’s user interface. In an MVC design pattern, those
pieces of the application model represent the view. The model is represented by the data model.
Flex data models let you separate your application’s data and business logic from the user
interface.

You define your data models using MXML or ActionScript as part of a Flex application. The
following figure shows a form created in Flex that uses a data model:

Data binding is the process of tying the data in one object to another object. The data model
supports bidirectional data binding for writing data from Flex controls to the data model, or for
reading data into controls from the model. You can also bind server data to a data model or
directly to Flex controls. For example, you can bind the results returned from a web service to the
data model, and then have that data propagate to your form controls.

The data model supports automatic data validation. This means that you can use the Flex
ZipCode validator to make sure that the value in a model field is a valid ZIP code. If the data is
invalid, you can display a message to the user so that the user can correct the error.

Box container with horizontal layout

Box container with vertical layout

Server

HTTP/SOAP

Data model
Developing applications 19

Typical application development steps

You typically develop a Flex application using the following steps:

1. Within a text editor or integrated development environment (IDE), such as Macromedia Brady,
Eclipse, or IntelliJ, insert the MXML root tags into an MXML file.

2. Add one or more containers.

3. Add controls to a container, such as input fields, buttons, and output fields.

4. Define a data model.

5. Add a web service, HTTP service, or request to a remote Java object.

6. Add validation to input data.

7. Add a script to extend a component.

The first three steps in this procedure are described in this chapter. The remaining steps are
described in subsequent chapters in this book.

About the MXML application structure

MXML is an XML-based language for defining a Flex application. You write MXML applications
in your text editor or IDE, and save them on your application server.

MXML tags map directly to ActionScript objects. Every MXML tag attribute corresponds to a
property of the ActionScript object, a style applied to the object, or an event handler for the
object.

The following example is an MXML application that copies text from a TextInput control to a
TextArea control:
<?xml version="1.0"?>
<!-- ?xml tag must start in line 1 column 1 -->

<!-- MXML root element tag -->
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<!-- Flex controls exist in a container. Define a Panel container. -->
<mx:Panel title="My Application">

<!-- TextInput control for user input. -->
<mx:TextInput id="myInput" width="150" text="" />

<!-- Button control that triggers the copy. -->
<mx:Button id="myButton" label="Copy Text"

click="myText.text=myInput.text" />

<!-- Output TextArea control. -->
<mx:TextArea id="myText" text="" width="150" height="20" />

</mx:Panel>
</mx:Application>

The first line of this application specifies the XML document type declaration and must start in
line 1, column 1 of the MXML file.
20 Chapter 1: Introducing Flex

The second line begins with the <mx:Application> tag, the root element of a Flex application.
This tag includes the Flex namespace declaration. The content between the beginning and end
<mx:Application> tags defines the Flex application.

When you run this application, enter text into the TextInput control, then select the Button
control to copy the text to the TextArea control.

Your application can consist of multiple MXML files. Using multiple MXML files promotes code
reuse, simplifies the process of building a complex application, and makes it easier for more than
one developer to contribute to a project.

Using ActionScript

MXML is the primary language for defining the structure of a Flex application. However, Flex
also supports ActionScript. ActionScript follows the ECMA-262 Standard Edition 4 (the
specification written by the European Computer Manufacturers Association) unless otherwise
noted. For more information on ActionScript, see Chapter 3, “Using ActionScript,” on page 45.

You can use ActionScript for the following purposes:

Handling events The Flex user interface is event-driven. For example, when a user selects a
Button control, the Button generates an event. You handle events by defining functions in
ActionScript. Your event handler could open a window, play a SWF file, or perform whatever
action is necessary for your application.

Handling errors You handle runtime errors in ActionScript. You can detect data validation
errors and signal the error to the user, resubmit a request to the server, or perform some other
actions based on your application.

Binding data objects to a Flex control within an MXML statement You can use data binding
to populate a data model from a Flex control, or populate a control from a data model. The
following MXML statement binds the results returned by the GetWeather() operation for the
web service MyWeatherService to a TextArea control:
<mx:TextArea text="{MyWeatherService.GetWeather.result.CityShortName}"/>

For more information on web services, see Chapter 32, “Using Data Services,” on page 655.

Defining custom methods or properties used in your application The following example
defines a duplicate() method in ActionScript. Any component in the application can call this
method. In this example, the CheckBox control uses the method as an event handler.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Script>
<![CDATA[

function duplicate()
{ ... }

]]>
</mx:Script>

<mx:Form id="billingAddress" width="300" height="100" >
<mx:FormItem >
Developing applications 21

<mx:CheckBox label="Shipping Addr" click="duplicate()" />
</mx:FormItem>

...
</mx:Application>

Defining custom components You can derive custom components from the Flex component
class hierarchy to create components specific to your application requirements. For more
information, see Chapter 14, “Building an Application with Multiple MXML Files,” on
page 383, Chapter 17, “Creating ActionScript Components,” on page 437, and Chapter 41,
“Creating Advanced Components in Flash MX 2004,” on page 857.

Features of Flex

The following table lists details about the Flex feature set. Subsequent chapters in this book
describes these features in detail.

Feature Description Details

Containers Defines a region of the
Flash Player drawing
surface and controls the
layout for everything in
the container, including
other containers and
controls.

Accordion
Box
Canvas
ControlBar
DividedBox
Form
Grid

Link Bar
Panel
TabBar
TabNavigator
Tile
TitleWindow
ViewStack

Controls Form-based controls
that handle user
interactions and display
data that can be directly
manipulated by the user.

Alert
Button
CheckBox
ComboBox
DataGrid
DateChooser
DateField
HRule
HSlider
HScrollBar
Image
Label
Link
List
Loader
MediaController
MediaDisplay

MediaPlayback
Menu
MenuBar
NumericStepper
ProgressBar
RadioButton
ScrollBars
SimpleButton
Spacer
Text
TextArea
TextInput
ToolTip
Tree
VRule
VSlider
VScrollBar

Data modeling Defines the
representation of
application data on the
client.

• Data model for storing application data .
• Data binding for unidirectional or bidirectional binding.

to UI controls, and predefined and custom data
formatters.

• Data validation to validate data model.
22 Chapter 1: Introducing Flex

Data
communication
services

Connects to server data
using a set of
communications
services.

• Web services for SOAP messages transmitted over
HTTP. Supports both RPC and document operations,
and concurrent web service requests.

• HTTP service for accessing XML over HTTP and
HTTPS

• Remote Java objects let you call methods on local or
remote objects (Java objects, JavaBeans, EJBs, JNDI
objects) using SOAP or AMF protocols.

Behaviors Enhances the user
experience through
animation, motion,
sound, and effects.

A behavior is a trigger, typically a user action, paired with
an effect:
• Effects include: Fade, Move, Resize, WipeLeft,

WipeRight, WipeUp, WipeDown, Pause.
• Triggers include: show, hide, move, resize,

mouseOver, mouseOut, mouseUp, mouseDown,
focusIn, focusOut.

Event model Occurrences that require
a response from a Flex
application. User events
include a mouse click or
a key press. System
events include
application initialization.

dragBegin
dragComplete
dragDrop
dragEnter
dragExit
focusIn
focusOut
initialize

keyDown
keyUpresize
mouseDown
mouseUp
move
show

and more

Style sheets Standard mechanism for
declaring styles.

Used for controlling color, font, sizing, and other
attributes of Flex components.

Managers Provides support for
high-level application
tasks.

• Drag and Drop Manager lets you move data from one
place in an application to another.

• Cursor Manager lets you control the cursor image
within your Flex application.

• History Manager lets users navigate through a Flex
application using the web browser’s Back and
Forward navigation commands.

• ToolTipManager displays hints when the user moves
the mouse over a Flex control.

Development
tools

Used to develop Flex
applications.

Debugger
ActionScript Profiler

Brady IDE

Deployment
tools

Used to deploy your Flex
applications.

Player detection
Content caching

Deferred instantiation

Feature Description Details
Developing applications 23

Where to next

This book contains detailed information about Flex and about developing Flex applications,
including the following:

• For information on MXML and ActionScript, see Chapter 2, “Using MXML,” on page 25 and
Chapter 3, “Using ActionScript,” on page 45.

• For information on using Flex components, see Chapter 5, “Using Flex Components,” on
page 87.

• For information on developing custom components, see Chapter 14, “Building an Application
with Multiple MXML Files,” on page 383, and Chapter 17, “Creating ActionScript
Components,” on page 437.

• For more information on the Flex data model, see Chapter 28, “Managing Data in Flex,” on
page 593.

• For information on debugging, see Chapter 33, “Debugging Flex Applications,” on page 705.
24 Chapter 1: Introducing Flex

CHAPTER 2
Using MXML
This chapter describes MXML, the XML language for writing Macromedia Flex applications.
MXML is an XML language that you use to lay out user-interface components. You also use
MXML to declaratively define nonvisual aspects of an application, such as access to server-side
data sources and data bindings between user-interface components and server-side data sources.

Contents

About MXML . 25

The relationship between MXML and ActionScript classes . 37

How MXML relates to standards . 43

About MXML

You use two languages to write Flex applications: MXML and ActionScript. MXML is an XML
markup language that you use to lay out user-interface components. You also use MXML to
declaratively define nonvisual aspects of an application, such as access to data sources on the
server and data bindings between user-interface components and data sources on the server.
ActionScript is an object-oriented programming language, based on the ECMAScript Edition 4
proposal, which you use to write programmatic logic for responding to both user-initiated and
system-initiated events at runtime.

Like HTML, MXML provides tags that define user interfaces. MXML will seem very familiar if
you have worked with HTML. However, MXML is more structured than HTML, and it provides
a much richer tag set. For example, MXML includes tags for visual components such as data
grids, trees, tab navigators, accordions, and menus, as well as nonvisual components that provide
web service connections, data binding, and animation effects. You can also extend MXML with
custom components that you reference as MXML tags.

One of the biggest differences between MXML and HTML is that MXML-defined applications
are compiled into SWF files and rendered by Macromedia Flash Player, providing a richer and
more dynamic user interface than page-based HTML applications do.

MXML does not use concepts specific to Flash, such as the timeline. However, you can use the
Flash authoring environment to create or modify components for use in Flex.
25

You can write an MXML application in a single file or in multiple files. MXML supports custom
components written in MXML files, ActionScript files, and files created using the Flash MX 2004
authoring environment. Some MXML tags, such as the <mx:Script> tag, have a property that
takes a URL of an external file as a value. For example, you can use the source property in an
<mx:Script> tag to reference an external ActionScript file instead of typing ActionScript directly
in the body of the <mx:Script> tag.

Note: You specify a script in the source property of an <mx:Script> tag. You do not specify
ActionScript classes in the source property. For information on using ActionScript classes, see
Chapter 17, “Creating ActionScript Components,” on page 437.

MXML supports the following types of URLs:

• Absolute; for example:
<mx:Style source="http://www.somesite.com/mystyles.css">

• A path used at runtime that is relative to the context root of the Java web application in which
a Flex application is running; for example:
<mx:HTTPService url="@ContextRoot()/directory/myfile.xml"/>

• A path used at compile-time that is relative to the context root of the Java web application in
which a Flex application is running; for example:
<mx:Script source="/myscript.as"/>

• Relative to the current file location; for example:
<mx:Script source="../myscript.as"/>

Writing a simple application

Because MXML files are ordinary XML files, you have a wide choice of development
environments. You can write MXML code in a simple text editor, a dedicated XML editor, or an
integrated development environment (IDE) that supports text editing.

Note: MXML filenames must end in a lowercase .mxml file extension.

The following example shows a simple “Hello World” application that contains just an
<mx:Application> tag and one child tag, the <mx:Label> tag. The <mx:Application> tag is
always the root tag of a Flex application. The <mx:Label> tag represents a Label control, a very
simple user interface component that displays text.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Panel title="My Application" marginTop="10" marginBottom="10"
marginLeft="10" marginRight="10" >

<mx:Label text="Hello World!" color="#6601D7" fontSize="24" />

</mx:Panel>
</mx:Application>
26 Chapter 2: Using MXML

The first line of the document specifies an optional declaration of the XML version. It is good
practice to include encoding information that specifies how the MXML file is encoded. Many
editors let you select from a range of file encoding options. On North American operating
systems, iso-8859-1 is the dominant encoding format, and most programs use that format by
default. You can use the UTF-8 encoding format to ensure maximum platform compatibility.
UTF-8 provides a unique number for every character in a file, and it is platform-, program-, and
language-independent. If you specify an encoding format, it must match the file encoding you
use. The following example shows an XML declaration tag that specifies the UTF-8 encoding
format:
<?xml version="1.0" encoding="utf-8"?>

To deploy the application, you copy the MXML file to a web application directory. The first time
a user requests the MXML file URL in a web browser, the server compiles the MXML code into a
SWF file. The server then sends the SWF file to the web browser where it is rendered in Flash
Player. Unless the MXML file changes, the SWF file is not recompiled on subsequent requests.

When the Flex compiler autogenerates the HTML file that contains this application, it uses the
height and width properties of the <mx:Application> tag to determine height and width
properties of the <object> and <embed> tags. The <object> and <embed> tags determine the
size of the Flash drawing surface.

The following figure shows the “Hello World” application rendered in a web browser window:

In addition to being the root tag of a Flex application, the <mx:Application> tag represents an
Application container. A container is a user-interface component that contains other components
and has built-in layout rules for positioning its child components. By default, an Application
container lays out its children vertically from top to bottom. You can nest other types of
containers inside an Application container to position user-interface components according to
other rules. For more information, see Chapter 5, “Using Flex Components,” on page 87.

The properties of an MXML tag, such as the text, color, and fontSize properties of the
<mx:Label> tag, let you declaratively configure the initial state of the component. You can use
ActionScript code in an <mx:Script> tag to change the state of a component at runtime. For
more information, see Chapter 15, “Working with ActionScript in Flex,” on page 393.
About MXML 27

Laying out a user interface

MXML provides a comprehensive set of components for laying out the user interface of an
application. The standard set of components includes simple form controls, such as buttons and
text fields, as well as components for displaying structured data, such as tree controls, list boxes,
and combo boxes. MXML also provides container components for layout and navigation.
Examples of layout containers include the HBox container for laying out child components
horizontally, the VBox container for laying out child components vertically, and the Grid
container for laying out child components in rows and columns. Examples of navigator
containers include the TabNavigator container for creating tabbed panels, the Accordion
navigator container for creating collapsible panels, and the ViewStack navigator container for
laying out panels on top of each other.

The following example shows an application that contains a List control on the left side of the
user interface and a TabNavigator container on the right side:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Panel title="My Application" marginTop="10" marginBottom="10"
marginLeft="10" marginRight="10" >
<mx:HBox>

<!-- List with three items -->
<mx:List>

<mx:dataProvider>
<mx:Array>

<mx:String>Item 1</mx:String>
<mx:String>Item 2</mx:String>
<mx:String>Item 3</mx:String>

</mx:Array>
</mx:dataProvider>

</mx:List>

<!-- First pane of TabNavigator -->
<mx:TabNavigator borderStyle="solid">

<mx:VBox label="Pane1" width="300" height="150" >
<mx:TextArea text="Hello World" />
<mx:Button label="Submit" />

</mx:VBox>

<!-- Second pane of TabNavigator -->
<mx:VBox label="Pane2" width="300" height="150" >
<!-- Stock view goes here -->
</mx:VBox>

</mx:TabNavigator>

</mx:HBox>

</mx:Panel>
</mx:Application>
28 Chapter 2: Using MXML

The List control and TabNavigator container are laid out side by side because they are in an HBox
container. The controls in the TabNavigator container are laid out from top to bottom because
they are in a VBox container.

The following figure shows the application rendered in a web browser window:

For more information about laying out user-interface components, see Chapter 5, “Using Flex
Components,” on page 87.

Using MXML to trigger runtime code

Flex applications are driven by runtime events. You can specify event handlers, which consist of
code for handling runtime events, in the event properties of MXML tags. For example, the
<mx:Button> tag has a click event property in which you can specify ActionScript code that
executes when the Button control is clicked at runtime. You can specify simple event handler code
directly in event properties. To use more complex code, you can specify the name of an
ActionScript function defined in an <mx:Script> tag.

The following example shows an application that contains a Button control and a TextArea
control. The click property of the Button control contains a simple event handler that sets the
value of the TextArea control’s text property to the text Hello World.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Panel title="My Application" marginTop="10" marginBottom="10"
marginLeft="10" marginRight="10" >

<mx:TextArea id="textarea1"/>
<mx:Button label="Submit" click="textarea1.text='Hello World';"/>

</mx:Panel>
</mx:Application>

The following figure shows the application rendered in a web browser window:
About MXML 29

The following example shows the code for a version of the application in which the event handler
is contained in an ActionScript function in an <mx:Script> tag:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script>
<![CDATA[

function hello(){
textarea1.text="Hello World";

}
]]>

</mx:Script>

<mx:Panel title="My Application" marginTop="10" marginBottom="10"
marginLeft="10" marginRight="10" >

<mx:TextArea id="textarea1"/>
<mx:Button label="Submit" click="hello();"/>

</mx:Panel>
</mx:Application>

For more information about using ActionScript with MXML, see Chapter 15, “Working with
ActionScript in Flex,” on page 393.

Binding data between components

Flex provides simple syntax for binding the properties of components to each other. In the
following example, the value inside the curly braces ({ }) binds the text property of a TextArea
control to the text property of a TextInput control. When the application initializes, both controls
display the text Hello. When the user clicks the Button control, both controls display the text
Goodbye.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Panel title="My Application" marginTop="10" marginBottom="10"
marginLeft="10" marginRight="10" >

<mx:TextInput id="textinput1" text="Hello"/>
<mx:TextArea id="textarea1" text="{textinput1.text}"/>
<mx:Button label="Submit" click="textinput1.text='Goodbye';"/>

</mx:Panel>
</mx:Application>
30 Chapter 2: Using MXML

The following figure shows the application rendered in a web browser window after the user clicks
the Submit button:

As an alternative to the curly braces ({ }) syntax, you can use the <mx:Binding> tag, in which you
specify the source and destination of a binding. For more information about data binding, see
Chapter 29, “Binding and Storing Data in Flex,” on page 601.

Using data services

Flex is designed to interact with several types of services that provide access to local and remote
server-side logic. For example, a Flex application can connect to a web service that uses the Simple
Object Access Protocol (SOAP), a Java object residing on the same application server as Flex, or
an HTTP URL that returns XML. The MXML components that provide data access are called
data service components. MXML includes the following types of data service components:

• WebService provides access to SOAP-based web services
• HTTPService provides access to HTTP URLs that return data
• RemoteObject provides access to Java objects

The following example shows an application that calls a web service that provides weather
information, and displays the current temperature for a given ZIP code. The application binds
the ZIP code that a user enters in a TextInput control to a web service input parameter. It binds
the current temperature value contained in the web service result to a TextArea control.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<!-- Define the web service connection
(the specified WSDL URL is not functional). -->

<mx:WebService id="WeatherService"wsdl="/ws/WeatherService?wsdl">

<!-- Bind the value of the ZIP code entered in the TextInput control
to the ZipCode parameter of the GetWeather operation. -->

<mx:operation name="GetWeather">
<mx:request>

<ZipCode>{zip.text}</ZipCode>
</mx:request>

</mx:operation>

</mx:WebService>
<mx:Panel title="My Application" marginTop="10" marginBottom="10"

marginLeft="10" marginRight="10" >

<!-- Provide a ZIP code in a TextInput control. -->
About MXML 31

<mx:TextInput id="zip" width="200" text="Zipcode please?"/>

<!-- Call the web service operation with a Button click. -->
<mx:Button width="60" label="Get Weather"

click='WeatherService.GetWeather.send()'/>

<!-- Display the location for the specified ZIP code. -->
<mx:Label text="Location:"/>
<mx:TextArea text="{WeatherService.GetWeather.result.Location}"/>

<!-- Display the current temperature for the specified ZIP code. -->
<mx:Label text="Temperature:"/>
<mx:TextArea text="{WeatherService.GetWeather.result.CurrentTemp}"/>

</mx:Panel>
</mx:Application>

The following figure shows the application rendered in a web browser window:

For more information about using data services, see Chapter 28, “Managing Data in Flex,” on
page 593.

Storing and validating application-specific data

You can use a data model to store application-specific data. A data model is an ActionScript object
that provides properties for storing data, and optionally contains methods for additional
functionality. You can declare a simple data model that does not require methods in an
<mx:Model> tag or <mx:XML> tag. You can use validator components to validate data stored in a
data model. Flex includes a set of standard validator components. You can also create your own.

The following example shows an application that contains TextInput controls for entering
personal contact information; a data model, represented by the <mx:Model> tag, for storing the
contact information; and validator components for validating that the expected type of data is
entered in the TextInput fields. Validation is triggered automatically when data binding occurs. If
validation fails, the user receives immediate visual feedback.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Panel title="My Application" marginTop="10" marginBottom="10"
marginLeft="10" marginRight="10" >
32 Chapter 2: Using MXML

<!-- The user enters contact information in TextInput controls. -->
<mx:TextInput id="homePhoneInput"

text="This isn't a valid phone number."/>
<mx:TextInput id="cellPhoneInput" text="(999)999-999"/>
<mx:TextInput id="emailInput" text="me@somewhere.net"/>

</mx:Panel>

<!-- A data model called "contact" stores contact information.
The text property of each TextInput control shown above
is passed to a field of the data model. -->

<mx:Model id="contact">
 <homePhone>{homePhoneInput.text}</homePhone>
 <cellPhone>{cellPhoneInput.text}</cellPhone>
 <email>{emailInput.text}</email>

</mx:Model>

<!-- Validator components validate data stored in the
fields of the contact data model. -->

<mx:PhoneNumberValidator field="contact.homePhone"/>
<mx:PhoneNumberValidator field="contact.cellPhone"/>
<mx:EmailValidator field="contact.email"/>

</mx:Application>

The following figure shows the application rendered in a web browser window:

For more information about using data models, see Chapter 28, “Managing Data in Flex,” on
page 593.

Formatting application-specific data

Formatter components are ActionScript components that perform a one-way conversion of raw
data to a formatted string. They are triggered just before data is displayed in a text field. Flex
includes a set of standard formatters. You can also create your own formatters. The following
example shows an application that uses the standard ZipCodeFormatter component to format the
value of a variable:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<!-- Declare a ZipCodeFormatter and define parameters. -->
<mx:ZipCodeFormatter id="ZipCodeDisplay" formatString="#####-####" />

<mx:Script>
<![CDATA[

var storedZipCode=123456789;
]]>
About MXML 33

</mx:Script>
<mx:Panel title="My Application" marginTop="10" marginBottom="10"

marginLeft="10" marginRight="10" >

<!-- Trigger the formatter while populating a string with data -->
<mx:TextInput text="{ZipCodeDisplay.format(storedZipCode)}" />

</mx:Panel>
</mx:Application>

The following figure shows the application rendered in a web browser window:

For more information about formatter components, see Chapter 31, “Formatting Data,” on
page 639.

Using Cascading Style Sheets (CSS)

You can use style sheets based on the Cascading Style Sheets (CSS) standard to declare styles to
Flex components. The <mx:Style> tag contains inline style definitions or a reference to an
external file that contains style definitions.

The <mx:Style> tag must be an immediate child of the root tag of the MXML file. You can
apply styles to an individual component using a class selector, or to all components of a certain
type using a type selector.

The following example defines a class selector and a type selector in the <mx:Style> tag. Both the
class selector and the type selector are applied to the Button control:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Style>
.myclass { color: Red } /* class selector */
Button { font-size: 18pt} /* type selector */

</mx:Style>

<mx:Panel title="My Application" marginTop="10" marginBottom="10"
marginLeft="10" marginRight="10" >

<mx:Button styleName="myclass" label="This is red 18 point text."/>

</mx:Panel>
</mx:Application>

The following figure shows the application rendered in a web browser window:
34 Chapter 2: Using MXML

For more information about using Cascading Style Sheets, see Chapter 19, “Using Styles, Fonts,
and Themes,” on page 455.

Using effects

An effect is a change to a component that occurs over a brief period of time. Examples of effects
are fading, resizing, and moving a component. An effect is combined with a trigger, such as a
mouse click on a component, a component getting focus, or a component becoming visible, to
form a behavior. In MXML, you apply effects as properties of a control or container. Flex provides
a set of built-in effects with default properties.

The following example shows an application that contains a Button control with its
mouseOverEffect property set to the standard Zoom effect. The Zoom effect executes when the
user moves the mouse pointer over the Button control.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Panel title="My Application" marginTop="10" marginBottom="10"
marginLeft="10" marginRight="10" >

<mx:Button id="myButton" mouseOverEffect="Zoom" />

</mx:Panel>
</mx:Application>

You can use the <mx:Effect> tag to customize a standard effect or combine effects into a
composite effect. For more information about effects, see Chapter 20, “Using Behaviors,” on
page 497.

Using MXML components

MXML components are MXML files that you use as custom tags in other MXML files. They
encapsulate and extend the functionality of existing Flex components. Just like MXML
application files, MXML component files can contain a mix of MXML tags and ActionScript
code. The name of the MXML file becomes the class name with which you refer to the
component in another MXML file.

Note: You cannot access MXML component URLs directly in a web browser.

The following example shows a custom ComboBox control that is prepopulated with list items:
<?xml version="1.0"?>
<!-- MyComboBox.mxml -->

<mx:VBox xmlns:mx="http://www.macromedia.com/2003/mxml">
 <mx:ComboBox >

<mx:dataProvider>
 <mx:Array>
 <mx:String>Dogs</mx:String>
 <mx:String>Cats</mx:String>

<mx:String>Mice</mx:String>
 </mx:Array>

</mx:dataProvider>
</mx:ComboBox>
About MXML 35

</mx:VBox>

The following example shows an application that uses the MyComboBox component as a custom
tag. The value * assigns the local namespace to the current directory.
<?xml version="1.0"?>
<!-- MyApplication.mxml -->
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

xmlns:local="*">
<mx:Panel title="My Application" marginTop="10" marginBottom="10"

marginLeft="10" marginRight="10" >

<local:MyComboBox/>

</mx:Panel>
</mx:Application>

The following figure shows the application rendered in a web browser window:

For more information about MXML components, see Chapter 14, “Building an Application with
Multiple MXML Files,” on page 383.

You can also define custom Flex components in ActionScript and the Flash MX 2004 authoring
tool. For more information, see Chapter 17, “Creating ActionScript Components,” on page 437
and Chapter 41, “Creating Advanced Components in Flash MX 2004,” on page 857.

Using XML namespaces

The xmlns property in an MXML tag specifies an XML namespace. XML namespaces let you
refer to more than one set of XML tags in the same XML document. In an XML document, tags
are associated with a namespace. To use the default namespace, specify no prefix. To use
additional tags, specify a tag prefix and a namespace. For example, the xmlns property in the
following <mx:Application> tag indicates that tags in the MXML namespace use the prefix mx:.
The Universal Resource Identifier (URI) for the MXML namespace is
http://www.macromedia.com/2003/mxml.
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

XML namespaces give you the ability to use custom tags that are not in the MXML namespace.
The following example shows an application that contains a custom tag called CustomBox. The
namespace value containers.boxes.* indicates that an MXML component called CustomBox
is in the containers/boxes directory.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

xmlns:my="containers.boxes.*">
36 Chapter 2: Using MXML

<mx:Panel title="My Application" marginTop="10" marginBottom="10"
marginLeft="10" marginRight="10" >

<my:CustomBox/>

</mx:Panel>
</mx:Application>

The containers/boxes directory can be a subdirectory of the directory containing the application
file, or it can be a subdirectory of one of the ActionScript classpath directories assigned in the
flex-config.xml file. If copies of the same file exist in both places, Flex uses the file in the
application file directory. The prefix name is arbitrary, but it must be used as declared.

When using a component contained in a SWC file, the package name and the namespace must
match, even though the SWC file is in the same directory as the MXML file that uses it. For more
information about SWC components, see Chapter 39, “Working with Flash MX 2004,” on
page 817.

The relationship between MXML and ActionScript classes

Most MXML tags correspond to ActionScript 2.0 classes or properties of classes. Flex parses
MXML tags and compiles a SWF file that contains the corresponding ActionScript objects.

ActionScript 2.0 is a new version of ActionScript that uses syntax based on the ECMAScript
Edition 4 proposal. ActionScript 2.0 includes the following features:

• Formal class definition syntax
• Formal packages structure
• Typing of variables, parameters, and return values (compile-time only)
• Implicit getters and setters that use the get and set keywords
• Inheritance
• Public and private members
• Static members
• Cast operator

For more information about ActionScript 2.0, see Chapter 3, “Using ActionScript,” on page 45.

Naming MXML files

MXML filenames must adhere to the following naming conventions:

• Filenames must be valid ActionScript identifiers, which means they must start with a letter or
underscore character (_), and they can only contain letters and numbers and underscore
characters after that.

• Filenames must not be the same as ActionScript class names, component id values, or the
word application. Do not use filenames that match the names of MXML tags that are in the mx
namespace.

• Filenames must end with a lowercase .mxml file extension.
The relationship between MXML and ActionScript classes 37

Using tags that represent ActionScript classes

An MXML tag that corresponds to an ActionScript class uses the same naming conventions as the
ActionScript class. Class names begin with a capital letter, and capital letters separate the words in
class names. For example, when a tag corresponds to an ActionScript class, its properties
correspond to the properties and events of that class.

Setting component properties

In MXML, a component property uses the same naming conventions as the corresponding
ActionScript class. A property names begins with a lower case letter, and capital letters separate
words in the property names. You can set the values of properties using tag attributes or child tags.
Macromedia recommends that you assign scalar values and simple binding expressions as
attributes and that you assign complex types as child tags. Each of a component’s properties is one
of the following types:

• Scalar properties, such as a number or string
• Array of scalar values, such as an array of numbers or strings
• ActionScript object
• ActionScript function
• Array of ActionScript objects
• XML data

Scalar properties

You usually specify the value of a scalar property as a property of a component tag, as the
following example shows:
<Label width="50" height="25" text="Hello World"/>

Note: A tag property cannot consist of the @ character followed by one or more characters.

Arrays of scalar values

When a class has a property that takes an Array as its value, you can represent the property in
MXML using child tags. The component in the following example has a dataProvider property
that contains an Array of numbers:
<mx:List>

<mx:dataProvider>
<mx:Array>

<mx:Number>94062</mx:Number>
<mx:Number>14850</mx:Number>
<mx:Number>53402</mx:Number>

</mx:Array>
</mx:dataProvider>

</mx:List>
38 Chapter 2: Using MXML

Objects

When a component has a property that takes an object as its value, you can represent the property
in MXML using child tags, as the following example shows:
<mynamespace:MyComponent>

<mynamespace:nameOfProperty>
<objectType prop1="val1" prop2="val2"/>

</mynamespace:nameOfProperty>
</mynamespace:MyComponent>

The following example shows an ActionScript class that defines an Address object. This object is
used as a property of the PurchaseOrder component in the next example.
class example.Address
{
 var name : String;
 var street : String;
 var city: String;
 var state: String;
 var zip: Number;
}

The following example shows an ActionScript class that defines a PurchaseOrder component that
has a property type of Address:
import example.Address;

class example.PurchaseOrder {
 public var shippingAddress : Address;
 public var quantity : Number;
 ...
}

In MXML, you define the PurchaseOrder component as the following example shows:
<e:PurchaseOrder quantity="3" xmlns:e="example">
 <e:shippingAddress>
 <e:Address name="Fred" street="123 Elm St."/>
 </e:shippingAddress>
</e:PurchaseOrder>

If the value of the shippingAddress property is a subclass of Address (such as DomesticAddress),
you can declare the property value as the following example shows:
<e:PurchaseOrder quantity="3" xmlns:e="example">

<e:shippingAddress>
<e:DomesticAddress name="Fred" street="123 Elm St."/>

</e:shippingAddress>
</e:PurchaseOrder>

If the property is explicitly typed as Object like the value property in the following example, you
can specify an anonymous object using the <mx:Object> tag.
class ObjectHolder {
 var value : Object
}

The relationship between MXML and ActionScript classes 39

The following example shows how you specify an anonymous object as the value of the value
property:
<mynamespace:ObjectHolder>

<mynamespace:value>
<mx:Object foo='bar' />

</mynamespace:value>
</mynamespace:ObjectHolder>

Arrays of objects

When a component has a property that takes an Array of objects as its value, you can represent
the property in MXML using child tags, as the following example shows:
<mynamespace:MyComponent>

<mynamespace:nameOfProperty>
<mx:Array>

<objectType prop1="val1" prop2="val2"/>
<objectType prop1="val1" prop2="val2"/>
<objectType prop1="val1" prop2="val2"/>

</mx:Array>
</mynamespace:nameOfProperty>

</mynamespace:MyComponent>

The component in the following example contains an Array of ListItem objects. Each ListItem
object has properties named label and data.
<mynamespace:MyComponent>

<mynamespace:dataProvider>
<mx:Array>

<mynamespace:ListItem label="One" data="1"/>
<mynamespace:ListItem label="Two" data="2"/>

</mx:Array>
</mynamespace:dataProvider>

</mynamespace:MyComponent>

The following example shows how you specify an anonymous object as the value of the
dataProvider property:
<mynamespace:MyComponent>

<mynamespace:dataProvider>
<mx:Array>

<mx:Object label="One" data="1" />
<mx:Object label="Two" data="2" />

</mx:Array>
</mynamespace:dataProvider>

</mynamespace:MyComponent>

Properties that contain XML data

If a component contains a property that takes XML data, the value of the property is an XML
fragment to which you can apply a namespace. In the following example, the value property of
the MyComponent object is XML data:
<mynamespace:MyComponent>

<mynamespace:value xmlns:a="http://www.example.com/myschema">
40 Chapter 2: Using MXML

<mx:XML>
<a:purchaseorder>

<a:billingaddress>
...
</a:billingaddress>
...

</a:purchaseorder>
</mx:XML>

 </mynamespace:value>
</mynamespace:MyComponent>

Style properties

A style property of an MXML tag differs from other properties because it corresponds to an
ActionScript style property that you set in ActionScript using the setStyle(stylename,
value) method rather than object.property=value notation. The text and fontFamily
properties in the following example:
<mx:TextArea id="myText" text="hello world" fontFamily="Tahoma"/>

are equivalent to the following ActionScript code:
// text property:
myText.text= "hello world";

// font style property:
myText.setStyle("fontFamily", "Tahoma");

Compiler tags

Compiler tags are tags that do not directly correspond to ActionScript objects or properties. The
names of the following compiler tags have just the first letter capitalized:
• <mx:Binding>
• <mx:Effect>
• <mx:Model>
• <mx:Script>
• <mx:Style>
• <mx:Metadata>

The following compiler tags are in all lowercase letters:
• <mx:operation>
• <mx:request>
• <mx:method>
• <mx:arguments>

Identifier properties on MXML tags

With a few exceptions (see “MXML tag syntax” on page 42), a tag that corresponds to a
component has an optional id property, which must be unique within the MXML file. If a tag
has an id property, you can reference the corresponding object in ActionScript.
The relationship between MXML and ActionScript classes 41

In the following example, results from a web service request are traced in the writeToLog
function:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">
...

<mx:VBox>
<mx:TextInput id="myText" text="Hello World!" />
<mx:Button id="mybutton" label="Get Weather" click="writeToLog();"/>

</mx:VBox>
<mx:Script>

<![CDATA[
function writeToLog()
{

trace(myText.text);
}

]]>
</mx:Script>

</mx:Application>

Because each id value in an MXML file is unique, all objects in a file are part of the same flat
namespace. You do not qualify an object by referencing its parent with dot notation, as in
myVBox.myText.text.

MXML tag syntax

MXML has the following syntax requirements:

• The id property is not required on any tag.
• The id property is not allowed on the root tag.
• Boolean properties only take true and false values.
• The <mx:Binding> tag requires both source and destination properties.
• The <mx:Binding> tag cannot contain an id property.
• The <mx:Validator> tag and its subclasses require a field property.
• The <mx:Validator> tag cannot contain an id property.
• The <mx:WebService> tag requires either a wsdl value or serviceName value, and does not

allow both.
• The <mx:RemoteObject> tag requires either a source value or a named value, and does not

allow both.
• The <mx:HTTPService> tag requires either a url value or a serviceName value, and does not

allow both.
• The <mx:operation> tag requires a name value, and does not allow duplicate name entries.
• The <mx:operation> tag cannot contain an id property.
• The <mx:method> tag requires a name value and does not allow duplicate name entries.
• The <mx:method> tag cannot contain an id property.
42 Chapter 2: Using MXML

How MXML relates to standards

MXML uses standards extensively. This section describes how MXML relates to standards for
the following:

• XML
• Event models
• Web services
• Java
• HTTP
• Graphics
• Cascading Style Sheets

XML standards

You write Flex applications in XML documents. XML documents use tags to define pieces of
structured information and the relationships between them. In MXML, the <mx:Application>
tag defines the root of an application. You define the parts of the application in child tags of the
<mx:Application> tag. Examples of MXML tags include container tags, such as <mx:VBox>,
which define rectangular regions of the user interface, and control tags, such as <mx:TextInput>,
which define typical user interface controls.

Event model standards

The Flex event model is a subset of Document Object Model (DOM) Level 3 Events, a World
Wide Web Consortium (W3C) working draft. DOM Level 3 defines an event system that allows
platform- and language-neutral registration of event handlers, describes event flow through a tree
structure, and provides basic contextual information for each event. MXML provides tag
properties that let you specify ActionScript code to handle events. For example, the click event
handler specified in the following example sends a web service request:
<mx:Button click="mywebservice.myOperation.send()”/>

Web services standards

Flex provides MXML tags for interacting with web services that define their interfaces in a Web
Services Description Language (WSDL) document available as a URL. WSDL is a standard
format for describing the messages that a web service understands, the format of its responses to
those messages, the protocols that the web service supports, and where to send messages.

Flex applications support web service requests and results that are formatted as Simple Object
Access Protocol (SOAP) messages and are transported using the Hypertext Transfer Protocol
(HTTP). SOAP provides the definition of the XML-based format that you can use for
exchanging structured and typed information between a web service client, such as a Flex
application, and a web service.
How MXML relates to standards 43

Java standards

Flex provides MXML tags for interacting with server-side Java objects, including plain old Java
objects (POJOs), JavaBeans, and Enterprise JavaBeans (EJBs).

HTTP standards

Flex provides MXML tags for making standard HTTP GET and POST requests, and working
with data returned in HTTP responses.

Graphics standards

Flex provides MXML tags for using JPEG, GIF, and PNG images in an application. Flex also
provides tags for importing Macromedia SWF files and Scalable Vector Graphics (SVG) files into
an application.

Cascading Style Sheets standards

MXML styles are defined and used according to the W3C Cascading Style Sheets (CSS) standard.
CSS provides a mechanism for declaring text styles and visual effects that you can apply to Flex
components.
44 Chapter 2: Using MXML

CHAPTER 3
Using ActionScript
Macromedia Flex developers can use ActionScript to extend the functionality of their Flex
applications. ActionScript provides flow control and object manipulation features that are not
available in strict MXML. This chapter introduces ActionScript and explains how to use
ActionScript in an MXML application.

For more information on ActionScript, see Flex ActionScript Language Reference.

Contents

About ActionScript . 45

Using ActionScript in Flex applications . 48

About ActionScript

ActionScript is the programming language for Macromedia Flash Player. ActionScript includes
built-in objects and functions, and lets you create your own objects and functions.

Note: The ActionScript programming language in Flash MX 2004 follows the ECMA-262 standard,
unless otherwise noted. The ActionScript programming language in Flash MX 2004 and Flex follows
the ECMA 4 standard proposed by the Mozilla project.

ActionScript is similar to the core JavaScript programming language. You don’t need to know
JavaScript to use ActionScript; however, if you know JavaScript, ActionScript will appear familiar
to you. The following are some of the many resources available that provide more information
about general programming concepts and the JavaScript language:

• The European Computers Manufacturers Association (ECMA) document ECMA-262 is
derived from JavaScript and serves as the international standard for the JavaScript language.

• ActionScript is based on the ECMA-262 specification, which is available from www.ecma-
international.org. ECMA-262 is also known as ECMAScript. ActionScript is primarily based
on edition 3 of this standard, which is also referred to commonly as ECMA 3 (shorthand for
ECMA-262 Edition 3).
45

http://www.ecma-international.org
http://www.ecma-international.org

• Netscape DevEdge Online has a JavaScript Developer Central site
(http://developer.netscape.com/tech/javascript/index.html) that contains documentation and
articles about ActionScript.

• Core JavaScript Guide.

For more information about using ActionScript in Flex, see Flex ActionScript Language Reference,
which is included in the Flex documentation set.

Comparing ActionScript and ECMA (JavaScript)

The following are some of the differences between ActionScript and JavaScript:

• ActionScript does not support browser-specific objects such as Document, Window,
and Anchor.

• ActionScript does not completely support all of the JavaScript built-in objects.
• ActionScript supports syntax constructs that are not permitted in JavaScript (for example, the

tellTarget and ifFrameLoaded actions and slash syntax) to support previous releases.
However, Macromedia does not recommend the use of these syntax constructs; instead, use
ActionScript elements that are like those in JavaScript (for example, with, _framesloaded,
and dot syntax).

• ActionScript does not support some JavaScript syntax constructs, such as statement labels.
• In ActionScript, the eval action can only perform variable references.
• In JavaScript, when a string is evaluated in a Boolean context and the string has a nonzero

length, the result is true; if the string doesn’t have a nonzero length, the result is false. In
ActionScript, the string is converted to a number. If the number is nonzero, the result is true;
otherwise, the result is false.

For more information about using ActionScript in Flash development, see Macromedia Flash MX
2004 ActionScript Dictionary.

About ActionScript in MXML applications

ActionScript extends the capabilities of Flex application developers. With ActionScript, you can
define event listeners and handlers, get or set component properties, handle callback functions,
and create new classes, packages, and components.

There are several ways in which you can use ActionScript in your Flex applications. These include
the following:

• Inserting ActionScript code blocks with the <mx:Script> tag. In these code blocks, you can
add new functions, handle errors and events, and perform other tasks in your application or its
supporting MXML files.

• Calling global ActionScript functions that are stored in the system_classes directory structure.
• Referencing external classes and packages in user_classes to handle more complex tasks. This

lets you take advantage of ActionScript support for object-oriented programming concepts
such as code reuse and inheritance.
46 Chapter 3: Using ActionScript

http://developer.netscape.com/tech/javascript/index.html

• Using standard Flex components. The logic of components and helper classes in the Flex
application model is based on ActionScript classes.

• Extending existing components with ActionScript classes.
• Creating new components in ActionScript.
• Creating new components in the Flash authoring environment (SWC files).

Flex ActionScript packages

Flex includes a standard set of ActionScript classes and packages that define the Flex components
and provide helper classes. These packages are in the Flex application WAR file under
flex_app_root/WEB-INF/flex/system_classes. These packages are available to all Flex applications
and do not require explicit import statements.

In addition, Flex includes a SWC file in the flex_app_root/WEB-INF/flex/frameworks directory
that provides all the necessary symbols for Flex components. A debug version of this SWC file is
located in the flex_app_root/WEB-INF/flex/frameworks_debug directory.

ActionScript compilation

The logic of your Flex application can consist of ActionScript classes, MXML files, SWF files, and
external components in the form of SWC components, MXML files, or ActionScript files. The
end result of all the input files is a SWF file that is downloaded by Flash Player and played on the
client’s machine.

You can use ActionScript in code fragments within your MXML files. The Flex compiler
transforms the main MXML file and its child files into a single ActionScript class. As a result, you
cannot define classes or use statements outside of functions in MXML files and included
ActionScript files.

You can reference imported ActionScript classes from your MXML application files, and those
classes are added to the final SWF file.

When the transformation to an ActionScript file is complete, Flex links all the ActionScript
components and includes those classes in the final SWF file.
About ActionScript 47

The following figure shows the source files used to generate a SWF file that your J2EE server
sends to the client:

Using ActionScript in Flex applications

To use ActionScript in your Flex applications, you can add script blocks using the <mx:Script>
tag or include external ActionScript files. In addition, you can import external class files or entire
packages of class files for use by your MXML application. Flex extracts the ActionScript and
creates a class file, which is linked to the final SWF file.

Note: In general, Macromedia recommends that you import ActionScript class files when possible
rather than use <mx:Script> blocks in your MXML files or include snippets of ActionScript code from
multiple files.

Including ActionScript code versus importing ActionScript classes

There is a distinct difference between including and importing in ActionScript. Including is
copying lines of code from one file into another. Importing is adding a reference to a class file or
package so that you can access objects and properties defined by external classes. Files that you
import must be found in the ActionScript classpath. Files that you include must be located
relative to the application root or an absolute path.

You use the #include directive or the <mx:Script source="filename"> tag to add
ActionScript code snippets to your Flex applications.

You use import statements in an <mx:Script> block to add ActionScript classes and packages to
your Flex applications.
48 Chapter 3: Using ActionScript

The following sections describe these methods of using external ActionScript files in your Flex
applications:

• “Including ActionScript files” on page 50
• “Importing classes and packages” on page 53

Using ActionScript blocks in MXML files

ActionScript blocks can contain ActionScript functions and variable declarations when used in
MXML applications.

Statements and expressions are only allowed if they are wrapped in a function. In addition, you
cannot define new classes or interfaces in <mx:Script> blocks. All ActionScript in the blocks is
added to the enclosing file’s class when Flex compiles the application.

When using an <mx:Script> block, you must wrap the contents in a CDATA construct. This
prevents the compiler from interpreting the contents of the script block as XML, and allows the
ActionScript to be properly generated. As a result, Macromedia recommends that you write all
your <mx:Script> open and close tags as the following example shows:
<mx:Script>
<![CDATA[
...
]]>
</mx:Script>

The script within a given <mx:Script> tag is accessible from any component in the MXML file.
The <mx:Script> tag must be located at the top level of the MXML file (within the Application
tag or other top-level component tag). You can define multiple script blocks in your MXML files,
but you should try to keep them in one location to improve readability.

The following example declares a variable and a function:
<?xml version="1.0">

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script>
<![CDATA[
var z:Number;

function doSomething() {
z = z + 1; // This must be in a function.

}
]]>

</mx:Script>

...

</mx:Application>
Using ActionScript in Flex applications 49

To make your MXML code more readable, you can also import ActionScript files rather than
insert large blocks of script. To use external ActionScript files in your MXML applications, use
the source attribute of the <mx:Script> tag or use an #include directive in the ActionScript
itself. For more information, see “Including ActionScript files” on page 50.

The following is the syntax for the <mx:Script> tag:
<mx:Script [source="ActionScript source"]>
[ActionScript code]
</mx:Script>

You can use only ActionScript in the body of an <mx:Script> tag. You can also reference external
ActionScript files using an ActionScript #include directive. For more information, see “Using
the #include directive” on page 51.

Including ActionScript files

Flex lets you point to external ActionScript files in your <mx:Script> tags. At compile-time, the
compiler copies the entire contents of the file into your MXML application. As with ActionScript
in an <mx:Script> block, ActionScript in included files must be variable declarations or in
functions. You cannot define classes in included files.

Variables and functions defined in an included ActionScript file are available to any component in
the MXML file. An included ActionScript file is not the same as an imported ActionScript class.
Flex provides access to the included file’s variables and functions, but does not add a new class,
since the MXML file itself is a class.

Included ActionScript files do not need to be in the same directory as the MXML file. However,
you should organize your ActionScript files in a logical directory structure.

Flex detects changes in ActionScript files using timestamps. If the file has changed since the last
request, Flex regenerates the application before responding to the client. If you change the
ActionScript in one of the imported ActionScript files, the next time the application is requested,
the changes appear.

There are two ways to include an external ActionScript file in your Flex application:

• The source attribute of the <mx:Script> tag. This is the preferred method for including
external ActionScript class files.

• The #include directive inside <mx:Script> blocks.

The following sections describe these two methods of including an external ActionScript file.

Using the source attribute

You use the source attribute of the <mx:Script> tag to include external ActionScript files in
your Flex applications. This provides a way to make your MXML files less cluttered and promotes
code reuse across different applications.
50 Chapter 3: Using ActionScript

The following example shows the contents of the IncludedFile.as file:
public function computeSum(a:Number, b:Number):Number {

return a + b;

}

The following example imports the contents of the IncludedFile.as file. This file is located in the
same directory as the MXML file.
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">
<mx:Script source="IncludedFile.as" />

<mx:TextInput id="ta1st" text="3"/>

<mx:TextInput id="ta2nd" text="3"/>

<mx:TextArea id="taMain"/>

<mx:Button id="b1" label="Compute Sum"
click="taMain.text=computeSum(Number(ta1st.text), Number(ta2nd.text))"/>

</mx:Application>

The source attribute of the <mx:Script> tag supports both relative and absolute paths. For more
information, see “Referring to external files” on page 52.

You cannot use the source attribute and wrap ActionScript code inside the same <mx:Script>
tag. To include a file and write ActionScript in the MXML file, use two <mx:Script> tags.

Using the #include directive

The #include directive is an ActionScript statement that copies the contents of the specified file
into your MXML file. The #include directive uses the following syntax:
#include "file_name"

The following example includes the myfunctions.as file:
<mx:Script>
<![CDATA[
#include "myfunctions.as"
...
]]>
</mx:Script>

Note: The #include directive is a special kind of ActionScript statement. Do not end the line with a
semi-colon. If you do, you will get a “Malformed #include directive” error message. In addition, you
must surround the target file with quotation marks.

You can only specify a single file for each #include directive, but you can use any number of
#include directives. You can next #include directives; files with #include directives can include
files that have #include directives.

The #include directive supports only relative paths. For more information, see “Referring to
external files” on page 52.
Using ActionScript in Flex applications 51

You can only use the #include where multiple statements are allowed. For example, the following
is not allowed:
if (expr)

#include "foo.as" // First statement is guarded by IF, but the rest are not.
...

The following is allowed:
if (expr) {

#include "foo.as" // All statements inside { } are guarded by IF.
}

The use of curly braces ({ }) allows multiple statements because you can add multiple statements
inside the braces.

Macromedia recommends against using the #include directive if you use a large number of
included ActionScript files. You should try to break the code into separate class files where
appropriate and store them in logical package structures.

Referring to external files

The source attribute of the <mx:Script> tag and the #include directive refer to files in
different ways.

The following are the valid paths to external files that are referenced in an <mx:Script> tag’s
source attribute:

• Absolute URLs, such as “http://www.macromedia.com” or “file:///C|/site_flashteam/foo.gif ”.
• Site-relative URLs, such as “/scripts/myscript.as”. A URL that begins with a slash is resolved

relative to the context root of the application. The default application root is /flex_app_root.
• Relative URLs, such as “../myscript.as”. A relative URL that does not start with a slash is

resolved relative to the file that uses it. If the tag <mx:Script
source="../IncludedFile.as"> is included in “mysite/myfiles/myapp.mxml”, then the
system searches for “mysite/IncludedFile.as”.

For an ActionScript #include directive, you can only reference relative URLs. You can specify file
locations relative to the context root (start the location with a slash) or relative to the document
root (omit the leading slash), as the following example shows:
#include "/myfiles/functions.as" // Relative to the context root. Resolves to

 // /flex_app_root/myfiles/functions.as
#include "functions.as" // Relative to the current document root (in this case,

 // in the same directory as the current document).

Flex searches the ActionScript classpath for imported classes and packages. Flex does not search the
ActionScript classpath for files that are included using the #include directive or the source
attribute of the <mx:Script> tag.
52 Chapter 3: Using ActionScript

Importing classes and packages

If you create many utility classes or include multiple ActionScript files to get at commonly used
functions, you might want to store them in a set of classes in their own package. You can import
ActionScript classes and packages using the import statement. By doing this, you do not have to
explicitly enter the fully qualified class names when accessing classes within ActionScript.

The following example imports the MyClass class in the MyPackage.Util package:
<mx:Script>

import MyPackage.Util.MyClass;
...

</mx:Script>

In your ActionScript code, instead of referring to the class with its fully qualified package name
(MyPackage.Util.MyClass), you can refer to it as MyClass, as the following example shows:
import MyPackage.Util.MyClass;
function createClass() {
tObj = new MyClass;
}

Note: All statements other than import and variable declarations must be inside functions in an
<mx:Script> tag.

You can also use the wildcard character (*) to import all the classes in a given package. For
example, the following statement imports all classes in the MyPackage.Util package:
import MyPackage.Util.*;

Flex searches the ActionScript classpath for imported files and packages.

If you import a class but do not use it in your application, the class is not included in the resulting
SWF file’s bytecode. As a result, importing an entire package with a wildcard does not create an
unnecessarily large SWF file.

About the ActionScript classpath

ActionScript classes that you use in your applications must be in a directory that is in the
ActionScript classpath. By default, the flex_app_root/WEB-INF/flex/user_classes directory is part
of the ActionScript classpath. In addition, ActionScript classes can be in the same directory or
subdirectories as the MXML file. ActionScript classes can also be in component SWC files.

The order of the classpath entries is important. When Flex encounters classes that share the same
name, it uses the class that it found first in the classpath. The rest are ignored.

Flex loads ActionScript classes in the following order:

1. Local *.as files in the same directory or subdirectories as the currently executing application.

2. Classes in flex_app_root/WEB-INF/flex/user_classes.

3. Classes specified the <actionscript-classpath> tag in the flex-config.xml file.

4. Classes defined in components (SWC files) used by the currently executing application.
Using ActionScript in Flex applications 53

This includes the SWC files in the frameworks and frameworks_debug directories, as well as
custom components. Directories containing accessible SWC files are defined by the
<compiler> tag’s <lib-path> entries in the flex-config.xml file. For more information, see
“Adding SWC files to Flex” on page 831.

You can add additional directories to the Flex ActionScript classpath with the <path-element>
child tag of the <actionscript-classpath> tag in the flex-config.xml file. Flex searches for
classes in the order in which they appear in this list.

The following example shows the default user_classes directory and two additional directories
added to the ActionScript classpath:
<compiler>

<actionscript-classpath>
<path-element>/WEB-INF/flex/user_classes</path-element>
<path-element>/WEB-INF/flex/3rd_party_packages</path-element>
<path-element>/WEB-INF/flex/test_dir</path-element>

</actionscript-classpath>
</compiler>

For more information on the <compiler> settings, see “Editing the ActionScript classpath”
on page 765.

Using special characters

Special characters are any characters that might confuse the XML parser. The contents of
<mx:Script> tags are treated as XML by Flex. As a result, blocks of ActionScript should be
wrapped in a CDATA construct so that Flex does not try to interpret special characters. The
following example shows a CDATA construct:
<![CDATA[
...
]]>

Flex does not parse text in a CDATA construct so that you can use XML-parsed characters such as
angle brackets (< and >) and ampersand (&). For example, the following script that includes a less
than (<) comparison must be in a CDATA construct:
<mx:Script>
<![CDATA[
function changeText() {

var x:Number = 1;
if (x<3) {

ta1.text = "Hello world";
}

}
]]>
</mx:Script>
54 Chapter 3: Using ActionScript

Referring to Flex components

When referring to Flex components in ActionScript, the component must have an id property
set. You then use the id to refer to that component.

To access that component’s methods or properties, use dot syntax. The following example gets the
value of the TextArea named ta1:
var str:String = ta1.text;

You can refer to the current enclosing document or current object using the this keyword. For
more information, see “Using the this keyword” on page 402.
Using ActionScript in Flex applications 55

56 Chapter 3: Using ActionScript

CHAPTER 4
Developing Applications
This chapter describes the Macromedia Flex development process. It describes coding practices,
multitier applications, and application architecture. It also includes information about MXML
URL parameters, the Flex development environment, and Flex development tools.

When developing a Flex application, you use the same iterative process used for other types of
web application files, such as HTML, JavaServer Pages (JSP), Microsoft Active Server Pages
(ASP), and Macromedia ColdFusion Markup Language (CFML). Unlike a set of static HTML
pages or HTML templates created using JSP, ASP, or CFML, the files in a Flex application are
compiled into a single binary SWF file. JSP, ASP, and ColdFusion are templating systems in
which application processing occurs on the server and data is dynamically added to an HTML
template and delivered to the client in an HTML page.

Contents

About the Flex coding process . 58

Working with a multitier application model. 60

Controlling the appearance of an application . 62

Enabling application zooming . 63

Separating ActionScript from MXML . 63

About the Flex development environment . 67

Using Flex development tools . 67

Architecting an application . 69

Improving application start-up time and performance . 78

Summary of Flex application features. 81
57

About the Flex coding process

Creating a useful Flex application is as easy as opening your favorite text editor, typing some XML
tags, saving the file, opening the file’s URL in a web browser, and then repeating the process.
When developing a Flex application, you use the same iterative process that you use for other
types of web application files, such as HTML, JSP, ASP, and CFML.

Unlike a set of static HTML pages or HTML templates created using JSP, ASP, or CFML, the
files in a Flex application are compiled into a single binary SWF file. Another major difference
between a Flex application and a JSP, ASP, or ColdFusion application is that application logic
resides in the client-side SWF file. JSP, ASP, and ColdFusion are templating systems in which
application processing occurs on the server and data is dynamically added to an HTML template
and delivered to the client in an HTML page. For more information, see “Moving to Flex from
HTML” on page 58 and “Moving to Flex from an HTML templating environment like JSP”
on page 59.

Because MXML files are ordinary XML files, you have a wide choice of development
environments. You can develop in a simple text editor, a dedicated XML editor, or an integrated
development environment (IDE) that supports text editing. Flex also provides tools for code
debugging and performance profiling; for more information, see “Using Flex development tools”
on page 67.

Moving to Flex from HTML

Although similar in some ways, developing a Flex application is significantly different from
developing in HTML. HTML uses a page metaphor in which code is primarily written in a set of
page files. What can be considered an application is really a set of separate HTML pages. Each
page must be requested from the server and displayed individually. Assets such as images are
loaded into the individual page that uses them when the page is requested. During development,
you write code, save it, and display a page in a web browser.

The code for a Flex application is likely to be contained in more than one file to promote
reusability, extensibility, and modularity. However, when the top-level MXML file is requested,
the Flex server compiles that file and all the other files it depends on into a single SWF file. Once
the application SWF file is generated, the server does not recompile it unless the source code
changes. The files that make up the application are compiled into the SWF file; however, the
application can request data from external data sources at runtime. During development, you
write code, save it, and display the entire application in a web browser.

Although Flex development is quite different from HTML development, you can easily
incorporate a Flex application into an HTML page. To do so, you specify the name of a SWF file
with the same prefix as the MXML file but a suffix of mxml.swf in standard HTML <object>
and <embed> tags, as the following example shows:
<object classid='clsid:D27CDB6E-AE6D-11cf-96B8-444553540000'

codebase='http://download.macromedia.com/pub/shockwave/cabs/flash/
swflash.cab#version=7,0,0,0' width='600' height='600'>

 <param name='src' value='CreditCard.mxml.swf'>
<embed pluginspage='http://www.macromedia.com/go/getflashplayer'

width='600' height='600 src='CreditCard.mxml.swf' />
</object>
58 Chapter 4: Developing Applications

The first time the HTML page is requested, the Flex application is compiled into a SWF file with
the specified name. If the MXML file changes, the Flex compiler recompiles the MXML file the
next time that the HTML page is requested.

Moving to Flex from an HTML templating environment like JSP

In contrast to environments like JSP, ASP, and ColdFusion, Flex is not a templating system.
MXML files are not templates containing rules processed on the server to return a filled-in
template. Instead, MXML code is compiled into a fully formed client application that is able to
process server-side logic, and change what is displayed using its own client-side logic.

A Flex application does not go to the server every time the user interface must change or an event
must be handled. Presentation logic and logic for server-side requests and responses is on the
client in the SWF file that is generated when the user initially requests the MXML file. In Flex,
changes to the user interface occur on the client based on client-side code execution.

A Flex application makes HTTP requests to contact external data services, such as web services;
this interaction with the server does not require you to refresh the application.

Moving to Flex from Macromedia Flash MX

Developing a Flex application is very different from developing an application in Macromedia
Flash MX, even though in both environments the application is compiled into a SWF file. You
create a Flex application in text files, which you can create and edit in a simple text editor or a
more sophisticated development environment. You publish Flex application source files to a Java
web application, and the files are compiled into a SWF file when a user requests the application-
level MXML file. If you change the application’s source code, it is recompiled into a SWF file the
next time it is requested.

You create a Flash document file (an FLA binary file) in the Flash MX visual authoring
environment, and save it as a SWF file before publishing it to a website; it is usually referenced
inside an HTML page. Flash MX uses concepts such as the Timeline, animation frames, and
layers for organizing and controlling an application’s content over time. In Flex, you write the
declarative parts of an application, such as user-interface components and connections to data
sources, in MXML tags. You must use the tags in the proper hierarchy within the application, but
there is no external notion of Timelines, frames, or layers. Just by using a few MXML tags, you
can create a useful application with built-in behavior.

Although the development models for Flash MX and Flex are different, Flash MX is a powerful
tool for creating custom components and visual assets that you can use in Flex applications. You
can export files created in Flash MX in component package files called SWC files, which you can
reference as custom tags in MXML files. You can also use the MXML <mx:Image> and
<mx:Loader> tags to import SWF files into a Flex application.
About the Flex coding process 59

Working with a multitier application model

In MXML, you use tags to declare an application’s user interface. You also use tags to declare an
application’s data management tier, which represents connections to data sources, data requests
and responses, data storage, binding of data between the user interface and data sources, data
validation, and data formatting. Using just tags, you get a great deal of built-in code execution
that ties the user interface to the data management tier. You can also write ActionScript code that
executes at runtime based on user interaction or system events.

User interface

You declare a Flex user interface using tags that represent user-interface components. There are
two general types of components: controls and containers. Controls are form elements, such as
buttons, text fields, and list boxes. Containers are rectangular regions of the screen that contain
controls and other containers. Every user interface component has a corresponding ActionScript
class that inherits common functionality from the mx.core.UIObject and mx.core.UIComponent
base classes. User-interface components contain properties, methods, and events. For more
information, see Chapter 5, “Using Flex Components,” on page 87.

Data management tier and data life cycle

The Flex data management tier is made up of the features in the following table. For more
information, see Chapter 28, “Managing Data in Flex,” on page 593.

Feature Description

Data service Accesses data from a remote location, and sends new or modified data to a remote
location. A typical way to send data to a data service is by sending data stored in a
user interface control to the data service. For example, a user fills in the fields of a
form and clicks a button to submit the form to a service. The user input data
becomes part of the service request. Data that the service returns is stored in the
service’s result property.

Data model Stores data in fields that represent each part of a specific data set. For example, a
person model would store things such as a person’s name, age, and phone number.
Data services contain data models to store request data and result data.

Data validator Validates data in data model fields. For example, you can use a data validator to
validate the data in a form before submitting it to a data service.

Data formatter Converts raw data to a formatted string. Formatters are triggered just before data is
displayed in a text field. They can save you time by automating data formatting
tasks, and by letting you easily change the formatting of fields within your
applications.

Data binding Copies data stored in one object to another object. For example, you can bind data
from the fields of a user input form to fields in a data service request. To display data
that a data service returns, you can bind fields from the data service result to user
interface controls.
60 Chapter 4: Developing Applications

Runtime code execution

Flex uses an event-driven application model, which is manifested in both user interaction with the
user interface and code execution based on system events. For more information about events, see
Chapter 15, “Working with ActionScript in Flex,” on page 393.

Using events to handle user interaction

User interface controls have event properties to which you can assign functions, called event
handlers, that respond to events. The following example shows a simple event handler that
displays text in a TextArea control when the user clicks a Button control:
<mx:Button label="Clear" click="Hello()" >
<mx:TextArea id="text1" width="150" text="This will be cleared" />

<mx:Script>
<![CDATA[

function Hello() {
text1.text="Hello!";

}

]]>
</mx:Script>

Using events to connect application functionality

ActionScript code executes asynchronously. This means that code in a Flex application continues
executing without being blocked by the execution of other code. However, you need a way to deal
with dependencies between the execution of different pieces of code in an application. There are
times when you do not want a function to execute until some other function has already executed.
You can use event handling for these dependencies.

For example, you might have one web service operation that uses data that another operation
returns. A result event is triggered when a web service operation successfully returns a result. You
can write a function that calls the second operation with the result of the first operation, and then
assign that function as the result event handler of the first operation, as the following example
shows. You can use this technique for any code that depends on the execution of other code.
...
<mx:WebService id="myService"...>
 <mx:operation name="getFoo" result="myFooResultHandler(event.result)" />
 <mx:operation name="getBarWithFooInput" />
</mx:WebService>

<mx:Script>
<![CDATA[

function myFooResultHandler(foo) {
myService.getBarWithFooInput(foo);

}

]]>
Working with a multitier application model 61

</mx:Script>
...

For more information about event handling, see Chapter 15, “Working with ActionScript in
Flex,” on page 393.

Using events to handle errors

Just as you can use events to connect application functionality, you can also use them to handle
errors. Flex data services contain a fault event that is triggered when a data service has a problem
returning result data. You can write an ActionScript event handler function that responds to fault
events. The following example shows how you specify a fault event handler for a web service
operation:
...
<mx:WebService id="WeatherService" ...">

 <mx:operation name="getFoo" fault="showErrorDialog(event.faultString)"/>
</mx:WebService>
<mx:Script>
<![CDATA[

function showErrorDialog(error){
// Function implementation...

}
]]>
</mx:Script>
...

Controlling the appearance of an application

Flex defines a default “look and feel” (appearance) that you can use as-is in an application, or
modify to define your own specific appearance. As part of modifying the appearance, you can
change some or all of the following:

• Styles Set of characteristics, such as font, font size, text alignment, and color. These are the
same styles as defined and used with Cascading Style Sheets (CSS). For more information, see
Chapter 19, “Using Styles, Fonts, and Themes,” on page 455.

• Skins Symbols that control a component’s appearance. For more information, see
Chapter 19, “Using Styles, Fonts, and Themes,” on page 455.

• Behaviors Visible or audible changes to a Flex component triggered by an application or
user action. Examples of behaviors are moving or resizing a component based on a mouse click.
For more information, see Chapter 20, “Using Behaviors,” on page 497.

• Sizes Height and width of a component or application. All components have a default size.
You can use the default size, specify your own size, or allow Flex to resize a component as part
of laying out your application. For more information, see Chapter 8, “Introducing
Containers,” on page 237.
62 Chapter 4: Developing Applications

Enabling application zooming

By default, the Flash zoom feature is disabled for Flex applications. You can enable zooming for
individual applications using a function like the one in the following example. Write the function
in an <mx:Script> tag, and specify it as the event handler for the initialize event of the
<mx:Application> tag.
<mx:Application width="600" height="400"

xmlns:mx="http://www.macromedia.com/2003/mxml" initialize="initMyApp()">

<mx:Script>
<![CDATA[

function initMyApp(){

var myMenu=new ContextMenu();
myMenu.builtInItems.zoom = true;
document.menu=myMenu;
}

]]>
</mx:Script>
...
</mx:Application>

Separating ActionScript from MXML

When you write a Flex application, you use MXML to lay out the user interface of your
application, and you use ActionScript to handle the user interactions with the application. The
mixing of ActionScript and MXML can range from different ways to inline ActionScript in
MXML to a completely codeless MXML document supplemented by an external ActionScript
controller class.

This section follows a single sample application and shows how it uses several different methods
of separating the ActionScript from the MXML. The Temperature application takes input from a
single input field and uses a function to convert the input from Farenheit to Celsius. It then
displays the resulting temperature in a label control.

The following figure shows the sample Temperature application:

There are several ways to separate MXML and ActionScript in this simple application that calls a
single function:

• One MXML document (ActionScript event handling logic in MXML tag)
• One MXML document (function call in MXML tag event)
• One MXML document and one ActionScript file
Separating ActionScript from MXML 63

• One codeless MXML document and one ActionScript file
• One codeless MXML document and one ActionScript component

The following sections describe these methods.

One MXML document (ActionScript event handling logic in MXML tag)

The following code shows the ActionScript event handling logic inside the MXML tag’s click
event:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Panel title="My Application" marginTop="10" marginBottom="10"
marginLeft="10" marginRight="10" >
<mx:HBox>

<mx:Label text="Temperature in Farenheit:"/>
<mx:TextInput id="farenheit" width="120"/>
<mx:Button label="Convert"

click="celsius.text=(farenheit.text-32)/1.8"/>
<mx:Label text="Temperature in Celsius:"/>

<mx:Label id="celsius" width="120" fontSize="48"/>
</mx:HBox>

</mx:Panel>
</mx:Application>

One MXML document (function call in MXML tag event)

The logic for the function is inside an <mx:Script> block in the MXML document, and is called
from the MXML tag’s click event, as the following code shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script>
<![CDATA[
function calculate() {

celsius.text=(farenheit.text-32)/1.8;
}

]]>
</mx:Script>

<mx:Panel title="My Application" marginTop="10" marginBottom="10"
marginLeft="10" marginRight="10" >

<mx:HBox>
<mx:Label text="Temperature in Farenheit:"/>
<mx:TextInput id="farenheit" width="120"/>
<mx:Button label="Convert" click="calculate()"/>
<mx:Label text="Temperature in Celsius:"/>
<mx:Label id="celsius" width="120" fontSize="48"/>

</mx:HBox>
</mx:Panel>

</mx:Application>
64 Chapter 4: Developing Applications

One MXML document and one ActionScript file

The function call is in an MXML tag event, and the function is defined in a separate ActionScript
file, as the following code shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script source="sample3script.as"/>
<mx:Panel title="My Application" marginTop="10" marginBottom="10"

marginLeft="10" marginRight="10" >
<mx:HBox>

<mx:Label text="Temperature in Farenheit:"/>
<mx:TextInput id="farenheit" width="120"/>
<mx:Button label="Convert" click="calculate()"/>
<mx:Label text="Temperature in Celsius:"/>
<mx:Label id="celsius" width="120" fontSize="48"/>

</mx:HBox>
</mx:Panel>

</mx:Application>

The sample3script.as ActionScript file contains the following code:
function calculate() {
celsius.text=(farenheit.text-32)/1.8;
}

One codeless MXML document and one ActionScript file

The event listener is defined in an ActionScript file and the event handling logic is defined in the
click event handler, as the following code shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script source="sample4script.as"/>
<mx:Panel title="My Application" marginTop="10" marginBottom="10"

marginLeft="10" marginRight="10" >
<mx:HBox>

<mx:Label text="Temperature in Farenheit:"/>
<mx:TextInput id="farenheit" width="120"/>
<mx:Button id="myButton" label="Convert"/>
<mx:Label text="Temperature in Celsius:"/>
<mx:Label id="celsius" width="120" fontSize="48"/>

</mx:HBox>
</mx:Panel>

</mx:Application>

The sample4script.as ActionScript file contains the following code:
// Register the app as an event listener for the click event of the button.
function initializeHandler() {

myButton.addEventListener("click", this);
}

Separating ActionScript from MXML 65

/*
Handle the click event: If we had registered the app as a listener for the
click event of multiple objects, we would have to identify the object first.

*/
function click(event) {

celsius.text=(farenheit.text-32)/1.8;
}

One codeless MXML document and one ActionScript component

The following example uses an ActionScript class as a controller component. The ActionScript
component is declared in the application using a custom MXML tag. This is similar to “One
codeless MXML document and one ActionScript file” on page 65, but it further separates the
MXML from the ActionScript for better reusability. To use the TempConverter component in an
application, you call its setupListener() method in the initialize property of the
<mx:Application> tag, as the following code shows:
<?xml version="1.0"?>

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"
initialize="converter.setupListener()">

<local:TempConverter id="converter" xmlns:local="*"/>
<mx:Panel title="My Application" marginTop="10" marginBottom="10"

marginLeft="10" marginRight="10" >
<mx:HBox>
<mx:Label text="Temperature in Farenheit:" />
<mx:TextInput id="farenheit" width="120" />
<mx:Button id="myButton" label="Convert" />
<mx:Label text="Temperature in Celsius:" />
<mx:Label id="celsius" width="120" fontSize="24" />
</mx:HBox>
</mx:Panel>

</mx:Application>

The TempConverter.as ActionScript class contains the following code:
class TempConverter implements mx.core.MXMLObject{

public var view;

function initialized(doc : Object, id : String) : Void {
view = doc;

}

function setupListener() : Void {
view.myButton.addEventListener("click", this);

}

function click(event) {
view.celsius.text=(view.farenheit.text-32)/1.8;

}

}

66 Chapter 4: Developing Applications

About the Flex development environment

Flex server code and applications run in a standard web application on a J2EE-compliant
application server. The MXML deployment model is similar to that of JavaServer Pages (JSPs).
You create an MXML file in the text editor of your choice, and place it in a web application
directory that is accessible from a web browser. For example, you can place MXML files in the
web application root directory or a subdirectory other than the reserved WEB-INF directory.

The directory structure of a typical Flex-enabled web application looks like the following:

Using Flex development tools

Flex provides the following tools to help you test, debug, and tune your applications during the
development process. To use these tools, the <production-mode> setting in the .../WEB_INF/
flex/flex-config.xml file must be false (the default):
<production-mode>false</production-mode>

If <production-mode> is set to true, Flex disables all debugging and profiling features. Flex also
ignores query string parameter overrides such as ?debug=true and ?asprofile=true when
<production-mode> is enabled.

Directory Description

web_app
(root directory or WAR root)

Contains the WEB-INF directory and all files that must be
accessible by the user’s web browser, such as MXML files, JSPs,
HTML pages, Cascading Style Sheets, images, and JavaScript
files. You can place these files directly in the web application root
directory or in arbitrary subdirectories that do not use the
reserved name WEB-INF.

/WEB-INF Contains the standard web application deployment descriptor
(web.xml) that configures Flex. This directory might also contain
a vendor-specific web application deployment descriptor.

/WEB-INF/flex Contains Flex configuration files.

/WEB-INF/flex/system-classes Contains ActionScript standard library stub classes that Flex use
internally for type-checking.

/WEB-INF/flex/user_classes Contains custom ActionScript classes and MXML components.

/WEB-INF/lib Contains Flex server code in Java Archive (JAR) files.

/WEB-INF/flex/frameworks Contains the SWC component file, builtin.swc, that contains the
Flex application framework files.
Using Flex development tools 67

The following table describes the Flex development tools:

You can get additional information about Flex applications during the development process using
a set of query string parameters. You append these to the end of the request string, as the
following example shows:
http://localhost:8700/flex/MyApplication.mxml?debug=true

To use most of these query string parameters, you must disable production mode in the flex-
config.xml file by setting the value of the <production-mode> tag to false.

The following table describes the query string parameters that you can use to get additional
information:

Tool Description

Macromedia Flash Debug Player Flash Debug Player is a Flash Player that reports runtime errors,
including errors for undeclared variables, uncaught runtime
exceptions, and operating-system-specific networking errors.
You can view errors in a trace window and send errors to a text
file.
When you run Flash Debug Player, you specify the subsystems
to monitor and request the compiled SWF file, through the Flex
server.
To use the Flash Debug Player, you must disable production
mode if it is enabled and edit debugging settings in the flex-
config.xml file. For more information, see Chapter 33,
“Debugging Flex Applications,” on page 705.

Command line debugger The Flex ActionScript debugger lets you step into and debug
ActionScript files used by your Flex applications.
To use the command-line debugger, you must disable
production mode if it is enabled and edit debugging settings in
the flex-config.xml file. For more information, see Chapter 33,
“Debugging Flex Applications,” on page 705.

mxmlc The Flex command-line compiler, mxmlc, is useful if you want to
request SWF files in a web browser or in Flash Player. It is
particularly useful for debugging SWF files with Flash Debug
Player.
For more information, see Chapter 36, “Administering Flex,” on
page 753.

ActionScript Profiler The ActionScript Profiler monitors ActionScript performance in
Flash Debug Player. It has a JSP-based user interface and also
provides text-based performance reports.
For more information, see Chapter 34, “Profiling ActionScript,”
on page 729.

Query parameter Description

?accessible=true Adds screen reader accessibility to all components that are
capable of accessibility. Available when production-mode is set to
true or false.

?asprofile=true Generates ActionScript profiling information.
68 Chapter 4: Developing Applications

For more information about application configuration, see Chapter 36, “Administering Flex,” on
page 753.

Architecting an application

After you determine the purpose and general features of an application, you need to consider the
following topics:

• What the object model should be
• What types of Flex components you should use to represent the object model
• What type of messaging strategy you should use to pass data between objects

This section uses a fairly simple e-commerce application called the Flex Store to illustrate general
ways to approach object models, component types, and messaging strategies. The application
demonstrates clear separation of model and view objects, and loose coupling of components. It
uses a combination of standard Flex components, MXML components, SWC components, and
ActionScript components.

The purpose of the Flex Store application is to display a catalog of items that the user can add to a
shopping cart, and then order. The following list includes some of the things a user can do with
the application:

• Click a product thumbnail image to display a larger image and description.
• Select a price range for products.
• Add items to the shopping cart.
• Place orders in a checkout form.

?debug=true Enables ActionScript debugging for an application. Overrides
the debug setting for all applications set in the flex-config.xml file.
The process-debug-query-params value in the flex-config.xml
file must be set to true when using ?debug=true.

?errors=true Returns errors and warnings in an XML document; does not
return a SWF file. Used primarily by authoring tools.

?networkCapturePort=portnumber (Used only by authoring tools) Redirects requests.

?proxyUrl=urlvalue Specifies a web service proxy URL. Available when production-
mode is set to true or false. The allow-url-override value in the
flex-config.xml file must be set to true when using
?proxyUrl=urlvalue.

?showAllWarnings=true Displays warning messages.

?showBindingWarnings=true Displays warnings about data bindings. The
showBindingWarnings parameter is a subset of the
showAllWarnings parameter. If showAllWarnings is set to true,
binding warnings are enabled. If showAllWarnings is set to false,
setting showBindingWarnings to true enables binding warnings.

Query parameter Description
Architecting an application 69

The Flex Store application is included in the samples.war file, which you can extract into your
application server.

The following figure shows the catalog and shopping cart views of the Flex Store application:

Developing an object model

The object model defines how the various parts of the application map to individual objects. It is
useful to think in terms of a model-view-controller (MVC) architecture, and consider whether a
particular object is part of the model, view, or controller tier. The MVC design pattern decouples
data access, business logic, and data presentation and user interaction.

The following sections describe the object model of the Flex Store application.
70 Chapter 4: Developing Applications

Flex Store object model figure

The following figure shows the object model for the Flex Store application and identifies each
object as part of the model, view, or controller:

FlexStore

The FlexStore object is the top-level object in the Flex Store application. It contains the rest of the
application objects, including the standard Flex objects and custom objects. This object is a view
object because it is the top-level object in the user interface, but it also contains the rest of the
application.

catalog

The catalog object is a nonvisual object that contains data about the products available for
purchase. This object is a model object because its primary purpose is to represent products.

ShoppingCart

The ShoppingCart object is a nonvisual object that stores items a user selects for purchase. This
object is a model object because its primary purpose is to represent a set of items that the user
selects for purchase. It also keeps track of the number of items selected for purchase and the total
cost of the items.

CartView

The CartView object is a visual object that displays the current ShoppingCart items in the user
interface. This object must get the current data from the ShoppingCart object and display it
appropriately in the user interface; this requirement is described in “Determining component
types and a messaging strategy” on page 72.

ProductThumbnail
View

ThumbnailView
View

Slider
View

ShoppingCart
Model

FlexStore
View

ProductDetail
View

catalog
Model

Checkout
View

CartView
View
Architecting an application 71

Slider

The Slider object is a generic visual object that lets the user select minimum and maximum
values. In this application, it is used to display items in the catalog object that match a specified
price range.

ProductThumbnail

The ProductThumbnail object is a visual object that displays a thumbnail image, name, and price
for each product in the catalog object.

ThumbnailView

The ThumbnailView object is a visual object that displays a set of ProductThumbnail objects.

This object must get the product data from the catalog object and pass it into ProductThumbnail
objects that represent the individual products contained in the catalog object. It also must use the
current minimum and maximum values of the Slider object to determine the selected price range
and display just the products that fall within that price range. These requirements are described in
“Determining component types and a messaging strategy” on page 72.

ProductDetail

The ProductDetail object is a visual object that displays a large image, name, price, description,
and quantity selector for a selected ProductThumbnail object or a selected item in the
ShoppingCart object. This object also lets the user add a selected item to the ShoppingCart
object.

This object must get the index of the selected ProductThumbnail or ShoppingCart item and
display the corresponding product data appropriately in the user interface; this requirement is
described in “Determining component types and a messaging strategy” on page 72.

Checkout

The Checkout object is a visual object that contains a form for placing an order based on the
current items in a ShoppingCart object. This object must get the current data from the
ShoppingCart object and display it appropriately in the user interface; this requirement is
described in “Determining component types and a messaging strategy” on page 72.

Determining component types and a messaging strategy

After you establish an object model, you need to consider what types of Flex component to use
for each object in the model. For simple visual objects that use standard Flex user-interface
components, you can create an MXML component. For more complex visual objects, you can
create a SWC component in Macromedia Flash MX. For nonvisual objects, you can create an
ActionScript component.
72 Chapter 4: Developing Applications

For more information about MXML components, see Chapter 14, “Building an Application with
Multiple MXML Files,” on page 383. For more information about SWC components, see
Chapter 41, “Creating Advanced Components in Flash MX 2004,” on page 857. For more
information about ActionScript components, see Chapter 17, “Creating ActionScript
Components,” on page 437.

When you have a plan for the types of Flex components to use in your object model, you must
start thinking about a messaging strategy for acquiring and manipulating application-specific
data. You need a way for the objects in the application to send and receive data. To solve this
problem in the Flex Store application, many of the objects contain data object properties, which
are ActionScript properties or <mx:Model> tags that you use to pass data into the objects.

This following sections describe the component types and messaging strategy of the Flex Store
application.

Flex Store component figure

The following figure shows the component type of each object in the object model of the Flex
Store application. The Data Object boxes show which objects contain data object properties.

FlexStore

The FlexStore object, the top-level application object, is an MXML file. It contains standard
MXML tags that declare most of the application, and custom MXML tags that declare custom
objects. It also contains some application-level ActionScript code that helps glue the application
together, and Cascading Style Sheet (CSS) definitions. The ActionScript code and CSS
definitions are contained in external files to promote modularity and reusability.

ProductThumbnail
(MXML component)

View

ThumbnailView
(MXML component)

View

Slider
(SWC component)

View

ShoppingCart
(ActionScript component)

Model

FlexStore
(MXML Application

object)
View

ProductDetail
(MXML component)

View

catalog
<mx:Model> tag

Model

dataObject
variable

Data Object

dataObject
variable

Data Object

dataObject
variable

Data Object

Checkout
(MXML component)

View

CartView
(MXML component)

View
dataObject

variable of type
ShoppingCart
Data Object

cartData
variable of type
ShoppingCart
Data Object
Architecting an application 73

catalog

The catalog object is declared in an <mx:Model> tag in the FlexStore.mxml file because it is a
simple object with the sole function of data storage, and it requires no data typing. Compare this
with the ShoppingCart object, which is also in the model tier, but stores and manipulates data.
The data for the catalog object is defined in an external XML file, catalog.xml, which is accessed
using the following <mx:HTTPService> data service tag:
<mx:HTTPService id="catalogSrv" url="data/catalog.xml"

result="selectedItem=catalogSrv.result.catalog.product[0]"/>

Data could just as easily be accessed using a SOAP-based web service or a server-side Java object
that retrieves data from a remote data source.

The following example shows a product definition in the catalog.xml file:
<catalog>

<product id="1">
<name>Ice Cream Pint</name>

<description>These are perfect for entertaining or for using
while curled up on the couch watching a movie.

</description>
<price>42.00</price>


</product>
...

</catalog>

The following example shows the catalog object declared in the FlexStore.mxml file:
<mx:Model id="catalog">

{catalogSrv.result.catalog}
</mx:Model>

Slider

The Slider object is a custom user interface component. Because it is too complex to create in
MXML or ActionScript, a designer creates it in the Flash MX authoring environment and exports
it as a SWC component for use in Flex.

ShoppingCart

The ShoppingCart object is defined in an ActionScript class because it performs data storage and
data manipulation. An ActionScript class is the appropriate component type because it can
contain both properties and methods.

The ShoppingCart class contains the following properties:

• var myItems
• var total
74 Chapter 4: Developing Applications

The class contains the following methods:

• addItem()
• getItemCount()
• getTotal()
• getMyItems()

The component is declared in the FlexStore.mxml file using a <ShoppingCart> tag.

CartView

The CartView object is defined in an MXML component because it is a visual object that you can
create using MXML tags and a small amount of ActionScript code. The top-level tag of the
CartView component is a VBox container, a Box container that lays out its children vertically.

The CartView component contains the following properties defined in an <mx:Script> tag:

• var selectedItem
• var dataObject:ShoppingCart

The dataObject property stores ShoppingCart data.

The component contains the following method defined in an <mx:Script> tag:
dataGridChange(selectedItem)

The component contains an <mx:DataGrid> tag for displaying ShoppingCart items along with
several other user-interface components and an <mx:NumberFormatter> tag for displaying prices
in a specific format. The component is declared in the ShoppingCart.mxml file using a
<CartView> tag.

The CartView component stores ShoppingCart data in the following property:
var dataObject:ShoppingCart

The following example shows how the value of the dataObject property is set to the cart
ShoppingCart object by using curly braces ({ }) to bind data:
...
<local:ShoppingCart id="cart"/>
...
<CartView dataObject="{cart}" widthFlex="1" heightFlex="1"

itemSelected="selectedItem=event.target.selectedItem"/>

ProductThumbnail

The ProductThumbnail object is defined in an MXML component because it is a visual object
that you can create using MXML tags and a small amount of ActionScript code.

The ProductThumbnail component contains the following properties defined in an
<mx:Script> tag:

• filteredOut
• orgX:Number
• orgY:Number
Architecting an application 75

The filteredOut property indicates whether to dim a ProductThumbnail’s appearance based on
the currently selected price range. You use the orgX and orgY properties for drag-and-drop
operations.

The component contains the following methods defined in an <mx:Script> tag:

• hide()
• show()
• finish()
• beginDrag()

The ProductThumbnail component contains an <mx:Model id="dataObject"> tag for getting
data from the catalog object. The component stores data from the catalog object in the following
property:
var dataObject:Object

The following example from the ThumbnailView.mxml file shows how the dataObject property
is set to the catalog data for the currentItem in the catalog object:
...
<mx:Script>

<![CDATA[
var dataObject;
var selectedItem;

]]>
</mx:Script>
...
<mx:Repeater id="list" dataProvider="{dataObject}">

<ProductThumbnail id="product" dataObject="{list.currentItem}"
itemSelected="selectedItem=event.target.dataObject;
dispatchEvent({type:'change'})"/>

</mx:Repeater>

The component also contains <mx:Image> and <mx:Loader> tags for displaying thumbnail
images, as well as other user interface tags. The component is declared in the
ThumbnailView.mxml file using a <ProductThumbnail> tag.

ThumbnailView

The ThumbnailView object is defined in an MXML component because it is a visual object that
you can create using MXML tags and a small amount of ActionScript code. The top-level tag of
the ThumbnailView component is a VBox container.

The component contains the following properties defined in an <mx:Script> tag:

• var selectedItem
• var dataObject

The dataObject property stores catalog data.
76 Chapter 4: Developing Applications

The component contains the following methods defined in an <mx:Script> tag:

• getSliderValue(sliderValueObj:Object, objectName:String)
• initComp()

These methods get the current price range from the Slider component and display the appropriate
ProductThumbnail objects.

The component contains an <mx:Tile> tag with a child <mx:Repeater> tag for displaying a set
of ProductThumbnail components in a grid format. It also contains an <mx:Slider> tag for
setting a price range.

The component is declared in the FlexStore.mxml file using a <ThumbnailView> tag.

The ThumbnailView component stores catalog data in the following property:
var dataObject

The following example from the FlexStore.mxml file shows how the dataObject property is set
to the catalog.product property:
<local:ThumbnailView id="tnView" dataObject="{catalog.product}"

change="selectedItem=event.target.selectedItem"/>

ProductDetail

The ProductDetail object is defined in an MXML component because it is a visual object that
you can create using MXML tags and a small amount of ActionScript code. The top-level tag of
the ProductDetail component is a VBox container.

The component contains the following property defined in an <mx:Script> tag:
var shoppingCart:ShoppingCart

The shoppingCart property stores ShoppingCart data. The component also contains an
<mx:Model id="dataObject"> tag for storing data from the catalog object. For more
information, see Chapter 29, “Binding and Storing Data in Flex,” on page 601.

The component contains MXML tags for displaying product details. It also contains an
<mx:NumericStepper> tag for selecting product quantity, and an <mx:Button> tag for adding
items to the ShoppingCart.

The component stores data from the catalog object in the following property:
var dataObject:Object

The following example from the FlexStore.mxml file shows how the shoppingCart property is
set to the cart ShoppingCart object, and the dataObject property is set to the currently selected
ProductThumbnail or ShoppingCart item:
...
<local:ShoppingCart id="cart"/>
...
<local:ProductDetail dataObject="{selectedItem}" shoppingCart="{cart}"

height="320"/>
...
Architecting an application 77

Checkout

The Checkout object is defined in an MXML component because it is a visual object that you can
create using MXML tags and a small amount of ActionScript code. The top-level tag of the
Checkout component is a VBox container.

The component contains the following properties defined in an <mx:Script> tag:

• var cartData
• var months
• var years
• var cards

The cartData property stores ShoppingCart data.

The component uses the months, years, and cards properties to store credit card data.

The component contains the following method in an <mx:Script> tag:
confirm()

The component contains an <mx:Form> tag for entering order information, and an <mx:Model
id="order"> tag for storing order information. It also contains data formatter tags and data
validator tags.

The component stores ShoppingCart data in the following property:
var cartData:ShoppingCart;

The following example from the FlexStore.mxml file shows how the shoppingCart property is
set to the cart ShoppingCart object:
...
<local:ShoppingCart id="cart"/>
...
<local:Checkout id="checkoutView" cartData="{cart}"/>

Improving application start-up time and performance

This section describes some very simple things that you can do to improve application start-up
time. During the product life cycle, Macromedia will provide additional information about
performance (see www.macromedia.com/go/flex).

Nesting containers

Application start-up time slows commensurate with the complexity of the layout of your Flex
application. Excessive levels of nested containers can contribute to this complexity, and should be
avoided if you can accomplish the same layout with fewer levels of nesting. Try using margin, gap,
and alignment properties and the Spacer control, to achieve the desired layout.
78 Chapter 4: Developing Applications

http://www.macromedia.com/go/flex

When you have a working skeleton of your application, consider the containers that you are using
to determine if you could use alternate containers with less nesting. For example, consider the
following layout:
<mx:Grid>

mx:GridRow>
<mx:GridItem>

<mx:Button label="Visa"/>
</mx:GridItem>
<mx:GridItem>

<mx:Button label="MasterCard"/>
</mx:GridItem>
<mx:GridItem>

<mx:Button label="Diner's Club"/>
</mx:GridItem>
<mx:GridItem>

<mx:Button label="AmEx"/>
</mx:GridItem>

</mx:GridRow>
</mx:Grid>

You could replace the previous layout with the following layout to achieve the same effect:
<mx:VBox>

<mx:Button label="Visa"/>
<mx:Button label="MasterCard"/>
<mx:Button label="Diner's Club"/>
<mx:Button label="AmEx"/>

</mx:VBox>

Using layout containers

You can improve application start-up time by using Canvas containers, instead of relative layout
containers, such as the Form, HBox, VBox, Grid, and Tile containers, to perform automatic
layout. Using Canvas containers eliminates the layout logic and measuring that containers that
perform automatic layout must do at startup. It also gives you pixel-based positioning. When
using a Canvas container, you must remember to explicitly set the width, height, and x and y
positions of all of its children. If you do not set x and y positions, the Canvas container’s children
lay out on top of each other at the default x, y coordinates (0,0). Macromedia recommends that
developers use the relative layout containers initially, and move to using Canvas containers as
warranted by performance testing.

Using deferred instantiation

Flex uses deferred instantiation to determine when components are created when an application
starts. When using deferred instantiation, you can decide at what stages the user incurs the costs
of creating components.

You use a container’s creationPolicy property to determine when to create a component at
runtime. For example, an application can create components at startup, when a user navigates to
a container, or based on user interaction.

For more information, see Chapter 25, “Applying Deferred Instantiation,” on page 557.
Improving application start-up time and performance 79

You can also use the creationPolicy properties of containers to lay out an application
incrementally at startup so that Flex creates the containers when triggered. Like a domino effect,
you can define the creation order and as one is finishing being created, the next one is triggered to
start. This prevents the containers from being created at startup. For more information, see
Chapter 25, “Applying Deferred Instantiation,” on page 557.

Improving Repeater object performance

You improve a Repeater object’s performance by setting its recycleChildren property to true.
This binds new data items into existing children, incrementally creates children if there are more
data items, and destroys extra children that are no longer required. For more information, see
Chapter 12, “Dynamically Repeating Controls and Containers,” on page 351.

Improving effect performance

If animations in an application do not play smoothly, background processing might be interfering
with the animation. Effects have a public property called suspendBackgroundProcessing.
When this property is true, it blocks all background processing while the effect is playing,
including measurement and layout and data service response. The default value is false. You
should be careful when you set this property to true because it makes an effect completely
uninterruptible while playing.

Large-scale transition effects applied to complex views can affect how quickly the player can
redraw the view. When this happens, you will notice the effect does not play smoothly. The
following tips describe ways to modify an application to make effects play more evenly:

• Increase the duration of an effect to spread out the distinct, jerky stages over a longer period of
time, which allows the eye to fill in the differences.

• Hide part of the application that is playing an effect to make the effect play more smoothly,
because there is less for Flash Player to redraw. To do this, you use the effectStart and
effectEnd events to control what is visible before and after the effect. For example, if you
apply a Fade effect to a Form with many controls, you can use the effectStart event to make
some of the less important controls invisible, have the Form container play the Fade effect, and
then use the effectEnd event to make the controls visible again.

• Use a solid backgroundColor to improve an effect’s performance. If you want a slight gradient
instead of a solid color, use a backgroundImage that is a SWF file or an SVG file instead of a
bitmapped image. Using bitmapped images in backgrounds can slow down effects. Designers
often give their views a backgroundImage that is a solid colors with gradients or patterns.
80 Chapter 4: Developing Applications

Using a wait state animation

When the child containers of navigator containers are heavily populated, users experience a wait
period when they navigate to a new view. You can create an animation to indicate this fact. The
extras directory of the flex.war file includes a sample application with a TabNavigator container
that displays a precompiled SWF animation during wait states. View the source of the app.mxml
file in the extras/NavigatorWaitState directory of your Flex installation to see how the
TabNavigator container catches the change event and displays the embedded SWF file as a wait
symbol. When the child views broadcast their draw events, indicating they have finished drawing
their contents, the TabNavigator container destroys the wait symbol.

Displaying multiple pop-up windows

Having more then six heavily populated pop-up windows open at the same time in a Flex
application can affect performance. The performance of Flash Player is limited by how quickly it
can redraw obscured windows. This is even more of an issue if each window has a complex
hierarchy of components within it. The more components that are obscured, the longer it takes
the player to redraw.

One possible way to work around this is to use Navigator containers to organize your pop-up
content so that it is spread out over multiple child views; for more information, see Chapter 11,
“Using Navigator Containers,” on page 325. You can also organize multiple pop-up windows in a
dashboard application using Panel containers; for more information about Panel containers, see
Chapter 10, “Using Layout Containers,” on page 279.

Using Flash Debug Player

Using Flash Debug Player can potentially slow an application. As Flash Debug Player processes
the application, it simultaneously writes out trace statements and warnings. If your application
runs quickly in Flash Debug Player, it will run as fast or faster in Flash Player.

Summary of Flex application features

The following table describes the features that you are most likely to use when building Flex
applications:

Feature Description

User interface controls Controls are user-interface components such as Button, TextArea, and
ComboBox controls. You use MXML tags to add controls to an
application.
For more information, see Chapter 6, “Using Controls,” on page 103.

User interface containers Containers are user-interface components that let you control the
layout characteristics of the user-interface components that they
contain. You can use containers to control child sizing and positioning,
or to control navigation among multiple child containers. You use
MXML tags to add containers to an application.
For more information, see Chapter 8, “Introducing Containers,” on
page 237.
Summary of Flex application features 81

MXML components MXML components are Flex components written in MXML files. They
provide an easy way to extend an existing Flex component and
encapsulate the appearance and behavior of a component in a custom
MXML tag. You use MXML tags to add MXML components to an
application.
For more information, see Chapter 14, “Building an Application with
Multiple MXML Files,” on page 383.

ActionScript components ActionScript components are Flex components written in ActionScript
classes. They are a good choice for nonvisual components. You can
use MXML tags to add ActionScript components to an application.
For more information, see Chapter 17, “Creating ActionScript
Components,” on page 437.

SWC components SWC components are created in the Flash MX authoring environment
and exported in SWC files for use in Flex applications. They are a good
choice for complex visual objects. You use MXML tags to add SWC
components to an application.
For more information, see Chapter 40, “Creating Basic Components in
Flash MX 2004,” on page 835.

Data binding The data binding feature provides a simple syntax for automatically
copying the value of a property of one client-side object to a property of
another object at runtime.
For more information, see Chapter 29, “Binding and Storing Data in
Flex,” on page 601.

Data models Data models let you store application-specific data. They are used for
data validation and can contain client-side business logic. You can
define data models in ActionScript classes or MXML tags.
For more information, see Chapter 29, “Binding and Storing Data in
Flex,” on page 601.

Data services Data service objects let you interact with server-side data sources. You
can work with data sources that are accessible using SOAP-compliant
web services, Java objects, or HTTP GET or POST requests.
For more information, see Chapter 28, “Managing Data in Flex,” on
page 593.

Data validation Data validators help you ensure that the values in the fields of a data
model meet certain criteria. For example, you can use a validator to
check whether a user entered a valid ZIP code value in a TextInput
control.
For more information, see Chapter 30, “Validating Data in Flex,” on
page 619.

Data formatting Data formatters let you format data into strings before displaying it in
the user interface. For example, you can use a formatter to display a
phone number in a specific format.
For more information, see Chapter 31, “Formatting Data,” on
page 639.

Feature Description
82 Chapter 4: Developing Applications

Cursor management Cursor management lets you control the cursor image within a Flex
application. You can use cursor management to provide visual
feedback to users to indicate when to wait for processing to complete,
to indicate allowable actions, or to provide other types of feedback.
For more information, see Chapter 22, “Using the Cursor Manager,” on
page 525.

History management History management lets users navigate through a Flex application
using the web browser’s Back and Forward navigation commands. It
also lets users return to the previous location in an application if the
browser accidentally navigates away from that location.
For more information, see Chapter 24, “Using the History Manager,” on
page 549.

Drag-and-drop
management

Drag-and-drop management lets you move data from one place in a
Flex application to another. This feature is especially useful in a visual
application where your data can be items in a list, images, or Flex
components.
For more information, see Chapter 23, “Using the Drag and Drop
Manager,” on page 531.

ToolTips ToolTips let you provide helpful information to application users. When
a user moves their mouse over a graphical component, a toolTip pops
up and displays its text.
For more information, see Chapter 21, “Using ToolTips,” on page 517.

Styles, fonts, and themes Styles, fonts, and themes help you define the overall appearance of
applications. You can use them to change the appearance of a single
component, or apply them across all components.
For more information, see Chapter 19, “Using Styles, Fonts, and
Themes,” on page 455.

Behaviors Behaviors let you add animation or sound to applications in response to
user or programmatic action.
For more information, see Chapter 20, “Using Behaviors,” on
page 497.

Repeaters Repeaters let you dynamically repeat any number of controls or
containers specified in MXML tags, at runtime.
For more information, see Chapter 12, “Dynamically Repeating
Controls and Containers,” on page 351.

Image and media importing You can use MXML tags to import several images into applications.
Flex supports several formats, including JPEG, PNG, GIF, and SVG
images and SWF files. In addition, you can use the MediaDisplay,
MediaController, and MediaPlayback controls to incorporate streaming
media into Flex applications. Flex supports the Flash Video File (FLV)
and MP3 file formats with these controls.
For more information, see Chapter 13, “Importing Images and Media,”
on page 361.

Deferred instantiation Deferred instantiation lets you determine when controls and other
components are created when you invoke a Flex application.
For more information, see Chapter 25, “Applying Deferred
Instantiation,” on page 557.

Feature Description
Summary of Flex application features 83

JSP tag library You can use the Flex JSP tag library to add MXML code to your JSPs
or create custom HTML wrappers for your Flex applications.
For more information, see Chapter 35, “Using the Flex JSP Tag
Library,” on page 741.

ActionScript scripting ActionScript lets you perform actions with the components that are
represented by MXML tags. You use ActionScript in your Flex
applications to do the following:
• Handle events
• Define custom functions and methods
• Call ActionScript functions
• Work with components after they are instantiated
For more information, see Chapter 15, “Working with ActionScript in
Flex,” on page 393.

Debugging Flex includes support for debugging and warning messages, an error-
reporting mechanism, and a command-line ActionScript debugger to
assist you in debugging your application.
For more information, see Chapter 33, “Debugging Flex Applications,”
on page 705.

ActionScript profiling The ActionScript Profiler helps you identify performance problems in
applications. It can show you where too many calls to a particular
method might be occurring or where an object’s instantiation might be
taking too long.
For more information, see Chapter 34, “Profiling ActionScript,” on
page 729.

Administration Flex includes several configuration files to administer the behavior of
your applications. Settings specific to the Flex application are defined
in the flex_app_root/WEB-INF/flex/flex-config.xml file. Web application
settings are located in the flex_app_root/WEB-INF/web.xml file.
You can use the mxmlc tool included with Flex to compile your MXML
files into SWF files without requesting them from a browser or Flash
Player. To use mxmlc, you must have a Java runtime environment
(JRE) in your system path.
For more information, see Chapter 36, “Administering Flex,” on
page 753.

Feature Description
84 Chapter 4: Developing Applications

P
A

R
T

 II
PART II
Building User Interfaces to Flex Applications
This part describes how to use Macromedia Flex components to build the user interface to your
application.

The following chapters are included:

Chapter 5: Using Flex Components . 87

Chapter 6: Using Controls . 103

Chapter 7: Using Data Provider Controls . 175

Chapter 8: Introducing Containers . 237

Chapter 9: Using the Application Container . 265

Chapter 10: Using Layout Containers . 279

Chapter 11: Using Navigator Containers . 325

Chapter 12: Dynamically Repeating Controls and Containers . 351

Chapter 13: Importing Images and Media . 361

CHAPTER 5
Using Flex Components
Macromedia Flex provides a component-based development environment that you use to develop
your applications. Components have a flexible set of characteristics that let you control and
configure them as necessary for your application requirements. This chapter contains an overview
of components, component syntax, and component configuration.

Contents

About components. 87

Class hierarchy for components . 88

Using styles . 96

Using behaviors . 97

Handling events . 97

Applying skins . 98

Sizing components . 99

Changing the appearance of a component at runtime . 99

Extending components . 101

About components

Flex includes a component-based development model that you use to develop your application
and its user interface. You can use the prebuilt components included with Flex, you can extend
components to add new properties and methods, and you can create new components as required
by your application.

Components are extremely flexible and allow you a large amount of control over the component’s
appearance, how the component reacts to user interactions, the font and font size of any text
included in the component, the size of the component in the application, and many other
characteristics.
87

This chapter contains an overview of many of the characteristics of components, including
the following:

• Events Application or user actions that require a component response. Events include
component creation, mouse actions such as a mouse over, and button clicks.

• Styles Characteristics, such as font, font size, and text alignment. These are the same styles
as defined and used with Cascading Style Sheets (CSS).

• Behaviors Visible or audible changes to the component triggered by an application or user
action. Examples of behaviors are moving or resizing a component based on a mouse click.

• Skins Symbols that control a component’s appearance.
• Size Height and width of a component. All components have a default size. You can use the

default size, specify your own size, or allow Flex to resize a component as part of laying out
your application.

Class hierarchy for components

Flex components are implemented as a class hierarchy in ActionScript. Each component in your
application is therefore an instance of an ActionScript class. The following figure shows this
hierarchy:

All components are derived from the ActionScript classes MovieClip, UIObject and
UIComponent and inherit the properties and methods of their parent classes. In addition,
components inherit other characteristics of the parent classes, including event, style, and behavior
definitions.

In general, you can do the following with components:

• Set most writable properties, and some read-only properties, of an ActionScript class in
MXML.

• Set all event, style, and behavior properties of an ActionScript class in MXML.

Note: You cannot reference ActionScript methods in MXML; you can only reference them in
ActionScript.

UIObject

UIComponent

All Components

MovieClip
88 Chapter 5: Using Flex Components

Using the MovieClip class

The MovieClip class is the base class for all Flex components. The MovieClip class is part of the
ActionScript language; it is not specific to Flex. Therefore, the documentation on the MovieClip
API is contained in Flex ActionScript Language Reference.

The following table lists the properties and methods inherited by all components from the
MovieClip parent class that Macromedia recommends that you use with Flex. This table also lists
properties and methods that you should not use with Flex, and the Flex substitute. Do not use
any properties or methods of the MovieClip class that are not in this table.

MovieClip Property/Method Notes

General
Methods

attachAudio()

 attachMovie() Use UIObject.createObject() and View.createChild()
instead.

 createEmptyMovieClip() Use UIObject.createEmptyObject() instead.

 createTextField() Use UIObject.createLabel() instead.

 duplicateMovieClip() Use createObject() and createChild() instead.

 getBounds()

 getBytesLoaded() Use the Loader control instead.

 getBytesTotal() Use the Loader control instead.

 getDepth() You can use this method, but you should use the
DepthManager instead.

 getInstanceAtDepth() You can use this method, but you should use the
DepthManager instead.

 getNextHighestDepth() You can use this method, but you should use the
DepthManager instead.

getSWFVersion()
getTextSnapshot()
getURL()
globalToLocal()
hitTest()

 loadMovie() Use the Loader control instead.

 loadVariables()
localToGlobal()

 removeMovieClip() Use destroyObject() instead.

 setMask() Use UIObject.setMask() instead

 startDrag()/stopDrag() Do not use in Flex. Use the Drag Manager instead.

 unloadMovie()
Class hierarchy for components 89

Using the UIObject and UIComponent classes

The UIObject and UIComponent classes are specific to Flex, and the documentation on their
API is in Flex ActionScript and MXML API Reference. The following table lists many of the items
inherited by all components from the UIObject and UIComponent parent classes. For a complete
reference, see Flex ActionScript and MXML API Reference.

Drawing
methods

beginFill()
beginGradientFill()
clear()
curveTo()
endFill()
lineStyle()
lineTo()
moveTo()

Properties _alpha Use UIObject.alpha instead.

 _droptarget You should use the DepthManager instead.

enabled
focusEnabled
_focusrect
hitArea
menu
_name
_soundbuftime
tabChildren
tabEnabled
tabIndex
_target
_url

 UIObject UIComponent

Methods addEventListener()
dispatchEvent()
getStyle()
invalidate()
move()

removeEventListener()
resumeBackgroundProcessing()
setSize()
setStyle()
suspendBackgroundProcessing()

getFocus()
setFocus()

Properties alpha
id
height
heightFlex
maxHeight
maxWidth
minHeight
minWidth
mouseX
mouseY
parentApplication
parentDocument

preferredHeight
preferredWidth
scaleX
scaleY
styleName
toolTip
visible
width
widthFlex
x
y

enabled
tabEnabled
tabIndex

MovieClip Property/Method Notes
90 Chapter 5: Using Flex Components

Common properties

The following table lists the common properties of components that extend the UIObject and
UIComponent classes:

Events creationComplete
dragBegin
dragComplete
dragDrop
dragEnter
dragExit
dragOver
draw
endEffect

initialize
load
mouseChangeSomewhere
mouseDown
mouseOut
mouseOver
mouseUp
move
unload

focusIn
focusOut
hide
invalid
keyDown
keyUp
resize
show
valid
valueCommitted

Styles backgroundColor
backgroundDisabledColor
backgroundImage
barColor
borderCapColor
borderColor
borderStyle
buttonColor
color
disabledColor
embedFonts
fontFamily
fontSize
fontStyle
fontWeight

highlightColor
lineHeight
marginLeft
marginRight
modalTransparency
scrollTrackColor
shadowCapColor
shadowColor
symbolBackgroundColor
symbolBackgroundPressedColor
symbolColor
textAlign
textDecoration
textIndent
themeColor
trackColor

Behaviors focusInEffect
focusOutEffect
hideEffect
moveEffect
mouseDownEffect

mouseOverEffect
mouseOutEffect
mouseUpEffect
resizeEffect
showEffect

Property Type Description Req/Opt

alpha Number Specifies the transparency of a component. Possible
values are 0 (invisible) through 100 (opaque). Device fonts
do not honor the alpha setting, but embedded fonts do.
The default value is 100.

Optional

enabled Boolean Setting to true allows the component to accept keyboard
focus and mouse input. The default value is true.
If you set enabled to false for a container, Flex dims the
color of the container and of all of its children, and blocks
user input to the container and to all of its children.

Optional

height Number Number that specifies the height of the component, in
pixels.

Optional

 UIObject UIComponent
Class hierarchy for components 91

heightFlex Number Setting to a positive number enables resizing of the
component height. The default value is 0, which means
that the component is not resizable.

Optional

id String Specifies the component identifier; this value becomes the
instance name of the object.

Optional

maxHeight Number Number that specifies the maximum height of the
component, in pixels.

Optional

maxWidth Number Number that specifies the maximum width of the
component, in pixels.

Optional

minHeight Number Number that specifies the minimum height of the
component, in pixels.

Optional

minWidth Number Number that specifies the minimum width of the
component, in pixels.

Optional

mouseX Number Read-only property that contains the x-position, in pixels,
of the mouse pointer relative to the upper-left corner of the
component.

Optional

mouseY Number Read-only property that contains the y-position, in pixels,
of the mouse pointer relative to the upper-left corner of the
component.

Optional

parentApplication Object Contains a reference to the Application object for the
application that contains the component. The value is
undefined for the top-level Application object.

Optional

parentDocument Object Contains a reference to the next level up in the document
chain of a Flex application.

Optional

preferredHeight Number Number that specifies the preferred height of the
component, in pixels.

Optional

preferredWidth Number Number that specifies the preferred width of the
component, in pixels.

Optional

scaleX Number Number that specifies the horizontal scaling percentage.
The default value is 100.

Optional

scaleY Number Number that specifies the vertical scaling percentage. The
default value is 100.

Optional

styleName String Specifies the style class to apply to the component. Optional

tabEnabled Boolean Specifies whether the component is included in automatic
tab ordering (true) or not (false). The default value is true.

Optional

tabIndex Number Number specifying the component’s tabbing order in
relation to other components in an application.

Optional

toolTip String Text string displayed when the mouse pointer hovers over
that component.

Optional

Property Type Description Req/Opt
92 Chapter 5: Using Flex Components

Using MXML and ActionScript in an application

Every Flex component has an MXML API and an ActionScript API. A component’s MXML tag
properties are equivalent to its ActionScript properties, styles, behaviors, events, and skins. You
can use both MXML and ActionScript when working with components.

To configure a component:

1. Set the value of a component property, event, style, or behavior declaratively in an MXML tag,
or at runtime in ActionScript code.

2. Call a component’s methods at runtime in ActionScript code. The methods of an ActionScript
class are not exposed in the MXML API.

The following example creates a Button control in MXML. Clicking the Button control updates
the text of a TextArea control using an ActionScript function.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<!-- ActionScript to handle event. -->
<mx:Script>

<![CDATA[
function handleClick()
{

text1.text="Thanks for the click!";
}

]]>
</mx:Script>

<!-- MXML component definition. -->
<mx:Button id="button1" label="Click here!" width="100"

click="handleClick()" fontSize="12" />

visible Boolean Boolean value that specifies whether the container is
visible or invisible. The default value is true to specify
visible.

Optional

width Number Number that specifies the width of the component, in
pixels.

Optional

widthFlex Number Setting to a positive number enables resizing of the
component width. The default value is 0, which means that
the component is not resizable.

Optional

x Number Number that specifies the component’s x-position within
its parent container. Only recognized when the component
is a child of a Canvas container.

Optional

y Number Number that specifies the component’s y-position within
its parent container. Only recognized when the component
is a child of a Canvas container.

Optional

Property Type Description Req/Opt
Class hierarchy for components 93

<mx:TextArea id="text1" />

</mx:Application>

where:

• id is a property inherited by the Button control from the UIObject class that you use to specify
a unique identifier for the component. This property is optional, unless you want to process
the component using ActionScript. The identifier becomes the symbol name of the
component in ActionScript.

• label is a property defined by the Button control that specifies the text that appears in the
button.

• width is a property inherited from the UIObject class that optionally specifies the width of the
button, in pixels.

• click is an event defined by the Button control that specifies the ActionScript code executed
when a user selects the Button control.

• fontSize is a style inherited from the UIObject class that specifies the font size of the label
text, in pixels.

The click property can also take the ActionScript code as its value, without you having to specify
it in a function. Therefore, you can rewrite this example as the following code shows:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Button id="button1" label="Click here!" width="100"
click='text1.text="Thanks for the click!";' fontSize="12" />

<mx:TextArea id="text1" />

</mx:Application>

While you can specify many statements of ActionScript code, separated by semicolons, as the
value of the click property, for readability you should limit it to only one or two lines of code.

Accessing read-only ActionScript properties in MXML

ActionScript classes define some properties as read-write and others as read-only. To set the value
of a read-write property, assign a value to the property in MXML or ActionScript. The previous
example set the read-write label property of a Button control.

MXML lets you set some read-only properties of a class. For example, in MXML, you can set the
contentPath property of the MediaPlayback control when you create it, as the following
example shows:
<mx:MediaPlayback contentPath="http://myhost.com/media/MyVideo.flv" />

Initializing components at runtime

Flex evaluates MXML properties at compile-time to initialize your components. However, you
might want to use some logic to determine initial values at runtime. For example, you might want
to initialize a component with the current date or time. Flex must calculate this type of
information when the application executes.
94 Chapter 5: Using Flex Components

Every component supports the initialize event, which lets you specify ActionScript to
initialize a component after the application loads, but before Flex renders it in Flash Player. To
initialize a component with ActionScript, set the initialize property to point to a function that
you create in an <mx:Script> block.

The following example configures Flex to call the initDate() function when it initializes the
Label control. When Flex finishes instantiating the Label control, and before it draws the first
screen in the application, Flex calls the initDate() function.
<mx:Script>

<![CDATA[
function initDate() {
label1.text = label1.text + Date();
}

]]>
</mx:Script>

<mx:Label id="label1" text = "Today's Date: " initialize="initDate()"
width="300" />

You can also express the previous example without a function call by adding the ActionScript
code in the component’s definition. The following example does the same thing, but without an
explicit function call:
<mx:Label id="label1" text = "Today's Date: "

initialize="label1.text = label1.text + Date();" width="300" />

As with other calls that are embedded within component definitions, you can add multiple
ActionScript statements to the initialize property by separating each function or method call
with a semicolon. The following example calls both the initDate() and the setColor()
functions when the label1 component is instantiated:
<mx:Label id="label1" text = "Today's Date: "

initialize="initDate(); setColor('blue');" width="300" />

MXML and ActionScript summary

The following table summarizes the MXML and ActionScript component APIs that you use to
configure components:

 MXML example ActionScript example

Read-
write
property

<mx:Tile id="tile1"
label="My Tile"
visible="true" />

tile1.visible="false";
tile1.label="My Tile";

Read-only
property

For read-only properties that are
settable in MXML.
<mx:MediaPlayback id="mp1"

contentPath="http://
myhost.com/media/MyVideo.flv"
/>

Get the value of a read-only property:
var cPath:String=mp1.contentPath;

Method Methods are not available in MXML. myList.sortItemsBy("data", "DESC");
Class hierarchy for components 95

Using styles

Flex defines styles for setting some of the characteristics of components, such as fonts, margins,
and alignment. These are the same styles as defined and used with Cascading Style Sheets (CSS).
The UIObject and UIComponent classes define the global styles available for all components. In
addition, each component can define its own styles.

You can set all styles in MXML as tag properties. Therefore, you can set the margins for a Box
container using the following syntax:
<mx:VBox id="myVBox1" marginTop="12" marginBottom="12" />

<mx:Button label="Submit"/>
</mx:VBox>

You can also configure styles in MXML using the <mx:Style> tag, or in ActionScript using the
setStyle() method. The <mx:Style> tag contains style declarations, or a reference to an
external file that contains style declarations, as the following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Style>
.myClass { horizontalAlign: "left";}
Box { marginTop: "12"; marginBottom: "12";}
Tile { verticalGap: "10"; horizontalGap: "10";}

</mx:Style>

<mx:VBox id="myVBox1" />
<mx:Button label="Submit"/>

</mx:VBox>

<mx:VBox id="myVBox2" styleName="myClass" />
<mx:Button label="Submit"/>

</mx:VBox>

</mx:Application>

Event <mx:Accordion id="myAcc"
...
change="handleEvent()" />

listener = new Object();
listener.click = function(evtObj) {

// Handler definition.
}

myButton.addEventListener("click",
listener);

Style <mx:Tile id="tile1"
marginTop="12"
marginBottom="12" />

var currentTopM:Number =
tile1.getStyle("marginTop");

tile1.setStyle("marginTop","12");
tile1.setStyle("marginBottom","12");

Behavior <mx:Tile id="tile1"
showEffect="WipeRight" />

var currentTopM:String =
tile1.getStyle("showEffect");

Use the setStyle() method to set a behavior as
shown in the Style row of this table.

 MXML example ActionScript example
96 Chapter 5: Using Flex Components

A type selector applies a style to all instances of a particular component type. In the preceding
example, you define the top and bottom margins for all Box containers, and the gap for all Tile
containers. All instances of the Box and Tile containers in the MXML file will use these style
settings. Any individual component can override these global settings in the tag definition by
specifying styles using tag properties.

A class selector in a style definition, defined as a label preceded by a period, defines a new named
style, such as myClass in the preceding example. After you define it, you can apply the style to
any component using the styleName property. In the preceding example, you apply the style to
the second VBox container.

You can set a style in ActionScript using the setStyle() method. The setStyle() method takes
two arguments: the style name and the value. For example, you could set the margin as the
following example shows:
myVBox1.setStyle("marginRight", "12");
myVBox1.setStyle("marginLeft", "12");

For more information on styles, see Chapter 19, “Using Styles, Fonts, and Themes,” on page 455.

Using behaviors

A behavior is a combination of a trigger paired with an effect. A trigger is an action, much like an
event, such as a mouse click on a component, a component getting focus, or a component
becoming visible. An effect is a visible or audible change to the component occurring over a period
of time, measured in milliseconds. Examples of effects are fading, resizing, or moving a
component. You can define multiple effects for a single trigger.

Behaviors let you add animation, motion, and sound to your application in response to some user
or programmatic action. For example, you can use behaviors to cause a dialog box to bounce
slightly when it receives focus, or to play a sound when the user enters an invalid value.

Flex uses a Cascading Style Sheet (CSS) to define behavior properties. You can reference the style
properties as tag properties in MXML, within the <mx:Style> tag, or in an ActionScript
function. For example, to configure the effect for the show trigger within an <mx:Image> tag, you
use the following MXML syntax:
<mx:Image showEffect="Fade" source="first.jpeg" />

In this example, the Image control fades in over 500 milliseconds, the default time interval for a
Fade effect.

For more information on behaviors, see Chapter 20, “Using Behaviors,” on page 497.

Handling events

Flex applications are event-driven. Events let a programmer know when the user has interacted
with an interface component, and also when important changes have happened in the appearance
or life cycle of a component, such as the creation or destruction of a component or its resizing.
Handling events 97

When an instance of a component raises an event, two groups of objects are notified, in the
following order:

1. The component instance

2. Objects that have registered as listeners for that event

You define event handlers in ActionScript to process events. You register event handlers for events
either in the MXML declaration for the component or in ActionScript. The following example
registers an event handler in MXML for an Accordion container change event:
<mx:Script>

<![CDATA[
function handleAccChange()
{

trace(myAcc.selectedChild.label);
};

]]>
</mx:Script>

<mx:Accordion id="myAcc" change="handleAccChange()"/>

You can also pass an event object from the component to the event handler. Depending on the
type of event, the event object can contain additional information that you can use to handle the
event. For more information on events, see Chapter 15, “Working with ActionScript in Flex,” on
page 393.

Applying skins

Skins are symbols a component uses to display its appearance. Skins can be either graphic symbols
or movie clip symbols. Most skins contain shapes that represent the component’s appearance.
Some skins contain only ActionScript code that draws the component in the document.

Each component is composed of many skins. For example, the down arrow of the ScrollBar
component is made up of three skins: ScrollDownArrowDisabled, ScrollDownArrowUp, and
ScrollDownArrowDown. Some components share skins. Components that use scroll bars—
including all containers—share the skins in the ScrollBar Skins folder. You can edit existing skins
and create new skins to change the appearance of a component.

The .as file that defines each component class contains code that loads specific skins for the
component. Each component skin has a skin property that is assigned to a skin symbol’s Linkage
Identifier. For example, the pressed (down) state of the down arrow of the ScrollBar has the skin
property name downArrowDownName. The default value of the downArrowDownName property is
"ScrollDownArrowDown", which is the Linkage Identifier of the skin symbol. You can edit skins
and apply them to a component by using these skin properties. You do not need to edit the
component’s .as file to change its skin properties; you can pass skin property values to the
component’s constructor function when the component is created in your application.

For more information on skins, see Chapter 19, “Using Styles, Fonts, and Themes,” on page 455.
98 Chapter 5: Using Flex Components

Sizing components

Each Component defines rules for determining its size in a Flex application. For example, a
Button control sizes itself to fit its label text, while an Image control sizes itself to the size of the
imported image. In Flex, the default size of a component is called its preferred size and each
component has a preferred height and a preferred width.

The preferred size of a component is not necessarily a fixed value. For a Button control, the
preferred size is a size large enough to fit its text label. For containers, the preferred width is
sometimes calculated by the components within the container. For example, the preferred width
of a vertical Box (VBox) container is the preferred width of its largest child component, plus
any margins.

At runtime, Flex calculates the preferred size of each component and, by default, does not resize a
component from its preferred size. Set the heightFlex or widthFlex property to a positive
integer to allow Flex to resize the component in the corresponding direction.

To understand component sizing, you must be familiar with the following terms:

Preferred height and width The default size of the component. Flex can calculate this value, or
you can set it in MXML and ActionScript using the preferredHeight and preferredWidth
properties.

Maximum height and width The largest size you allow Flex to use for a component, if the
component is resizable. Most components have predefined values for the maximum height and
width, which means that Flex can resize the component up to its maximum size. You can use the
maxHeight and maxWidth properties to set your own values.

Minimum height and width The smallest size that you allow Flex to use for a component, if the
component is resizable. Most components have predefined values for the minimum height and
width, which means that Flex can resize the component down to its minimum size. You can use
the minHeight or minWidth property to set your own value.

Explicit height and width The size you specify when you create a component. Use the height
and width properties of the component to explicitly set its size. Specifying an explicit height or
width for a component prohibits Flex from resizing it in the corresponding direction.

For more information on sizing components, see Chapter 8, “Introducing Containers,” on
page 237.

Changing the appearance of a component at runtime

You can modify the look, size, or position of a component at runtime using the following
component properties or ActionScript methods:

• x and y
• width and height
• setStyle(stylename, value)

You can only set the x and y properties of a component when the component is within a Canvas
container. All other containers perform automatic layout to set the x and y properties of their
children using layout rules.
Changing the appearance of a component at runtime 99

For example, you could use the x and y properties to reposition a Button control 10 pixels to the
right and 10 pixels down in response to a Button click, as the following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script>
<![CDATA[

function moveButton()
{

myButton.x = myButton.x +10;
myButton.y = myButton.y +10;

}
]]>

</mx:Script>

<mx:Canvas>
<mx:Button id="myButton" label="Move Button" click="moveButton()"/>

</mx:Canvas>

</mx:Application>

In this application, you can move the Button control without concern for other components.
However, moving a component in an application that contains multiple components, or
modifying one child of a container that contains multiple children, can cause one component to
overlap another, or in some other way affect the layout of the application. Therefore, you should
be careful when you perform runtime modifications to container layout.

You can set the width and height properties for a component regardless of the container that
holds it. The following example increases the width and height of a Button control by 10 pixels
each time the user selects it:
<mx:Script>

<![CDATA[

function resizeButton()
{

myOtherButton.height = myOtherButton.height + 10;
myOtherButton.width = myOtherButton.width + 10;

}
]]>

</mx:Script>

<mx:VBox borderStyle="solid" height="200" width="200" >

<mx:Button id="myOtherButton" label="Resize Button" click="resizeButton()"/>

</mx:VBox>

If the container that holds the Button control is any container other than the Canvas container, it
repositions its children based on the new size of the Button control. The Canvas container
performs no automatic layout, so changing the size of one of its children does not cause the
position or size of any other children within it to be modified.
100 Chapter 5: Using Flex Components

Extending components

Flex provides several ways for you to extend existing components or to create new components.
By extending a component, you can add new properties or methods to it.

For example, the following MXML component, defined in the file MyComboBox.mxml, extends
the standard ComboBox control to initialize it with the postal abbreviations of all 50 states:
<!-- MyComboBox.mxml -->
<?xml version="1.0"?>
<mx:ComboBox xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:dataProvider>
<mx:Array>

<mx:String>AK</mx:String>
<mx:String>AL</mx:String>

...
</mx:Array>

</mx:dataProvider>
</mx:ComboBox>

After you create it, you can use your new component anywhere in a Flex application by specifying
its filename as its MXML tag name, as the following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

xmlns:local="*">

<local:MyComboBox id="stateNames" />

</mx:Application>

In this example, the new component is in the same directories as your application file, and maps
the local namespace (*) local.

Flex provides several methods for creating custom components. The method you choose depends
on your application and the requirements of your component. To create new components, use
one of the following methods:

• Create components as MXML files and use them as custom tags in other MXML files. MXML
components provide an easy way to extend an existing Flex component and encapsulate the
appearance and behavior of a component in a custom MXML tag. For more information, see
Chapter 14, “Building an Application with Multiple MXML Files,” on page 383.

• Create components as ActionScript files and use them as custom tags. You can derive your
components from the same class hierarchy as the Flex components. For more information, see
Chapter 17, “Creating ActionScript Components,” on page 437.

• Create components as SWC files using Macromedia Flash MX 2004. This method lets you
create components using the Flash MX 2004 authoring environment, and import your
components into Flex. For more information, see Chapter 39, “Working with Flash MX
2004,” on page 817.
Extending components 101

102 Chapter 5: Using Flex Components

CHAPTER 6
Using Controls
Controls are user-interface components such as Button, TextArea, and ComboBox controls. This
chapter describes how to use controls in a Macromedia Flex application.

Flex has two types of controls: basic and data provider. This chapter contains an overview of all
Flex controls, and describes the basic Flex controls. For information on data provider controls, see
Chapter 7, “Using Data Provider Controls,” on page 175.

Contents

About controls . 104

Working with controls . 107

Button control . 109

CheckBox control . 113

DateChooser . 116

DateField control . 123

HRule and VRule controls . 130

HSlider and VSlider controls . 133

Label control . 144

Link control . 149

Loader control . 151

NumericStepper control. 153

ProgressBar control . 156

RadioButton control . 161

ScrollBar control . 165

Text control . 166

TextArea control . 169

TextInput control. 172
103

About controls

Controls are user-interface components, such as Button, TextArea, and ComboBox controls. You
place controls in containers, which are user-interface components that provide a hierarchical
structure for controls and other containers. Typically, you define a container, and then insert
controls or other containers in it.

At the root of a Flex application is the <mx:Application> tag, which represents a base container
that covers the entire Macromedia Flash Player drawing surface. You can place controls or
containers directly under the <mx:Application> tag or in other containers. For more
information on containers, see Chapter 8, “Introducing Containers,” on page 237.

Most controls have the following characteristics:

• MXML API for declaring the control and the values of its properties and events
• ActionScript API for calling the control’s methods and setting its properties at runtime
• Customizable appearance using styles, skins, and fonts

The following figure shows several controls used in a Form container:

The MXML and ActionScript APIs let you create and configure a control. The following MXML
code example creates a TextInput control in a Form container:
...
<mx:Form width="300" height="100" >
...

<mx:FormItem label="Card Name">
<mx:TextInput id="cardName"/>

</mx:FormItem>
...
</mx:Form>
...

TextInput controls

ComboBox control

Button control

Form container
104 Chapter 6: Using Controls

While you commonly use MXML as the language for building Flex applications, you can also use
ActionScript to configure controls. For example, the following code populates a DataGrid control
by providing an Array of items as the value of the DataGrid control’s dataProvider property:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Script>
<![CDATA[

function myGrid_initialize(event)
{

myGrid.dataProvider =
[

{ Artist:'Pavement', Album:'Slanted and Enchanted', Price:11.99 },
{ Artist:'Other', Album:'Other', Price:5.99 }

];
}

]]>
</mx:Script>

<mx:DataGrid id="myGrid" width="350" height="150"
initialize="myGrid_initialize();" color="#7B0974"/>

</mx:Application>

Using data provider controls

Several Flex components, such as the DataGrid, Tree, and ComboBox controls, take input data
from a data provider. A data provider is a collection of objects, similar to an array. For example, a
Tree control reads data from the data provider to define the structure of the tree and any
associated data assigned to each tree node.

The data provider creates a level of abstraction between Flex components and the data that you
use to populate them. You can populate multiple components from the same data provider,
switch data providers for a component at runtime, and modify the data provider so that changes
are reflected by all components using the data provider.

You can think of the data provider as the model, and the Flex components as the view onto the
model. By separating the model from the view, you can change one without changing the other.

This chapter describes the basic controls. For information on data provider controls, see
Chapter 7, “Using Data Provider Controls,” on page 175.

Flex controls

The following table lists all the controls available with Flex, both basic and data provider:

Control Description For more information

Button Displays a variable-size button that can
include a label, an icon image, or both.

“Button control” on page 109

CheckBox Shows whether a particular Boolean
value is true (checked) or false
(unchecked).

“CheckBox control” on page 113
About controls 105

ComboBox Displays a drop-down list attached to a
text field that contains a set of values.

“ComboBox control” on page 189

DataGrid Displays data in a tabular format. “DataGrid control” on page 197

DateChooser Displays a full month of days to let you
select a date.

“DateChooser” on page 116

DateField Displays the date with a calendar icon on
its right side. When a user clicks
anywhere inside the control, a
DateChooser control pops up and
displays a month of dates.

“DateField control” on page 123

HRule/VRule Displays a single horizontal rule (HRule)
or vertical rule (VRule).

“HRule and VRule controls”
on page 130

HSlider/VSlider Lets users select a value by moving a
slider thumb between the end points of
the slider track.

“HSlider and VSlider controls”
on page 133

Image Imports a JPEG, PNG, GIF, or SVG
image or SWF file.

“Using the <mx:Image> tag”
on page 362

Label Displays a noneditable single-line field
label.

“Label control” on page 144

Link Displays a simple hypertext link. “Link control” on page 149

List Displays a scrollable array of choices. “List control” on page 207

Loader Displays the contents of a specified SWF
or JPEG file.

“Loader control” on page 151

Menu Displays a pop-up menu of individually
selectable choices, much like the File or
Edit menu of most software applications.

“Menu control” on page 216

MenuBar Displays a horizontal menu bar that
contains one or more submenus of Menu
controls.

“MenuBar control” on page 222

NumericStepper Displays a dual button control you can use
to increase or decrease the value of the
underlying variable.

“NumericStepper control”
on page 153

ProgressBar Provides visual feedback of how much
time remains in the current operation.

“ProgressBar control” on page 156

RadioButton Displays a set of buttons of which exactly
one is selected at any time.

“RadioButton control” on page 161

RadioButton
Group

A group of RadioButton controls with a
single click handler.

“RadioButtonGroup control syntax”
on page 164

Control Description For more information
106 Chapter 6: Using Controls

Working with controls

Flex controls share a common class hierarchy. Therefore, you use a similar procedure to configure
all controls. This section describes the following:

• “Class hierarchy of controls” on page 107
• “Sizing controls” on page 108
• “Positioning controls” on page 108
• “Changing the appearance of controls” on page 109

Class hierarchy of controls

Flex controls are ActionScript objects derived from the mx.core.UIObject and
mx.core.UIComponent classes, as the following figure shows. Controls inherit the properties,
methods, and events of these objects.

ScrollBar
(HScrollBar and
VScrollBar)

Displays horizontal and vertical scroll
bars. Combines a NumericStepper
control and a slider control to implement
the scrolling functionality in the attached
data element.

“ScrollBar control” on page 165

Text Displays a noneditable multiline text field. “Text control” on page 166

TextArea Displays an editable text field for user
input that can accept more than a single
line of input.

“TextArea control” on page 169

TextInput Displays an editable text field for a single
line of user input. Can contain
alphanumeric data, but input will be
interpreted as a String data type.

“TextInput control” on page 172

Tree Displays hierarchical data arranged as an
expandable tree.

“Tree control” on page 230

Control Description For more information

UIObject

UIComponent

control

MovieClip
Working with controls 107

The MovieClip and UIObject classes are the base classes for all Flex components. Subclasses of
the UIObject class can have shape, draw themselves, and be invisible. The UIComponent class is
the base class for all Flex components other than the Label and ProgressBar controls, which are
direct subclasses of the UIObject class. A class derived from the UIComponent class can
participate in tabbing, accept low-level events like keyboard and mouse input, and be disabled so
that it does not receive mouse and keyboard input.

For more information on the interfaces inherited by controls from the MovieClip, UIObject, and
UIComponent classes, see Chapter 5, “Using Flex Components,” on page 87.

Sizing controls

All controls define rules for determining their size in a Flex application. For example, a Button
control sizes itself to fit its label text, while an Image control sizes itself to the size of the imported
image. In Flex, the default size of a component is called its preferred size, and each component has
a preferred height and a preferred width. The preferred size of each standard control is specified in
the description of each control.

The preferred size of a component is not necessarily a fixed value. For example, for a Button
control, the preferred size is a size large enough to fit its text label. At runtime, Flex calculates the
preferred size of each component and, by default, will not resize a component from its preferred
size. Set the heightFlex or widthFlex properties to positive integers to allow Flex to resize the
component in the corresponding direction. For more information on these properties, see
Chapter 8, “Introducing Containers,” on page 237.

You can also specify explicit sizes for a control using its height and width properties. You set the
height and width of the addr2 TextInput control in the following example to 20 pixels and 100
pixels, respectively:
<mx:TextInput id="addr2" width="100" height ="20" />

To resize a control at runtime, set its width and height properties. For example, the click event
handler for the following Button control sets the width property of the addr2 TextInput control
to increase its width by ten pixels:
<mx:Button id="button1" label="Slide" height="20"

click="addr2.width+=10;" />

Many resizable components have undefined maximum sizes, which means that Flex can make
them as large as necessary to fit the requirements of your application. While some components
have a defined minimum size, others have no specific minimum size. You can use the maxHeight,
maxWidth, minHeight, and minWidth properties to set explicit size ranges for each component.

Positioning controls

You place controls inside containers. Only a Canvas container allows absolute positioning of its
children. All other container types have predefined layout rules that determine the position of
their children. For more information about layout management, see Chapter 8, “Introducing
Containers,” on page 237.
108 Chapter 6: Using Controls

To absolutely position a control in a Canvas container, you set its x and y properties to specific
horizontal and vertical pixel coordinates within the container. These coordinates are relative to the
upper-left corner of the Canvas container, where the upper-left corner is at coordinates (0,0).
Values for x and y can be positive or negative integers. You can use negative values to place a
control outside of the visible area of the container, then use ActionScript to move the child to the
visible area, possibly as a response to an event.

The following example places the TextInput control 150 pixels to the right and 150 pixels down
from the upper-left corner of the Canvas container:
<mx:TextInput id="addr2" width="100" height ="20" x="150" y="150" />

To reposition a control within a Canvas container at runtime, you set its x and y properties. For
example, the click handler for the following Button control moves the TextInput control down
10 pixels from its current position:
<mx:Button id="button1" label="Slide" height="20" x="0" y="250"

click="addr2.y = addr2.y+10);" />

Changing the appearance of controls

Styles, skins, and fonts let you customize the appearance of controls. They describe aspects of
components that you want components to have in common. Typically, you configure things like
font family, text alignment, and color. Each control defines a set of styles, skins, and fonts that
you can set; some are specific to a particular type of control, while others are more general.

For example, you can set styles for a specific control in the control’s MXML tag or using
ActionScript, or globally for all instances of a specific control using the <mx:Style> tag for an
entire application.

The current theme for your application defines the styles that you can set on the controls within
it. That means some style properties might not always be settable. For more information, see
Chapter 19, “Using Styles, Fonts, and Themes,” on page 455.

Button control

The Button control is a commonly used rectangular button. Button controls look like they can be
pressed, and have a text label, an icon, or both on their face. Button controls typically perform an
action when clicked, but toggle-style Button controls stay pressed when clicked and act like a
radio button. When a user clicks the mouse on a Button control, it broadcasts a click event. You
can customize the look of a Button control and change its functionality from push to toggle.

The following figure shows a Button control:
Button control 109

The Button control has the following default properties:

Creating a Button control

You define a Button control in MXML using the <mx:Button> tag, as the following example
shows. Specify an id value if you intend to refer to a component elsewhere in your MXML, either
in another tag or in an ActionScript block. The following code creates a Button control with the
label “Hello world!”:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Button id='button1' label="Hello world!" width="100"/>
</mx:Application>

A Button control’s icon, if specified, and label are centered within the bounds of the Button
control. You can position the text label in relation to the icon using the labelPlacement
property, which accepts the values right, left, bottom, and top.

Sizing a Button control

By default, Flex stretches the Button control width to fit the size of its label, any icon, plus a six-
pixel margin around the icon. If you use the widthFlex or heightFlex properties to make a
Button resizable, resizing a Button control does not change the size of the label or icon.

If you explicitly size a Button control so that it is not large enough to accommodate its label, Flex
clips the label. Text that is vertically larger that the Button control is clipped. If you explicitly size
a Button control so that it is not large enough to accommodate its icon, icons larger than the
Button control extend outside the Button control’s bounding box.

User interaction

When a user clicks the mouse on a Button control, the Button control broadcasts a click event,
as the following example shows:
<?xml version="1.0"?>
<!-- ?xml tag must start in line 1 column 1. -->

<!-- MXML root element tag. -->
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<!-- Flex controls exist in a container. Define a vertical Box container for
the application. -->
<mx:VBox id="myVbox">

<!-- input field -->
<mx:TextInput id="myInput" width="150" text="" />

Property Default

preferred size A size large enough to hold the label text, and any icon.

minimum size 0

maximum size no limit
110 Chapter 6: Using Controls

<!-- Button control that triggers the copy. -->
<mx:Button id="myButton" label="Copy Text"

click="myText.text=myInput.text" />

<!-- Output text box. -->
<mx:TextArea id="myText" text="" width="150" height="20" />

</mx:VBox>
</mx:Application>

In this example, clicking the Button control copies the text from the TextInput control to the
TextArea control.

If a Button control is enabled, it behaves as follows:

• When the user moves the mouse pointer over the Button control, the Button control displays
its roll-over appearance.

• When the user clicks the Button control, focus moves to the control and the Button control
displays its pressed appearance. When the mouse button is released, the Button control returns
to its roll-over appearance.

• If the user moves the mouse pointer off the Button control while pressing the mouse button,
the control’s appearance returns to the original state and retains focus.

• If the toggle property is set to true, the state of the Button control does not change until the
mouse button is released over the control.

If a Button control is disabled, it displays its disabled appearance, regardless of user interaction. In
the disabled state, all mouse or keyboard interaction is ignored.

Button control syntax

You use the <mx:Button> tag to define a Button control in MXML. The following table describes
the properties defined by the Button control:

Note: The Button control does not respond to the valueCommitted event, even though it is defined in
the UIComponent class.

Property Type Use Description Req/Opt

label String Property Specifies the text label for the control. By default,
the label appears centered within the control.

Optional

labelPlacement String Property Specifies the orientation of the label in relation to a
specified icon. Possible values are right (default),
left, bottom, and top.

Optional
Button control 111

icon File Property Specifies the URL to an image file for an icon that
appears in the control. Image types include JPEG,
GIF, PNG, BMP, and SWF.
You use the following format with this property:
icon="@Embed('relOrAbsoluteURL')"
The referenced image is packaged within the
generated SWF file at compile-time when Flex
creates the SWF file for your application.
If you specify a SWF file, it cannot contain any
ActionScript 2 classes or Macromedia components.
If it does, Flex will not embed the SWF file.

Optional

selected Boolean Property Specifies whether the button is toggled, true, or
not, false. The default value is false.

Optional

toggle Boolean Property Specifies whether a button can be toggled, true, or
acts like a pushbutton, false. The default value is
false.

Optional

repeatDelay Number Style Specifies the number of milliseconds to wait after
the first buttonDown event before repeating
buttonDown events at the repeatInterval. The
default value is 500 milliseconds.

Optional

repeatInterval Number Style Specifies the number of milliseconds between
buttonDown events if you press and hold a button.
The default value is 35.

Optional

textAlign String Style Specifies the alignment of text. Valid values are
left, center, and right. The default value is center,
This property is only recognized when
labelPlacement is left or right. If labelPlacement is
top or bottom, the text and icon are centered.

Optional

click Event Specifies a handler for click events.
The target property of the event object contains a
reference to the Button control. The type property
contains the string click.

Optional

buttonDragOut Event Broadcast when the user clicks a Button control,
then drags off of it.
The target property of the event object contains a
reference to the Button control. The type property
contains the string buttonDragOut.

Optional

buttonDown Event Broadcast when the user clicks the Button control.
The click event is triggered when the user releases
the mouse.
The target property of the event object contains a
reference to the Button control. The type property
contains the string buttonDown.

Optional

Property Type Use Description Req/Opt
112 Chapter 6: Using Controls

Button control skins

The following table describes the skins that you can use with the Button control:

CheckBox control

The CheckBox control is a commonly used graphical control that can contain a check mark or be
unchecked (empty). You can use CheckBox controls wherever you need to gather a set of true or
false values that aren’t mutually exclusive. You can add a text label to a CheckBox control and
place it to the left, right, top, or bottom of the check box. When a user clicks a CheckBox control
or its associated text, the CheckBox control changes its state from checked to unchecked, or from
unchecked to checked.

The following figure shows a CheckBox control:

Skin Description

falseUpSkin Specifies the skin for the up state. The default value is ButtonSkin.

falseDownSkin Specifies the skin for the pressed state. The default value is ButtonSkin.

falseOverSkin Specifies the skin for the over state. The default value is ButtonSkin.

falseDisabledSkin Specifies the skin for the disabled state. The default value is ButtonSkin.

trueUpSkin Specifies the skin for the toggled state. The default value is ButtonSkin.

trueDownSkin Specifies the skin for the pressed-toggled state. The default value is
ButtonSkin.

trueOverSkin Specifies the skin for the over-toggled state. The default value is ButtonSkin.

trueDisabledSkin Specifies the skin for the disabled-toggled state. The default value is
ButtonSkin.

falseUpIcon Specifies the skin for the icon up state. The default value is undefined.

falseDownIcon Specifies the skin for the icon pressed state. The default value is undefined.

falseOverIcon Specifies the skin for the icon over state. The default value is undefined.

falseDisabledIcon Specifies the skin for the icon disabled state. The default value is undefined.

trueUpIcon Specifies the skin for the icon toggled state. The default value is undefined.

trueOverIcon Specifies the skin for the icon over-toggled state. The default value is
undefined.

trueDownIcon Specifies the skin for the icon pressed-toggled state. The default value is
undefined.

trueDisabledIcon Specifies the skin for the icon disabled-toggled state. The default value is
undefined.
CheckBox control 113

A CheckBox control can have one of two enabled states: checked or unchecked. When checked,
the CheckBox control contains a check mark. When unchecked, the CheckBox control is empty.
A CheckBox control can also have one of two disabled states, checked or unchecked. By default, a
disabled CheckBox control displays a different background and check mark color. The label of a
CheckBox control is clipped to fit the boundaries of the control.

The CheckBox control has the following default properties:

Creating a CheckBox control

You use the <mx:CheckBox> tag to define a CheckBox control in MXML, as the following
example shows. Specify an id value if you intend to refer to a component elsewhere in your
MXML, either in another tag or in an ActionScript block.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:VBox>
<mx:CheckBox width="100" label="Employee?" />

</mx:VBox>

</mx:Application>

User interaction

When the CheckBox control is enabled and the user clicks it, it receives focus and displays its
checked or unchecked appearance, depending on its initial state. The entire bounding box of the
CheckBox control is the hit area; if the CheckBox control’s font is larger than its icon, there are
clickable regions above and below the icon.

If the user moves the mouse pointer outside the bounding area of the CheckBox control or its
label while pressing the mouse button, the appearance of the CheckBox control returns to its
original state and it retains focus. The state of the CheckBox control does not change until the
user releases the mouse button over the component.

Users cannot interact with a CheckBox control when it is disabled.

Property Default

preferred size A size large enough to hold the label

minimum size 0

maximum size No limit
114 Chapter 6: Using Controls

CheckBox control syntax

You use the <mx:CheckBox> tag to define a CheckBox control. The following table describes the
properties defined by the CheckBox control:

CheckBox skins

A CheckBox component uses the following skin properties:

Property Type Use Description Req/Opt

label String Property Specifies the text label for the control. Optional

labelPlacement String Property Specifies the orientation of the label. Possible
values are right (default), left, bottom, and top.

Optional

selected Boolean Property Contains true if the CheckBox control is displaying
a check, and false if not. The default value is false.
You can read the value of this property to determine
whether a user selected the control, or set it to
configure the display of the control.

Optional

click Event Specifies a handler for click events.
The target property of the event object contains a
reference to the CheckBox control. The type
property contains the string click.

Optional

buttonDragOut Event Broadcast when the user clicks on a check box then
drags off of the CheckBox control.
The target property of the event object contains a
reference to the CheckBox control. The type
property contains the string buttonDragOut.

Optional

buttonDown Event Broadcast when the user clicks the check box. The
click event is broadcast when the user releases the
mouse.
The target property of the event object contains a
reference to the CheckBox control. The type
property contains the string buttonDown.

Optional

Skin Description

falseUpSkin Specifies the skin for the up state. The default value is RectBorder.

falseDownSkin Specifies the skin for the pressed state. The default value is RectBorder.

falseOverSkin Specifies the skin for the over state. The default value is RectBorder.

falseDisabledSkin Specifies the skin for the disabled state. The default value is RectBorder.

trueUpSkin Specifies the skin for the toggled state. The default value is RectBorder.

trueDownSkin Specifies the skin for the pressed-toggled state. The default value is
RectBorder.

trueOverSkin Specifies the skin for the over-toggled state. The default value is RectBorder.

trueDisabledSkin Specifies the skin for the disabled-toggled state. The default value is
RectBorder.
CheckBox control 115

DateChooser

The DateChooser control displays the name of a month, the year, and a grid of the days of the
month, with columns labeled for the days of the week. The user can select a single date from the
grid. The control contains forward and back arrow buttons to let you change the month and year.
You can disable the selection of certain dates, and limit the display to a range of dates.

The following figure shows a DateChooser control:

Changing the displayed month does not change the selected date. Therefore, the currently
selected date might not always be visible.

Using the Date class

The Flex DateChooser control uses the ActionScript Date class to represent a date. For more
information on the Date class, including its properties and methods, see Flex ActionScript
Language Reference.

You can create and configure a Date object in MXML using the <mx:Date> tag. This tag exposes
the setter methods of the Date class as MXML properties so that you can initialize a Date object.
For example, the following code creates a DateChooser control, and sets the selected date to April
10, 2003 (note that months are indexed starting at 0 for the DateChooser control):
<mx:DateChooser id="date1" >

<mx:selectedDate>
<mx:Date month="3" date="10" year="2003" />

</mx:selectedDate>
</mx:DateChooser>

You can also set this property in ActionScript, as the following example shows:
<mx:Script>

<![CDATA[

function initDC()
{

date1.selectedDate= new Date (2003, 3, 10);
}

]]>
</mx:Script>

<mx:DateChooser id="date1" initialize="initDC();" />
116 Chapter 6: Using Controls

The MXML properties of the DateChooser control correspond to the list of setter functions, as
the following table shows:

Creating a DateChooser control

You define a DateChooser control in MXML using the <mx:DateChooser> tag, as the following
example shows. Specify an id value if you intend to refer to a component elsewhere in your
MXML, either in another tag or an ActionScript block.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Script>
<![CDATA[

function useDate(eventObj)
{

//Access the Date object from the event object.
day.text=eventObj.target.selectedDate.getDay();
date.text=eventObj.target.selectedDate.getDate();
month.text=eventObj.target.selectedDate.getMonth();
year.text=eventObj.target.selectedDate.getFullYear();
wholeDate.text=eventObj.target.selectedDate.getFullYear() +

"/" + (eventObj.target.selectedDate.getMonth()+1) +
"/" + eventObj.target.selectedDate.getDate();

}
]]>

Date method MXML property Description

setDate() date Sets the day of the month according to local time.

setFullYear() fullYear Sets the full year according to local time.

setHours() hours Sets the hour according to local time.

setMilliseconds() milliseconds Sets the milliseconds according to local time.

setMinutes() minutes Sets the minutes according to local time.

setMonth() month Sets the month according to local time.

setSeconds() seconds Sets the seconds according to local time.

setTime() time Sets the time in milliseconds.

setUTCDate() UTCDate Sets the date according to universal time.

setUTCFullYear() UTCFullYear Sets the year according to universal time.

setUTCHours() UTCHours Sets the hour according to universal time.

setUTCMilliseconds() UTCMilliseconds Sets the milliseconds according to universal time.

setUTCMinutes() UTCMinutes Sets the minutes according to universal time.

setUTCMonth() UTCMonth Sets the month according to universal time.

setUTCSeconds() UTCSeconds Sets the seconds according to universal time.

setYear() year Sets the year according to local time.
DateChooser 117

</mx:Script>

<mx:DateChooser id="date1" change="useDate(event)" />

<mx:Form>
<mx:FormItem label="Day" >

<mx:TextInput id="day" width="100" />
</mx:FormItem >
<mx:FormItem label="Day of month" >

<mx:TextInput id="date" width="100" />
</mx:FormItem >
<mx:FormItem label="Month" >

<mx:TextInput id="month" width="100" />
</mx:FormItem >
<mx:FormItem label="Year" >

<mx:TextInput id="year" width="100" />
</mx:FormItem >
<mx:FormItem label="Date" >

<mx:TextInput id="wholeDate" width="300" />
</mx:FormItem >

</mx:Form>

</mx:Application>

This example uses the change event of the DateChooser control to display the selected date in
several different formats.

The code that determines the value of the wholeDate field adds 1 to the month number because
the DateChooser control uses a zero-based month system, where January is month 0 and
December is month 11.

Setting DateChooser control properties in ActionScript

Properties of the DateChooser control take values that are scalars, arrays, and Date objects. While
you can set most of these properties in MXML, it can be easier to set others in ActionScript.

For example, the following code example uses an array to set the disabledDays property so that
Monday through Thursday are disabled, which means that they cannot be selected in the
calendar:
<mx:DateChooser id="date1" >

<mx:disabledDays>
<mx:Array>

<mx:String>1</mx:String>
<mx:String>2</mx:String>
<mx:String>3</mx:String>
<mx:String>4</mx:String>

</mx:Array>
</mx:disabledDays>

</mx:DateChooser>

You can also write this example as the following code shows:
<mx:DateChooser id="date1" disabledDays="[0,1,2,3, 4]" />
118 Chapter 6: Using Controls

You can also use an array to set the labels of the DataChooser columns using the dayNames
property, as the following example shows:
<mx:DateChooser id="date1" change="useDate(event);" >

<mx:dayNames>
<mx:Array>

<mx:String>Sun</mx:String>
<mx:String>Mon</mx:String>
<mx:String>Tues</mx:String>
<mx:String>Weds</mx:String>
<mx:String>Th</mx:String>
<mx:String>Fri</mx:String>
<mx:String>Sat</mx:String>

</mx:Array>
</mx:dayNames>

</mx:DateChooser>

You might find it more convenient to set some properties of the DateChooser control in
ActionScript. For example, you can set the disabledDays property in ActionScript, as the
following example shows:
<mx:Script>

<![CDATA[

function initDC()
{

date1.disabledDays=[1,2,3,4];
}

]]>
</mx:Script>

<mx:DateChooser id="date1" initialize="initDC();" />

The following example sets the dayNames, firstDayOfWeek, headerColor, and
selectableRange properties using an initialize event:
<mx:Script>

<![CDATA[

function dateChooser_init()
{

myDC.dayNames=['Sun', 'Mon', 'Tue', 'Wed', 'Th', 'Fri', 'Sat'];
 myDC.firstDayOfWeek = 3;
 myDC.setStyle("headerColor", 0xff0000);
 myDC.selectableRange =

{rangeStart: new Date(2003,1,1), rangeEnd: new Date(2003,3,3)};
}

function onScroll(myDC)
{

myDC.setStyle("fontStyle", "italic");
}

]]>
</mx:Script>
DateChooser 119

<mx:DateChooser id = "myDC" width="200" height="200"
initialize="dateChooser_init();" scroll="onScroll(myDC);" />

To set the selectableRange property, the code creates two Date objects that represent the first
date and last date of the range. Users can only select dates within the specified range. This
example also changes the fontStyle of the DateChooser control to italics after the first time
the user scrolls it.

User interaction

The user can use arrow buttons to advance forward or go back months or years. The user can
select a date with the mouse by clicking the desired date.

Clicking a forward month arrow advances a month; clicking the back arrow displays the previous
month. Clicking forward a month on December, or back on January, moves to the next (or
previous) year. Clicking a date selects it. By default, the selected date is indicated by a dark gray
box around the date.

DateChooser control syntax

You use the <mx:DateChooser> tag to define a DateChooser control. The following table
describes the properties defined by the DateChooser control:

Property Type Use Description Req/Opt

dayNames String Array Property Sets the weekday names for the DateChooser
control. Changing this property changes the
day labels of the DateChooser control. Sunday
is the first day (at index 0) and the rest of the
weekday names follow in the normal order.
The default value is ["S", "M", "T", "W", "T",
"F", "S"].

Optional

disabledDays Number
Array

Property Sets the days to be disabled in a week. All the
dates in a month, falling under the specified day,
are disabled. This property immediately
changes the user interface of the DateChooser
control. The elements of this Array can have
values between 0 (Sunday) to 6 (Saturday). For
example, a value of [0,6] disables Sunday and
Saturday.

Optional
120 Chapter 6: Using Controls

disabledRanges Array Property Disables single as well as multiple days. This
property accepts an Array of objects as a
parameter. Each object in this Array is:
• A Date object, specifying a single day to

disable.
• An object containing either or both of two

properties: rangeStart and rangeEnd, and
each value is a Date object. These properties
describe the boundaries of the date range. If
either is omitted, the range is considered
unbounded in that direction.

If you specify only rangeStart, all the dates after
the specified date are disabled, including the
rangeStart date.
If you specify only rangeEnd, all the dates before
the specified date are disabled, including the
rangeEnd date.
If only a single day has to be disabled, use a
single Date object that specifies the date.
This property immediately changes the user
interface of the DateChooser control, i f the
disabled dates fall inside displayedMonth and
displayedYear.

Optional

displayedMonth Number Property Along with displayedYear, specifies the month
displayed in the DateChooser control. Month
numbers are zero-based, so January is 0 and
December is 11.
Changing this property immediately changes
the appearance of the component. The default
value is the month number of today’s date.

Optional

displayedYear Number Property Along with displayedMonth, determines which
year is displayed in the DateChooser control.
Setting this property immediately changes the
appearance of the component. The default
value is today’s year.

Optional

firstDayOfWeek Number Property Specifies which day of the week (0-6, where 0
is the first element of the dayNames array) is
displayed in the first column of the
DateChooser control. Changing this property
changes the order in which the day columns are
displayed. The default value is 0.

Optional

headerStyleDecl
aration

String Property Specifies a stylesheet definition to configure
the date in the header area of the control.
If omitted, the header area inherits the text
styles of the control.

Optional

Property Type Use Description Req/Opt
DateChooser 121

monthNames String Array Property Specifies the names of the months displayed at
the top of the DateChooser control. The default
value is:
["January", "February", "March", "April",
"May", "June", "July", "August",
"September", "October", "November",
"December"]

Optional

selectableRange Array Property Sets a range of two dates between which dates
are selectable. For example, a date between
04-12-2001 and 04-12-2003 is selectable, but
dates out of this range would be disabled.
This property accepts an object as a parameter.
This object consists of two date objects with
variable names rangeStart and rangeEnd.
If only rangeStart is defined, all the dates after
the defined date are enabled.
If only rangeEnd is defined, all the dates before
the defined date are enabled.
If only a single day has to be enabled in a
DateChooser control, a Date object can be
passed directly.

Optional

selectedDate String Property Sets a date as selected in the DateChooser
control. Accepts a Date object as a value.

Optional

showToday Boolean Property If true, specifies that today is highlighted in the
DateChooser control. Setting this property
immediately changes the appearance of the
DateChooser control. The default value is true.

Optional

todayStyleDecla
ration

String Property Specifies a stylesheet definition to configure
the numeric date text of the control.
If omitted, the date text field inherits the text
styles of the control.

Optional

weekDayStyleDec
laration

String Property Specifies a stylesheet definition to configure
the weekday names of the control.
If omitted, the weekday names inherit the text
styles of the control.

Optional

headerColor Number Style Specifies the color of the band at the top of the
DateChooser control. The default value is
#0FFFFFF.

Optional

rollOverColor Number Style Specifies the color of the highlighting box as
you move the mouse pointer over a date. The
default value is #EEFEE6.

Optional

selectionColor Number Style Specifies the color of the highlighting box when
you select a date. The default value is #B7F39B.

Optional

todayColor Number Style Specifies the color of the highlighting box for
today’s date. The default value is #2B333C.

Optional

Property Type Use Description Req/Opt
122 Chapter 6: Using Controls

DataChooser control skins

A DateChooser control uses the following skin properties:

DateField control

The DateField control is a text field that displays the date with a calendar icon on its right side.
When a user clicks anywhere inside the bounding box of the control, a DateChooser control pops
up. If no date has been selected, the text field is blank and the month of today’s date is displayed
in the DateChooser control.

When the DateChooser control is open, users can click the month scroll buttons to scroll through
months and years, and select a date. When the user selects a date, the DateChooser control closes
and the text field displays the selected date.

change Event Specifies an event handler for change events,
which are raised whenever a date is selected.
The target property of the event object
contains a reference to the DateChooser
control. The type property contains the string
change.

Optional

scroll Event Specifies an event handler for scroll events,
which are raised whenever the month changes
due to user interaction.
The event object contains the following
properties:
• target A reference to the DateChooser

control.
• type The string scroll.
• detail One of the following values:
nextMonth, previousMonth, nextYear, and
previousYear.

Optional

Skin Description

falseUpSkin Specifies the skin for the up state. The default values are fwdMonthUp and
backMonthUp.

falseDownSkin Specifies the skin for the down state. The default values are fwdMonthDown and
backMonthDown.

falseDisabledSkin Specifies the skin for the disabled state. The default values are
fwdMonthDisabled and backMonthDisabled.

Property Type Use Description Req/Opt
DateField control 123

The following figure shows a DateField control with the DateChooser control closed, and open.
The calendar icon appears on the right side of the DateField text box.

You can use the DateField control anywhere you want a user to select a date. For example, you can
use a DateField control in a hotel reservation system, with certain dates selectable and others
disabled. You can also use the DateField control in an application that displays current events,
such as performances or meetings, when a user selects a date.

Using the Date class

The Flex DateField control uses the ActionScript Date class to represent a date. For more
information on using the Date class in Flex, see “Using the Date class” on page 116.

Using the DateChooser control

The DateField control includes the DateChooser control as part of its implementation. For more
examples of using the DateChooser control, see “DateChooser” on page 116.

Creating a DateField control

You define a DateField control in MXML using the <mx:DateField> tag, as the following
example shows. Specify an id value if you intend to refer to a component elsewhere in your
MXML, either in another tag or in an ActionScript block.

This example captures a change event when the user selects a date in the DateChooser control,
then uses an event handler to populate form fields with the selected date:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Script>
<![CDATA[

function useDate(eventObj)
{

day.text=eventObj.target.selectedDate.getDay();
date.text=eventObj.target.selectedDate.getDate();
month.text=eventObj.target.selectedDate.getMonth();
year.text=eventObj.target.selectedDate.getFullYear();
wholeDate.text=eventObj.target.selectedDate.getFullYear() + "/" +

(eventObj.target.selectedDate.getMonth()+1) + "/" +
eventObj.target.selectedDate.getDate();

}

124 Chapter 6: Using Controls

]]>
</mx:Script>

<mx:DateField id="date1" change="useDate(event)" width="100" />

<mx:Form>
<mx:FormItem label="Day" >

<mx:TextInput id="day" width="100" />
</mx:FormItem >
<mx:FormItem label="Day of month" >

<mx:TextInput id="date" width="100" />
</mx:FormItem >
<mx:FormItem label="Month" >

<mx:TextInput id="month" width="100" />
</mx:FormItem >
<mx:FormItem label="Year" >

<mx:TextInput id="year" width="100" />
</mx:FormItem >
<mx:FormItem label="Date" >

<mx:TextInput id="wholeDate" width="300" />
</mx:FormItem >

</mx:Form>

</mx:Application>

Using a date formatter function

By default, the date displayed in the text box is formatted in the form “dd mmm yyyy” where
mmm corresponds to the three-letter abbreviation for the month. You can use the
dateFormatter property of the DateField control to specify a function used to format the date
displayed in the text box. For example, the following code defines the function formatDate() to
display the date in the form yyyy/mm/dd:

<mx:Script>
<![CDATA[

function formatDate(date:Date):String
{

return date.getUTCDate() + "/" + (date.getUTCMonth() + 1) + "/" +
date.getUTCFullYear();

}
]]>

</mx:Script>

<mx:DateField id="date1" dateFormatter="formatDate" width="100" />
DateField control 125

DateField control syntax

You use the <mx:DateField> tag to define a DateField control. The following table describes the
properties defined by the DateField control:

Property Type Use Description Req/Opt

dateFormatter Function Property Specifies a function used to format the date
displayed in the text field of the DateField
control. The function receives a Date object as
a parameter, and returns a String in the format
to be displayed.

Optional

dayNames String Array Property Sets the weekday names for the DateChooser
control. Changing this property changes the
day labels of the DateChooser control.
Sunday is the first day (at index 0) and the rest
of the weekday names follow in the normal
order.
The default value is ["S", "M", "T", "W",
"T", "F", "S"].

Optional

disabledDays Number
Array

Property Sets the days to be disabled in a week. All the
dates in a month, falling under the specified
day, are disabled. This property immediately
changes the user interface of the
DateChooser control.
The elements of this Array can have values 0
(Sunday) to 6 (Saturday). For example, a
value of [0,6] disables Sunday and Saturday.

Optional

disabledRanges Array Property Disables single as well as multiple days. This
property accepts an Array of objects as a
parameter. Each object in this Array is:
• A Date Object, specifying a single day to

disable.
• An object containing either or both of two

properties: rangeStart and rangeEnd, each
of whose values is a Date object. These
properties describe the boundaries of the
date range; if either is omitted, the range is
considered unbounded in that direction.

If you specify only rangeStart, all the dates
after the specified date are disabled, including
the rangeStart date.
If you specify only rangeEnd, all the dates
before the specified date are disabled,
including the rangeEnd date.
If only a single day has to be disabled, use a
single Date object specifying the date.
This property immediately changes the user
interface of the DateChooser control, if the
disabled dates fall inside displayedMonth and
displayedYear.

Optional
126 Chapter 6: Using Controls

displayedMonth Number Property Along with displayedYear, specifies the
month displayed in the DateChooser control.
Months numbers are zero-based, so January
is 0 and December is 11.
Changing this property immediately changes
the appearance of the component. The
default value is the month number of today’s
date.

Optional

displayedYear Number Property Along with displayedMonth, determines which
year is displayed in the DateChooser control.
Setting this property immediately changes the
appearance of the component. The default
value is today’s year.

Optional

firstDayOfWeek Number Property Specifies which day of the week (0-6, 0 being
the first element of dayNames array) is
displayed in the first column of the
DateChooser control. Changing this property
changes the order in which the day columns in
which they are displayed. The default value is
0.

Optional

headerStyleDecl
aration

String Property Specifies a stylesheet definition to configure
the date in the header area of the control.
If omitted, the header area inherit the text
styles of the control.

Optional

monthNames String Array Property Specifies the names of the months displayed
at the top of the DateChooser control. The
default value is:
["January", "February", "March", "April",
"May", "June", "July", "August",
"September", "October", "November",
"December"]

Optional

pulldown DateChooser Property Read-only property that contains a reference
to the DateChooser control contained by the
DateField control. The DateChooser control is
instantiated when a user clicks the DateField
control.
However, if this property is referenced before
the user clicks the control, the DateChooser
control is instantiated and then hidden.
Subsequent clicks result in the use of same
instance of the DateChooser control.

Optional

Property Type Use Description Req/Opt
DateField control 127

selectableRange Array Property Sets a range of two dates between which
dates are selectable. For example, a date
between 04-12-2001 and 04-12-2003 is
selectable, but dates out of this range would
be disabled.
This property accepts an object as a
parameter. This object consists of two date
objects with variable names rangeStart and
rangeEnd.
If only rangeStart is defined, all the dates after
the defined date are enabled.
If only rangeEnd is defined, all the dates before
the defined date are enabled.
If only a single day has to be enabled in a
DateChooser control, a Date object can be
passed directly.

Optional

selectedDate String Property Sets a date as selected in the DateChooser
control. Accepts a Date object as the value.

Optional

showToday Boolean Property If true, specifies that today is highlighted in
the DateChooser control. Setting this property
immediately changes the appearance of the
DateChooser control. The default value is
true.

Optional

todayStyleDecla
ration

String Property Specifies a stylesheet definition to configure
the numeric date text of the control.
If omitted, the date text field inherits the text
styles of the control.

Optional

weekDayStyleDec
laration

String Property Specifies a stylesheet definition to configure
the weekday names of the control.
If omitted, the weekday names inherit the text
styles of the control.

Optional

rollOverColor Number Style Specifies the color of the highlighting box as
you move the mouse pointer over a date. The
default value is #EEFEE6.

Optional

selectionColor Number Style Specifies the color of the highlighting box
when you select a date. The default value is
#B7F39B.

Optional

todayColor Number Style Specifies the color of the highlighting box for
today’s date. The default value is #2B333C.

Optional

Property Type Use Description Req/Opt
128 Chapter 6: Using Controls

DateField control skins

A DateField component uses the following skin properties:

change Event Specifies an event handler for change events,
which are raised whenever a date is selected.
Flex also broadcasts a change event if the user
closes the control by pressing the Enter key
and the selected date has changed, or when
the user clicks the mouse pointer outside the
control.
The target property of the event object
contains a reference to the DateField control.
The type property contains the string change.

Optional

close Event Specifies an event handler for close events,
which are raised whenever a date is selected
or the user clicks outside of the pulldown.
The target property of the event object
contains a reference to the DateField control.
The type property contains the string close.

Optional

open Event Specifies an event handler for open events,
which are raised whenever a user selects the
field to open the pulldown.
The target property of the event object
contains a reference to the DateField control.
The type property contains the string open.

Optional

scroll Event Specifies an event handler for scroll events,
which are raised whenever the month changes
due to user interaction.
The event object contains the following
properties:
• target A reference to the DateChooser

control.
• type The string scroll.
• detail One of the following values:
nextMonth, previousMonth, nextYear, and
previousYear.

Optional

Skin Description

downArrowUpName Specifies the skin for the pulldown icon. The default value is PullDownIcon.

downArrowDownName Specifies the skin for the down state of the pulldown icon. The default
value is PullDownIconDown.

downArrowOverName Specifies the skin for the over state of the pulldown icon. The default value
is PullDownIconOver.

downArrowDisabledName Specifies the skin for the disabled state of the pulldown icon. The default
value is PullDownIconDisabled.

Property Type Use Description Req/Opt
DateField control 129

HRule and VRule controls

The HRule (Horizontal Rule) control creates a single horizontal line and the VRule (Vertical
Rule) control creates a single vertical line. You typically use these controls to create dividing lines
within a container.

The following figure shows an HRule and a VRule control:

The HRule and VRule controls have the following default properties:

Creating an HRule and VRule controls

You define an HRule control and VRule control in MXML using the <mx:HRule> and
<mx:VRule> tags, as the following example shows. Specify an id value if you intend to refer to a
component elsewhere in your MXML, either in another tag or an ActionScript block.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:VBox>
<mx:Label text="Above" />
<mx:HRule />
<mx:Label text="Below" />

</mx:VBox>

<mx:HBox>
<mx:Label text="Left" />
<mx:VRule />
<mx:Label text="Right" />

</mx:HBox>
</mx:Application>

Property Default

preferred
size

Horizontal Rule The default width is 100 pixels, and the default height is 2 pixels. By
default, the HRule control is not resizable; set widthFlex to a positive value to enable
resizing.
Vertical Rule The default height is 100 pixels, and the default width is 2 pixels. By
default, the VRule control is not resizable; set heightFlex to a positive value to enable
resizing.

strokeWidth 2 pixels

color #808080

shadowColor #D4D0C8

HRule control

VRule control
130 Chapter 6: Using Controls

This example creates the output shown in the preceding figure.

You can also use properties of the HRule and VRule controls to specify line width, color, and
shadow color, as the following example shows:

<mx:VBox>
<mx:Label text="Above" />
<mx:HRule shadowColor="#FF0000" />
<mx:Label text="Below" />

</mx:VBox>

<mx:HBox>
<mx:Label text="Left" />
<mx:VRule strokeWidth="10" color="#00FF00" />
<mx:Label text="Right" />

</mx:HBox>

Sizing HRule and VRule controls

For the HRule and VRule controls, the strokeWidth property determines how Flex draws the
line, as follows:

• If you set the strokeWidth property to 1, Flex draws a 1-pixel-wide line.
• If you set the strokeWidth property to 2, Flex draws the rule as two adjacent 1-pixel-wide

lines, either horizontal for an HRule control or vertical for a VRule control. This is the default
value.

• If you set the strokeWidth property to a value greater than 2, Flex draws the rule as a hollow
rectangle with 1-pixel-wide edges.

The following figure shows all three options:

If you set the height property of an HRule control to a value greater than the strokeWidth
property, Flex draws the rule within a rectangle of the specified height, and centers the rule
vertically within the rectangle. The height of the rule is the height specified by the strokeWidth
property.

If you set the width property of a VRule control to a value greater than the strokeWidth
property, Flex draws the rule within a rectangle of the specified width, and centers the rule
horizontally within the rectangle. The width of the rule is the width specified by the
strokeWidth property.

strokeWidth = 10strokeWidth = 1

VRule control VRule control VRule control

default strokeWidth = 2
HRule and VRule controls 131

If you set the height property of an HRule control or the width property of a VRule control to a
value smaller than the strokeWidth property, the rule is drawn as if it had a strokeWidth
property equal to the height or width property.

The color and shadowColor properties determine the colors of the HRule and VRule controls.
The color property specifies the color of the line as follows:

• If you set the strokeWidth property to 1, specifies the color of the entire line.
• If you set the strokeWidth property to 2, specifies the color of the top line for an HRule

control, or the left line for a VRule control.
• If you set the strokeWidth property to a value greater than 2, specifies the color of the top and

left edges of the rectangle.

The shadowColor property specifies the shadow color of the line as follows:

• If you set the strokeWidth property to 1, does nothing.
• If you set the strokeWidth property to 2, specifies the color of the bottom line for an HRule

control, or the right line for a VRule control.
• If you set the strokeWidth property to a value greater than 2, specifies the color of the bottom

and right edges of the rectangle.

Setting style properties

The strokeWidth, color, and shadowColor properties are style properties. Therefore, you can
set them in MXML as part of the tag definition, set them using the <mx:Style> tag in MXML,
or set them using the setStyle() method in ActionScript.

The following example uses the <mx:Style> tag to set the default value of the color property of
all HRule controls to #123456, and the default value of the shadowColor property to #654321:
<mx:Style>

.thickRule { strokeWidth: 5 }
HRule { color: #123456; shadowColor: #654321 }

</mx:Style>

This example also defines a class selector, called thickRule, with a strokeWidth of 5 that you
can use with any instance of an HRule control or VRule control, as the following example shows:
<mx:HRule styleName="thickRule" />
132 Chapter 6: Using Controls

HRule and VRule control syntax

You use the <mx:HRule> and <mx:VRule> tags to define horizontal and vertical rules. The
following table describes the properties defined by these controls:

HSlider and VSlider controls

The slider controls let users select a value by moving a slider thumb between the end points of the
slider track. The current value of the slider is determined by the relative location of the thumb
between the end points of the slider, corresponding to the slider’s minimum and maximum
values.

By default, the minimum value of a slider is 0 and the maximum value is 10. The current value of
the slider can be any value in a continuous range between the minimum and maximum values, or
it can be one of a set of discrete values, depending on how you configure the control.

Property Type Use Description Req/Opt

color Number Style Specifies the color of the line as follows:
• If strokeWidth is 1, the color of the entire line.
• If strokeWidth is 2, the color of the top line for an HRule

control, or the left line for a VRule control. This is the
default value.

• If strokeWidth is greater than 2, the color of the top and
left edges of the rectangle.

The default value is #808080.

Optional

shadowColor Number Style Specifies the shadow color of the line as follows:
• If strokeWidth is 1, does nothing.
• If strokeWidth is 2, the color of the bottom line for an

HRule control, or the right line for a VRule control. The
default value is #D4D0C8 (dark gray).

• If strokeWidth is greater than 2, the color of the bottom
and right edges of the rectangle. The default value is
#D4D0C8 (dark gray).

Optional

strokeWidth Number Style Specifies the thickness of the rule, in pixels, as follows:
• If strokeWidth is 1, the rule is a 1-pixel-wide line.
• If strokeWidth is 2, the rule is two adjacent 1-pixel lines,

either horizontal for an HRule control or vertical for a
VRule control. This is the default value.

• If strokeWidth is greater than 2, the rule is a hollow
rectangle with 1-pixel-wide edges.

Optional
HSlider and VSlider controls 133

Flex provides two sliders: the HSlider (Horizontal Slider) control which creates a horizontal slider
and the VSlider (Vertical Slider) control creates a vertical slider. The following figure shows an
example of the HSlider and VSlider controls:

This figure includes the ToolTip, slider thumb, track, tick marks, and labels. You can optionally
show or hide ToolTips, tick marks, and labels.

The HSlider and VSlider controls have the following default properties:

Creating a Slider control

You define an HSlider control in MXML using the <mx:HSlider> tag and a VSlider control
using the <mx:VSlider> tag. You must specify an id value if you intend to refer to a component
elsewhere, either in another tag or in an ActionScript block.

The following example creates three HSlider controls:

• The first slider has a maximum value of 100, and lets the user move the slider thumb to select
a value in the continuous range from between 0 and 100.

• The second slider uses the snapInterval property to define the discrete values between the
minimum and maximum that the user can select. In this example, the snapInterval is 2,
which means that the user can select the values 0, 2, 4, 6, and so on.

Property Default

preferred size Horizontal slider 250 pixels wide, and tall enough to hold the slider and any
associated labels.
Vertical slider 250 pixels tall, and wide enough to hold the slider and any
associated labels.

minimum size None

maximum size None

VSlider control

HSlider control

Track

Thumb

Label

Tick mark

HSlider control with ToolTip
134 Chapter 6: Using Controls

• The third slider uses the tickInterval property to add tick marks and set the interval
between the tick marks to 25, so that Flex displays a tick mark along the slider corresponding
to the values 0, 25, 50, 75, and 100. Flex displays tick marks whenever you set the
tickInterval property to a nonzero value.

<?xml version="1.0" encoding="iso-8859-1"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Panel>

<mx:HSlider maximum="100" />

<mx:HSlider snapInterval="2" maximum="100" />

<mx:HSlider snapInterval="2" maximum="100" tickInterval="25"/>

</mx:Panel>
</mx:Application>

The following example creates the VSlider control shown in the previous figure, which includes
tick marks and two labels:
<mx:VSlider tickInterval="2" labels="['min', 'max']"/>

You can bind the value property of a slider to another control to display the current value of the
slider. The following example binds the value property to a Text control:
<!-- Bind a slider to a text box. -->
<mx:HSlider id="mySlider" maximum="100" />
<mx:Text text="{mySlider.value}" />

Using slider events

The slider controls let the user select a value by moving the slider thumb between the minimum
and maximum values of the slider. You use an event with the slider to recognize when the user has
moved the thumb, and to determine the current value associated with the slider.

The slider controls can broadcast the events described in the following table:

Event Description

change Broadcast when the user moves the thumb. If the liveDragging property is true,
the event is broadcast continuously as the user moves the thumb. If liveDragging
is false, the event is broadcast when the user releases the slider thumb.

thumbDragged Broadcast when the user moves a thumb.

thumbPressed Broadcast when the user selects a thumb using the mouse pointer.

thumbReleased Broadcast when the user releases the mouse pointer after a thumbPressed event
occurs.
HSlider and VSlider controls 135

The following example uses a change event to show the current value of the slider in a TextArea
control when the user releases the slider thumb:
<?xml version="1.0" encoding="iso-8859-1"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Script>
<![CDATA[

function sliderChange(event:Object)
{

thumb.text=event.target.value;
}

]]>
</mx:Script>

<mx:Panel>

<mx:HSlider change="sliderChange(event)" />
<mx:TextArea id="thumb" />

</mx:Panel>
</mx:Application>

By default, the liveDragging property of the slider control is set to false, which means that the
control broadcasts the change event when the user releases the slider thumb. If you set
liveDragging to true, the control broadcasts the change event continuously as the user moves
the thumb, as the following example shows:
<?xml version="1.0" encoding="iso-8859-1"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Script>
<![CDATA[

function sliderChangeLive(event:Object)
{

thumbLive.text=event.target.value;
}

]]>
</mx:Script>

<mx:Panel>

<mx:HSlider liveDragging="true" change="sliderChangeLive(event)" />
<mx:TextArea id="thumbLive" />

</mx:Panel>
</mx:Application>

Using multiple thumbs

You can configure a slider control to have one thumb, or two thumbs. If you configure the slider
to use a single thumb, you can move the thumb anywhere between the end points of the slider. If
you configure it to have two thumbs, you cannot drag one thumb across the other thumb.
136 Chapter 6: Using Controls

When you configure a slider control to have two thumbs, you use the values property of the
control to access the current value of each thumb. The values property is a two-element array
that contains the current value of the thumbs, as the following example shows:
<?xml version="1.0" encoding="iso-8859-1"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Script>
<![CDATA[

function sliderChangeTwo(event:Object)
{

thumbTwoA.text=event.target.values[0];
thumbTwoB.text=event.target.values[1];
thumbMod.text=event.thumbIndex;

}
]]>

</mx:Script>

<mx:Panel>

<mx:HSlider thumbCount="2" change="sliderChangeTwo(event)" />
<mx:TextArea id="thumbTwoA" />
<mx:TextArea id="thumbTwoB" />
<mx:TextArea id="thumbIndex" />

</mx:Panel>
</mx:Application>

This example also uses the thumbIndex property of the event object. This property has a value of
0 if the user modified the position of the first thumb, and a value of 1 if the user modified the
position of the second thumb.

Using ToolTips

By default, when you select a slider thumb, the slider controls display a ToolTip showing the
current value of the slider. As you move the selected thumb, the ToolTip shows the new slider
value. You can disable ToolTips by setting the showToolTip property to false.

You can use the toolTipFormatFunction property to specify a callback function to format the
ToolTip text. This function takes a single String argument containing the ToolTip text, and
returns a String containing the new ToolTip text, as the following example shows:
<mx:Script>

<![CDATA[
function myToolTipFunc(val:String):String
{

return "Current value: " + val;
}
]]>

</mx:Script>

<mx:Panel>
<!-- Slider with a ToolTip function. -->
<mx:HSlider toolTipFormatFunction="myToolTipFunc" />

</mx:Panel>
HSlider and VSlider controls 137

In this example, the ToolTip function prepends the ToolTip text with the string “Current
value: ”. You can modify this example to insert a dollar sign ($) prefix on the ToolTip for a slider
that controls the price of an item.

Keyboard navigation

The HSlider and VSlider controls have the following keyboard navigation features when the slider
control has focus:

HSlider and VSlider control syntax

You use the <mx:HSlider> tag or <mx:VSlider> tag to define a slider control. The following
table describes the properties defined by these controls:

Key Description

Left Arrow Decrement the value of an HSlider control by 1 snap interval or, if you do not specify a
snap interval, by 1 pixel.

Right Arrow Increment the value of a HSlider control by 1 snap interval or, if you do not specify a
snap interval, by 1 pixel.

Home Move the thumb of an HSlider control to its minimum value.

End Move the thumb of an HSlider control to its maximum value.

Up Arrow Increment the value of an VSlider control by 1 snap interval or, if you do not specify a
snap interval, by 1 pixel.

Down Arrow Decrement the value of a VSlider control by 1 snap interval or, if you do not specify a
snap interval, by 1 pixel.

Page Down Move the thumb of a VSlider control to its minimum value.

Page Up Move the thumb of a VSlider control to its maximum value.

Property Type Use Description Req/Opt

allowTrackClick Boolean Property Specifies whether clicking on the slider
track moves the thumb.
The default value is true.

Optional

labels Array Property Specifies an Array of strings used for the
labels. Flex positions labels evenly
between the beginning of the track and
the end of the track. For example, if the
Array contains three labels, Flex positions
the first label at the beginning of the track,
the second in the middle of the track, and
the third at the end of the track. If the
Array contains only one label, Flex
positions the label at the beginning of the
track.
The default value is undefined.

Optional
138 Chapter 6: Using Controls

labelStyleDeclaraion String Property Specifies a stylesheet definition to
configure the the slider labels.
The default value is "".

Optional

liveDragging Boolean Property Specifies whether live dragging is
enabled for the slider. If false, Flex sets
the value and values properties and
broadcasts the change event when the
user releases the slider thumb. If true,
Flex sets the value and values properties
and broadcasts the change event
continuously as the user moves the
thumb.
The default value is false.

Optional

maximum Number Property Specifies the maximum allowed value of
the slider.
The default value is 10.

Optional

minimum Number Property Specifies the minimum allowed value of
the slider.
The default value is 0.

Optional

showToolTip Boolean Property Specifies to display ToolTips, true, or
not, false. If true, during user interaction,
Flex shows a ToolTip with the current
value.
The default value is true.

Optional

sliderThumbClass Property Specifies a reference to the class to use
for each thumb.
The default value is
mx.controls.sliderclasses.
SliderThumb.

Optional

sliderTooltipClass Property Contains a reference to the class to use
for the ToolTip.
The default value is
mx.controls.sliderclasses.
SliderToolTip.

Optional

snapInterval Number Property Specifies the increment value of the slider
thumb as the user moves the thumb. For
example, if the snapInterval is 2, the
minimum value is 0, and the maximum value
is 10, the thumb snaps to the values 0, 2, 4,
6, 8, and 10 as the user moves the thumb.
The default value is 0, which means that
the slider moves continuously between
the minimum and maximum values.

Optional

Property Type Use Description Req/Opt
HSlider and VSlider controls 139

thumbCount Number Property Specifies the number of thumbs allowed
on the slider. The possible values are 1 or
2.
If you set thumbCount to 1, the value
property contains the current value of the
slider thumb. If you set thumbCount to 2,
the values property contains a two-
element array of values that contain the
value for each thumb.
The default value is 1.

Optional

tickInterval Number Property Specifies the spacing of the tick marks
relative to the maximum value of the
control. Flex displays tick marks
whenever you set the tickInterval
property to a nonzero value.
For example, if tickInterval is 1, and
maximum is 10, Flex places a tick at each
1/10th of the interval along the slider.
The default value is 0, which hides the tick
marks.

Optional

toolTipFormatFunction Function Property Specifies a callback function to format
the text for the ToolTip. The function
takes a single String argument and
returns the formatted ToolTip text, as a
String. The setting of the
toolTipPrecision property is applied to
the ToolTip text before it is passed to the
function.
The signature of the function is:
function funcName(val:String):String
The default value is undefined.

Optional

toolTipStyleDeclaration String Property Specifies a stylesheet definition to
configure the ToolTip.
The default value is "".

Optional

value Number Property Contains the current value of the slider,
between the minimum and maximum values.
The default value is 0.

Optional

values Array Property When the thumbCount is 2, contains a
two-element Array of values
corresponding to the position of the two
thumbs.

Optional

labelOffset Number Style Specifies the y-position offset (horizontal
slider) or x-position offset (vertical slider)
of the labels relative to the track.
The default value is -8 pixels.

Optional

Property Type Use Description Req/Opt
140 Chapter 6: Using Controls

slideDuration Number Style Specifies the duration, in milliseconds, for
the sliding animation when you click the
slider track to move a thumb.
The default value is 300 ms.

Optional

slideEasing String Style Specifies the tweening function used by
the sliding animation when you click on
the track to move a thumb.
For more information on using easing
functions, see Chapter 20, “Using
Behaviors,” on page 497.

Optional

thumbOffset Number Style Specifies the y-position offset (horizontal
slider) or x-position offset (vertical slider)
of the thumb relative to the track.
The default value is 0 pixels.

Optional

tickColor Number Style Specifies the color of the tick marks.
The default value is 0x6F7777.

Optional

tickLength Number Style Specifies the length, in pixels, of the tick
marks. For a horizontal slider, Flex
adjusts the height of the control to
account for the size of the tick marks. For
a vertical slider, Flex adjusts the width.
The default value is 3 pixels.

Optional

tickOffset Number Style Specifies the y-position offset (horizontal
slider) or x-position offset (vertical slider)
of the tick marks relative to the track.
The default value is -6 pixels.

Optional

tickThickness Number Style Specifies the thickness, in pixels, of the
tick marks.
The default value is 1 pixel.

Optional

toolTipOffset String Style Specifies the offset, in pixels, of the
ToolTip relative to the thumb.
The default value is 16 pixels.

Optional

toolTipPlacement String Style Specifies the location of the ToolTip
relative to the thumb. Possible values are
left, right, top, bottom.
The default value is left for the VSlider
control, and top for the HSlider control.

Optional

toolTipPrecision Number Style Specifies the number of decimal places
to use for the text of the ToolTip. A value
of 0 means to round all text values
displayed in the ToolTip to an integer.
The default value is 2.

Optional

Property Type Use Description Req/Opt
HSlider and VSlider controls 141

trackHighlight Boolean Style If true, specifies whether to turn on the
track highlight between two thumbs, or
between a single thumb and the
beginning of the track.
The default value is false.

Optional

trackMargin Number Style Specifies the margins for each end of the
track, in pixels. If undefined, the track
margins are determined by the length of
the first and last labels. If you specify a
value, Flex attempts to fit the labels in the
available space.
The default value is undefined.

Optional

change Event Broadcast when the slider changes value
due to mouse or keyboard interaction.
If the liveDragging property is true, the
event is broadcast continuously as the
user moves the thumb. If liveDragging is
false, the event is broadcast when the
user releases the slider thumb.
The event object contains the following
properties:
• target Contains a reference to the

control.
• type Contains the string change.
• thumbIndex The index of the slider

thumb whose position changed. If there
is only one thumb, the value is 0. If there
are two thumbs, the value is 0 or 1.

thumbDragged Event Broadcast when the slider is being
moved.
The event object contains the following
properties:
• target Contains a reference to the

control.
• type Contains the string
thumbDragged.

• currentValue The value of the slider
thumb if the user released the mouse
pointer.

• thumbIndex The index of the slider
thumb whose position is changing. If
there is only one thumb, the value is 0. If
there are two thumbs, the value is 0 or 1.

Property Type Use Description Req/Opt
142 Chapter 6: Using Controls

HSlider and VSlider control skins

An HSlider or VSlider control uses the following skin properties:

thumbPressed Event Broadcast when the user clicks and holds
the mouse on a slider thumb.
The event object contains the following
properties:
• target Contains a reference to the

control.
• type Contains the string
thumbPressed.

• thumbIndex The index of the slider
thumb whose position changed. If there
is only one thumb, the value is 0. If there
are two thumbs, the value is 0 or 1.

thumbReleased Event Broadcast when the user releases the
mouse pointer after a thumbPressed event
occurs.
The event object contains the following
properties:
• target Contains a reference to the

control.
• type Contains the string
thumbReleased.

• thumbIndex The index of the thumb
whose position changed. If there is only
one thumb, the value is 0. If there are
two thumbs, the value is 0 or 1.

Skin Property Description

thumbDisabledSkin Specifies the thumb skin for the disabled state.
For an HSlider control, the default value is SliderThumbDisabledTop. For a
VSlider control, the default value is SliderThumbDisabledLeft.

thumbDownSkin Specifies the thumb skin for the down state.
For an HSlider control, the default value is SliderThumbDownTop. For a
VSlider control, the default value is SliderThumbDownLeft.

thumbOverSkin Specifies the thumb skin for the mouse over state.
For an HSlider control, the default value is SliderThumbOverTop. For a
VSlider control, the default value is SliderThumbOverLeft.

thumbUpSkin Specifies the thumb skin for the up state.
For an HSlider control, the default value is SliderThumbUpTop. For a VSlider
control, the default value is SliderThumbUpLeft.

trackLeftEndCapSkin Specifies the left end cap of the track for the HSlider control, or bottom
end cap for a VSlider control.
The default value is SliderTrackLeftCap.

Property Type Use Description Req/Opt
HSlider and VSlider controls 143

Label control

The Label control is a noneditable single-line text label. You can specify to format a label as
HTML text. You can also control the alignment and sizing of a label. To create a multiline,
noneditable text field, use the Text control. For more information, see “Text control”
on page 166.

The following figure shows a Label control:

Label controls do not have borders and cannot take focus. Unlike other controls, Label controls
directly extend the UIObject class, not the UIComponent class.

The Label control has the following default properties:

Creating a Label control

You define a Label control in MXML using the <mx:Label> tag, as the following example shows.
Specify an id value if you intend to refer to a component elsewhere in your MXML, either in
another tag or an ActionScript block.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Label text="Label1" />
</mx:Application>

You use the text property to specify a string of raw text, and htmlText to specify an
HTML-formatted string.

Using the text property

You can use the text property to specify the text string that appears in the Label control. The
control collapses any white-space characters, such as tab and newline characters. Any HTML tags
in the text string are ignored, and appear as entered in the string.

trackMiddleSkin Specifies the middle portion of the track.
The default value is SliderTrackMiddle.

trackRightEndCapSkin Specifies the right end cap of the track for the HSlider control, or top end
cap for a VSlider control.
The default value is SliderTrackRightCap.

Property Default

preferred size Width and height large enough for the text

minimum size 0

maximum size undefined

Skin Property Description
144 Chapter 6: Using Controls

For the special characters left angle bracket (<), right angle bracket (>), and ampersand (&), insert
the HTML equivalents of <, >, and &. The following example sets the text string
using the text property:
<mx:Label text="This string contains a less than, <, greater than, >, and

amp, &." />

If you wrap the text string in the CDATA tag, you can specify the literal characters for the left angle
bracket (<), right angle bracket (>), and ampersand (&) in the text property using a child tag, as
the following example shows:
<mx:Label>

<mx:text><![CDATA[This string contains a less than, <, greater than, >,
and amp, &.]]>

</mx:text>
</mx:Label>

The following example uses an initialization function to set the text property to a string that
contains these characters:
<mx:Script>

<![CDATA[

function initText() {
myLabel.text="This string contains a less than, <, greater than, >,

and amp, &."
}

]]>
</mx:Script>

<mx:Label id="myLabel" initialize="initText()" />

Since the code of the <mx:Script> tag is contained in a CDATA tag, you do not need an additional
tag for the string.

Using the htmlText property

You use the htmlText property to specify an HTML-formatted text string. If your text string
contains HTML tags, you must wrap it in a CDATA tag. The control collapses any white-space
characters, such as tab and newline characters.

When you specify the text string for the Label control in MXML, you cannot escape special
characters, such as tab and newline characters. For example, if you include the characters ‘\t’, for a
tab, in the text string, the characters appear as ‘\t’ in the Label control. To insert a tab character,
use the htmlText property and insert the escape sequence into the text string.

For the special characters left angle bracket (<), right angle bracket (>), and ampersand (&), insert
the HTML equivalents of <, >, and &.
Label control 145

The following example set the text string to an HTML formatted string using the htmlText
property:
<mx:Label >

<mx:htmlText><![CDATA[This string contains a less than, <, greater
than, >, and amp, &.]]>

</mx:htmlText>
</mx:Label>

If you omit the CDATA tag, Flex converts the <, >, and & back into the literal
characters left angle bracket (<), right angle bracket (>), and ampersand (&), and attempts to
interpret them as HTML.

Using HTML-formatted text

Flash Player supports a subset of standard HTML tags such as <p> and that you can use to
format text in any dynamic or input text field.

You must include attributes of HTML tags in double or single quotation marks. Attribute values
without quotation marks can produce unexpected results, such as improper rendering of text. For
example, the following HTML snippet does not render properly by Flash Player because the value
assigned to the align attribute (left) is not enclosed in quotation marks:
textField.htmlText = "<p align=left>This is left-aligned text</p>";

If you enclose attribute values in double quotation marks, you must escape the quotation marks
(\"). For example, either of the following is acceptable:
textField.htmlText = "<p align='left'>This uses single quotes</p>";
textField.htmlText = "<p align=\"left\">This uses escaped double quotes</p>";

You do not need to escape double quotation marks if you’re loading text from an external file; it’s
only necessary if you’re assigning a string of text in ActionScript.

Supported HTML tags

This section lists the built-in HTML tags supported by Flash Player.

Anchor tag (<a>)

The <a> tag creates a hyperlink and supports the following attributes:

• href Specifies the URL of the page to load in the browser. The URL can be absolute or
relative to the location of the SWF file that is loading the page.

• target Specifies the name of the target window to load the page into.

For example, the following HTML snippet creates the link “Go home”.
Go home

You can also define a:link, a:hover, and a:active styles for anchor tags by using style sheets.
146 Chapter 6: Using Controls

Bold tag ()

The tag renders text as bold. A bold typeface must be available for the font used to display
the text.
This is bold text.

Break tag (
)

The
 tag creates a line break in the text field, the following example shows:
One line of text
Another line of text

Note: While you can use a
 tag in the htmlText property for the Text, TextArea, and TextInput
controls, it is collapsed to a single space character in a Label control because a Label control can only
contain a single line of text.

Font tag ()

The tag specifies a font or list of fonts to display the text. You can also specify formatting
to the Label control using Flex CSS styles. If you specify conflicting settings using the tag
and CSS styles, Flex uses the settings from the tag.

The font tag supports the following attributes:

• color Only hexadecimal color (#FFFFFF) values are supported. For example, the following
HTML code creates red text:
This is red text

• face Specifies the name of the font to use. You can also specify a list of comma-separated
font names, in which case Flash Player chooses the first available font. If the specified font is
not installed on the playback system, or isn’t embedded in the SWF file, Flash Player chooses a
substitute font.
This is either Times or Times New

Roman.

• size Specifies the size of the font, in pixels. You can also use relative point sizes (for example,
+2 or -4).
This is green, 24-point text

Italic tag (<i>)

The <i> tag displays the tagged text in italics. An italic typeface must be available for the
font used.
That is very <i>interesting</i>.

List item tag ()

The tag places a bullet in front of the text that it encloses.
Grocery list:
Apples
Oranges
Lemons
Label control 147

Paragraph tag (<p>)

The <p> tag creates a new paragraph. It supports the following attribute:

• align Specifies alignment of text within the paragraph; valid values are left, right,
and center.
The following example uses the align attribute to align text on the right side of a text field:
textField.htmlText = "<p align='right'>This text is aligned on the right

side of the text field</p>";

Span tag ()

The tag is available only for use with CSS text styles. It supports the following attribute:

• class Specifies a CSS style class defined by a TextField.StyleSheet object.

Underline tag (<u>)

The <u> tag underlines the tagged text.
This text is <u>underlined</u>.

Label control syntax

You use the <mx:Label> tag to define a Label control. The following table describes the
properties defined by the Label control:

Property Type Use Description Req/Opt

htmlText String Property Contains HTML formatted text. If your text string contains
HTML tags, you must wrap it in a CDATA tag. The control
collapses any white-space characters, such as tab and
newline characters.
For the special characters left angle bracket (<), right angle
bracket (>), and ampersand (&), insert the HTML
equivalents of <, >, and &.
The htmlText property ignores CSS style settings for the
control, and instead relies on the HTML tags in the string
for formatting. You should not try to mix HTML tags and
styles; use HTML tags to format your text.

Optional

text String Property Specifies the text string that appears in the Label control.
The control collapses any white-space characters, such as
tab and newline characters.
Any HTML tags in the text string are ignored, and appear
as entered in the string.
For the special characters left angle bracket (<), right angle
bracket (>), and ampersand (&), wrap the text string in a
CDATA tag.

Optional
148 Chapter 6: Using Controls

Link control

The Link control creates a simple hypertext link that supports an optional icon. You can use a
Link control to open a URL in a web browser.

The following figure shows three Link controls:

The Link control has the following default properties:

Creating a Link control

You define a Link control in MXML using the <mx:Link> tag, as the following example shows.
Specify an id value if you intend to refer to a component elsewhere in your MXML, either in
another tag or in an ActionScript block.

The following code contains a single Link control that opens a URL in a web browser window:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Link label="MACR" width="100"
click="getURL('http://quote.yahoo.com/q?s=MACR', 'quote')"

/>
</mx:Application>

This example uses the ActionScript getURL() function to open the URL. For more information,
see Flex ActionScript Language Reference.

The following code contains Link controls for navigating in a ViewStack container:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:VBox>
<!-- Put the links in an HBox container across the top. -->

<mx:HBox>
<mx:Link label="Link1" click="viewStack.selectedIndex=0" />
<mx:Link label="Link2" click="viewStack.selectedIndex=1" />
<mx:Link label="Link3" click="viewStack.selectedIndex=2" />

</mx:HBox>

<!-- This ViewStack container has three children. -->
<mx:ViewStack id="viewStack" >

<mx:VBox>
<mx:Label text="One"/>

</mx:VBox>
<mx:VBox>

<mx:Label text="Two"/>

Property Default

preferred size Width and height large enough for the text

minimum size 0

maximum size undefined
Link control 149

</mx:VBox>
<mx:VBox>

<mx:Label text="Three"/>
</mx:VBox>

</mx:ViewStack>

</mx:VBox>
</mx:Application>

A Link control’s label is centered within the bounds of the Link control. You can position the text
label in relation to the icon using the labelPlacement property, which accepts the values right,
left, bottom, and top.

User interaction

When a user clicks a Link control, the Link control broadcasts a click event. If a Link control is
enabled, the following happens:

• When the user moves the mouse pointer over the Link control, the Link control displays its
rollover appearance.

• When the user clicks the Link control, the input focus moves to the control and the Link
control displays its pressed appearance. When the mouse button is released, the Link control
returns to its rollover appearance.

• If the user moves the mouse pointer off the Link control while pressing the mouse button, the
control’s appearance returns to its original state and retains input focus.

• If the toggle property is set to true, the state of the Link control does not change until the
mouse button is released over the control.

If a Link control is disabled, it displays its disabled appearance, regardless of user interaction. In
the disabled state, all mouse or keyboard interaction is ignored.

Link control syntax

You use the <mx:Link> tag to define a Link control. The following table describes the properties
defined by the Link control:

Property Type Use Description Req/Opt

icon File Property Specifies the URL of a JPEG, GIF, SVG, or PNG
image or SWF file used as the icon.
You use the following format with this property:
icon="@Embed('relOrAbsoluteURL')"
The referenced image is packaged within the
generated SWF file at compile time when Flex
creates the SWF file for your application.
If you specify a SWF file, it cannot contain any
ActionScript 2 classes or Macromedia components.
If it does, Flex does not embed the SWF file.

Optional

label String Property Specifies the text label for the control. By default, the
label appears centered in the Link control.

Optional
150 Chapter 6: Using Controls

Loader control

The Loader control displays the contents of a specified SWF or JPEG file. It has properties that
let you scale its contents. It can also resize itself to fit the size of its contents. By default, content is
scaled to fit the size of the Loader control. It can also load content on demand programmatically,
and monitor the progress of a load.

A Loader control cannot receive focus. However, content loaded into the Loader control can
accept focus and have its own focus interactions.

Although the Loader is essentially a control, it extends the View class. For more information
about the View class, see Chapter 8, “Introducing Containers,” on page 237.

The Loader control has the following default properties:

Creating a Loader control

You define a Loader control in MXML using the <mx:Loader> tag, as the following example
shows. Specify an id value if you intend to refer to a component elsewhere in your MXML, either
in another tag or in an ActionScript block.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Loader id="loader1" contentPath="artwork.swf"/>
</mx:Application><mx:HBox id="myhbox">

labelPlacement String Property Specifies the orientation of the label in relation to a
specified icon. Possible values are right (default),
left, bottom, and top.

Optional

rollOverColor Number Style Specifies the color of the background when the Link
control is rolled over. The default value is #E3FFD6.

Optional

selectionColor Number Style Specifies the color of the background when the Link
control is selected. The default value is #CDFFC1.

Optional

textAlign String Style Specifies the alignment of text. Valid values are left,
center, and right. The default value is center,
This property is only recognized when
labelPlacement is left or right. If labelPlacement is
top or bottom, the text and icon are centered.

Optional

click Event Specifies a handler for click events.
The target property of the event object contains a
reference to the Link control. The type property
contains the string click.

Optional

Property Default

preferred size Width and height large enough for the loaded content

minimum size 0

maximum size undefined

Property Type Use Description Req/Opt
Loader control 151

Using the Loader control to load a Flex application

You can use the Loader control to load a Flex application. The following example loads the file
myApp.mxml:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:VBox />
<mx:Loader source="myApp.mxml.swf" scaleContent="false" />

</mx:VBox />
</mx:Application>

This technique works well with SWF files that add graphics or animations to an application, but
are not intended to have a large amount of user interaction. If you want to import SWF files that
require a large amount of user interaction, you should build them as custom components.

Sizing a Loader control

You use the Loader control’s scaleContent property to control the sizing behavior of the Loader
control. When the scaleContent property is set to true, Flex scales the content to fit within the
bounds of the control.

By default, a parent container can resize the height and width of a Loader control. To set an
explicit height or width value for a Loader control, use the height or width property. Setting the
height or width property prevents the parent from resizing it. You can also use the maxHeight
and minHeight properties, and maxWidth and minWidth properties, to limit resizing.

Loader control syntax

You use the <mx:Loader> tag to define a Loader control. The following table describes the
properties defined by the Loader control:

Property Type Use Description Req/Opt

autoLoad Boolean Property Specifies whether the content loads automatically,
true, or if you must call the load method, false. The
default value is true.

Optional

brokenImage Path Property Specifies the image to use if the Loader control
cannot load the image specified by contentPath.
By default, Flex uses a standard broken image icon.
You must use the @Embed tag to specify the image,
as the following code shows:
<mx:Loader

brokenImage="@Embed('myImage.jpg')" />
For more information on using @Embed, see
Chapter 13, “Importing Images and Media,” on
page 361.
If you specify a SWF file, it cannot contain any
ActionScript 2 classes or Macromedia
components. If it does, Flex does not embed the
SWF file.

Optional
152 Chapter 6: Using Controls

NumericStepper control

The NumericStepper control lets the user select a number from an ordered set. The
NumericStepper control consists of a single-line input text field and a pair of arrow buttons for
stepping through the possible values; the user can also use the Up and Down Arrow keys to cycle
through the values.

bytesLoaded Number Property Read-only property that contains the number of
bytes loaded.

Optional

bytesTotal Number Property Read-only property that contains the total number
of bytes in the content.

Optional

content File Property Read-only property that contains the content of the
Loader control.

Optional

contentPath Path Property Specifies the absolute or relative URL of the
content to be loaded. A relative URL is relative to
the directory that contains the file using the Loader
control.

Optional

percentLoaded Number Property Read-only property that contains the percentage of
the content that has been loaded.

Optional

scaleContent Boolean Property Specifies whether the content scales to fit the
Loader control, true, or the Loader control scales
to fit the content, false. The default value is true.

Optional

horizontalAlign String Style Specifies the horizontal alignment of the image
when it does not have a 1-to-1 aspect ratio. The
default value is left. Possible values are left,
center, and right.

Optional

verticalAlign String Style Specifies the vertical alignment of the image when
it does not have a 1-to-1 aspect ratio. The default
value is top. Possible values are top, middle, and
bottom.

Optional

complete Event Specifies a handler for complete events, which are
broadcast when loading is completed.
The target property of the event object contains a
reference to the Loader control. The type property
contains the string complete.

Optional

progress Event Specifies a handler for an event triggered while
content is loading.
The event is not guaranteed to be dispatched,
which means that the complete event might be
received, without any progress events being
dispatched.
The target property of the event object contains a
reference to the Loader control. The type property
contains the string progress.

Optional

Property Type Use Description Req/Opt
NumericStepper control 153

The following figure shows a NumericStepper control:

If the user clicks the up arrow, the value displayed is increased by one unit of change. If the user
holds down the arrow, the value increases or decreases until the user releases the mouse button.
When the user clicks the arrow, it is highlighted to provide feedback to the user.

Users can also type a legal value directly into the stepper. Although editable ComboBox controls
provide similar functionality, NumericStepper controls are sometimes preferred because they do
not require a drop-down list that can obscure important data.

NumericStepper control arrows always appear to the right of the text field.

The NumericStepper control has the following default properties:

Creating a NumericStepper control

You define a NumericStepper control in MXML using the <mx:NumericStepper> tag, as the
following example shows. Specify an id value if you intend to refer to a component elsewhere in
your MXML, either in another tag or in an ActionScript block.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >
...
 <mx:NumericStepper id="nstepper1" value="6" stepSize="2" />
...
</mx:Application>

Sizing a NumericStepper control

The up and down arrow buttons in the NumericStepper control do not change size when the
control is resized. If the NumericStepper control is sized greater than the default height, the
associated stepper buttons appear pinned to the top and the bottom of the control.

User interaction

If the user clicks the up or down arrow button, the value displayed is increased by one unit of
change. If the user presses either of the arrow buttons for more than 200 milliseconds, the value in
the input field increases or decreases, based on step size, until the user releases the mouse button
or the maximum or minimum value is reached.

Property Default

preferred size Wide enough to display the maximum number of digits used by the control

minimum size Based on the size of the text

maximum size undefined
154 Chapter 6: Using Controls

Keyboard navigation

The NumericStepper control has the following keyboard navigation features:

NumericStepper control syntax

You use the <mx:NumericStepper> tag to define a NumericStepper control. The following table
describes the properties and methods defined by the NumericStepper control:

Key Description

Down Value decreases by one unit.

Up Value increases by one unit.

Left Moves the insertion point to the left within the NumericStepper control’s text field.

Right Moves the insertion point to the right within the text field.

Property Type Use Description Req/Opt

maximum Number Property Specifies the maximum range value. Can contain a
number with up to three decimal places. The default
value is 10.

Optional

minimum Number Property Specifies the minimum range value. The default value
is 0.

Optional

nextValue Number Property Read-only property that contains the next value in
the control, based on the range and step size.

Optional

previousValue Number Property Read-only property that contains the previous value
in the control, based on the range and step size.

Optional

stepSize Number Property Specifies the nonzero unit change from the current
value. Can contain a number with up to three decimal
places. The default value is 1.

Optional

value Number Property Sets the current value displayed in the text field of the
NumericStepper control. The value is not assigned if
it does not correspond to the NumericStepper
control’s maximum and minimum range values and
stepSize. Can contain a number with up to three
decimal places. The default value is 0.

Optional

change Event Specifies a handler for change events, which are
broadcast when the value of the NumericStepper
control changes as a result of user interaction.
The target property of the event object contains a
reference to the NumericStepper control. The type
property contains the string change.

Optional
NumericStepper control 155

NumericStepper control skins

A NumericStepper control uses the following skin properties:

ProgressBar control

The ProgressBar control provides a visual representation of the progress of a task over time. There
are two types of ProgressBar controls: determinate and indeterminate. A determinate ProgressBar
control is a linear representation of the progress of a task over time. You can use this when the user
is required to wait for an extended period of time, and the scope of the task is known.

An indeterminate ProgressBar control represents time-based processes for which the scope is not
yet known. As soon as you can determine the scope, you should use a determinate ProgressBar
control.

The following figure shows both types of ProgressBar controls:

Use the ProgressBar control when the user is required to wait for completion of a process over an
extended period of time. You can attach the ProgressBar control to any kind of loading content. A
label can display the extent of loaded contents when enabled.

Skin Description

upArrowUp Specifies the skin for the up arrow’s up state. The default value is
StepUpArrowUp.

upArrowDown Specifies the skin for the up arrow’s pressed state. The default value is
StepUpArrowDown.

upArrowOver Specifies the skin for the up arrow’s over state. The default value is
StepUpArrowOver.

upArrowDisabled Specifies the skin for the up arrow’s disabled state. The default value is
StepUpArrowDisabled.

downArrowUp Specifies the skin for the down arrow’s up state. The default value is
StepDownArrowUp.

downArrowDown Specifies the skin for the down arrow’s down state. The default value is
StepDownArrowDown.

downArrowOver Specifies the skin for the down arrow’s over state. The default value is
StepDownArrowOver.

downArrowDisabled Specifies the skin for the down arrow’s disabled state. The default value is
StepDownArrowDisabled.

Determinate ProgressBar control

Indeterminate ProgressBar control
156 Chapter 6: Using Controls

The ProgressBar control has the following default properties:

ProgressBar control modes

You use the mode property to specify the operating mode of the ProgressBar control. The
ProgressBar control supports the following modes of operation:

• event Use the source property to specify a loading process that emits progress and
complete events. For example, the Loader and Image controls emit these events as part of
loading an image. This is the default mode. You typically use a determinate ProgressBar in
this mode.
You also use this mode if you want to measure progress on multiple loads; for example, if you
reload an image, or use the Loader and Image controls to load multiple images.

• polled Use the source property to specify a loading process that exposes the
getBytesLoaded() and getsBytesTotal() methods. For example, the Loader and Image
controls expose these methods. You typically use a determinate ProgressBar in this mode.

• manual Set the maximum, minimum, and indeterminate properties along with calls to the
setProgress() method. You typically use an indeterminate ProgressBar in this mode.

Creating a ProgressBar control

You use the <mx:ProgressBar> tag to define a ProgressBar control in MXML, as the following
example shows. Specify an id value if you intend to refer to a component elsewhere in your
MXML, either in another tag or in an ActionScript block.

This example uses the default event mode to track the progress of loading an image using the
Loader control.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Script>
<![CDATA[

function initImage()
 {

image1.load('bigimage.jpg');
}

]]>
</mx:Script>

<mx:VBox id="vbox0" width="600" height="600">

<mx:Canvas>
<mx:ProgressBar width="200" source="image1"/>

</mx:Canvas>

Property Default

preferred size 150 pixels wide and 4 pixels high

minimum size 0

maximum size undefined
ProgressBar control 157

<mx:Button id="myButton" label="Show" click="initImage()"/>

<mx:Loader height="600" width="600" id="image1"
autoLoad="false" visible="true" />

</mx:VBox>
</mx:Application>

In this mode, the Loader control issues progress events during the load, and a complete event
when the load completes.

Since the <mx:Loader> tag exposes the getBytesLoaded() and getBytesTotal() methods, you
could also use polled mode, as the following example shows:
<mx:ProgressBar width="200" source="image1" mode="polled" />

In manual mode, mode="manual", you use an indeterminate ProgressBar control with the
maximum and minimum properties and the setProgress() method. The setProgress() method
has the following method signature:
setProgress(Number completed, Number total)

where:

• completed Specifies the progress made in the task, and must be between the maximum and
minimum values. For example, if you were tracking the number of bytes to load, this would be
the number of bytes already loaded.

• total Specifies the total task. For example, if you were tracking bytes loaded, this would be
the total number of bytes to load. Typically, this is the same value as maximum.

To measure progress, you make explicit calls to the setProgress() method to update the
ProgressBar control.

Defining the label of a ProgressBar control

By default, the ProgressBar displays the label LOADING xx% where xx is the percent of the image
loaded. You use the label property to specify a different text string to display.

The label property lets you include the following special characters in the label text string:

• %1 Corresponds to the current number of bytes loaded.
• %2 Corresponds to the total number of bytes.
• %3 Corresponds to the percent loaded.
• %% Corresponds to the % sign.

For example, to define a label that displays as:
Loading Image 1500 out of 78000 bytes, 2%

Use the following code:
<mx:ProgressBar width="300" source="image1" mode="polled"

label="Loading Image %1 out of %2 bytes, %3%%" />
158 Chapter 6: Using Controls

ProgressBar control syntax

You use the <mx:ProgressBar> tag to define a ProgressBar control. The following table describes
the properties and methods defined by the ProgressBar control:

Property/Method Type Use Description Req/Opt

conversion Number Property Specifies the number used to convert the
incoming current bytes loaded value and the total
bytes loaded values.
Flex divides the current and total values and
floors them before displaying them in the label
string. The floor is the closest integer that is less
than or equal to the specified value.
The default value is 1, which does no conversion.

Optional

direction String Property Specifies the direction of fill of the progress bar.
Valid values are right and left. The default
value is right.

Optional

indeterminate Boolean Property Specifies whether the ProgressBar control has a
determinate or indeterminate appearance.
Appearance is indeterminate when set to true.
The default value is false.

Optional

label String Property Specifies the text that accompanies the progress
bar. You can include the following special
characters in the text string: %1 = current loaded
bytes, %2 = total bytes, %3 = percent loaded,
%% = percent symbol. If a field is unknown, it is
replaced by '??'. If undefined, the label is not
displayed.

Optional

labelPlacement String Property Specifies the placement of the label. Valid values
are top, bottom (default), left, right, and center.

Optional

maximum Number Property Specifies the largest progress value for the
progress bar. You can only use this property in
manual mode. The default value is 0.

Optional

minimum Number Property Specifies the smallest progress value for the
progress bar. The developer sets this property
only in manual mode. The default value is 0.

Optional

mode String Property Specifies the mode as event (default), polled, or
manual. For more information, see “ProgressBar
control modes” on page 157.

Optional

percentComplete Number Property Read-only property that contains the percentage
of the process completed.

source Property Specifies the instance that will be loading
content to the bar. This property is used only in
event and polled modes.

Optional

value Number Property Read-only property that contains the progress
that has been made, between the minimum and
maximum values.

Optional
ProgressBar control 159

ProgressBar control skins

A ProgressBar control uses the following skin properties:

complete Event Specifies a handler for complete events, which
are broadcast when the load completes.
The event object contains the following
properties:
• target Contains a reference to the

ProgressBar control.
• type Contains the string complete.
• current Contains the number of bytes

loaded.
• total Contains the total number of bytes to

load.

Optional

progress Event Specifies a handler for progress events, which
are broadcast as content loads in event or polled
mode.
The event object contains the following
properties:
• target Contains a reference to the

ProgressBar control.
• type Contains the string progress.
• current Contains the number of bytes

loaded.
• total Contains the total number of bytes to

load.

Optional

setProgress() Method Sets the state of the bar to reflect the amount of
progress made when using manual mode.
This method has the following method signature:
setProgress(completed:Number, total:Number)
The argument completed is assigned to the value
property and the argument total is assigned to
the maximum property. The minimum property is not
altered.

Optional

Skin Description

progTrackMiddleName Specifies the skin for the expandable middle of the track. The default value is
ProgTrackMiddle.

progTrackLeftName Specifies the skin for the fixed-size left cap. The default value is
ProgTrackLeft.

progTrackRightName Specifies the skin for the fixed-size right cap. The default value is
ProgTrackRight.

progBarMiddleName Specifies the skin for the expandable middle bar graphic. The default value is
ProgBarMiddle.

progBarLeftName Specifies the skin for the fixed-size left bar cap. The default value is
ProgBarLeft.

Property/Method Type Use Description Req/Opt
160 Chapter 6: Using Controls

RadioButton control

The RadioButton control is a single choice in a set of mutually exclusive choices. A RadioButton
group is composed of two or more RadioButton controls with the same group name. Only one
member of the group can be selected at any given time. Selecting an unselected group member
deselects the currently selected RadioButton control in the group.

The following figure shows a RadioButton group with three RadioButton controls:

The RadioButton control has the following default properties:

Creating a RadioButton control

You define a RadioButton control in MXML using the <mx:RadioButton> tag, as the following
example shows. Specify an id value if you intend to refer to a component elsewhere in your
MXML, either in another tag or in an ActionScript block.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:RadioButton groupName="cardtype" id="americanExpress"
label="American Express" width="200"/>

<mx:RadioButton groupName="cardtype" id="masterCard"
label="MasterCard" width="200"/>

<mx:RadioButton groupName="cardtype" id="visa"
label="Visa" width="200"/>

</mx:Application>

For each RadioButton control in the group, you can optionally define a handler for the button’s
click event. When a user selects a RadioButton control, Flex calls the handler associated with the
button for the click event, as the following code example shows:

<mx:RadioButton groupName="cardtype" id="americanExpress"
label="American Express" width="200" click="handleAmEx();" />

<mx:RadioButton groupName="cardtype" id="masterCard"
label="MasterCard" width="200" click="handleMC();" />

progBarRightName Specifies the skin for the fixed-size right bar cap. The default value is
ProgBarRight.

progIndBarName Specifies the skin for the indeterminate bar graphic. The default value is
ProgIndBar.

Property Default

preferred size Wide enough to display the text label of the control

minimum size 0

maximum size undefined

Skin Description
RadioButton control 161

<mx:RadioButton groupName="cardtype" id="visa"
label="Visa" width="200" click="handleVisa();" />

User interaction

If a RadioButton control is enabled, when the user moves the mouse pointer over an unselected
RadioButton control, the button displays its roll-over appearance. When the user clicks an
unselected RadioButton control, the input focus moves to the control and the button displays its
false pressed appearance. When the mouse button is released, the button displays the true state
appearance. The previously selected RadioButton control in the group returns to its false state.

If the user moves the mouse pointer off the RadioButton control while pressing the mouse
button, the control’s appearance returns to the false state and retains input focus.

If a RadioButton control is not enabled, the RadioButton control and RadioButton group display
the disabled appearance, regardless of user interaction. In the disabled state, all mouse or
keyboard interaction is ignored.

Creating a group using the <mx:RadioButtonGroup> tag

The previous example created a RadioButton group using the groupName property of each
RadioButton control. You can also create a RadioButton group using the
<mx:RadioButtonGroup> tag, as the following example shows:

<mx:RadioButtonGroup id="cardtype" click="handleCard(event)" />
<mx:RadioButton groupName="cardtype" id="americanExpress" data="AmEx"

label="American Express" width="200" />
<mx:RadioButton groupName="cardtype" id="masterCard" data="MC"

label="MasterCard" width="200" />
<mx:RadioButton groupName="cardtype" id="visa" data="Visa"

label="Visa" width="200" />

In this example, you use id property of the <mx:RadioButtonGroup> tag to define the group
name and the single click handler for all buttons in the group. The id property is required when
you use the <mx:RadioButtonGroup> tag. The click handler for the group can determine which
button was selected, as the following example shows:
<mx:Script>

<![CDATA[
function handleCard(evtObj)
{

if (evtObj.target.selectedData == "AmEx") {
// Process AmEx card.

} else {
if (evtObj.target.selectedData == "MC") {
// Process MC card.
} else {

// Process Visa.
}

}
]]>

</mx:Script>
162 Chapter 6: Using Controls

In the click handler, the selectedData property of the RadioButtonGroup control in the event
object is set to the value of the data property of the selected RadioButton control. If you omit the
data property, Flex sets the selectedData property to the value of the label property.

You can still define a click handler for the individual buttons even though you also define one
for the group.

RadioButton control syntax

You use the <mx:RadioButton> tag to define a RadioButton control. The following table
describes the properties defined by the RadioButton control:

Property Type Use Description Req/Opt

data Any Property Specifies the data value associated with a radio
button instance.

Optional

groupName String Property Specifies the group name for a radio button group or
radio button instance. The name refers to the value
of the id property of an <mx:RadioButtonGroup> tag.

Optional

label String Property Specifies the text label for the control. By default,
the label appears to the right of the RadioButton
control.

Optional

labelPlacement String Property Specifies the orientation of the label, relative to the
RadioButton icon. Possible values are right, left,
bottom, and top. The default value is right.

Optional

selected Boolean Property Specifies whether the button is selected, true, or
not, false. The default value is false.

Optional

selectedData Any Property Selects the radio button in a radio button group with
the specified data value.

Optional

toggle Boolean Property Specifies whether a RadioButton control can be
toggled, true, or acts like a pushbutton, false. The
default value is false.

Optional

click Event Specifies a handler for click events.
The target property of the event object contains a
reference to the RadioButton control. The type
property contains the string click.

Optional
RadioButton control 163

RadioButtonGroup control syntax

You use the <mx:RadioButtonGroup> tag to define a RadioButtonGroup control. The id
property is required when you use the <mx:RadioButtonGroup> tag to define the name of the
group. The following table describes the properties defined by the RadioButtonGroup control:

RadioButton control skins

A RadioButton control uses the following skin properties:

Property Type Use Description Req/Opt

enabled Boolean Property Specifies to enable the control, if true. The default
value is true.

Optional

groupName String Property Specifies the group name for a radio button group.
This property is for backward compatibility with
Macromedia Flash only. Use the id property of the
<mx:RadioButtonGroup> tag to define the name of
the group.

Optional

labelPlacement String Property Specifies the orientation of the label relative to the
RadioButton icon for all controls in the group. You
can override this setting for the individual controls.
Possible values are right, left, bottom, and top. The
default value is right.

Optional

selectedData Any Property Value of the data property of the selected
RadioButton in the group. If the RadioButton does
not define the data property, Flex sets selectedData
to the value of the label property.

Optional

selection Object Property Contains a copy of the currently selected
RadioButton control in the group. You can only
access this property in ActionScript; it is not settable
in MXML.

Optional

click Event Specifies a handler for click events for the group.
You can also set a handler for individual
RadioButton controls.
The target property of the event object contains a
reference to the RadioButton control. The type
property contains the string click.

Optional

Skin Description

falseUpIcon Specifies the skin for the unchecked state. The default value is
radioButtonFalseUp.

falseDownIcon Specifies the skin for the pressed-unchecked state. The default value is
radioButtonFalseDown.

falseOverIcon Specifies the skin for the over-unchecked state. The default value is
radioButtonFalseOver.
164 Chapter 6: Using Controls

ScrollBar control

The VScrollBar (vertical ScrollBar) control and HScrollBar (horizontal ScrollBar) control let the
user control the portion of data that is displayed when there is too much data to fit in the display
area.

Although you can use the VScrollBar control and HScrollBar control as stand-alone controls,
they are usually combined with other components as part of a custom component to provide
scrolling functionality. For more information, see Chapter 14, “Building an Application with
Multiple MXML Files,” on page 383.

ScrollBar controls consists of four parts: two arrow buttons, a track, and a thumb. The position of
the thumb and display of the buttons depends on the current state of the ScrollBar control. The
ScrollBar control uses four parameters to calculate its display state:

• Minimum range value
• Maximum range value
• Current position; must be within the minimum and maximum range values
• Viewport size; represents the number of items in the range that can be displayed at once and

must be equal to or less than the range

Creating a ScrollBar control

You define a ScrollBar control in MXML using the <mx:VScrollbar> tag for a vertical ScrollBar
or the <mx:HScrollBar> tag for a horizontal ScrollBar, as the following example shows. Specify
an id value if you intend to refer to a component elsewhere in your MXML, either in another tag
or in an ActionScript block.
<?xml version="1.0" ?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >
...
 <mx:VScrollBar id="scroll1" scroll="eventhandler()" pageSize="10" />
...
</mx:Application>

Sizing a ScrollBar control

The ScrollBar control does not display correctly if it is sized smaller than the height of the up
arrow and down arrow buttons. There is no error checking for this condition. Macromedia
recommends that you hide the ScrollBar control in such a condition. If there is not enough room
for the thumb, the thumb is made invisible.

falseDisabledIcon Specifies the skin for the disabled-unchecked state. The default value is
radioButtonFalseDisabled.

trueUpIcon Specifies the skin for the checked state. The default value is
radioButtonTrueUp.

Skin Description
ScrollBar control 165

User interaction

Use the mouse to click the various portions of the ScrollBar control, which broadcasts events to
listeners. The object listening to the ScrollBar control is responsible for updating the portion of
data displayed. The ScrollBar control updates itself to represent the new state after the action has
taken place.

ScrollBar control syntax

You use the <mx:VScrollBar> tag to define a vertical ScrollBar control, and the
<mx:HScrollBar> tag to define a horizontal ScrollBar control. The following table describes the
properties defined by these controls:

Text control

The Text control displays multiline, noneditable text. Noneditable means that the application
user cannot modify the text. The Text control does not support scroll bars; its preferred size is a
square large enough to display the specified text.

Property Type Use Description Req/Opt

lineScrollSize Number Property Specifies the increment to move when an arrow
button is pressed. The default value is 1.

Optional

maxPos Number Property Specifies the top of the scrolling range. The default
value is 0.

Optional

minPos Number Property Specifies the bottom of the scrolling range. The
default value is 0.

Optional

minWidth Number Property Read-only property that contains the minimum width
of the ScrollBar control.

Optional

minHeight Number Property Read-only property that contains the maximum width
of the ScrollBar control.

Optional

pageScrollSize Number Property Specifies the increment to move when the track is
pressed. This value is reset to the pageSize
parameter of the setScrollProperties() method
when it is called.

Optional

pageSize Number Property Specifies the page size, the increment to move when
the track is pressed, for the ScrollBar control. The
default value is 0.

Optional

scrollPosition Number Property Specifies the current scrolling position. The default
value is 0.

Optional

scroll Event Specifies a handler for scroll events, which are
broadcast when the ScrollBar control state changes.
The event object contains the following properties:
• target Contains a reference to the ScrollBar

control.
• type Contains the string scroll.
• direction Contains vertical or horizontal.

Optional
166 Chapter 6: Using Controls

To create a single-line, noneditable text field, use the Label control. For more information, see
“Label control” on page 144. To create user-editable text fields, you use the TextInput or TextArea
controls. For more information, see “TextInput control” on page 172 and “TextArea control”
on page 169.

The following figure shows an example of the Text control:

The Text control supports HTML text and a variety of text and font styles. The text always word-
wraps at the control boundaries, and is always aligned to the top of the control. The Text control
is transparent so that the background of the component’s container shows through, and the
control has no borders.

The Text control has the following default properties:

Creating a Text control

You define a Text control in MXML using the <mx:Text> tag, as the following example shows.
Specify an id value if you intend to refer to a component elsewhere in your MXML, either in
another tag or in an ActionScript block.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Text text="This is an example of a multiline text string in a Text
control." />

</mx:Application>

You use the text property to specify a string of raw text, and the htmlText property to specify an
HTML-formatted string.

Using the text property

You can use the text property to specify the text string that appears in the Text control. The
control collapses any white-space characters, such as tab and newline characters. Any HTML tags
in the text string are ignored, and appear as entered in the string.

Property Default

preferred size A square large enough to contain the text. The width will not be larger than the width
of the Application window.

minimum size None

maximum size None
Text control 167

For the special characters left angle bracket (<), right angle bracket (>), and ampersand (&), insert
the HTML equivalents of <, >, and &. The following example sets the text string
using the text property:
<mx:Text text="This string contains a less than, <, greater than, >, and

amp, &." />

If you wrap the text string in a CDATA tag, you can specify the literal characters for the left angle
bracket (<), right angle bracket (>), or ampersand (&) in the text property using a child tag, as
the following example shows:
<mx:Text >

<mx:text><![CDATA[This is an example of a multiline text string in a Text
control with a less than, <, greater than, >, and amp, &.]]>

</mx:text>
</mx:Text>

The following example uses an initialization function to set the text property to a string that
contains these characters:
<mx:Script>

<![CDATA[

function initText() {
TA.text="This is an example of a multiline text string in a Text control

with a less than, <, greater than, >, and amp, &."
}

]]>
</mx:Script>

<mx:Text id="TA" initialize="initText()" />

Since the code of the <mx:Script> tag is contained in a CDATA tag, you do not need an additional
tag for the string.

Using the htmlText property

You use the htmlText property to specify an HTML-formatted text string. If your text string
contains HTML tags, you must wrap it in a CDATA tag. The control collapses any white-space
characters, such as tab and newline characters.

When you specify the text string for the Text control in MXML, you cannot escape special
characters, such as tab and newline characters. For example, if you include the characters ‘\n’ or
‘\t’ in the text string, the characters appear as ‘\n’ and ‘\t’ in the Text control. To insert tab and
newline characters, use the htmlText property and insert the
 tag or escape sequence
into the text string.

For the special characters left angle bracket (<), right angle bracket (>), and ampersand (&), insert
the HTML equivalents of <, >, and &.

The following example sets the text string to an HTML-formatted string using the htmlText
property:
<mx:Text>
168 Chapter 6: Using Controls

<mx:htmlText><![CDATA[This is an example of a multiline text
string in a Text control, with some carriage returns

 with a less
than, <, greater than, >, and amp, &.]]>

</mx:htmlText>
</mx:Text>

If you omit the CDATA tag, Flex converts the <, >, and & back into the literal
characters left angle bracket (<), right angle bracket (>), or ampersand (&), and will attempt to
interpret them as HTML.

For more information on using HTML tags in htmlText, “Using HTML-formatted text”
on page 146.

Sizing a Text control

If you do not specify width or height properties for the Text control, Flex sizes the control to be
a square large enough to hold the specified text.

If you specify the height or width properties, then the Text control does not resize in the
corresponding direction, and any text that exceeds the size of the control is clipped at the border.

If you specify positive values for the widthFlex or heightFlex properties, then the Text control
stretches in the specified direction to fill the available space.

Text control syntax

You use the <mx:Text> tag to define a Text control. The Text control is derived from the Label
control and accepts all of the properties and methods of the Label control. For more information,
see “Label control” on page 144.

TextArea control

The TextArea control is a multiline, editable text field with a border and optional scroll bars. All
text in a TextArea control must use the same styling unless it is HTML text. The TextArea control
supports the HTML rendering capabilities of Flash Player. The TextArea control broadcasts a
change event.

The following figure shows a TextArea control:

To create a single-line, editable text field, use the TextInput control. For more information, see
“TextInput control” on page 172.

If you disable a TextArea control, it displays its contents in a different colors represented by the
disabledColor style. You can set a TextArea control to read-only to disallow editing of the text.
You can set a TextArea control’s password property to conceal input text by displaying characters
as asterisks.
TextArea control 169

The TextArea control has the following default properties:

Creating a TextArea control

You define a TextArea control in MXML using the <mx:TextArea> tag, as the following example
shows. Specify an id value if you intend to refer to a control elsewhere in your MXML, either in
another tag or in an ActionScript block.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:TextArea id="textConfirm" text="Congratulations. You are a winner." />
</mx:Application>

Just as you can for the Text control, you use the text property to specify a string of raw text, and
the htmlText property to specify an HTML formatted string. For more information, see “Using
the text property” on page 167 and “Using the htmlText property” on page 168.

TextArea control syntax

You use the <mx:TextArea> tag to define a TextArea control. The following table describes the
properties defined by the TextArea control:

Property Default

preferred size Width = 100 pixels; height = 44 pixels

minimum size 0

maximum size undefined

Property Type Use Description Req/Opt

editable Boolean Property Specifies whether the user can edit the text. The
default value is true.

Optional

hPosition Number Property Specifies the pixel position of the leftmost character
that is currently displayed. Will always be 0, and
ignore changes, if wordWrap is set to true.

Optional

hScrollPolicy String Property Specifies whether the horizontal scroll bar is always
on, on; always off, off; or turns on when needed, auto.
The default value is auto.

Optional

htmlText String Property Contains HTML formatted text. If your text string
contains HTML tags, you must wrap it in a CDATA tag.
The control collapses any white-space characters,
such as tab and newline characters.
For the special characters left angle bracket (<), right
angle bracket (>), ad ampersand (&), insert the HTML
equivalents of <, >, and &.
The htmlText property ignores CSS style settings for
the control, and instead relies on the HTML tags in
the string for formatting. Do not try to mix HTML tags
and styles; use HTML tags to format your text.

Optional
170 Chapter 6: Using Controls

length Number Property Read-only property that contains the length of the
string.

Optional

maxChars Number Property Specifies the maximum number of characters that the
text field can contain. The default value is undefined.

Optional

maxHPosition Number Property Specifies the maximum value of hPosition. The
default value is 0. Will always be 0 if wordWrap is set to
true.

Optional

maxVPosition Number Property Specifies the maximum value of vPosition. The
default value is 0.

Optional

password String Property Specifies that the field is a password field, true, or
not, false. The default value is false.
If you set this property to true, each text character
entered into the control appears as an asterisk
character (*).

Optional

restrict String Property Specifies the set of characters that a user can enter
into the text field. If the value of the restrict property is
null or an empty string, you can enter any character.
This property only restricts user interaction; a script
might put any text into the text field.
If the value of the restrict property is a string of
characters, you may enter only characters in that
string into the text field. The string is scanned from
left to right. You can specify a range using the dash
(-).
If the string begins with a caret (^), the string specifies
the characters that cannot be entered into the
control. For example, the string "^a-z" means that all
uppercase letters may be entered, but no lowercase
letters are allowed.
This property does not synchronize with the Embed
Font Outlines check boxes in the Property inspector.
Since some characters have a special meaning when
used in the restrict property, you must use the
backslash character to specify the literal characters -,
^, and \, as follows:
\^
\-
\\

Optional

text String Property Specifies the text string that appears in the control.
The control collapses any white-space characters,
such as tab and newline characters.
Any HTML tags in the text string are ignored, and
appear as entered in the string.
For the special characters left angle bracket (<), right
angle bracket (>), and ampersand (&), wrap the text
string in a CDATA tag.

Optional

Property Type Use Description Req/Opt
TextArea control 171

TextInput control

The TextInput control is a single-line text field that is optionally editable. All text in the
TextInput control must use the same styling unless it is HTML text. The TextInput control
supports the HTML rendering capabilities of Flash Player. The TextInput control, like other
input and choice controls, can have a required value indicator when used in a FormItem container
in a Form container.

The following figure shows a TextInput control:

To create a multiline, editable text field, use the TextArea control. For more information, see
“TextArea control” on page 169.

TextInput controls do not include a label, but you can add one using a Label control or by nesting
the TextInput control in a FormItem container in a Form container. TextInput controls indicate
whether a value is required, and have a number of states, including filled, selected, disabled, and
error. TextInput controls support formatting, validation, and keyboard equivalents, and broadcast
change and enter events.

If you disable a TextInput control, it displays its contents in a different color, represented by the
disabledColor style. You can set a TextInput control’s editable property to false to disallow
editing of the text. You can set a TextInput control’s password property to conceal the input text
by displaying characters as asterisks.

vPosition Number Property Specifies the line number of the topmost row of
characters that is currently displayed. The default
value is 0.

Optional

vScrollPolicy String Property Specifies whether the vertical scroll bar is always on,
on, never on, off, or turns on when needed auto. The
default value is auto.

Optional

wordWrap String Property Specifies whether the text wraps, true, or not, false.
The default value is true.

Optional

borderStyle String Style Specifies the border style. The valid values are none,
solid, inset, and outset. The default value is inset.

Optional

change Event Broadcast when text in the TextArea control changes
by user input or through data binding. This event does
not occur if you modify the text using ActionScript
code.
The target property of the event object contains a
reference to the TextArea control. The type property
contains the string change.

Optional

scroll Event Broadcast when the content is scrolled.
The target property of the event object contains a
reference to the TextArea control. The type property
contains the string scroll.

Optional

Property Type Use Description Req/Opt
172 Chapter 6: Using Controls

The TextInput control has the following default properties:

Creating a TextInput control

You define a TextInput control in MXML using the <mx:TextInput> tag, as the following
example shows. Specify an id value if you intend to refer to a control elsewhere in your MXML,
either in another tag or in an ActionScript block.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:TextInput id="text1" width="100"/>
</mx:Application>

Just as you can for the Label control, you use the text property to specify a string of raw text, and
the htmlText property to specify an HTML formatted string. For more information, see “Using
the text property” on page 144 and “Using the htmlText property” on page 145.

Binding to a TextInput control

In some cases, you might want to bind a variable to the text property of a TextInput control, as
the following example shows:
<mx:TextInput text="{myProp}" />

In this example, the TextInput control displays the value of the myProp variable. However, if
myProp has not been initialized, so that its value is null or its value is undefined, the control
shows the string null or undefined. You can configure the control to display an empty string in
this case, as the following example shows:
<mx:TextInput text="{myProp == null ? '' : myProp}"/>

TextInput control syntax

You use the <mx:TextInput> tag to define a TextInput control. The following table describes the
properties defined by the TextInput control:

Property Default

preferred size The size of the text with a default minimum size of 160 pixels.

minimum size 0

maximum size undefined

Property Type Use Description Req/Opt

editable Boolean Property Specifies whether the user can edit the text. The
default value is true.

Optional

hPosition Number Property Specifies the pixel position of the leftmost character
that is currently displayed. The default value is 0.

Optional
TextInput control 173

htmlText String Property Contains HTML formatted text. If your text string
contains HTML tags, you must wrap it in the CDATA tag.
The control collapses any white-space characters,
such as tab and newline characters.
For the special characters left angle bracket (<), right
angle bracket (>), and ampersand (&), insert the HTML
equivalents of <, >, and &.
The htmlText property ignores CSS style settings for
the control, and instead relies on the HTML tags in the
string for formatting. Do not mix HTML tags and
styles; use HTML tags to format your text.

Optional

length Number Property Read-only property that contains the length of the
string.

Optional

maxChars Number Property Specifies the maximum number of characters that the
text field can contain. The default value is undefined.

Optional

maxHPosition Number Property Specifies the maximum value of hPosition. The
default value is 0.

Optional

password Boolean Property Specifies whether the field is a password field, true, or
not, false. The default value is false.
If you set this property to true, each text character
entered into the control appears as the asterisk
character (*).

Optional

restrict String Property Specifies the set of characters that a user can enter
into the text field. For more information, see the
restrict property of the TextArea control at
“TextArea control syntax” on page 170.

Optional

text String Property Specifies the text string that appears in the control.
The control collapses any white-space characters,
such as tab and newline characters.
Any HTML tags in the text string are ignored, and
appear as entered in the string.
For the special characters left angle bracket (<), right
angle bracket (>), and ampersand (&), wrap the text
string in a CDATA tag.

Optional

borderStyle String Style Specifies the border style. The valid values are: none,
solid, inset, and outset. The default value is inset.

Optional

change Event Specifies a handler for change events, which are
broadcast when text in the TextInput control changes.
The target property of the event object contains a
reference to the TextInput control. The type property
contains the string change.

Optional

enter Event Specifies a handler for enter events, which are
broadcast when the Enter key is pressed.
The target property of the event object contains a
reference to the TextInput control. The type property
contains the string enter.

Optional

Property Type Use Description Req/Opt
174 Chapter 6: Using Controls

CHAPTER 7
Using Data Provider Controls
Several Macromedia Flex controls take input from a data provider. For example, a Tree control
reads data from a data provider to define the structure of the tree and any associated data assigned
to each tree node.

This chapter describes the data provider controls and includes examples of different ways to
populate these controls using a data provider.

Contents

About data providers . 175

ComboBox control . 189

DataGrid control . 197

List control . 207

Menu control. 216

MenuBar control . 222

Tree control . 230

About data providers

Several Flex components, such as the Tree and ComboBox controls, take input data from a data
provider. A data provider is a collection of objects, similar to an array. For example, a Tree control
reads data from a data provider to define the structure of the tree and any associated data assigned
to each tree node.

The data provider creates a level of abstraction between Flex components and the data that you
use to populate them. You can populate multiple components from the same data provider,
switch data providers for a component at runtime, and modify the data provider so that changes
are reflected by all components that use the data provider.

You can think of the data provider as the model, and the Flex components as the view onto the
model. By separating the model from the view, you can change one without changing the other.
175

Types of data providers

Flex uses two types of data providers. You use a list-based data provider with the List, DataGrid,
ComboBox, TabBar, and LinkBar components. These components use a flat data provider,
similar to a one-dimensional array. For more information on using data providers with these
components, see “Using data providers with list-based components” on page 180.

This chapter describes the List, DataGrid, and ComboBox controls. For information on the
TabBar and LinkBar containers, see Chapter 11, “Using Navigator Containers,” on page 325.

You use a hierarchical data provider with the Tree, Menu, and MenuBar controls. A hierarchical
data provider lets you define a hierarchical data structure that matches the layout of a tree or
menu. For example, a tree typically has a root node, with one or more branch or leaf nodes. Each
branch node can hold additional branch nodes or leaf nodes, but a leaf node is an endpoint of the
tree. For more information on defining data providers for the Tree, Menu, and MenuBar controls,
see “Using data providers with hierarchical controls” on page 184.

This chapter also describes the Tree, Menu, and MenuBar controls.

The structure of a data provider

A data provider consists of two parts: a collection of data objects and an API. The data provider
API is a set of methods and properties that a class must implement so that a Flex component
recognizes it as a data provider.

For a class to function as a list-based data provider, it must implement the data provider interface.
The Flex Array class implements this API, so you can use the Array class as a data provider for
Flex components. Flash Remoting RecordSets and data from the ActionScript MX 2004 DataSet
component also support the data provider API.

For a class to function as a hierarchical data provider, it must implement the TreeDataProvider
API. The ActionScript XMLNode class and the Flex TreeNode classes implement this API, so you
can use them as data providers for Flex components.

You can also define your own custom classes that implement either data provider API. After you
define them, you can use your custom classes as data providers for Flex components.

For a description of the data provider API, see “Using the data provider API” on page 178.

Using a data provider to populate a component

You assign a data provider to a component’s dataProvider property. The following example
shows a data provider specifying the data for a ComboBox control:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:ComboBox id="myCB" >
<mx:dataProvider>

<mx:Array>
<mx:String>AL</mx:String>
<mx:String>AK</mx:String>
<mx:String>AR</mx:String>

</mx:Array>
</mx:dataProvider>
176 Chapter 7: Using Data Provider Controls

</mx:ComboBox>
</mx:Application>

In this example, you use the dataProvider property of the ComboBox control to define an Array
of String objects.

If each Array element is a simple type, the type’s value is displayed as a label in the control. In this
example, the value of each String displays in the ComboBox control. If each element is an Object,
by default the value of the Object’s label property appears.

The index of items in the data provider array is zero-based, which means that the values are 0, 1,
2, ... , n - 1, where n is the total number of items in the array. The value of the each data provider
item in this example is a text string.

After defining the ComboBox control in MXML, the dataProvider property of the ComboBox
control contains a reference to the underlying data provider object. You can modify the data
provider in ActionScript using the dataProvider property, as the following example shows:
myCB.dataProvider.addItem("MA");

The data provider API

The data provider API is a set of methods and properties that a class must implement so that a
Flex component recognizes it as a data provider. The Flash Remoting RecordSet class and
ActionScript Array and DataSet classes all implement this API.

A data provider for the list-based and hierarchical-based components implements the following
API:

List Hierarchical Description

addItem() addTreeNode() Adds an item at the end of the data provider.

addItemAt() addTreeNodeAt() Adds an item to the data provider at the specified position.

editField() Changes one field of one item of the data provider.

 getChildNodes() Returns all child nodes of the item.

 getData() Returns the data of the item.

getEditingData() Gets the data for editing from a data provider.

getItemAt() getTreeNodeAt() Gets a reference to the item at a specified position.

getItemID() Returns the unique ID of the item.

 getProperty() Returns a property of the data provider.

 hasChildNodes() Returns true if the item has child nodes.

 indexOf() Returns the index of an item.

removeAll() removeAll() Removes all items from a data provider.

 removeTreeNode() Removes the node from its parent in the data provider.

removeItemAt() removeTreeNodeAt()

Removes an item from a data provider at a specified
position.
About data providers 177

Using the data provider API

The data provider API lets you programmatically manipulate the data provider. The following
example creates an Array as a data provider for a List control, then populates it at runtime using
the API. Because the Array class implements the data provider API, you can use all the methods of
the API to manipulate it.
<mx:Script>

<![CDATA[

// Variable that contains the data provider.
var myDP : Array;

// Function to initialize the data provider.
function initList() {

myDP = new Array();
myDP.addItem("one");
myDP.addItem("two");
myDP.addItem("three");
myList.dataProvider = myDP;

}
]]>

</mx:Script>

<mx:List id="myList" initialize="initList()" />

The last statement of the function initializes the List control by passing a reference to the data
provider array to the List control. Therefore, if you use the data provider API to manipulate the
array after initializing the List control, those changes are propagated to the List control. Also, if
you use the same data provider for multiple controls, any changes to the data provider propagate
to all controls.

The following example uses the addItem() method of the data provider API to add a new item to
the data provider in response to some event:
function addToList(newEntry) {

myDP.addItem(newEntry);
}

replaceItemAt() Replaces the item at a specified position with another item.

 setData() Sets the data for an item.

 setProperty() Sets a property of the data provider.

sortItems() Sorts the items in a data provider.

sortItemsBy() Sorts the items in a data provider.

length Property that contains the number of items in a data
provider.

modelChanged modelChanged Event broadcast when the data provider changes.

List Hierarchical Description
178 Chapter 7: Using Data Provider Controls

You can specify a data type to the newEntry argument based on the data type of the array
elements in your data provider.

The Array class implements the data provider API, so you can call the addItem() method directly
on the Array object. The Array class signals modifications to any component that uses it so that
the component updates as well.

Because the dataProvider property of the List control contains a reference to its underlying data
provider object, you can also implement the addToList() function by calling methods on the
dataProvider property, as the following example shows:
function addToList(newEntry) {

myList.dataProvider.addItem(newEntry);
}

These two implementations of the addToList() function are equivalent.

You can change the data provider associated with a component at runtime. The following
example changes the data provider of a DataGrid control in response to a user action:
function changeDP(newDP) {

myList.dataProvider = newDP;
}

Using the data provider API of Flex components

Individual Flex components define an API that components use to communicate with their data
provider. You can use the component’s API to modify the data provider in the same way that you
can use the data provider API directly.

The following example rewrites the addToList() function from the previous section to use
methods of the List object, rather than of the data provider:
function addToList(newEntry:String) {

myList.addItem(newEntry);
}

Any changes you make to a data provider using the component’s API propagate to any other
components that also use that data provider. That is, each component maintains a reference to its
data provider; it does not store its own local copy. Therefore, if in the previous example, the List
control shared its data provider with another List control, the new entry would appear in both
controls.

Converting an object to an array for use with a data providers

Controls that use data providers require that the data provider contains an array. In some cases,
you might populate a data provider from an external data source using a Flex WebService,
HTTPService or RemoteObject data service. If you are sure that the data service returns an array,
you bind its results to the data provider of the control, as the following example shows:
<mx:ComboBox>

<mx:dataProvider>{myResults}</mx:dataProvider>
</mx:ComboBox>
About data providers 179

For more information and examples on binding to a data provider, see “Passing data to a
ComboBox control” on page 182. For more information on data services, see Chapter 28,
“Managing Data in Flex,” on page 593.

For data downloaded using the Flex HTTPService or represented by the <mx:Model> tag, if Flex
encounters a single tag in the data, Flex treats it as a single object. If Flex encounters multiple
copies of the same tag, Flex treats it as an array.

If you are not sure that the results of the data service contains an array, but instead contains an
individual object, you can use the toArray() method of the ArrayUtil class to convert it to an
array. If you pass the toArray() method to an individual object, it returns an array with that
object as the only array element. If you pass it an array, it returns the same array.

The following example uses the toArray() method as part of the binding statement:
<mx:ComboBox>

<mx:dataProvider>{mx.utils.ArrayUtil.toArray(myResults)}</mx:dataProvider>
</mx:ComboBox>

Web services usually do not need to use the toArray() method, because there is a schema
associated with the web service that specifies to Flex whether an item is an array, even if it contains
only a single object.

Defining a custom data provider

You can define your own data providers to populate Flex controls. This gives you the opportunity
to build your own logic into the data provider to have total control over how Flex displays your
data.

A custom data provider gives you a great deal of control over the data that populates the
associated control. For example, you might have a data provider that uses a calculation to
determine the data to return to the associated control.

Using data providers with list-based components

Flex list-based components use a data provider to supply data to the component. These
components include the following:

• ComboBox control
• DataGrid control
• List control
• LinkBar container
• TabBar container

The list-based components all use a similar mechanism with the data provider. The examples in
this section use the ComboBox control, but apply to the other components.

The LinkBar and TabBar containers have an additional option that is not available with the other
controls. For more information, see “Using data providers with LinkBar and TabBar containers”
on page 184.
180 Chapter 7: Using Data Provider Controls

Using a data provider in MXML

You specify the data for the ComboBox control using the <mx:dataProvider> child tag of the
<mx:ComboBox> tag. The <mx:dataProvider> tag lets you specify data in several ways. In the
simplest case for creating a ComboBox control, you use the <mx:dataProvider>, <mx:Array>,
and <mx:String> tags to define the entries as an array of Strings, as the following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:ComboBox>
<mx:dataProvider>

<mx:Array>
<mx:String>AL</mx:String>
<mx:String>AK</mx:String>
<mx:String>AR</mx:String>

</mx:Array>
</mx:dataProvider>

</mx:ComboBox>
</mx:Application>

Using objects to populate a ComboBox control

You can populate a ComboBox control with an array of Objects. Objects let you define a label
property that contains the string displayed in the ComboBox control, and a data property that
contains any data that you want to associate with the label, as the following example shows:
<mx:ComboBox>

<mx:dataProvider>
<mx:Array>

<mx:Object label="AL" data="Montgomery"/>
<mx:Object label="AK" data="Juneau"/>
<mx:Object label="AR" data="Little Rock"/>

</mx:Array>
</mx:dataProvider>

</mx:ComboBox>

The label property contains the state name and the data property contains the name of the
state’s capital. By default, the ComboBox control uses the label property of each Object in the
data provider to determine the text displayed in the control.

If each Object does not contain a label property, you can use the labelField property to
specify the property name, as the following example shows:
<mx:ComboBox labelField="state" >

<mx:dataProvider>
<mx:Array>

<mx:Object state="Alabama" data="Montgomery"/>
<mx:Object state="Alaska" data="Juneau"/>
<mx:Object state="Arkansas" data="Little Rock"/>

</mx:Array>
</mx:dataProvider>

</mx:ComboBox>

You can also use a property name other than data for additional information.
About data providers 181

Passing data to a ComboBox control

Flex lets you populate the data provider of a ComboBox control from an ActionScript variable
definition or from a Flex data model. When you use a variable, you can define it so that each array
element contains one of the following:

• A label (string)
• A label (string) paired with data (scalar value or Object)

The following example populates a ComboBox control from a variable:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Script>
<![CDATA[

var COLOR_ARRAY:Array=
[{label:"Red", data:"#FF0000"},
{label:"Green", data:"#00FF00"},
{label:"Blue", data:"#0000FF"}

];

]]>
</mx:Script>

<mx:ComboBox >
<mx:dataProvider>

{COLOR_ARRAY}
</mx:dataProvider>

</mx:ComboBox>

</mx:Application>

Since you can also specify the dataProvider property as a property of the <mx:CombBox> tag,
you can write the definition of the ComboBox control in the previous example as the following
code shows:
<mx:ComboBox dataProvider = "{COLOR_ARRAY}" />

You can also bind a Flex data model to the <mx:dataProvider> property, as the following
example shows:

<mx:Model id="myDP">
<obj>

<item label="AL" data="Montgomery"/>
<item>

<label>AK</label>
<data>Juneau</data>

</item>
<item>

<label>AR</label>
<data>Little Rock</data>

</item>
</obj>

</mx:Model>
<mx:ComboBox dataProvider="{myDP.obj.item}" />
182 Chapter 7: Using Data Provider Controls

In this example, you populate the ComboBox control with the item array from the model. This
example uses a simple model. However, you can populate the model from an external data source
or define a custom data model class in ActionScript. For more information on using data models,
see Chapter 28, “Managing Data in Flex,” on page 593.

You can bind a web service operation’s result object to the dataProvider property of an
<mx:ComboBox> tag. For example, when a web service operation returns an array of strings, you
can use the following syntax to display each string as a row of a ComboBox control:
<mx:ComboBox dataProvider="{service.operation.result}" />

For more information on using web services, see Chapter 32, “Using Data Services,” on page 655.

Manipulating a list-based data provider at runtime

The following example puts together many of the data provider concepts described in previous
sections. In this example, you create an array that defines the data provider of a ComboBox
control, and then use the data provider API to manipulate the data provider:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Script>
<![CDATA[

var COLOR_ARRAY:Array=
[{label:"Red", data:"#FF0000"},
{label:"Green", data:"#00FF00"},
{label:"Blue", data:"#0000FF"}

];

function addColor() {
combo2.dataProvider.addItem("SMG","#FF00FF");

}

function removeColor() {
combo2.dataProvider.removeItemAt(3);

}

]]>
</mx:Script>

<mx:ComboBox id="combo2" dataProvider="{COLOR_ARRAY}" />

<mx:Button label="Add Color" click="addColor()" />
<mx:Button label="Remove Color" click="removeColor()" />

</mx:Application>
About data providers 183

Using data providers with LinkBar and TabBar containers

The LinkBar and TabBar containers use data providers in a similar way as do ComboBox,
DataGrid, and List controls. The difference is that the dataProvider property of LinkBar and
TabBar containers can be one of three different types:

• Data provider array The LinkBar and TabBar containers behave the same as the
ComboBox, DataGrid and List controls, and the syntax is the same as for using a data provider
with those controls.

• ViewStack identifier One of the most common uses of a LinkBar or TabBar container is to
control the active child of a ViewStack container, as the following example shows:
<!-- Create a LinkBar container to hold the three links. -->
<mx:LinkBar dataProvider="myViewStack" borderStyle="solid" />

<!-- Define the ViewStack and the three child containers. -->
<mx:ViewStack id="myViewStack" borderStyle="solid" widthFlex="1">

<mx:Canvas id="search" label="Search">
<mx:Label text="Search Screen" />

</mx:Canvas>
<mx:Canvas id="custInfo" label="Customer Info">

<mx:Label text="Customer Info" />
</mx:Canvas>
<mx:Canvas id="accountInfo" label="Account Info">

<mx:Label text="Account Info" />
</mx:Canvas>

</mx:ViewStack>

In this example, the links of the LinkBar container display the label name of the child
containers of the ViewStack container. For more information, see “ViewStack navigator
container” on page 326.

• String If you specify a string to the data provider, Flex interprets it as an identifier. Flex
searches for an object with the specified identifier in the current scope. The identifier can
reference a ViewStack container, or an Array; for example:
<mx:Array id="myArray">

<mx:String>One</mx:String>
<mx:String>Two</mx:String>

</mx:Array>

<mx:TabBar dataProvider="myArray" />

Using data providers with hierarchical controls

A data provider for the hierarchical controls defines a nested hierarchy of nodes and subnodes.
The following Flex components use a hierarchical data provider:

• Tree control
• Menu control
• MenuBar control

The hierarchical components all use the same mechanism to work with the data provider. The
examples in this section use the Tree control but also apply to the other components also.
184 Chapter 7: Using Data Provider Controls

Using a hierarchical data provider in MXML

You define a Tree control in MXML using the <mx:Tree> tag. The data provider of a Tree control
must support the TreeDataProvider API. Often, the data for a tree is retrieved from a server in the
form of XML, but it can also be well-formed XML defined within the <mx:Tree> tag.

The following code example defines a Tree control:
<mx:Tree id="myTree" >

<mx:dataProvider>
<mx:XML>

<node label="Mail">
 <node label="INBOX"/>
 <node label="Personal Folder">

<node label="Business" />
 <node label="Demo" />
 <node label="Personal" isBranch="true" />
 <node label="Saved Mail" />

 </node>
<node label="Sent" />

 <node label="Trash"/>
</node>

</mx:XML>
</mx:dataProvider>

</mx:Tree>

Flex parses the <mx:XML> tag to create an XML Object that implements the TreeDataProvider
API, much in the same way that Array implements the DataProvider API.

There are many ways to structure XML. Flex controls are not designed to use all types of XML
structures, so it is important to use XML that the controls can interpret. Do not nest node
properties in a child node; each node should contain all its necessary properties and attributes.
Also, the properties of each node should be consistent to be useful. For example, to describe a
mailbox structure with a Tree component, use the same properties on each node (message, data,
time, attachments, and so on). This lets the Tree control anticipate which it will render, and lets
you loop through the hierarchy to compare data.

Node tags in the XML data can have any name. Notice in the previous example that each node is
named with the generic <node> tag. Flex controls read the data provider and build the display
hierarchy based on the nesting relationship of the nodes.

Nodes at the highest level are called root nodes and have no parent. Controls can have multiple
root nodes. In this example, there is only one root node in the tree: “Mail”. However, if you added
sibling nodes at that level, multiple root nodes would be displayed in the Tree. Branch nodes can
contain multiple child nodes. Leaf nodes cannot contain child nodes.

When a Tree control displays a node, it displays the label property of the node by default as the
text label.
About data providers 185

Passing XML data to a Tree control

You can build your XML tree structure within a Flex data model, as the following example shows:
<mx:XML id="myDP">

<node label="Mail">
<node label="INBOX"/>
<node label="Personal Folder">

<node label="Business" />
 <node label="Demo" />
 <node label="Personal" isBranch="true" />
 <node label="Saved Mail" />
 </node>
 <node label="Sent" />
 <node label="Trash"/>

 </node>
</mx:XML>

<mx:Tree id="myTree">
<mx:dataProvider>

{myDP}
</mx:dataProvider>

</mx:Tree>

In this example, you define your data provider using the Flex <mx:XML> tag, and then use that tag
as the data provider for your Tree control. By defining your Tree hierarchy in a data model, you
can populate the model at runtime. For example, you can use a web service to define the Tree
control. For more information on data models, Chapter 28, “Managing Data in Flex,” on
page 593.

Manipulating a hierarchical data provider at runtime

The data provider for the hierarchical controls supports the API defined by the Flex
TreeDataProvider interface. Therefore, you can use all of the properties and methods of this
interface to manipulate the data provider. If you define your own data provider, your class must
implement the TreeDataProvider API. For more information, see “The data provider API”
on page 177.

The data provider of a hierarchical component defines a hierarchy of nodes, and each node of the
hierarchy supports the TreeDataProvider API. Therefore, you use the data provider API to
manipulate the hierarchy, and every node in it.

The following example defines a Tree control:
<mx:Tree id="myTree" width="300" height="500" >

<mx:dataProvider>
<mx:XML>

<node label="Mail">
<node label="INBOX"/>

 <node label="Personal Folder">
<node label="Business" data="2"/>
<node label="Demo" />
<node label="Personal" isBranch="true" />
<node label="Saved Mail" />

</node>
186 Chapter 7: Using Data Provider Controls

<node label="Sent" />
<node label="Trash"/>

</node>
</mx:XML>

</mx:dataProvider>
</mx:Tree>

To create a new node at the root level of the hierarchy, you use the TreeDataProvider
addTreeNode() method:
function addNode(){

// Add a root tree node at index 1 with a label of SMG,
// and a data value of 1.
myTree.dataProvider.addTreeNodeAt(1, "SMG", "1");

}

To add a node to a subnode, you use the TreeDataProvider API to traverse the hierarchy to obtain
the node, then modify it. The getTreeNodeAt() and getTreeNode() methods of the
TreeDataProvider API return an object that supports the TreeDataProvider API.

The following example adds a node to the first subnode of the first root node of the XML tree:
function addChildNode(){

// Get first root node.
var node0=tree1.dataProvider.getTreeNodeAt(0);

// Get first subnode of the root node.
var node00=node0.getTreeNodeAt(0);

// Add new node.
node00.addTreeNodeAt(0, "SMG", "1");

}

Creating a data provider using the TreeNode class

You can also create your data model programmatically using the TreeDataProvider API and the
TreeNode class. The TreeNode class implements the TreeDataProvider API, as the following
example shows:
<mx:Script>

<![CDATA[
// Import the TreeNode.
import mx.controls.treeclasses.TreeNode;

// Create a data provider variable.
var treeDP;

function initTree(){
// Populate the data provider variable with the root node,
// and two subnodes.
treeDP = new TreeNode();
var root = treeDP.addTreeNode("root","0");
root.addTreeNode("node 1 ","1");
root.addTreeNode("node 2","2");

// Create a third subnode, and two subnodes of it.
About data providers 187

var node3 = root.addTreeNode("node 3","3");
node3.addTreeNode("node 3-0", "3-0");
node3.addTreeNode("node 3-1", "3-1");

// Initialize the tree data provider.
myTree.dataProvider = treeDP;

}
]]>

</mx:Script>

<mx:Tree id="myTree" initialize="initTree()" />

In this example, you use the addTreeNode() method of the TreeDataProvider API to create
nodes. This method returns a node object that you can manipulate. The node object also
supports the TreeDataProvider API so that you can build your data provider hierarchy.

Passing an object as the data provider

You can pass an object that contains a data structure to a hierarchical control. Flex automatically
wraps the object in a TreeNode object so that you can use the TreeDataProvider API to
manipulate it.

The following example creates an array, then passes it to the Tree control:
<mx:Script>

<![CDATA[
import mx.controls.treeclasses.TreeNode;

var treeDP:Array = [
{node1: {label:"node11"}, node11: {label:"node11"}},
{node2: {label:"node21"}, node21: {label:"node22"}}

];

function initTree(){
myTree.dataProvider = treeDP;

}

]]>
</mx:Script>

<mx:Tree id="myTree" initialize="initTree()" />

Flex wraps the object as a TreeNode object, so you manipulate the object as you would any
TreeDataProvider. The following example adds a new node to the data provider:
myTree.dataProvider.addTreeNodeAt(1, "SMG", "1");

Considerations when using hierarchical data providers

A hierarchical control can take as its data provider a deserialized object tree defined by an
<mx:Model> tag, or an object tree assigned directly to the dataProvider property. Flex wraps the
tree in a TreeNode object so that you can use the TreeDataProvider API to manipulate the tree.
188 Chapter 7: Using Data Provider Controls

You should be aware of the following considerations:

• If the object tree is created from an <mx:Model> tag or deserialized XML received from a
server, Flex generates nodes for child objects in the order they appeared in the original XML.

• If a child object in an object tree is an array, its values become child nodes of the array’s parent
object. If the array is the top-level item in the object tree, each array element becomes a root-
level node.

• Any child nodes added to or removed from a TreeNode that represents an object tree are not
reflected in the underlying data object. Changes to properties, made using the setProperty()
and getProperty() methods, are reflected in the underlying data object and the associated
control.

ComboBox control

The ComboBox control is a drop-down list from which the user can select a single value. Its
functionality is very similar to that of the SELECT form element in HTML.

The following figure shows a ComboBox control:

In its editable state, the user can type text directly into the top of the list or select one of the preset
values from the list. In its noneditable state, as the user types text, the drop-down list opens and
scrolls to the value that most closely matches the one being entered; matching is only performed
on the first letter the user types.

If the drop-down list hits the bottom application boundary, it opens upward. If a list item is too
long to fit in the horizontal display area, it is truncated to fit. If there are too many items to
display in the drop-down list, a scroll bar appears.

The ComboBox control has the following default properties:

Property Default

preferred size 100 pixels wide. When the drop-down list is not visible, the default height is based
on the text size.
The default drop-down list height is five rows, or the number of entries in the drop-
down list, whichever is smaller. The default height of each entry in the drop-down list
is 22 pixels.

minimum size 0

maximum size no limit

dropdownWidth The width of the ComboBox control.

rowCount 5
ComboBox control 189

Creating a ComboBox control

You use the <mx:ComboBox> tag to define a ComboBox control in MXML. Specify an id value if
you intend to refer to a component elsewhere in your MXML, either in another tag or in an
ActionScript block.

The ComboBox control uses a list-based data provider. For more information, see “Using data
providers with list-based components” on page 180.

You specify the data for the ComboBox control using the <mx:dataProvider> child tag of the
<mx:ComboBox> tag. The <mx:dataProvider> tag lets you specify data in several different ways.
In the simplest case for creating a ComboBox control, you use the <mx:dataProvider>,
<mx:Array>, and <mx:String> tags to define the entries as an array of strings, as the following
example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:ComboBox>
<mx:dataProvider>

<mx:Array>
<mx:String>AL</mx:String>
<mx:String>AK</mx:String>
<mx:String>AR</mx:String>

</mx:Array>
</mx:dataProvider>

</mx:ComboBox>
</mx:Application>

The index of items in the ComboBox control is zero-based, meaning values are 0, 1, 2, ... , n - 1,
where n is the total number of items. The value of the item is its label text.

You typically use events to handle user interaction with a ComboBox control. The following
example adds a handler for a change event and an open event to the ComboBox control. Flex
broadcasts a change event when the value of the control changes due to user interaction, and
broadcasts the open event when the ComboBox opens.
<mx:Script>

<![CDATA[

function openEvt(event) {
forChange.text="opened";

}
function changeEvt(event) {

forChange.text=event.target.selectedItem + " " +
event.target.selectedIndex;

}
]]>

</mx:Script>

<mx:ComboBox open="openEvt(event)" change="changeEvt(event)" >
...

</mx:ComboBox>

<mx:TextArea id="forChange" width="150" />
190 Chapter 7: Using Data Provider Controls

The target property of the object passed to the event handler contains a reference to the
ComboBox control, and the target.selectedItem field contains a reference to the selected
item. If you populate the ComboBox control with an array of Strings, the target.selectedItem
field contains a string. If you populate it with an array of Objects, the target.selectedItem
field contains a reference to the object that correspond to the selected item.

In this example, you use two properties of the ComboBox control, selectedItem and
selectedIndex, in the event handlers. Every change event updates the TextArea control with the
label of the selected item and the item’s index in the control, and an open event clears the current
text in the TextArea control.

Using objects to populate a ComboBox control

You can populate a ComboBox with an array of Objects. Objects let you define a label property
that contains the string displayed in the ComboBox control, and a data property containing to
any data that you want to associate with the label, as the following example shows:
<mx:ComboBox>

<mx:dataProvider>
<mx:Array>

<mx:Object label="AL" data="Montgomery"/>
<mx:Object label="AK" data="Juneau"/>
<mx:Object label="AR" data="Little Rock"/>

</mx:Array>
</mx:dataProvider>

</mx:ComboBox>

The label property contains the state name and the data property contains the name of its
capital. The following example shows a handler for the change event for this ComboBox control:
<mx:Script>

<![CDATA[

function openEvt(event) {
forChange.text="";

}
function changeEvt(event) {

forChange.text=event.target.selectedItem.data + " " +
event.target.selectedIndex;

}
]]>

</mx:Script>

<mx:ComboBox open="openEvt(event)" change="changeEvt(event)" >
...

</mx:ComboBox>

<mx:TextArea id="forChange" width="150" />
ComboBox control 191

In this example, selectedIndex contains the index of the item selected in the ComboBox
control, and selectedItem contains a copy of the object defining the selected item. You use
selectedItem.data to access the data property, and selectedItem.label to access the label
property. Every change event updates the TextArea control with the data property of the selected
item and the item’s index in the control, and an open event clears the current text in the TextArea
control.

By default, the ComboBox control expects each object to contain a property named label that
defines the text that appears in the ComboBox control for the item. If each Object does not
contain a label property, you can use the labelField property of the ComboBox control to
specify the property name, as the following example shows:
<mx:ComboBox labelField="state" open="openEvt(event)"

change="changeEvt(event)">
<mx:dataProvider>

<mx:Array>
<mx:Object state="AL" capital="Montgomery"/>
<mx:Object state="AK" capital="Juneau"/>
<mx:Object state="AR" capital="Little Rock"/>

</mx:Array>
</mx:dataProvider>

</mx:ComboBox>

You also have to rewrite the handler for the change event since the object contains a property
named capital with the name of the state capital, instead of data, as the following example
shows:

function changeEvt(event) {
forChange.text=event.target.selectedItem.capital + " " +

event.target.selectedIndex;
}

Broadcasting a change event

The ComboBox control broadcasts a change event for the following user actions:

• If the user closes the drop-down list using a mouse click, Enter key, or Control-Up key, and the
selected item is different from the previously selected item.

• If the drop-down list is currently closed, and the user presses the Up, Down, Page Up, or Page
Down key to select a new item.

• If the ComboBox control is editable, and the user types into the control, Flex broadcasts a
single change event each time the text field of the control changes.

User interaction

A ComboBox control can be noneditable or editable. In a noneditable ComboBox control, a user
can make a single selection from a drop-down list. In an editable ComboBox control, a user can
enter text directly into a text field at the top of the list, and can also select an item from the
drop-down list.

When the user makes a selection in the ComboBox control list, the label of the selection is copied
to the text field at the top of the ComboBox control.
192 Chapter 7: Using Data Provider Controls

When a ComboBox control has focus and is editable, all keystrokes go to the text box and are
handled according to the rules of the TextInput control (see “TextInput control” on page 172),
with the exception of the following keys:

When a ComboBox control has focus and is noneditable, alphanumeric keystrokes move the
selection up and down the drop-down list to the next item with the same first character. You can
also use the following keys to control a noneditable ComboBox control:

When the drop-down list of a ComboBox control has focus, alphanumeric keystrokes move the
selection up and down the drop-down list to the next item with the same first character. You can
also use the following keys to control a drop-down list:

Key Description

Control+Down Opens the drop-down list and gives it focus.

Shift +Tab Moves focus to the previous object in the list.

Tab Moves focus to the next object in the list.

Key Description

Control+Down Opens the drop-down list and gives it focus.

Control+Up Closes the drop-down list, if open.

Down Moves the selection down one item.

End Moves the selection to the bottom of the list.

Escape Closes the drop-down list and returns focus to the ComboBox control.

Enter Closes the drop-down list and returns focus to the ComboBox control.

Home Moves the selection to the top of the list.

Page Down Fills the ComboBox control with the next set of undisplayed items.

Page Up Fills the ComboBox control with the previous set of undisplayed items.

Key Description

Control+Up If the drop-down list is open, returns focus to the ComboBox control’s text field
and the drop-down list closes.

Down Moves selection down one item.

End Moves the insertion point to the end of the text field.

Enter If the drop-down list is open, returns focus to the text field and the drop-down
list closes.

Escape If the drop-down list is open, returns focus to the text field and the drop-down
list closes.

Home Moves the insertion point to the beginning of the text field.

Page Down Displays the next set of undisplayed items.

Page Up Displays the previous set of undisplayed items.
ComboBox control 193

Note: The page size used by the Page Up and Page Down keys is one less than the number of items
that fit in the display. For example, paging down through a ten-line drop-down list shows items 0-9,
9-18, 18-27, and so on, with one item overlapping per page.

ComboBox control syntax

You use the <mx:ComboBox> tag to define a ComboBox control. The ComboBox control defines
the properties described in the following table:

Tab Moves focus to the next object in the list.

Shift-End Selects the text from the insertion point to the End position.

Shift-Home Selects the text from the insertion point to the Home position.

Shift-Tab Moves focus to the previous object.

Up Moves selection up one item.

Property Type Use Description Req/Opt

dataProvider Array Property Specifies the data used to populate the
ComboBox control.

Optional

dropdownWidth Number Property Specifies the width of the ComboBox control, in
pixels. The default value is a size wide enough to
hold the text.

Optional

editable Boolean Property Specifies that the text area of the ComboBox
control is editable, true, or not, false. The
default value is false.
An editable ComboBox control can have values
entered into the text field that do not show up in
the ComboBox list.

Optional

labelField String Property Specifies the name of the field in the objects of
the dataProvider array to use as the label field.
If omitted, the data provider must contain a field
named label, or the dataProvider property must
contain an Array of Strings.

Optional

labelFunction Function Property Specifies a function to determine the label from
information in each data provider object. For an
example, see “Using a label function”
on page 209.

Optional

length Number Property A read-only property that contains the number of
items in the ComboBox control.

Optional

restrict String Property Specifies the set of characters that a user can
enter into the text field. For more information,
see the restrict property of the TextArea
control, “TextArea control syntax” on page 170.

Optional

rowCount Number Property Specifies the maximum number of rows visible in
the ComboBox control list. The default value is 5.

Optional

Key Description
194 Chapter 7: Using Data Provider Controls

selectedIndex Number Property Contains the index of the selected item in the
drop-down box.
Setting this property sets the current index, and
displays the associated label in the text field. The
default value is undefined.
If the control is editable, users can also set this
property by editing the text field of the
ComboBox control.
Typing into the text field of an editable
ComboBox sets the selected index to undefined.
If the selected index is out of range, the
assignment is ignored.

Optional

selectedItem Based on
type of
dataProvider

Property A read-only property containing the value of the
selected item. The value can be a single scalar
value or an object.
If the ComboBox control is editable,
selectedItem contains undefined if the user
types any text in the text field. It will only have a
value if the user selects an item from the drop-
down list, or if it’s set programmatically.

Optional

text String Property For an editable ComboBox control, sets the text
displayed in the text area. For a noneditable
control, it does nothing.

Optional

value String Property If the control is editable, this read-only property
contains the text of the text field portion of the
control, including text entered directly into the
control by the user.
If the control is noneditable, it contains the value
of the selected item. The value is either
the data field of an object specified by
dataProvider, or the label field.

Optional

change Event Specifies a handler for change events, which are
broadcast when the value of the control changes
as a result of user interaction.
The target property of the event object contains
a reference to the ComboBox control.
The target.selectedItem field contains a copy
of the selected item. If you populate the control
with an array of Strings, the
target.selectedItem field contains a string. If
you populate it with an array of Objects, the
target.selectedItem field contains a copy of the
object corresponding to the selected item.
The type property contains the string change.

Optional

Property Type Use Description Req/Opt
ComboBox control 195

close Event Specifies a handler for close events, which are
broadcast when a ComboBox control begins to
retract.
The target property of the event object contains
a reference to the ComboBox control. The type
property contains the string close.

Optional

enter Event Specifies a handler for enter events, which are
broadcast when the user presses the Enter key in
an editable control.
The target property of the event object contains
a reference to the ComboBox control. The type
property contains the string enter.

Optional

itemRollOver Event Specifies a handler for itemRollOver events,
which are broadcast when ComboBox control
list items are rolled over.
The target property of the event object contains
a reference to the ComboBox control, and an
index property that contains the index of the
item that was rolled over. The type property
contains the string itemRollOver.

Optional

itemRollOut Event Specifies a handler for itemRollOut events,
which are broadcast when ComboBox control
list items are rolled out.
The target property of the event object contains
a reference to the ComboBox control and an
index property that contains the index of the item
that was rolled out. The type property contains
the string itemRollOut.

Optional

open Event Specifies a handler for open events, which are
broadcast when a ComboBox control begins to
expand.
The target property of the event object contains
a reference to the ComboBox control. The type
property contains the string open.

Optional

scroll Event Specifies a handler for scroll events, which are
broadcast when the ComboBox control list is
scrolled.
The target property of the event object contains
a reference to the ComboBox control, and the
direction property, which is always vertical.
The type property contains the string scroll.

Optional

Property Type Use Description Req/Opt
196 Chapter 7: Using Data Provider Controls

ComboBox control skins

A ComboBox control uses the following skin properties:

DataGrid control

The DataGrid control is a list that can display more than one column of data. It is a formatted
table of data that lets you set editable table cells, and is the foundation of many data-driven
applications.

The DataGrid control provides the following features:

• Resizable, sortable, and customizable column layouts
• Optional customizable column and row headers
• Columns that the user can resize at runtime
• Multiple modes of selection (row, column, cell, and edit) and selection events
• Ability to use a custom cell renderer for any column
• Support for paging through data

The following figure shows a DataGrid control:

Rows are responsible for rendering items. Each row is laid out vertically below the previous one.
Columns are responsible for maintaining the state of each visual column; columns control width,
color, and size.

Property Description

ComboDownArrowDisabledName Specifies the skin for the down arrow’s disabled state. The default
value is RectBorder.

ComboDownArrowDownName Specifies the skin for the down arrow’s down state. The default value
is RectBorder.

ComboDownArrowUpName Specifies the skin for the down arrow’s up state. The default value is
RectBorder.

ComboDownArrowOverName Specifies the skin for the down arrow’s over state. The default value
is RectBorder.
DataGrid control 197

The DataGrid control has the following default properties:

Creating a DataGrid control

You use the <mx:DataGrid> tag to define a DataGrid control in MXML. Specify an id value if
you intend to refer to a component elsewhere in your MXML, either in another tag or in an
ActionScript block.

The DataGrid control uses a list-based data provider. For more information, see “Using data
providers with list-based components” on page 180.

You specify the data for the DataGrid control using the <mx:dataProvider> child tag of the
<mx:DataGrid> tag. The <mx:dataProvider> tag lets you specify data in several different ways.
In the simplest case for creating a DataGrid control, you use the <mx:dataProvider>,
<mx:Array>, and <mx:Object> tags to define the entries as an array of objects. Each array object
defines a row of the DataGrid control, and properties of the object define the column entries for
the row, as the following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:DataGrid>
<mx:dataProvider>

<mx:Array>
<mx:Object>

<Artist>Pavement</Artist>
<Price>11.99</Price>
<Album>Slanted and Enchanted</Album>

</mx:Object>
<mx:Object>

<Artist>Pavement</Artist>
<Album>Brighten the Corners</Album>
<Price>11.99</Price>

</mx:Object>
</mx:Array>

</mx:dataProvider>
</mx:DataGrid>

</mx:Application>

The column names displayed in the DataGrid control are the property names of the array objects.
By default, the order of columns in the Data Grid control is determined by the order in which
you define the properties in the first array object. Subsequent objects can define their properties
in the same order, or in a different order. If an array object omits a property, the DataGrid control
displays an empty cell in that row.

Property Default

preferred size If the columns are empty, the default width is 300 pixels. If the columns contain
information but define no explicit widths, the default width is 100 pixels per column.
The default number of rows displayed is 10.

minimum size 0

maximum size undefined
198 Chapter 7: Using Data Provider Controls

The previous example defined the objects using child tags. You can also define the objects using
properties, as the following example shows:
<mx:DataGrid>

<mx:dataProvider>
<mx:Array>

<mx:Object Artist="Pavement" Price="11.99"
Album="Slanted and Enchanted" />

<mx:Object Artist="Pavement"
Album="Brighten the Corners" Price="11.99" />

</mx:Array>
</mx:dataProvider>

</mx:DataGrid>

Specifying the column order

You use the columns property of the DataGrid control and the <mx:DataGridColumn> tag to
select the columns to display, specify the order in which to display them, and set additional
properties. For more information on the <mx:DataGridColumn> tag, see “DataGridColumn
syntax” on page 206.

You specify an array to the <mx:columns> child tag of the <mx:DataGrid> tag, as the following
example shows:
<mx:DataGrid>

<mx:dataProvider>
<mx:Array>

<mx:Object Artist="Pavement" Price="11.99"
Album="Slanted and Enchanted" />

<mx:Object Artist="Pavement"
Album="Brighten the Corners" Price="11.99" />

</mx:Array>
</mx:dataProvider>
<mx:columns>

<mx:Array>
<mx:DataGridColumn columnName="Album" />
<mx:DataGridColumn columnName="Price" />

</mx:Array>
</mx:columns>

</mx:DataGrid>

In this example, you only display the Album and Price columns in the DataGrid control. You can
reorder the columns as well, as the following example shows:
<mx:columns>

<mx:Array>
<mx:DataGridColumn columnName="Price" />
<mx:DataGridColumn columnName="Album" />

</mx:Array>
</mx:columns>

In this example, you specify that the Price column is the first column in the DataGrid control,
and that the Album column is the second.
DataGrid control 199

You can also use the <mx:DataGridColumn> tag to set other options. The following example uses
the headerText property to set the name of the column to a value different than the default
name of Album:
<mx:columns>

<mx:Array>
<mx:DataGridColumn columnName="Price" />
<mx:DataGridColumn columnName="Album" headerText="Record" />

</mx:Array>
</mx:columns>

Passing data to a DataGrid control

Flex lets you populate a DataGrid control from an ActionScript variable definition or from a
Flex data model. The following example populates a DataGrid control from a variable:
DataGrid control:

<mx:Script>
<![CDATA[

var initDG:Array = [
{ Artist:'Pavement', Album:'Slanted and Enchanted', Price:11.99 },
{ Artist:'Pavement', Album:'Brighten the Corners', Price:11.99 }

];

]]>
</mx:Script>

<mx:DataGrid id="myGrid" width="350" height="350" dataProvider="{initDG}" >

<mx:columns>
<mx:Array>

<mx:DataGridColumn columnName="Album" />
<mx:DataGridColumn columnName="Price" />

</mx:Array>
</mx:columns>

</mx:DataGrid>

In this example, you bind the variable initDG to the <mx:dataProvider> property. You can still
specify a column definition event when using data binding.

Limitation when binding data to a DataGrid control

If you use data binding to set the first element of the data provider of a DataGrid control, the
associated column does not display. The following example shows a DataGrid control definition
using this type of data binding:
<mx:DataGrid >

<mx:dataProvider>
<mx:Array>

<mx:Object Album="{myAlbum}" price="{myPrice}" mediaType="CD" />
</mx:Array>

</mx:dataProvider>
</mx:DataGrid>
200 Chapter 7: Using Data Provider Controls

In this example, the column corresponding to the Album property does not display.

To work around this, use the following syntax to initialize the DataGrid control:
<mx:Array id="myArray">

<mx:Object Album="{myAlbum}" price="{myPrice}" mediaType="CD" />
</mx:Array>

<mx:DataGrid dataProvider="{myArray}" />

Handling events in a DataGrid control

The DataGrid control defines several different event types that let you respond to user
interaction. For example, Flex broadcasts the cellPress event when a user selects an item in a
DataGrid control. You can handle this event as the following example shows:

<mx:Script>
<![CDATA[

function cellPressEvt(event){
focusCol.text=event.columnIndex;
focusItem.text=event.itemIndex;
focusType.text=event.type;
}

]]>
</mx:Script>

<mx:VBox>

<mx:DataGrid id="myGrid" width="350" height="350"
cellPress="cellPressEvt(event);" >

<mx:dataProvider>
<mx:Array>

<mx:Object Artist="Pavement" Price="11.99"
Album="Slanted and Enchanted" />

<mx:Object Artist="Pavement" Album="Brighten the Corners"
Price="11.99" />

</mx:Array>
</mx:dataProvider>

</mx:DataGrid>

<mx:TextArea id="focusCol" />
<mx:TextArea id="focusItem" />
<mx:TextArea id="focusType" />

</mx:VBox>

In this example, you use the event handler to display the column index, item index, and event
type in three TextArea controls.

The index of columns in the DataGrid control is zero-based, meaning values are 0, 1, 2, ... , n - 1,
where n is the total number of columns. Row items are also indexed starting at 0. Therefore, if
you select the first item in the second row, this example displays 0 in the first Text Area control for
the column index, and 1 in the second TextArea control for the item index in the column.
DataGrid control 201

To access the selected item in the event handler, you can use the target property of the event
object, and the selectedItem property of the DataGrid control, as the following code shows:
var selectedArtist:String=event.target.selectedItem.Artist;

The target property of the object passed to the event handler contains a reference to the
DataGrid control. You can reference any control property using target. The
target.selectedItem field contains the selected item. If you populate the DataGrid control
with an array of Strings, the target.selectedItem field contains a string. If you populate it
with an array of Objects, the target.selectedItem field contains the object corresponding to
the selected item.

User interaction

The DataGrid control responds to mouse and keyboard activity. The response to a mouse click or
key press depends on whether a cell is editable. A cell is editable when the editable property of
the DataGrid control and the DataGridColumn containing the cell are both set to true.

If the value of the sortableColumns property is true, the default value, clicking within a column
header causes the DataGrid control to be sorted based on the column’s cell values. If the value of
the resizableColumns property is true, the default value, clicking in the area between columns
permits column resizing.

Clicking within an editable cell directs focus to that cell. Clicking a noneditable cell has no effect
on the focus.

Keyboard navigation

The DataGrid control has the following keyboard navigation features:

Key Action

Enter, Return,
Shift + Enter

When a cell is in editing state, commits change, and moves editing to the cell on
the same column, next row down or up, depending on whether Shift is pressed.

Tab Moves focus to the next editable cell, traversing the cells in row order. If at the end
of the last row, advances to the next element in the parent container that can
receive focus.

Shift + Tab Moves focus to the previous item. If at the beginning of a row, advances to the end
of the previous row. If at the beginning of the first row, advances to the previous
element in the parent container that can receive focus.

Up Arrow If currently editing a cell, shifts the cursor to the beginning of the cell’s text. If the
cell is not editable, moves selection up one item.

Down Arrow If currently editing a cell, shifts the cursor to the end of the cell’s text. If the cell is
not editable, moves selection down one item.

Ctrl Toggle key. Allows for multiple (noncontiguous) selection and deselection. Works
with key presses, click selection, and drag selection.

Shift Contiguous select key. Allows for contiguous selections. Works with key presses,
click selection, and drag selection.
202 Chapter 7: Using Data Provider Controls

DataGrid control syntax

You use the <mx:DataGrid> tag to define a DataGrid control. The DataGrid control inherits the
properties and methods of the List control, as described in “List control syntax” on page 213. The
DataGrid control also defines the properties described in the following table. If an inherited
property or method has functionality specific to the DataGrid control, it is included in the table.

Note: The themeColor style does not apply to the DataGrid control.

Property Type Use Description Req/Opt

cellRenderer Object Property Specifies the class object reference or symbol
linkage ID of the cell renderer to use. For more
information, see Chapter 18, “Creating Cell
Renderers,” on page 447.

Optional

columnCount Number Property Read-only property containing the number of
columns.

Optional

columnNames Array Property Specifies an array containing the column
names. You can specify the array in MXML, as
the following example shows:
columnNames="[foo, bar, baz]"

Optional

columns Array Property Specifies the set of field names within each
data provider object displayed as column
names. For more information, see
“DataGridColumn syntax” on page 206.

Optional

editable Boolean Property Specifies that the text area of the control is
editable, true, or not, false. The default value
is false.

Optional

focusedCell Object Property Specifies the cell currently in focus based on
its columnIndex and itemIndex. Origin is (0,0).
For example:
focusedCell= "{columnIndex:2,

itemIndex:3}"

Optional

headerHeight Integer Property Specifies the height of the header bar of the
grid, in pixels. The default value is 20.

Optional

iconField String Property While inherited from the List control, this
property is not supported by the DataGrid
control.

Optional

iconFunction Function Property While inherited from the List control, this
property is not supported by the DataGrid
control.

Optional
DataGrid control 203

labelFunction Function Property Specifies a function used to decide the
content to display for each cell in the DataGrid
control. Flex calls this function once for each
cell.
This function takes a single argument, item,
which is the item being rendered, and must
return a string representing the text to display.
For an example, see “Using a label function”
on page 209.

Optional

resizableColumns Boolean Property Specifies whether the user can stretch the
columns of the DataGrid control, true
(default), or not, false.
The value must be true for individual columns
to be resizable.

Optional

showHeaders Boolean Property Specifies whether the DataGrid control shows
column headers, true (default), or not, false.

Optional

sortableColumns Boolean Property Specifies whether the user can sort the
columns of the DataGrid control by clicking
the headers, true (default), or not, false.
You must set the value to true for individual
columns to be sortable, and to receive the
headerPress event.

Optional

headerColor String Style Specifies the color of the column headers. Optional

headerStyle String Style Specifies a CSS style declaration for the
column header that can be applied to a grid or
column.

Optional

hGridLineColor String Style Specifies the color of the horizontal grid lines.
The default value is #666666.

Optional

hGridLines Boolean Style Specifies a Boolean value that indicates
whether to show horizontal grid lines, true, or
not, false (default).

Optional

labelStyle String Style Specifies the font style for the whole grid or
for each column.

Optional

selectionEasing String Style Specifies a reference to an easing equation
(function) used to control programmatic
tweening. For more information, see
Chapter 20, “Using Behaviors,” on page 497.

Optional

useRollOver Boolean Style Specifies whether rolling over a row activates
highlighting, true (default), or not, false.

Optional

vGridLineColor String Style Specifies the color of the vertical grid lines.
The default value is #666666.

Optional

vGridLines Boolean Style Specifies a Boolean value that indicates
whether to show vertical grid lines, true, or
not, false (default).

Optional

Property Type Use Description Req/Opt
204 Chapter 7: Using Data Provider Controls

cellEdit Event Specifies a handler for cellEdit events, which
are broadcast when a cell value changes.
The event object contains the following fields:
• target Contains a reference to the

DataGrid control.
• columnIndex The index of the selected

column.
• itemIndex The index of the selected item.
• oldValue The previous value of the cell
• type The string cellEdit.

Optional

cellFocusIn Event Specifies a handler for cellFocusIn events,
which are broadcast when a particular cell
gains focus.
The event object contains the following fields:
• target Contains a reference to the

DataGrid control.
• columnIndex The index of the column

gaining focus.
• itemIndex The index of the item gaining

focus.
• type The string cellFocusIn.

Optional

cellFocusOut Event Specifies a handler for cellFocusOut events,
which are broadcast when a particular cell
loses focus.
The event object contains the following fields:
• target Contains a reference to the

DataGrid control.
• columnIndex The index of the column losing

focus.
• itemIndex The index of the item losing

focus.
• type The string cellFocusOut.

Optional

cellPress Event Specifies a handler for cellPress events,
which are broadcast when the user selects a
cell.
The event object contains the following fields:
• target Contains a reference to the

DataGrid control.
• columnIndex The index of the selected

column.
• itemIndex The index of the selected item.
• type The string cellPress.

Optional

change Event Specifies a handler for change events.
The target property of the event object
contains a reference to the DataGrid control,
and type contains the string change.

Optional

Property Type Use Description Req/Opt
DataGrid control 205

DataGridColumn syntax

You use the <mx:DataGridColumn> tag to configure a column of a DataGrid control. You specify
the <mx:DataGridColumn> tag as a child of the columns property in MXML, in the following
form:
<mx:DataGrid >

<mx:columns>
<mx:Array>

<mx:DataGridColumn ... />
<mx:DataGridColumn ... />
...

</mx:Array>
</mx:columns>

</mx:DataGrid>

The <mx:DataGridColumn> tag defines the properties in the following table:

columnStretch Event Specifies a handler for columnStretch events,
which are broadcast when a user stretches a
column horizontally.
The event object contains the following fields:
• target Contains a reference to the

DataGrid control.
• columnIndex The index of the column to the

left of the column separator being stretched.
• type The string columnStretch.

Optional

headerRelease Event Specifies a handler for headerRelease events,
which are broadcast when a column header is
released.
The event object contains the following fields:
• target Contains a reference to the

DataGrid control.
• columnIndex The index of the target

column.
• type The string headerRelease.

Optional

Property Type Use Description Req/Opt

cellRenderer Specifies the class object reference or symbol
linkage ID of the cellRenderer to use. Assigns
the cellRenderer to use for each cell of the
column.

Optional

columnName String Property The name of the data field associated with the
column.

Required

editable Boolean Property Specifies whether a column is editable, true,
or not, false. The default value is false.

Optional

Property Type Use Description Req/Opt
206 Chapter 7: Using Data Provider Controls

List control

The List control displays a vertical list of single-line items. Its functionality is very similar to that
of the SELECT form element in HTML. It usually contains a vertical scroll bar, used to access all
items in the list. An optional horizontal scroll bar is used when the full width of the list items is
not likely to fit, and would need to be viewed. The user can select one or more items from the list.

The following figure shows a List control:

The List control has the following default properties:

headerRenderer String Property Specifies the name of a class to be used to
display the header of the column.

Optional

headerText String Property Specifies the text for the header of this
column. By default, the DataGrid control uses
the name of the data field associated with the
column as the column name.

Optional

labelFunction Function Property Specifies a function that determines the string
to display in the DataGrid control. The
callback function takes a single argument
containing the data for the entire row, and
returns a String. The signature of the callback
function is:
myLabelFunc(item:Object):String

Optional

resizable Boolean Property Specifies whether a column is resizable, true,
or not, false. The default value is true.

Optional

sortable Boolean Property Specifies whether a column is sortable, true,
or not, false. The default value is true.

Optional

sortOnHeaderRelease Boolean Property Specifies whether a column is sorted, true, or
not, false, when a user presses a column
header. The default value is true.
You can set this property to true only if
sortable is true.

Optional

width Number Property Specifies the width of a column, in pixels. The
default value is 100 pixels.

Optional

Property Default

preferred size 200 pixels wide and seven rows high, where each row is 20 pixels in height

minimum size 30 pixels wide and three rows high

maximum size undefined

Property Type Use Description Req/Opt
List control 207

Creating a List control

You use the <mx:List> tag to define a List control. Specify an id value if you intend to refer to a
component elsewhere in your MXML, either in another tag or in an ActionScript block.

The List control uses a list-based data provider. For more information, see “Using data providers
with list-based components” on page 180.

You specify the data for the List control using the <mx:dataProvider> child tag of the
<mx:List> tag. The <mx:dataProvider> tag lets you specify data in several different ways. In the
simplest case for creating a List control, you use the <mx:dataProvider>, <mx:Array>, and
<mx:String> tags to define the entries as an array of strings, as the following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:List>
<mx:dataProvider>

<mx:Array>
<mx:String>AK</mx:String>
<mx:String>AL</mx:String>
<mx:String>AR</mx:String>

</mx:Array>
</mx:dataProvider>

</mx:List>
</mx:Application>

The index of items in the List control is zero-based, meaning values are 0, 1, 2, ... , n - 1, where n
is the total number of items. The value of the item is its label text.

You typically use events to handle user interaction with a List control. For example, the following
example adds a handler for a change event to the List control. Flex broadcasts a change event
when the value of the control changes due to user interaction.
<mx:Script>

<![CDATA[

function changeEvt(event) {
forChange.text=event.target.selectedItem + " " + " " +

event.target.selectedIndex;
}

]]>
</mx:Script>

<mx:List change="changeEvt(event)" >
...

</mx:List>

<mx:TextArea id="forChange" width="150" />

In this example, you use two properties of the List control, selectedItem and selectedIndex,
in the event handler. Every change event updates the TextArea control with the label of the
selected item and the item’s index in the control.
208 Chapter 7: Using Data Provider Controls

The target property of the object passed to the event handler contains a reference to the List
control. You can reference any control property using target. The target.selectedItem field
contains a copy of the selected item. If you populate the List control with an array of Strings, the
target.selectedItem field contains a string. If you populate it with an array of Objects, the
target.selectedItem field contains the object corresponding to the selected item.

Using a label function

You can pass a label function to the List control to provide logic that determines the text that
appears in the control. The following example uses a function to combine the values of the label
and data fields for each item for display in the List control:
<mx:Script>

<![CDATA[

function myLabelFunc(item):String {
return item.data + ", " + item.label;

}

]]>
</mx:Script>

<mx:List labelFunction="myLabelFunc" >
<mx:dataProvider>

<mx:Array>
<mx:Object label="AL" data="Montgomery"/>
<mx:Object label="AK" data="Juneau"/>
<mx:Object label="AR" data="Little Rock"/>

</mx:Array>
</mx:dataProvider>

</mx:List>

The function takes a single argument, item, containing the list item and returns the String to
display in the List control. This example creates the following List control:

Sorting a list

You can use methods of the List control to sort the list items. The following example uses the
sortItemsBy() method to sort the list in descending order, based on the label, in response to a
Button click event:
<mx:Script>

<![CDATA[

function sortList(evt) {
myList.sortItemsBy("label", "DESC");

}

List control 209

]]>
</mx:Script>

<mx:List id="myList" >
...

</mx:List>

<mx:Button label="Sort" click="sortList()" />

The sortItemsBy() method can take the name of any field of the list item to use as the sorting
field. For example, if you include a data field for each list item, you can sort on that field, as the
following example shows:
<mx:Script>

<![CDATA[

function sortList(evt) {
myList.sortItemsBy("data", "DESC");

}

]]>
</mx:Script>

<mx:List >
<mx:dataProvider>

<mx:Array>
<mx:Object label="AL" data="Montgomery"/>
<mx:Object label="AK" data="Juneau"/>
<mx:Object label="AR" data="Little Rock"/>

</mx:Array>
</mx:dataProvider>

</mx:List>
<mx:Button label=”Sort” click="sortList()" />

Specifying an icon to the List control

You can specify an icon displayed with each List item, as the following example shows:
<mx:Script>

<![CDATA[

 [Embed(source="yahoosmall.jpg")]
 var iconSymbol1:String;
 [Embed(source="atom.jpg")]
 var iconSymbol2:String;

]]>
</mx:Script>

<mx:List iconField="myIcon" >
<mx:dataProvider>

<mx:Array>
<mx:Object label="AL" data="Montgomery" myIcon="{iconSymbol1}" />
<mx:Object label="AK" data="Juneau" myIcon="{iconSymbol2}" />
<mx:Object label="AR" data="Little Rock" myIcon="{iconSymbol1}" />
210 Chapter 7: Using Data Provider Controls

</mx:Array>
</mx:dataProvider>

</mx:List>

In this example, you use the iconField property to specify the field of each item containing the
icon. You use the Embed metadata to import the icons, then reference them in the List control
definition.

You can also use the iconFunction to specify a function that determines the icon, much in the
same way that you can use the labelFunction property to specify a function that determines the
label text. The following example shows a List control that uses the iconFunction to determine
the icon to display for each item in the list:
<mx:Script>

<![CDATA[
// Embed icons
[Embed("PavementIcon.jpg")]
var pavementSymbol:String;

[Embed("NormalIcon.jpg")]
var normalSymbol:String;

// Define data provider.
var myDP : Array;
function initList()
{

myDP = [
{ Artist:'Pavement', Album:'Slanted and Enchanted', Price:11.99 },
{ Artist:'Pavarotti', Album:'Twilight', Price:11.99 },
{ Artist:'Other', Album:'Other', Price:5.99 }];

list1.dataProvider = myDP;
}

// Determine icon based on artist. Pavement gets a special icon.
function myiconfunction(item){

var type:String = item.Artist;
if (type == "Pavement") {

return pavementSymbol;
}
return normalSymbol;

}
]]>

</mx:Script>

<mx:VBox >
<mx:List id="list1" initialize="initList()" labelField="Artist"

iconFunction="myiconfunction" />
</mx:VBox>
List control 211

Alternating row colors in a List control

You can use the alternatingRowColors style property to specify an array that defines the color
of each row in the List control. The array must contain two or more colors. After using all the
entries in the array, the List control repeats the color scheme.

The following example defines an array with two entries, #FF0000 for red and #00FF00 for
green. Therefore, the rows of the List control alternate between these two colors.
<mx:List alternatingRowColors="[#FF0000, #00FF00]" >

User interaction

The user clicks individual list items to select them, and holds down the Ctrl and Shift keys while
clicking to select multiple items.

All mouse or keyboard selection changes broadcast a change event. For mouse interactions, the
List control broadcasts this event when the mouse button is released. Dragging over the rows and
then outside the control scrolls the control up or down.

A List control shows one less than the number of records that fit in the display. Paging down
through a ten-line list shows records 0-9, 9-18, 18-27, and so on, with one line overlapping from
one page to the next.

Keyboard navigation

The List control has the following keyboard navigation features:

Key Action

Tab Moves focus to the next item.

Shift + Tab Moves focus to the previous item.

Up Arrow Moves selection up one item.

Down Arrow Moves selection down one item.

Page Up Moves selection up one page.

Page Down Moves selection down one page.

Home Moves selection to the top of the list.

End Moves selection to the bottom of the list.

Alphanumeric keys Jumps to the next item that begins with the character typed.

Ctrl Toggle key. Allows for multiple (noncontiguous) selection and deselection.
Works with key presses, click selection, and drag selection.

Shift Contiguous selection key. Allows for contiguous selections. Works with key
presses, click selection, and drag selection.
212 Chapter 7: Using Data Provider Controls

List control syntax

You use the <mx:List> tag to define a List control. The following table describes the properties
defined by the List control:

Property Type Use Description Req/Opt

cellRenderer String Property Specifies the class object reference or
symbol linkage ID of the cell renderer to use.
For more information, see Chapter 18,
“Creating Cell Renderers,” on page 447.

Optional

dataProvider Array Property Specifies an Array of simple types or objects
to populate the List control.

Optional

hPosition Number Property Specifies the pixel position of the horizontal
scroll bar, where a value of 0 corresponds to
the left end of the scroll bar. The default value
is 0.

Optional

hScrollPolicy String Property Specifies when to include a horizontal scroll
bar. A value of on causes the container to
always include a horizontal scroll bar; a value
of off (default) always excludes it.

Optional

iconField String Property Specifies a field within each item to be used
as a way of specifying icons. Takes the value
of the field and uses it as an icon identifier. If
the field has a value of undefined, the
default icon is used.

Optional

iconFunction Function Property Specifies a function used to determine which
icon to use. This function receives a single
argument, item, which is the item being
rendered, and must return a string
representing the iconID to use.
For an example, see “Specifying an icon to
the List control” on page 210.

Optional

labelField String Property Specifies the name of the field that the
objects of the dataProvider array use as the
label field.
If omitted, the data provider must contain a
field named label, or the dataProvider
property must contain an array of Strings.

Optional

labelFunction Function Property Specifies a function that determines the
content to display for each list item. This
function takes a single argument, item, which
is the item being rendered, and must return a
String representing the text to display.
For an example, see “Using a label function”
on page 209.

Optional
List control 213

maxHPosition Number Property Specifies the number of pixels to the right
that the List control can scroll when
hScrollPolicy has been set to on.
The list will not precisely measure the width
of text within it.

Optional

multipleSelection Boolean Property Specifies whether multiple selection of items
is allowed, true, or not, false (default).

Optional

rowCount Number Property Specifies the maximum number of rows
visible in the List control. The default value is
based on the text height.

Optional

rowHeight Number Property Specifies the pixel height of every row in the
List control. The font settings will not grow
the List rows to fit, so rowHeight is the best
way to make sure items completely fit. The
default value is 20 pixels.
Changing rowHeight does not affect the
height of the control, but does affect the
number of visible rows, as reported by
rowCount.

Optional

selectable Boolean Property Specifies whether the user can select list
items, true (default), or not, false.

Optional

selectedIndex Number Property Contains the index of the selected item.
Setting this property in ActionScript sets the
current index, and selects the associated
label in the List control. The default value is
undefined, meaning no item is selected.

Optional

selectedIndices Array Property Contains the indices of multiple selected
items in the list. If you click the second item,
then the third item, and then the first item,
selectedIndices contains [1,2,0].
Setting this property replaces the current
selection. Setting it to 0 clears the current
selection.

Optional

selectedItem Object Property For a single-selection control, contains the
selected item. In a multiple-selection control,
it contains the most recently selected item.
The value can be a single scalar value or an
object containing label and data properties.

Optional

selectedItems Array Property For a multiple-selection control, contains the
set of selected items, as item objects/values.
Items are in the order of selection. If you click
the second item, then the third item, and then
the first item, selectedItems contains [1,2,0].
The value of each item can either be a single
scalar value or an object containing label
and data properties.

Optional

Property Type Use Description Req/Opt
214 Chapter 7: Using Data Provider Controls

vPosition Number Property Specifies the pixel position of the vertical
scroll bar, where a value of 0 corresponds to
the upper end of the scroll bar. The default
value is 0.

Number

vScrollPolicy String Property Specifies when to include a vertical scroll bar.
A value of on (default) causes the container to
always include a vertical scroll bar; a value of
off always excludes it.

Optional

alternatingRowColors Array Style Specifies colors for rows in an alternating
pattern. The value can be an array of two or
more colors; for example, #FF00FF,
#CC6699, and #996699.

Optional

change Event Specifies a handler for change events, which
are broadcast when the value of the control
changes as a result of user interaction.
The target property of the event object
contains a List control object representing
the control that changed.
The target.selectedItem field contains a
copy of the selected item. If you populate the
control with an array of Strings, the
target.selectedItem field contains a string.
If you populate it with an array of Objects, the
target.selectedItem field contains a copy of
the object corresponding to the selected
item.
The type property contains the string change.

Optional

itemRollOver Event Specifies a handler for itemRollOver events,
which are broadcast when items are rolled
over.
The target property of the event object
contains a List control object representing
the control, and an index property containing
the index of the item that was rolled over. The
type property contains the string
itemRollOver.

Optional

Property Type Use Description Req/Opt
List control 215

Menu control

You use the Menu control to create a pop-up menu of individually selectable choices. You use
ActionScript to pop up a Menu control in response to a user action, typically as part of an event
handler. Since you create a Menu control in response to an event, it does not have an MXML tag;
you can only create one in ActionScript.

After a Menu opens, it remains visible until it is closed by a script, or the user selects another
component in the application, or the user selects an enabled menu item.

If you want a static menu, meaning one that stays visible all the time, use the MenuBar control.
The MenuBar control creates a horizontal menu bar with menus that extend under each menu
bar item. For more information on the MenuBar control, see “MenuBar control” on page 222.

The following figure shows a Menu control:

In this example, items MenuItem A and MenuItem D open submenus.

The Menu control has the following default properties:

itemRollOut Event Specifies a handler for itemRollOut events,
which are broadcast when list items are rolled
out.
The target property of the event object
contains a List control object representing
the control, and an index property containing
the index of the item that was rolled out. The
type property contains the string
itemRollOut.

Optional

scroll Event Specifies a handler for scroll events, which
are broadcast when the control list is scrolled.
The target property of the event object
contains a reference to the List control, plus
the direction property, which is vertical or
horizontal. The type property contains the
string scroll.

Optional

Property Default

preferred size The width is determined from the Menu text. The default height is the
number of menu rows multiplied by 22 pixels per row.

Property Type Use Description Req/Opt
216 Chapter 7: Using Data Provider Controls

Creating a Menu control

You create a Menu control in ActionScript, not in MXML, using the methods
Menu.createMenu() and Menu.show(). The createMenu() method creates an instance of a
Menu control. You pass to this method the data provider for the Menu control. The show()
method makes the Menu control visible.

The Menu control uses a hierarchical data provider. For more information, see “Using data
providers with hierarchical controls” on page 184.

In this example, you use the <mx:XML> tag to define the data for the Menu control and a Button
control to trigger the event that opens the Menu control:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Script>
<![CDATA[

// Import the Menu control.
import mx.controls.Menu;

// Define the Menu control.
function createAndShow(){

var myMenu:Menu = Menu.createMenu(null, myMenuData);
myMenu.show(10, 10);

}
]]>

</mx:Script>

<!-- Define the menu data. -->
<mx:XML id="myMenuData">

<menuitem label="MenuItem A" >
<menuitem label="SubMenuItem 1-A" />

 <menuitem label="SubMenuItem 2-A" />
</menuitem>
<menuitem label="MenuItem B" />
<menuitem label="MenuItem C" type="check" />
<menuitem type="separator" />
<menuitem label="MenuItem D" >

<menuitem label="SubMenuItem 1-D" type="radio" groupName="one" />
<menuitem label="SubMenuItem 2-D" type="radio" groupName="one" />
<menuitem label="SubMenuItem 3-D" type="radio" groupName="one" />

</menuitem>
</mx:XML>

<mx:VBox>
<!-- Define a Button control to open the menu -->
<mx:Button id="myButton" label="Open Popup" click="createAndShow()" />

</mx:VBox>
</mx:Application>
Menu control 217

Node tags in the XML data can have any name. In the preceding example, each node is named
with the generic <menuitem> tag, but you could use <node>, <myNode>, and so on. The Menu
control reads through the XML and builds the display hierarchy based on the nested relationship
of the nodes. For more information, see “Menuitem syntax” on page 229.

The default location of the Menu control is the top, left corner of your application. You can pass
x and y arguments to the show() method to control position.

You use the <menuitem> tag to define the items of the Menu control, both the top-level menu
items and any submenu items. You use the type property of the <menuitem> tag to specify the
type of the menu item as one of the following:

• normal Selecting these items triggers a change event or opens a submenu, if the item has
child <menuitem> tags. This is the default.

• check Selecting these items toggles the menu item’s selected property between true and
false values. When the menu item is in the true state, it displays a check mark in the menu
next to the item’s label.

• radio These items operate in groups, much like RadioButton controls; you can select only
one radio menu item in each group at a time. The example in this section defines three
submenu items as radio buttons within the group “one”.
When selected, the radio item’s selected property is set to true, and the selected property
of all other radio items in the group is set to false. The Menu control displays a solid circle
next to the radio button that is currently selected. The selection property of the radio group
is set to the label of the selected menu item.

• separator These items provide a simple horizontal line that divides the items in a menu into
different visual groups.

Handling Menu control events

User interaction with a Menu control is event-driven. Besides the events that it inherits from the
UIObject and UIComponent classes, the Menu control defines the following additional event
types:

• change Broadcast when a user selects an enabled menu item of type normal, check, or
radio. This event is not broadcast when a user selects a menu item of type separator, a menu
item that opens a submenu, or a disabled menu item.

• menuHide Broadcast when the entire menu or a submenu closes.
• menuShow Broadcast when the entire menu or a submenu opens.
• rollOut Broadcast when the mouse pointer rolls off of a Menu item.
• rollOver Broadcast when the mouse pointer rolls onto a Menu item.

The event object passed to the event handler might contain one or all of the following properties:

• menuBar The MenuBar control instance that is the parent of the selected Menu control, or
undefined when the target Menu control does not belong to a MenuBar. The data type is
MenuBar. For more information, see “MenuBar control” on page 222.

• menu A reference to the Menu control of the selected item, of type Menu.
218 Chapter 7: Using Data Provider Controls

• menuItem The selected menu item. Access the menu item properties as follows:
eventobj.menuItem.attributes.attributeName

For example:
var itemLabel:String = event.menuItem.attributes.label;
var itemSelectedValue:Number=event.menuItem.attributes.selected;

For more information on menu item properties, see “Menuitem syntax” on page 229.

For a complete description of the event object for each event, see “Menu control syntax”
on page 221.

The following example creates an event handler for the Menu control:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script>
<![CDATA[

// Import the Menu control and Delegate.
import mx.controls.Menu;
import mx.utils.Delegate;

//Define a variable for the Menu control.
var myMenu:Menu;

// Define the event handler that creates the menu,
// and adds event listeners.
function createAndShow() {

myMenu = Menu.createMenu(null, myMenuData);
myMenu.addEventListener("change",

Delegate.create(this, menuShowInfo));
myMenu.addEventListener("menuHide",

Delegate.create(this, menuShowInfo));
myMenu.addEventListener("rollOver",

Delegate.create(this, menuShowInfo));
myMenu.show(10, 10);

}

// Define the event handler for the Menu events.
function menuShowInfo(event) {

taMenuShow.text=event.menuItem.attributes.label + " " +
event.menuItem.attributes.selected;

}
]]>

</mx:Script>

<!-- Define the menu data. -->
<mx:XML id="myMenuData">

<menuitem label="MenuItem A" >
<menuitem label="SubMenuItem 1-A" />

 <menuitem label="SubMenuItem 2-A" />
</menuitem>
<menuitem label="MenuItem B" />
Menu control 219

<menuitem label="MenuItem C" type="check" />
<menuitem type="separator" />
<menuitem label="MenuItem D" >

<menuitem label="SubMenuItem 1-D" type="radio" groupName="one" />
<menuitem label="SubMenuItem 2-D" type="radio" groupName="one" />
<menuitem label="SubMenuItem 3-D" type="radio" groupName="one" />

</menuitem>
</mx:XML>

<mx:VBox>
<!-- Define a Button control to open the menu. -->
<mx:Button id="myButton" label="Open Popup" click="createAndShow()" />
<mx:TextArea id="taMenuShow" />

</mx:VBox>
</mx:Application>

In this example, the event handler writes a string to the TextArea control containing the value of
the label and selected properties of the selected menu item. The value of the selected
property is either true or false for a check or radio menu item, and undefined for all other
menu item types. For more information on the properties of a menu item, see “Menuitem syntax”
on page 229.

You need to use the Delegate class to ensure that the event handler executes in the correct scope.
For more information, see Chapter 15, “Working with ActionScript in Flex,” on page 393.

User interaction

You can use the mouse or the keyboard to interact with a Menu control. Clicking selects a menu
item and closes the menu, except with the following types of menu items:

• Disabled items or separators Rollovers and clicks have no effect and the menu remains
visible.

• Submenu anchors Rollovers activate the submenu; clicks have no effect; rolling onto any
menu item other than one of the submenu items closes the submenu.

When a Menu control has focus, you can use the following keys to control it:

Key Description

Down arrow
Up arrow

Moves the selection down and up the rows of the menu. The selection loops at the top
or bottom row.

Right arrow Opens a submenu, or moves selection to the next menu in a menu bar.

Left arrow Closes a submenu and returns focus to the parent menu (if a parent menu exists), or
moves selection to the previous menu in a menu bar (if the menu bar exists).

Enter Opens a submenu, or clicks and releases on a row if a submenu does not exist.
220 Chapter 7: Using Data Provider Controls

Menu control syntax

You create a Menu control in ActionScript using the createMenu() method. The following table
describes the properties and methods defined by the Menu control:

Property/Method Type Use Description Req/Opt

dataProvider Array Property Specifies an array of simple types or objects. Optional

popupDuration Number Style The duration, in milliseconds, of the transition as
a menu opens. The value 0 specifies no
transition.

Optional

change Event Broadcast when a user selects an item in the
Menu control. This event is also broadcast when
the user presses the Enter or Space key when a
leaf node is selected, but not when a branch
node is selected.
The event object contains the properties:
• target Contains a reference to the Menu

control.
• type Contains the string change.
• menuBar A reference to the MenuBar control

that is the parent of the selected Menu control,
or undefined when the target Menu control
does not belong to a MenuBar control.

• menu A reference to the Menu control, of type
Menu.

• menuItem The selected menu item. Access
the menu item properties as follows:
eventobj.menuItem.attributes.attribName

• groupName The name of the radio group to
which the item belongs. The value is undefined
when the target item is not in a radio group. The
data type is String.

Optional

menuHide Event Broadcast when a menu closes.
The event object contains the properties:
• target Contains a reference to the Menu

control.
• type Contains the string menuHide.
• menuBar A reference to the MenuBar control

that is the parent of the selected Menu control,
or undefined when the target Menu control
does not belong to a MenuBar control.

• menu A reference to the Menu control, of type
Menu.

Optional
Menu control 221

MenuBar control

A MenuBar control defines a horizontal menu bar containing one or more submenus. A MenuBar
control supports the same syntax and events as the Menu control. Unlike the Menu control, a
MenuBar control is static; that is, it does not function as a pop-up menu, but is always visible in
your application.

For more information on the Menu control, see “Menu control” on page 216.

The following figure shows a MenuBar control:

When a user selects a top-level menu item, the MenuBar control opens a submenu. The submenu
stays open until the user selects another top-level menu item, the user selects a submenu item, or
the user clicks outside the MenuBar area.

menuShow Event Broadcast when the entire menu or a submenu
opens. The event object contains the properties:
• target Contains a reference to the Menu

control.
• type Contains the string menuShow.
• menuBar A reference to the MenuBar control

that is the parent of the selected Menu control,
or undefined when the target Menu control
does not belong to a MenuBar control.

Optional

rollOut Event Broadcast when the cursor rolls off of a Menu
item. The event object contains the properties:
• target Contains a reference to the Menu

control.
• type Contains the string rollOut.
• menuItem The selected menu item. Access

the menu item properties as follows:
eventobj.menuItem.attributes.attribName

Optional

rollOver Event Broadcast when the cursor rolls over a Menu
item.
The event object contains the properties:
• target Contains a reference to the Menu

control.
• type Contains the string rollOver.
• menuItem The selected menu item. Access

the menu item properties as follows:
eventobj.menuItem.attributes.attribName

Optional

hide() Method Hides, or closes, a Menu control. Optional

show() Method Opens a menu at a specific x and y location. Optional

Property/Method Type Use Description Req/Opt
222 Chapter 7: Using Data Provider Controls

The MenuBar control has the following default properties:

Creating a MenuBar control

You define a MenuBar control in MXML using the <mx:MenuBar> tag. Specify an id value if you
intend to refer to a component elsewhere in your MXML, either in another tag or in an
ActionScript block.

The Menu control uses a hierarchical data provider. For more information, see “Using data
providers with hierarchical controls” on page 184.

You specify the data for the MenuBar control as XML formatted data using the
<mx:dataProvider> child tag of the <mx:MenuBar> tag. The <mx:dataProvider> tag lets you
specify data in several different ways. You can populate a MenuBar control from data retrieved
from a server, or it can be well-formed XML defined within the <mx:MenuBar> tag.

In the simplest case for creating a MenuBar control, you use the <mx:dataProvider> and
<menuitem> tags to define the entries as an array of strings, as the following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<!-- Define the menu. -->
<mx:MenuBar id="myMenuBar">

<mx:dataProvider>
<mx:XML>

<menuitem label="MenuItem A" >
<menuitem label="SubMenuItem 1-A" />

 <menuitem label="SubMenuItem 2-A" />
</menuitem>
<menuitem label="MenuItem B" />
<menuitem label="MenuItem C" />
<menuitem label="MenuItem D" >

<menuitem label="SubMenuItem 1-D" type="radio" groupName="one" />
<menuitem label="SubMenuItem 2-D" type="radio" groupName="one" />
<menuitem label="SubMenuItem 3-D" type="radio" groupName="one" />

</menuitem>
</mx:XML>

</mx:dataProvider>
</mx:MenuBar>

</mx:Application>

Node tags in the XML data can have any name. In the sample above, each node is named with the
generic <menuitem> tag, but you can have used <node>, <myNode>, and so on. The Menu control
reads through the XML and builds the display hierarchy based on the nested relationship of the
nodes. For a list of the options that you can specify for each menu item, see “Menuitem syntax”
on page 229.

Property Default

preferred size The width is determined from the menu text. The default height is 22 pixels.
MenuBar control 223

The top level nodes in the MenuBar control correspond to the labels that appear in the bar.
Therefore, in this example, the MenuBar control displays the four labels shown in the preceding
figure.

Importing XML data for the data provider

The example in the previous section defined the data provider for the MenuBar control within
the <mx:MenuBar> tag. You can also import that XML from a file, as the following example
shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<!-- Import the XML data. -->
<mx:XML id="menuDS1" source="menuSrc.xml"/>
<mx:MenuBar id="menu1" widthFlex="1" dataProvider="{menuDS1}"/>

<!-- Define the XML data inline. -->
<mx:MenuBar id="menu2" widthFlex="1">

<mx:dataProvider>
<mx:XML>

<node label="File">
<node label="Load" />
<node label="Save" />
<node label="Expand" />
<node label="Exit" />

</node>
</mx:XML>

</mx:dataProvider>
</mx:MenuBar>

</mx:Application>

Where the XML defined in the menuSrc.xml file contains the following content:
<node label="File">

<node label="Load" />
<node label="Save" />
<node label="Expand" />
<node label="Exit" />

</node>

This code creates the two MenuBar controls shown in the following figure:

Flex works differently for imported XML than for XML defined within the <mx:MenuBar> tag.
When you define the XML within the <mx:MenuBar> tag, Flex cannot assume that you created a
valid root node, so Flex always creates one. Therefore, the node labeled File becomes the child
node of the root node that Flex created.

MenuBar control from imported XML

MenuBar control from inline XML
224 Chapter 7: Using Data Provider Controls

When you load XML from an external file, Flex requires that you include a valid root node.
Therefore, Flex considers the node labeled File in the imported XML file to be the root node
and it does not appear in the MenuBar control.

If you want the MenuBar control defined using imported XML to look the same as the one
defined XML defined within the <mx:MenuBar> tag, add a root node definition to the imported
XML file, as the following example shows:
<node label="RootNode">

<node label="File">
<node label="Load" />
<node label="Save" />
<node label="Expand" />
<node label="Exit" />

</node>
</node>

Adding a menu item

The MenuBar control has an ActionScript API that you can use to manipulate it. For example,
you can use the MenuBar.addMenu() method to add a menu item, as the following example
shows:
<mx:TextInput id="input" text="type in new menu text" />
<mx:Button label="Add Menu" click="myMenuBar.addMenu(input.text)" />

You can modify this example to add a menu item to a submenu of the MenuBar control, as the
following example shows:
<mx:Button label="Add Menu"

click="myMenuBar.getMenuAt(0).addMenuItem(input.text)" />

This example uses the getMenuAt() method to access the first submenu of the MenuBar control,
then uses addMenuItem() method to add the new menu item. The index of the submenu items
starts at 0.

For additional methods of the MenuBar control, see Flex ActionScript and MXML Reference, the
Flex HTML API reference.

Differences between the Menu and MenuBar controls

Although based on the Menu control, the MenuBar control differs in the following ways:

• The MenuBar control is a static control that always appears in your application. Therefore, you
do not use the show() or hide() methods with the MenuBar control.

• The top-level nodes of a MenuBar control cannot have a type of separator.
• A change event is not broadcast when you select a top-level menu item. A change event is

broadcast when you select an entry from a submenu.
MenuBar control 225

Handling MenuBar control events

User interaction with a MenuBar control is event driven. Besides the events that it inherits from
UIObject and UIComponent, the MenuBar control defines the additional event types:

• change Broadcast when a user selects an enabled menu item of type normal, check, or
radio. This event is not broadcast when a user selects a menu item of type separator, a menu
item that opens a submenu, or a disabled menu item.

• menuHide Broadcast when the entire menu or a submenu closes.
• menuShow Broadcast when the entire menu or a submenu opens.
• rollOut Broadcast when the mouse pointer rolls off of a MenuBar item.
• rollOver Broadcast when the mouse pointer rolls onto a MenuBar item.

For a complete description of the event object for each event, see “MenuBar control syntax”
on page 227.

The following example creates an event handler for the change event:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Script>
<![CDATA[

function changeEvt(event) {
forChange.text=event.menuItem.attributes.label + " " + " " +

event.menuItem.attributes.selected;
}

function closeEvt() {
forClose.text="menu closed";

}

function rollOverEvt(event) {
forRollOver.text=event.menuItem.attributes.label + " " + " " +

event.menuItem.attributes.selected;
}
function openEvt() {

forClose.text="";
forChange.text="";

}

]]>
</mx:Script>

<mx:MenuBar id="menuBar1" change="changeEvt(event)" menuHide="closeEvt()"
menuShow="openEvt()" rollOver="rollOverEvt(event)" >
<mx:dataProvider>

<mx:XML>
<menuitem label="MenuItem A" >

<menuitem label="SubMenuItem 1-A" />
 <menuitem label="SubMenuItem 2-A" />

</menuitem>
226 Chapter 7: Using Data Provider Controls

<menuitem label="MenuItem B" />
<menuitem label="MenuItem C" />
<menuitem label="MenuItem D" >

<menuitem label="SubMenuItem 1-D" type="radio" groupName="one" />
<menuitem label="SubMenuItem 2-D" type="radio" groupName="one" />
<menuitem label="SubMenuItem 3-D" type="radio" groupName="one" />

</menuitem>
</mx:XML>

</mx:dataProvider>
</mx:MenuBar>

<mx:TextArea id="forChange" width="150" />
<mx:TextArea id="forClose" />
<mx:TextArea id="forRollOver" width="150" />

</mx:Application>

In this example, the event handler writes strings to the TextArea controls containing the value of
the label and selected properties of the selected menu item. The value of the selected
property is true or false for a check or radio menu item, and undefined for all other menu
item types.

User interaction

The user interaction of the MenuBar control is the same as for the Menu control. For more
information, see “User interaction” on page 220.

MenuBar control syntax

You use the <mx:MenuBar> tag to define a MenuBar control. The following table describes the
properties defined by the MenuBar control:

Note: The MenuBar control inherits the borderStyle property, so you cannot set it.

Property Type Use Description Req/Opt

dataProvider Array Property Specifies an Array of simple types or Objects. Optional

labelField String Property Specifies the name of the field in the dataProvider
Array to use as the text for each menu item.
If omitted, the data provider must contain a field
named label, or the dataProvider property must
contain an Array of Strings.

Optional

labelFunction Function Property Specifies a function that determines what displays as
the text for each menu item.
The function accepts the XML node associated with
an item as a parameter, and returns a string used as
label text. This property is propagated to any menus
created from the MenuBar control.
For an example, see “Using a label function”
on page 209.

Optional
MenuBar control 227

menuHide Event Broadcast when a menu closes.
The event object contains the properties:
• target Contains a reference to the MenuBar

control.
• type Contains the string menuHide.
• menuItem The parent node of the menu being

hidden.
• menu The menu instance that was hidden, of type

Menu.

Optional

change Event Broadcast when a user selects an item in the
MenuBar control. The event object contains the
properties:
• target Contains a reference to the MenuBar

control.
• type Contains the string change.
• menu The menu instance that was hidden, of type

Menu.
• menuItem The selected menu item. Access the

menu item properties as:
eventobj.menuItem.attributes.attribName

• groupName String containing the name of the
radio group to which the item belongs. Undefined
when the target item is not in a radio group.

Optional

menuShow Event Broadcast when the entire menu or a submenu
opens. The event object contains the properties:
• target Contains a reference to the MenuBar

control.
• type Contains the string menuShow.
• menuItem The parent node of the opening menu.
• menu The menu instance that was shown, of type

Menu.

Optional

Property Type Use Description Req/Opt
228 Chapter 7: Using Data Provider Controls

Menuitem syntax

The <menuitem> tag defines the items in a MenuBar control or Menu control. The following
table describes the properties defined by the <menuitem> tag:

rollOut Event Broadcast when the user moves the mouse pointer
off of a MenuBar item. The event object contains the
following properties:
• target Contains a reference to the MenuBar

control.
• type Contains the string rollOut.
• menuItem The selected menu item. Access the

menu item properties as:
eventobj.menuItem.attributes.attribName

Optional

rollOver Event Broadcast when the user moves the mouse pointer
over a MenuBar item.
The event object contains the following properties:
• target Contains a reference to the MenuBar

control.
• type Contains the string rollOver.
• menuItem The selected menu item. Access the

menu item properties as:
eventobj.menuItem.attributes.attribName

Optional

Property Type Use Description Req/Opt

enabled String Property Specifies whether the menu item can be selected,
true, or not, false. The default value is true.

Optional

groupName String Property Specifies the identifier that you use to associate
several radio button items in a radio group, and to
expose the state of a radio group from the root
menu instance.

Optional for
all but radio

icon String Property Specifies the linkage identifier of an image asset.
This property is not available for the check, radio, or
separator types.

Optional

instanceName String Property Specifies the identifier that you can use to
reference the menu item instance from the root
menu instance.

Optional

label String Property Specifies the text displayed in the control. This
property is required for all item types, except
separator.

Optional for
separator
only

selected Boolean Property Specifies the initial value of a check or radio item as
true or false. The default value is false. For all
other types, the value is undefined.

Optional

type String Property Specifies the type of menu item. Values are
separator, check, radio, or normal. The default
value is normal.

Optional

Property Type Use Description Req/Opt
MenuBar control 229

Tree control

The Tree control lets a user view hierarchical data arranged as an expandable tree. Each item in a
tree is called a node and can be either a leaf or a branch. A branch node can contain either leaf or
branch nodes. A leaf node is an end point in the tree.

By default, a leaf is represented by a text label beside a file icon and a branch is represented by a
text label beside a folder icon with a disclosure triangle that a user can open to expose children.

The following figure shows a Tree control:

The tree control has the following default properties:

Creating a Tree control

You define a Tree control in MXML using the <mx:Tree> tag. Specify an id value if you intend to
refer to a control elsewhere in your MXML, either in another tag or in an ActionScript block.

The Tree control uses a hierarchical data provider. For more information, see “Using data
providers with hierarchical controls” on page 184.

The data of a Tree control must be provided from a data provider. Often, the data for a tree is
retrieved from a server in the form of XML, but it can also be well-formed XML defined within
the <mx:Tree> tag. The following code contains a single Tree control that defines the tree shown
in the previous figure:
<mx:Tree id="tree1" >

<mx:dataProvider>
<mx:XML>

<node label="Mail">
 <node label="INBOX"/>
 <node label="Personal Folder">

<node label="Business" />
 <node label="Demo" />
 <node label="Personal" isBranch="true" />

 <node label="Saved Mail" />
</node>
<node label="Sent" />
<node label="Trash"/>

Property Default

preferred size 200 pixels wide, and seven rows high, where each row is 22 pixels in height

minimum size Width of icon plus 16 characters, and a height of three rows

maximum size undefined
230 Chapter 7: Using Data Provider Controls

</node>
</mx:XML>

</mx:dataProvider>
</mx:Tree>

Node tags in the XML data can have any name. In this example, each node is named with the
generic <node> tag. The Tree control reads through the XML and builds the display hierarchy
based on the nested relationship of the nodes. For the list of options to the individual nodes, see
“Node syntax” on page 236.

Nodes at the highest level are called root nodes and have no parent. A Tree control can have
multiple root nodes. In this example, there is only one root node in the tree: “Mail”. However, if
you add sibling nodes at that level in the XML, multiple root nodes would appear in the Tree.

A branch node can contain multiple child nodes, and appear as a folder icon with a disclosure
triangle that lets users open and close the folder. Leaf nodes appear as a file icon and cannot
contain child nodes.

When a Tree control displays a node, it displays the label property of the node by default as the
text label. If any other properties exist, they become additional properties of the node’s properties
within the Tree control.

Handling Tree control events

You typically use events to respond to user interaction with a Tree control. Since the Tree control
is derived from the List control, you can use all of the events defined for the List control plus two
events added by the Tree control: nodeOpen and nodeClose. The following example defines event
handlers for the change and nodeOpen events:

<mx:Script>
<![CDATA[

function changeEvt(event) {
forChange.text=event.target.selectedItem.attributes.label + " " +
event.target.selectedItem.attributes.data;

}

function nodeOpenEvt(event) {
forOpen.text=event.node.attributes.label + " " +
event.node.attributes.data;

}

]]>
</mx:Script>

<mx:Tree id="tree1" width="300" height="500"
change="changeEvt(event)" nodeOpen="nodeOpenEvt(event)" >
<mx:dataProvider>

<mx:XML>
<node label="Mail">

<node label="INBOX"/>
<node label="Personal Folder">

<node label="Business" data="2"/>
<node label="Demo" />
Tree control 231

<node label="Personal" isBranch="true" />
<node label="Saved Mail" />

</node>
<node label="Sent" />
<node label="Trash"/>

 </node>
</mx:XML>

</mx:dataProvider>
</mx:Tree>

<mx:TextArea id="forChange" width="150" />
<mx:TextArea id="forOpen" width="150" />

In this example, you define event handlers for the change and nodeOpen events. The Tree control
broadcasts the change event when the user selects a tree item, and broadcasts the nodeOpen event
when a user opens a branch node. For each event, the event handler displays the label and the data
property, if any, in a TextArea control. In this example, only the Business node defines a data value;
for all other nodes, the data value is undefined.

Expanding a tree node

By default, the Tree control displays the root nodes of the tree when it first opens. If you want to
expand a node of the tree when the tree opens, you can use the setIsOpen() method of the Tree
control. The following example calls this method as part of the handler for the initialize event
to expand the first root node of the tree:
<mx:Script>

<![CDATA[
function initTree(){

tree1.setIsOpen(tree1.getTreeNodeAt(0), true);
}
]]>

</mx:Script>

<mx:Tree id="tree1" ... initialize="initTree()" >
...

</mx:Tree>

Editing a node label at runtime

You can use the editable property of the Tree control to make node labels editable at runtime.
To edit a node label, the user selects the label, then enters a new label or edits the existing label
text. By default, node labels are not editable. Set the editable property to true to enable editing.

Changing Tree control icons

You can use the folderOpenIcon, folderClosedIconStyle, and defaultLeafIcon properties
to control the Tree control icons. For example, the following code specifies a default icon, and
icons for the open and closed states of branch nodes:
<mx:Tree folderOpenIcon="@Embed('open.jpg')"

folderClosedIcon="@Embed('closed.jpg')"
defaultLeafIcon="@Embed('def.jpg')">
232 Chapter 7: Using Data Provider Controls

If you want to remove the branch and leaf node icons, so that the Tree control uses only a small
triangle to signify branch nodes, you use the following code:
<mx:Tree folderOpenIcon="UIObject"

folderClosedIcon="UIObject" defaultLeafIcon="UIObject" >

Using the keyboard to edit labels

You can use the following keys to edit labels:

Editing events

To support label editing, the Tree control uses the following events:

• cellEdit Broadcast when a tree label value changes.
• cellFocusIn Broadcast when a user selects a label hit area or tabs to it, and the label receives

focus.
• cellFocusOut Broadcast when a label loses focus.
• cellPress Broadcast when a user selects a label with the mouse pointer.

User interaction

When a Tree control has focus either from clicking or tabbing, you can use the following keys to
control it:

Key Description

Enter The selected row changes state from selected to editing, or from editing to
selected.

^. (Control+Period) Cancels the edit, restores the text, and changes the row state from editing to
selected.

TAB When in editing mode, accepts the current changes, selects the row below, and
goes into edit mode. If at the last element in the tree or not in edit mode, sends
focus to the next control, as usual.

Shift-TAB When in editing mode, accepts the current changes, selects the row above, and
goes into edit mode. If at the first element in the tree or not in edit mode, sends
focus to the previous control, as usual.

Key Description

Down arrow Moves selection down one.

Up arrow Moves selection up one.

Right arrow Opens a selected branch node. If a branch is already open, moves to first child node.

Left arrow Closes a selected branch node. If a leaf node of a closed branch node is currently
selected, selects the parent node.

Space Opens or closes a selected branch node.

End Moves selection to the bottom of the list.
Tree control 233

Tree control syntax

You use the <mx:Tree> tag to define a Tree control. The Tree control is derived from the List
control, so it takes all of the properties and methods of the List control, and the properties
described in the following table:

Home Moves selection to the top of the list.

Page Down Moves selection down one page.

Page Up Moves selection up one page.

Control Allows multiple noncontiguous selections.

Shift Allows multiple contiguous selections.

Property Type Use Description Req/Opt

dataProvider Array Property Specifies an Array of simple types or objects. Optional

editable Boolean Property Specifies that node labels in the Tree control can
be edited at runtime, true, or not, false. The
default value is false.

Optional

firstVisibleNode Node
object

Property Specifies the first node at the top of the Tree.
Setting this property is analogous to setting the
vPosition of the List control. The default is the
first node in the Tree.
If the node isn’t currently viewable, for example
because it is under a nonexpanded node, setting
this property has no effect.

Optional

selectedNode Node
object

Property Specifies the selected node in the tree. You can
specify a single node, or an array of nodes.

Optional

depthColors Array Style Specifies an array of colors used in the Tree
control, in descending order.

Optional

openDuration Number Style Specifies the length of an open or close
transition, in milliseconds. The default value is
250.

Optional

openEasing Function Style Specifies an easing function to control
component tweening. For an example using
easing, see Chapter 20, “Using Behaviors,” on
page 497.

Optional

indentation Integer Style Specifies the indentation for each tree level, in
pixels. The default value is 8.

Optional

Key Description
234 Chapter 7: Using Data Provider Controls

cellEdit Event Broadcast when a tree label value changes.
The event object contains the following
properties:
• target Contains a reference to the Tree

control.
• itemIndex The index of the label in the tree for

all visible labels, where the top label is at an
index of 0. If a node is collapsed, the hidden
labels are not included in the calculation of
itemIndex.

• columnIndex Zero for the row if the row
renderer supports cell renderers, and values
other than zero are for its own use.

• oldValue The previous value of the label.
• type The string cellEdit.

Optional

cellFocusIn Event Broadcast when a user selects a label hit area or
tabs to it and the label receives focus.
The event object contains the following
properties:
• target Contains a reference to the Tree

control.
• itemIndex The index of the label in the tree for

all visible labels, where the top label is at an
index of 0. If a node is collapsed, the hidden
labels are not included in the calculation of
itemIndex.

• columnIndex Zero for the row if the row
renderer supports cell renderers, and values
other than zero are for its own use.

• type The string cellFocusIn.

Optional

cellFocusOut Event Broadcast when a label loses focus.
The event object contains the following
properties:
• target Contains a reference to the Tree

control.
• itemIndex The index of the label in the tree for

all visible labels, where the top label is at an
index of 0. If a node is collapsed, the hidden
labels are not included in the calculation of
itemIndex.

• columnIndex This property is always set to 0.
• type The string cellFocusOut.

Optional

Property Type Use Description Req/Opt
Tree control 235

Node syntax

For each node in the tree, you can define the properties:

cellPress Event Broadcast when a user selects a label with the
mouse pointer.
The event object contains the following
properties:
• target Contains a reference to the Tree

control.
• itemIndex The index of the label in the tree for

all visible labels, where the top label is at an
index of 0. If a node is collapsed, the hidden
labels are not included in the calculation of
itemIndex.

• columnIndex Zero for the row if the row
renderer supports cell renderers, and values
other than zero are for its own use.

• type The string cellPress.

Optional

nodeOpen Event Specifies a handler for branch nodeOpen events.
The event object contains the following
properties:
• target Contains a reference to the Tree

control.
• type The string nodeOpen.
• node Contains an object representing the

node that opened. Access the label and data
properties for the node as follows:

eventobj.node.attributes.label
eventobj.node.attributes.data

Optional

nodeClose Event Specifies a handler for branch node close events.
The event object contains the following
properties:
• target Contains a reference to the Tree

control.
• type The string nodeClose.
• node Contains an object representing the

node that closed. Access the label and data
properties for the node as follows:

eventobj.node.attributes.label
eventobj.node.attributes.data

Optional

Property Type Description

data Any Specifies the data to associate with a node, if any.

label String Specifies the text to be displayed in the Tree for a node.

isBranch String Specifies whether the node is a branch, true, or not, false. If not specified, the
Tree control determines whether the node is a branch based on whether it
contains any child nodes.

Property Type Use Description Req/Opt
236 Chapter 7: Using Data Provider Controls

CHAPTER 8
Introducing Containers
Containers provide a hierarchical structure that lets you control the layout characteristics of
container children. You can use containers to control child sizing and positioning, or to control
navigation among multiple child containers.

This chapter introduces the two types of containers: layouts and navigators. This chapter contains
an overview of container usage, including layout rules, and examples of how to use and configure
containers.

Contents

About containers . 237

Using containers . 238

Controlling component sizing and positioning in a container . 246

Using scroll bars. 255

Creating component instances at runtime . 256

Configuring containers . 259

About containers

A container defines a rectangular region of the Macromedia Flash Player drawing surface. Within
a container, you define the components, both controls and containers, that you want to appear
within the container. Components defined within a container are called children of the container.

At the root of a Macromedia Flex application is a single container, called the Application
container, that represents the entire Flash Player drawing surface. This Application container
holds all other containers, which can represent dialog boxes, panels, and forms.

A container has predefined rules to control the layout of its children, including sizing and
positioning. Flex defines layout rules to simplify the design and implementation of rich Internet
applications, while also providing enough flexibility to let you create a diverse set of applications.
237

One advantage of having predefined layout rules is that your users will soon grow accustomed to
them. That is, by standardizing the rules of user interaction, your users will not have to think
about how to navigate the application, but can instead concentrate on the content that the
application offers.

Another advantage is that you do not have to spend time defining navigation and layout rules as
part of the design process. Instead, you can concentrate on the information that you want to
deliver, and the options that you want to provide for your users, and not worry about
implementing all the details of user action and application response. In this way, Flex provides the
structure that lets you quickly and easily develop an application with a rich set of features and
interactions.

If you do want a greater level of control over sizing and positioning, Flex provides the Canvas
container. This container has no built-in layout rules, but instead lets you explicitly set the
position and size of its children. For more information, see “Canvas layout container”
on page 280.

Layout containers and navigator containers

Flex defines two types of containers:

• Layout containers Control the sizing and positioning of the child controls and child
containers defined within them. For example, a Grid layout container sizes and positions its
children in a layout similar to an HTML table.

• Navigator containers Control user movement, or navigation, among multiple child
containers. The individual child containers, not the navigator, control the layout and
positioning of their children. For example, an Accordion navigator container lets you construct
a multipage form from multiple Form layout containers.

Using containers

The rectangular region of a container encloses its content area, the area that contains its child
components. The size of the region around the content area is defined by the container margins
and the width of the container border. A container has top, bottom, left, and right margins, each
of which you can set to a pixels width. The border styles are none, inset (2 pixels wide), outset (2
pixels wide), and solid (1 pixel wide). The following figure shows a container and its content area,
margins, and borders:

Content area

Container

Top margin

Bottom margin

Right marginLeft margin
238 Chapter 8: Introducing Containers

Although you can create an entire Flex application using a single container, typical applications
use multiple containers. For example, the following figure shows an application that uses three
layout containers:

In this example, the two VBox (vertical box) layout containers are nested within an HBox
(horizontal box) layout container and are referred to as children of the HBox container.

The HBox layout container arranges its children in a single horizontal row and oversees the sizing
and positioning characteristics of the VBox containers. For example, you can control the distance,
or gap, between children in a container using the horizontalGap and verticalGap properties.

A VBox container arranges its children in a single vertical stack, or column, and oversees the
layout of its own children. The following figure shows the same example, except that the
outermost container has been changed to a VBox layout container:

In this example, since the outer container is a VBox layout container, it arranges its children in a
vertical column.

The primary use of a layout container is to arrange its children, where the children are either
controls or other containers. The following example shows a simple VBox container that has three
child components:

In this example, a user enters a ZIP code into the TextInput control, then clicks the Button
control to see the current temperature for the specified ZIP code in the TextArea control.

Child VBox
layout container

Child VBox
layout container

Parent HBox
layout container

 Components Components

Child VBox
layout container

Child VBox
layout container

Parent VBox
layout container

Components

Components

TextInput control

Button control

TextArea control
Using containers 239

Flex supports form-based applications through its Form layout container. In a Form container,
Flex can automatically align labels, uniformly size TextInput controls, and display input error
notifications. The following figure shows an example of a Flex Form container:

Form containers can take advantage of the Flex validation mechanism to detect input errors
before the user submits the form. By detecting the error, and letting the user correct it before
submitting the form to a server, you eliminate unnecessary server connections. The Flex
validation mechanism does not preclude you from performing additional validation on the server.
For more information on Form containers, see “Form layout container” on page 290.

Navigator containers, such as the TabNavigator and Accordion containers, have built-in
navigation controls that let you organize information from multiple child containers in a way that
makes it easy for a user to move through it. The following figure shows an example of an
Accordion container:

You use the Accordion buttons to move among the different child containers.

Accordion buttons
240 Chapter 8: Introducing Containers

Accordion containers support the creation of multistep procedures. The preceding figure shows
an Accordion container that defines four panels of a complex form. To complete the form, the
user enters data into all four panels. Accordion containers let users enter information in the first
panel, click the Accordion button to move to the second panel, then move back to the first if they
want to edit the information. For more information, see “Accordion navigator container”
on page 343.

Flex containers

The following table describes the Flex containers:

Container Type Description For more information

Accordion Navigator Organizes information in a series of child
panels, where one panel is active at any time.

“Accordion navigator
container” on page 343

Box (HBox
and VBox)

Layout Displays content in a uniformly spaced row or
column. An HBox container horizontally
aligns its children; a VBox container vertically
aligns its children.

“Box layout container”
on page 282

Canvas Layout Defines a container that lets you explicitly
position and size its children.

“Canvas layout
container” on page 280

ControlBar Layout Holds components shared by the other
children in a Panel container.

“ControlBar layout
container” on page 284

DividedBox
(HDividedBox
and
VDividedBox)

Layout Lays out its children horizontally or vertically,
much like a Box container, except that it
inserts an adjustable divider between each
child.

“DividedBox layout
container” on page 285

Form Layout Arranges its children in a standard form
format.

“Form layout container”
on page 290

Grid Layout Arranges children as rows and columns of
cells, much like an HTML table.

“Grid layout container”
on page 306

LinkBar Navigator Defines a row of Link controls designating a
series of link destinations, often used with a
ViewStack container.

“LinkBar navigator
container” on page 331

Panel Layout Displays a title bar, caption, border, and its
children.

“Panel layout container”
on page 311

TabBar Navigator Defines a horizontal row of tabs, often used
with a ViewStack container.

“TabBar navigator
container” on page 338

TabNavigator Navigator Displays a container with tabs to let users
switch between different content areas.

“TabNavigator
container” on page 335

Tile Layout Defines a layout that arranges its children in
multiple rows or columns.

“Tile layout container”
on page 315
Using containers 241

Class hierarchy for containers

Flex containers are implemented as a hierarchy in an ActionScript class library, as the following
figure shows:

All containers are derived from the ActionScript classes MovieClip, UIObject, UIComponent,
View, and Container, and therefore inherit the properties of their parent classes. For a list of the
properties inherited from the MovieClip, UIObject, and UIComponent classes, see Chapter 5,
“Using Flex Components,” on page 87.

TitleWindow Layout Displays a modal window that contains a title
bar, caption, border, close button, and its
children. The user can move and resize it.

“TitleWindow layout
container” on page 317

ViewStack Navigator Defines a stack of panels that displays a
single panel at a time.

“ViewStack navigator
container” on page 326

Container Type Description For more information

UIObject

UIComponent

View

Container

All Containers

MovieClip
242 Chapter 8: Introducing Containers

The following table lists many of the attributes inherited by all containers from the View and
Container classes:. For a complete reference, see Flex ActionScript and MXML API Reference.

Container example

The following figure shows an example Flex application that uses a single VBox container with
three controls:

The following MXML code creates this example:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Panel title="My Application" >

<mx:VBox id="myVBox" borderStyle="solid" horizontalAlign="center"
marginLeft="10" marginRight="10" marginTop="5" marginBottom="5" >

<!-- TextInput control for ZIP code. -->
<mx:TextInput id="myinput" text="enter zip code" />

Attributes View Container

Methods createChild()
createChildAtDepth()
destroyAllChildren()
destroyChild()
destroyChildAt()
getChildAt()
getChildIndex()
setChildIndex()

getRepeaterAt()
getViewMetrics()

Properties numChildren clipContent
defaultButton
icon
label
hScrollPolicy
vScrollPolicy

hLineScrollSize
hPageScrollSize
hPosition
numRepeaters
vLineScrollSize
vPageScrollSize
vPosition

Events childCreated
childDestroyed
childIndexChanged
defaultAction

scroll
childrenCreated

Styles backgroundAlpha
backgroundImage
backgroundSize

Behaviors No new behaviors

Skins No new skins
Using containers 243

<!-- Button control to get weather and update the TextArea control. -->
<mx:Button id="mybutton" label="GetWeather" click="getTemp()" />

<!-- TextArea field for results of the web service call. -->
<mx:TextArea id="mytext" height="20" />

</mx:VBox>
</mx:Panel
</mx:Application>

The code for the getTemp() function is not shown in this example.

The following figure shows the same example, this time implemented using an HBox container:

The only difference in these two examples is the container type and the increased width of the
Application container because of its horizontal layout, as the following code shows:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:HBox id="myHBox" borderStyle="solid" marginLeft="10" marginRight="10"
marginTop="5" marginBottom="5" verticalAlign="middle" >

...

</mx:HBox>

</mx:Application>

Handling events when creating components

All containers support a childrenCreated event, which Flex triggers after Flex creates the child
controls inside a container. You can use this event to perform any final configuration of a
container’s children.

This event is useful with a container that is an immediate child of a navigator container, such as
the ViewStack, TabNavigator, and Accordion navigator containers. For example, a ViewStack
container creates all its immediate child containers, and all the children of its first visible child
container. For the first visible child container, childrenCreated gets broadcast. Then, as the user
moves to each additional child of the ViewStack, the event gets dispatched for that container.

The following example defines an event handler for the childrenCreated event, which is
broadcast when the user first navigates to pane2 of the ViewStack navigator container:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script>
<![CDATA[

function pane2_childrenCreated(event):Void {
...

}
]]>

</mx:Script>
244 Chapter 8: Introducing Containers

<mx:ViewStack>
<mx:HBox id="pane1">

...
</mx:HBox>
<mx:HBox id="pane2" childrenCreated="pane2_childrenCreated(event)">

...
</mx:HBox>

</mx:ViewStack>
</mx:Application>

For more information on the ViewStack navigator container, see “ViewStack navigator container”
on page 326.

Disabling containers

All containers support the enabled property. By default, this property is set to true to enable
user interaction with the container and with the container’s children. If you set enabled to
false, Flex dims the color of the container and of all of its children, and blocks user input to the
container and to all of its children.

Using the Panel container

One container that you often use in a Flex application is the Panel container. The Panel container
consists of a title bar, a caption, a status message, a border, and a content area for its children.
Typically, you use a Panel container to wrap self-contained application modules. For example, you
can define several Panel containers in your application where one Panel container holds a form, a
second holds a shopping cart, and a third holds a shopping catalog.

To see an example application using multiple Panel containers, run the FlexStore sample
application. The FlexStore application included in the samples.war file uses several different Panel
containers to define its layout.

The following figure shows a Panel container with a Form container as its child:

Panel container

Form container
Using containers 245

For more information on the Panel container, see “Panel layout container” on page 311.

You can also define a ControlBar control as part of a Panel container. A ControlBar control
defines an area at the bottom of the Panel container, below any children in the Panel container.

You can use the ControlBar container to hold components that might be shared by the other
children in the Panel container. For example, you can use the ControlBar container to display the
subtotal of a shopping cart, where the shopping cart is defined in the Panel container. For a
product catalog, the ControlBar container can hold the Flex controls to specify quantity and to
add an item to a shopping cart. For more information on the ControlBar container, see
“ControlBar layout container” on page 284.

Defining a default button

You use the defaultButton property of a container to define a default Button control within a
container. Pressing the Enter key while focus is on any control activates the Button control just as
if it was explicitly selected.

For example, a login form displays TextInput controls for a user name and password and a submit
Button control. Typically, the user types a user name, tabs to the password field, types the
password, and presses the Enter key to submit the login information without explicitly selecting
the Button control. To define this type of interaction, set the defaultButton to the id of the
submit Button control, as the following example shows:
<mx:Form defaultButton="mySubmitButton" >

<mx:FormItem label="Username">
<mx:TextInput id="username" width="100"/>

</mx:FormItem>
<mx:FormItem label="Password">

<mx:TextInput id="password" width="100" password="true"/>
</mx:FormItem>
<mx:FormItem>

<mx:Button id="mySubmitButton" label="Login" click="submitLogin(event)"/>
</mx:FormItem>

</mx:Form>

Note: The ComboBox control has a special meaning for the Enter key. When the drop-down list of a
ComboBox control is open, pressing Enter selects the currently highlighted item in the ComboBox
control; it does not activate the default button.

Controlling component sizing and positioning in a container

A container controls the layout of its children using a well-defined set of rules. The layout rules
are a combination of the rules for the children and the rules of the parent container. Layout rules
mean that you do not have to worry about positioning container children. Instead, you
concentrate on building the logic of your application and let Flex control the layout.

Each container has its own rules for controlling layout. For example, the VBox container lays
out its children in a single column. A Grid container lays out its children in rows and columns
of cells.
246 Chapter 8: Introducing Containers

While containers have built-in layout rules, each container also has properties that you use to
configure aspects of layout. For example, you can use the verticalGap and horizontalGap
properties of a Tile container to set the spacing between children, and the direction property to
specify either a row or column layout.

If you require total control over the sizing and positioning of container children, use the Canvas
container. The Canvas container does not have any predefined layout rules. Instead, you explicitly
set the position of its children using the x and y properties of each child, and set the size using the
height and width properties of each child.

The Flex two-pass layout algorithm

Flex uses a two-pass algorithm to determine the size and position of each component in an
application:

• Measurement pass Calculate the preferred size of every component in the application,
starting from the innermost component and working out to the outermost container.
Every component has a preferred height and width. For some components, that value is
calculated based on properties of the component. For example, the preferred size of a Button
control is large enough to hold the Button label. For a VBox container, the preferred size is
large enough to hold all of its children based on the preferred sizes of the children.

• Layout pass Lay out your application, including moving and resizing any components,
starting from the outermost container and working in toward the innermost component.
By default, components cannot be resized from their preferred size. During the layout pass,
Flex determines whether any components are resizable. Flex can enlarge or shrink resizable
components during the layout pass.

General positioning and sizing rules for all containers

While each container uses different rules for sizing itself and its children, the following rules are
true for all containers:

1. Specify the size of the Flex Application container, which is the size of the application in Flash
Player, using the <mx:Application> tag. Flex clips all content at the boundary of the
Application container. For more information on the Application container, see Chapter 9,
“Using the Application Container,” on page 265.

2. The Application container is the top-level parent container for your entire application.

3. The Application container uses the same sizing and layout rules as a VBox layout container.

4. During the measurement pass, Flex sizes children to their preferred size. By default, Flex will
not resize a child from its preferred size.

Note: When sizing and positioning components, Flex does not distinguish between visible and
invisible components. That means an invisible component is sized and positioned as if it were
visible. However, setting a component’s height and width properties to 0 makes it take up no
space. You can then set its height and width properties to undefined at runtime to have Flex
calculate its size and lay out its parent container. Or, you can set the component to an explicit size.
Controlling component sizing and positioning in a container 247

5. To allow Flex to resize a child during the layout pass, specify the heightFlex and/or widthFlex
properties for the child. For example, a VBox container with flexible children will grow the
children to fit all the available space in the VBox container.

6. You can include values for minWidth, maxWidth, minHeight, and maxHeight to set sizing
limits. By default, for most components Flex sets a component’s minimum height and width to
0. For most components, Flex does not define a default maximum size, so it is effectively
unbounded.

7. Setting height and/or width properties for a child means that you are setting an explicit size
for the child, and that Flex cannot resize it in the corresponding direction. Flex ignores any
settings for heightFlex and widthFlex, sets minWidth, preferredWidth, and maxWidth to
the value specified for width, and sets minHeight, preferredHeight, and maxHeight to the
value specified for height.

Note: If you read the width and height properties of a component at runtime using ActionScript,
you get the values of the component’s current size, regardless of whether you set them in MXML.

8. If a child is larger than its parent container, the parent clips the child at the parent’s boundaries,
meaning that the parent will not draw a child outside of itself, and displays scroll bars. Set the
clipContent property to false to configure a parent to allow the child to extend past its
boundaries.

Setting the Application container size

The first aspect of sizing in a Flex application is setting the size of the Application container. The
Application container determines the boundaries of your application in Flash Player. By default,
the Application container is sized to 100%, meaning it takes up the entire browser window.

You set the Application container size using the <mx:Application> tag, as the following example
shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

height="100" width="150">
...

</mx:Application>

In this example, you set the Application container size to 100 x 150 pixels. Anything in the
application larger than this window is clipped at the window boundaries. Therefore, if you define
a 200 x 200 DataGrid control, it is clipped, and the Application container displays scroll bars.

For more information on sizing the Application container, see Chapter 9, “Using the Application
Container,” on page 265.

Calculating the preferred size of a component

In the measurement pass, Flex calculates the preferred size of every component in your
application, starting from the innermost component and working out toward the Application
container. Flex starts at the innermost component because the preferred size of many containers is
based on the children defined within it.
248 Chapter 8: Introducing Containers

Note: During the measurement pass, Flex sets the default minimum size of most components to 0.
You can use the minWidth and minHeight properties to set your own values for the default minimum
size. The default maximum size is typically undefined, which means that there is no limit to a
component’s maximum size.

The following example defines a TextInput control within an HBox container:
<mx:HBox id="myHBox">

<mx:TextInput id="myInput" text="Enter ZIP code" />
</mx:HBox>

In this example, Flex first calculates the preferred size of the TextInput control, then of the parent
HBox container. The preferred size of the TextInput control is based on the pixel length of the
string value of its text property. The preferred size of an HBox container is a size large enough to
hold all of its children sized to their preferred size, plus any margins. Therefore, Flex must already
have calculated the preferred size of a container’s children before it can calculate the container’s
preferred size.

Each component has rules for determining its preferred size. For more information, see the
description of each component.

Specifying an explicit size

You use the width and height properties of a component to explicitly set its size, as follows:
<mx:HBox id="myHBox" >

<mx:TextInput id="myInput" label="Enter the zip code"
width="200" height="40" />

</mx:HBox>

During the measurement pass, Flex sets the preferred size of the component to the values of the
width and height properties. However, Flex cannot resize an explicitly sized component during
the layout pass.

You can also use the width and height properties of the parent HBox container to explicitly set
its size, as follows:
<mx:HBox id="myHBox" width="150" height="150" >

<mx:TextInput id="myInput" label="Enter the zip code"
width="200" height="40" />

</mx:HBox>

In this example, because you set the TextInput control to a size that is larger than its parent HBox
container, Flex clips the TextInput control at the container boundaries and displays scroll bars so
that you can scroll the container to see its children.

If you set the clipContent property for the parent HBox container to false, the container
allows the TextInput control to extend beyond its boundaries and no scroll bars appear, as the
following example shows:
<mx:HBox id="myHBox" width="150" height="150" clipContent="false" >

<mx:TextInput id="myInput" label="Enter the zip code"
width="200" height="40" />

</mx:HBox>
Controlling component sizing and positioning in a container 249

Making a component resizable

By default, a component is not resizable from its preferred size. However, every Flex component
supports two properties that you can use to enable resizing: widthFlex and heightFlex.

The default value for each of these properties is 0, meaning that the component is not resizable.
Set the widthFlex or heightFlex property to a positive number to enable resizing of the
component in the corresponding direction, to either grow or shrink the component based on the
available space in its parent.

Flex divides any extra space within a container among its flexible children, in proportion to their
widthFlex or heightFlex properties. The amount that Flex enlarges or shrinks a component is
based on the following:

• The size of the parent container
• The number of resizable children within the container
• The relative value of the widthFlex or heightFlex properties for each child

Consider the following example:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:HBox width="400" borderStyle="solid" >
<mx:Button label="Label 1" />
<mx:Button label="Label 2" />
<mx:Button label="Label 3" />

</mx:HBox>

</mx:Application>

In this example, none of the children are resizable, and Flex draws this application as the
following figure shows:

Notice the empty space to the right of the third button. The following example makes the first
two buttons resizable:
<mx:HBox width="400">

<mx:Button label="Label 1" widthFlex="1" />
<mx:Button label="Label 2" widthFlex="3" />
<mx:Button label="Label 3" />

</mx:HBox>

In this example, assume that the preferred width of each button is 100 pixels, so the HBox is left
with 100 pixels of extra space. Flex can then enlarge the resizable children proportionally, based
on the widthFlex or heightFlex properties of each child.

To resize children, Flex does the following:

1. Calculates the sum of the heightFlex values and of the widthFlex values of all children.

2. Enlarges or shrinks each resizable child in proportion to its widthFlex and heightFlex values,
relative to the sum of all widthFlex and heightFlex values.
250 Chapter 8: Introducing Containers

In the previous example, the sum of the widthFlex values is 4. Therefore, Flex allocates
one-fourth of the extra space to the first button (so it will be 125 pixels wide) and three-fourths to
the second button (so it will be 175 pixels wide). Flex draws this application as the following
figure shows:

You can also include the minWidth, minHeight, maxWidth, and maxHeight properties with a
resizable component to constrain its size. Consider the following example:
<mx:HBox width="400">

<mx:Button label="Label 1" widthFlex="1" />
<mx:Button label="Label 2" widthFlex="3" maxWidth="170" />
<mx:Button label="Label 3" />

</mx:HBox>

Assume again that the preferred width of each button is 100 pixels, so there are 100 pixels of extra
space in the container. As in the previous example, Flex allocates extra space in a 3-to-1 ratio until
the second button reaches its maximum width. The remaining space is then divided among any
remaining flexible children. In this case, the first button would be set to be 130 pixels wide, and
the second button would be set to be 170 pixels wide.

If you change the width of the HBox to be 250 pixels wide then, assuming the preferred size of
each button is 100 pixels, the buttons will not fit within the HBox container. By default, the
buttons are clipped at the container boundaries, and the container displays scroll bars. If you set
clipContent to false, the buttons will extend beyond the boundaries of the container.

Flex can shrink flexible children to the child’s minimum size. By default, Flex sets the minimum
height and width of most components to 0. To allow Flex to shrink flexible children, you must set
the widthFlex or heightFlex properties as the following example shows:
<mx:HBox width="250">

<mx:Button label="Label 1" widthFlex="1" minWidth="50" />
<mx:Button label="Label 2" widthFlex="3" minWidth="50" />
<mx:Button label="Label 3" />

</mx:HBox>

Flex shrinks the children proportionally based on their widthFlex or heightFlex values so that
children with the largest values shrink the most.

Determining container widthFlex and heightFlex

You can specify heightFlex and widthFlex properties for both controls and containers. For
controls, the default widthFlex and heightFlex values are 0, which means that the control
cannot be resized. However, most containers determine default values from their children. In this
way, if a container has resizable children, it becomes resizable as well.

For example, if no children of a VBox container are resizable, then by default the VBox container
is not resizable. If you use the heightFlex and/or widthFlex properties to make any child of a
VBox container resizable, the default heightFlex value of the VBox container becomes the sum
of the heightFlex values of all of its children, and its default widthFlex value becomes the
maximum widthFlex value of its children.
Controlling component sizing and positioning in a container 251

Consider the following example:
<mx:VBox id="vb1" >

<mx:Button label="Label 1" widthFlex="1" heightFlex="1"/>
<mx:Button label="Label 2" widthFlex="3" heightFlex="3"/>
<mx:Button label="Label 3" />

</mx:VBox>

In this example, because you did not explicitly define values for the VBox container, the
heightFlex of the VBox container has a default of 4, the sum of the heightFlex of its children,
and the widthFlex has a default of 3, the maximum widthFlex of its children.

If this container is part of a larger application, it can be resized along with other containers. For
example, the following example creates three VBox containers:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

width="400" height="400" >

<mx:VBox id="vb1">
<mx:Button label="Label 1" widthFlex="2" heightFlex="2"/>
<mx:Button label="Label 2" widthFlex="6" heightFlex="6"/>
<mx:Button label="Label 3" />

</mx:VBox>
<mx:VBox id="vb2" >

<mx:Button label="Label 4" />
<mx:Button label="Label 5" />
<mx:Button label="Label 6" />

</mx:VBox>
<mx:VBox id="vb3" >

<mx:Button label="Label 7" widthFlex="1" heightFlex="1"/>
<mx:Button label="Label 8" widthFlex="3" heightFlex="3"/>
<mx:Button label="Label 9" />

</mx:VBox>
</mx:Application>

In this example, the first and third VBox containers have resizable children and therefore are
resizable. The second VBox container has no resizable children, and therefore is not resizable.

During the layout pass, Flex resizes the first and third VBox containers, and their enclosed
children, based on the widthFlex or heightFlex properties of the container. Since the order of
layout is from the outermost to the innermost component, Flex sizes the two VBox containers,
and then sizes the children of the two VBox containers. The widthFlex or heightFlex values of
the first VBox container are twice as large as for the third VBox container. Therefore, Flex
allocates two-thirds of the available space to the first VBox container.

You can also explicitly set the widthFlex or heightFlex values of a container to override its
default. The following example explicitly sets the widthFlex or heightFlex values of a VBox
container:
<mx:VBox heightFlex="5" widthFlex="5" >

<mx:Button label="Label 1" widthFlex="1" heightFlex="1"/>
<mx:Button label="Label 2" widthFlex="3" heightFlex="3"/>
<mx:Button label="Label 3" />

</mx:VBox>
252 Chapter 8: Introducing Containers

Using the Spacer control to control layout

Flex includes a Spacer control that helps you lay out children within a parent container. The
Spacer control is invisible but it does allocate space within its parent.

In the following example, you use a flexible Spacer control to push the Button control to the
right, so that it is aligned with the right edge of the HBox container:
<mx:HBox>

<mx:Image source="Logo.jpg" />
<mx:Label text="Company XYZ" />
<mx:Spacer widthFlex="1" />
<mx:Button label="Close" />

</mx:HBox>

In this example, the Spacer control is the only resizable component in the HBox container.
During the measurement pass, Flex sets all components to their preferred size, and during the
layout pass it sizes the Spacer control to occupy all additional space in the HBox container. By
expanding the Spacer control, Flex pushes the Button control to the right edge of the container.

You can use all sizing and positioning properties with the Spacer control, such as width, height,
maxWidth, maxHeight, minWidth, minHeight, preferredWidth, and preferredHeight.

Triggering a layout at runtime

Flex performs a layout pass on your application when your application initializes. You can also
cause Flex to perform a layout pass during application execution in the following instances:

• The application changes any of the following properties in ActionScript: x, y, width, height,
minWidth, minHeight, preferredWidth, preferredHeight, maxWidth, maxHeight,
widthFlex, or heightFlex.

• Any change affects the calculated width or height of a component, such as the label text for a
Button control being modified.

However, Flex does not perform a layout pass when you call the move() or setSize() methods
of a component.

Disabling container layout

By default, Flex updates the size of a container and the layout of the container’s children when a
new child is added or removed from the container, when a child is resized, and when a child is
moved. For example, if your application contains functionality to change the size of a component,
Flex updates the layout of the container to reposition its children based on the new size of the
child.

You can also use effects, such as the Move and Zoom effects, to modify the size or position of a
child in response to a user action. For example, you might define a child so that when the user
selects it, the child moves to the top of the container and doubles in size. These effects modify the
x and y properties of the child as part of the effect.
Controlling component sizing and positioning in a container 253

However, since the container controls the layout of its children, it ignore the values of the x and y
properties of its children during a layout update. Therefore, the layout update cancels any
modifications to the x and y properties performed by the effect, and the child does not remain in
its new location.

To disable Flex from performing layout updates that conflict with the desired action of your
application, you can set the autoLayout property of a container to false. The autoLayout
property is defined in the Container class, and all containers inherit it. Its default value is true,
which enables Flex to update layouts.

A Canvas container is the only Flex container that performs no layout. Therefore, you never have
to set the autoLayout property of a Canvas container to false. Also, Flex ignores the
autoLayout property for the ViewStack, Accordion, and TabNavigator containers.

Even when you set the autoLayout property of a container to false, Flex updates the layout of a
container when you add a child to it or remove a child from it. Application initialization, deferred
instantiation, and the <mx:Repeater> tag add or remove children, so layout updates always occur
during these processes, regardless of the value of the autoLayout property. Therefore, during
container initialization, Flex defines the initial layout of the container children regardless of the
value of the autoLayout property.

For example, the following code disables layout updates for a VBox container, but still uses the
rules of the VBox container to determine the initial position of its children:
<mx:VBox autoLayout="false" width="200" height="200">

<mx:Button/>
<mx:Button id="btn" click="btn.x += 10"/>
<mx:Button id="btn2" creationComplete="btn2.x = 100; btn2.y = 75"/>

</mx:VBox>

In this example, Flex positions the first Button control according to the rules of the VBox
container. Flex positions the second Button control according to the rules of the VBox container,
and shifts it 10 pixels to the right when a user selects it. The third Button control uses an event to
position it relative to the location that the VBox container initially determines for it.

Since setting the autoLayout property of a container to false prohibits Flex from updating a
container’s layout after a child moves or resizes, you should only set it to false when absolutely
necessary. You should always test your application with the autoLayout property set to the
default value of true, and set it to false only as necessary for the specific container and specific
actions of the children in that container.

For more information on effects, see Chapter 20, “Using Behaviors,” on page 497.
254 Chapter 8: Introducing Containers

Using scroll bars

Flex containers support scroll bars, which allow you to display an object that is larger than the
available screen space, as the following figure shows:

In this figure, you use an HBox container to let users scroll an image, rather than rendering it at
its full size. The following code defines the HBox container shown in this figure:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

borderStyle="solid" height="600" width="600">

<mx:HBox width="75" height="75" >
<mx:Image source="mm.jpg" />

</mx:HBox>
</mx:Application>

In this example, you explicitly size the HBox container to 75 x 75 pixels, a size much smaller than
the imported image. If you omit the sizing restrictions on the HBox container, it will attempt to
use its preferred size, which is a size large enough to hold the image.

By default, Flex only draws scroll bars when the contents of a container are larger than it. To force
the container to draw scroll bars, you can set the hScrollPolicy and vScrollPolicy properties
to on.

Working with scroll bars

The setting of the hScrollPolicy and vScrollPolicy properties of a container control scroll
bar display. By default, both properties are set to auto to configure Flex to include scroll bars only
when necessary. You can set these properties to on to configure Flex to always include them, or set
them to off to configure Flex to never include them.

Note: If clipContent is false, a container allows its child to extend past its boundaries. Therefore, no
scroll bars are necessary, and Flex will never display them, even if you set hScrollPolicy and
vScrollPolicy to on.

The properties hLineScrollSize and vLineScrollSize determine how many pixels to scroll
when the user selects the scroll bar arrows. The default is 5 pixels. The properties
hPageScrollSize and vPageScrollSize determine how many pixels to scroll when the user
selects the scroll bar track. The default value is 20 pixels.

Image at full size

Image in an HBox container
Using scroll bars 255

Your configuration of scroll bars can affect the layout of your application. For example, if you set
the hScrollPolicy and vScrollPolicy properties to on, the container always includes scroll
bars, even if they are not necessary. Since each scroll bar is 16 pixels wide, turning them on is the
same as increasing the size of the right and bottom margins of the container by 16 pixels.

If you keep the default hScrollPolicy and vScrollPolicy property values of auto, then Flex
performs layout just as if the properties are set to off. That is, the scroll bars are not counted as
part of the layout.

However, suppose you have an HBox container that is 30 pixels high and 100 pixels wide.
Initially, it contains two buttons that are each 22 pixels high and 40 pixels wide. The children are
fully contained inside the HBox, and no scroll bars are necessary.

You then add a third button, which is the same size as the other buttons. Now the width of the
children exceeds the width of the HBox, so Flex adds a horizontal scroll bar at the bottom of the
container.

The horizontal scroll bar is 16 pixels high, which reduces the height of the content area of the
container from 30 pixels to 14 pixels. That means your Button controls, which are 22 pixels high,
are now too tall for the HBox, and Flex clips the Button controls.

Creating component instances at runtime

You typically use MXML to lay out the user interface of your application, and use ActionScript
for event handling and runtime control of the application. You can also use ActionScript to create
component instances at runtime. For example, you can use MXML to define an empty Accordion
container. Then, in ActionScript, add additional panels to the Accordion container in response to
user actions.

To create a component instance at runtime, you create it as a child of a parent container by calling
the View.createChild() method on the parent container. This method has the following
signature:
createChild(classOrSymbol:var, undefined, initProps:Object) : MovieClip;

where:

• classOrSymbol Specifies a class name. This argument is required.
You must specify the fully qualified class name of the component that you want to create. For
example, if your application has an HBox container named myHB, the following code creates
a Button control within that container:
myHB.createChild(mx.controls.Button);

If you first import the class that you want to create, you only need to specify the class name, as
the following example shows:
import mx.controls.Button;
myHB.createChild(Button);

• undefined This argument is not used by Flex so you set it to undefined. This argument is
optional, and is necessary only as a placeholder if you want to specify the initProps argument.
256 Chapter 8: Introducing Containers

• initProps Specifies an optional object containing initialization properties. This argument is
optional.
The initProps argument lets you pass initialization properties to the component you are
creating. You can pass to it the same properties that you can set in MXML for the component.
For example, to create a Button control with the label New Button and a height and width of
100 pixels, you pass an initProps argument as the following example shows:
import mx.controls.Button;
myHB.createChild(Button, undefined,

{label:'New Button', width:100, height:100});

The createChild() method returns a MovieClip object representing the new component.
You often assign the return value of the createChild() method to a variable so that you can
manipulate the component programmatically. For example, the following code creates a Button
control:
import mx.controls.Button;

var myNewButton:Button;
myNewButton = Button(myHB.createChild(Button));

It is a good practice to cast the return value of the createChild() method to the data type of the
new component so that the Flex compiler can perform type checking on the variable if you use it
to manipulate the component. For example, you can use the following code to increase the height
and width of the Button control by 100 pixels:
myNewButton.height+=100;
myNewButton.width+=100;

You can also use the mx.core.View class’s destroyChild() method to delete a control, as the
following example shows:
myHB.destroyChild(myNewButton);

For additional methods that you can use with container children, see the View class in Flex
ActionScript and MXML API Reference.

Creating a component as a child of an HBox container

The following example defines an empty HBox container and two Button controls in MXML.
You use one Button control to add a CheckBox control to the HBox container, and one Button
control to delete it.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Script>
 <![CDATA[

// Import the Checkbox class.
import mx.controls.CheckBox;

// Define a variable to hold the new CheckBox control.
var addedCheckBox:CheckBox;
// Define a variable to track if you created a CheckBox control.
Creating component instances at runtime 257

var checkBoxCreated:Boolean = false;

function addCB()
{

// Test to see if you have already created the CheckBox control.
if(checkBoxCreated==false){

addedCheckBox = CheckBox(myHB.createChild(CheckBox, undefined,
{label:"New CheckBox"}));

checkBoxCreated=true;
}

}

function delCB()
{

// Make sure a CheckBox control exists.
if(checkBoxCreated==true){

myHB.destroyChild(addedCheckBox);
checkBoxCreated=false;

}
}
]]>

</mx:Script>

<mx:VBox >

<mx:HBox id="myHB" borderStyle="solid" />

<mx:Button label="add CheckBox" click="addCB()" />
<mx:Button label="remove CheckBox" click="delCB()" />

</mx:VBox>
</mx:Application>

Creating a child of an Accordion container

The example in this section adds panels to an Accordion container. The Accordion container
initially contains no panels. Each time you select the Add HBox button, it adds a new HBox
container to the Accordion container.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Script>
 <![CDATA[

// Import HBox class.
import mx.containers.HBox;

//Array of created containers
var hBoxes:Array = [];

 function addHB()
{

hBoxes[hBoxes.length] = HBox(myAcc.createChild(HBox, undefined,
{label:'my label: ' + hBoxes.length }));
258 Chapter 8: Introducing Containers

}

 function delHB()
{

myAcc.destroyChild(hBoxes[(hBoxes.length-1)]);
// Delete last Array item.
hBoxes.pop();

}

]]>
</mx:Script>

<mx:VBox>

<mx:Accordion id="myAcc" />

<mx:Button label="Add HBox" click="addHB()" />
<mx:Button label="Remove HBox" click="delHB()" />

</mx:VBox>
</mx:Application>

Indexing dynamically created components

The new child created by createChild() becomes the last child in the container. If you want to
insert it between two existing children, use the View method setChildIndex() to dynamically
reindex it.

The following example makes addedCheckBox the second child in the container (child indices
are zero-based):
myHB.setChildIndex(addedCheckBox, 1);

To get the number of children in a given container, get the value of the container’s numChildren
property, as the following example shows:
var myHBChildren:Number = myHB.numChildren;

To get the number of children in the entire application, use the application object’s numChildren
property, as the following example shows:
var myAppChildren:Application = mx.core.Application.application.numChildren;

For more information on accessing the root application, see “About scope” on page 398.

Configuring containers

Like any Flex component, you configure containers using properties, methods, styles, behaviors,
events, and skins. This section contains an overview of container configuration.

Using properties and methods to configure a container

Containers inherit the properties and methods of the MovieClip, UIObject, and UIComponent
classes. For more information on these classes, see “Class hierarchy for components” on page 88.
Configuring containers 259

Containers also inherit the properties and methods of the View and Container classes. The
following table describes the inherited properties:

Property Type Description Req/Opt

defaultButton String Specifies the id of the Button control to assign as the default
button for the container. Pressing the Enter key while focus is
on any form control activates the Button control just as if it
was explicitly selected.

Optional

clipContent Boolean Specifies that the container clips its children at the container
boundaries, which means that the container will not draw a
child outside of itself.
The default value is true so that the container clips its
children. Set it to false to disable clipping.

Optional

hLineScrollSize Number Specifies the number of pixels to move when the user selects
the left or right arrow in a horizontal scroll bar, or uses the
Left or Right Arrow key. The default value is 5.

Optional

hPageScrollSize Number Specifies the number of pixels to move when the user clicks
the scroll bar track of a horizontal scroll bar, or uses the Page
Up or Page Down key. The default value is 20.

Optional

hPosition Number Specifies the pixel position of the slider in the horizontal
scroll bar, where a value of 0 corresponds to the left end of
the scroll bar. The default value is 0.

Optional

hScrollPolicy String Specifies when to include a horizontal scroll bar:
• on Causes the container to always include a horizontal

scroll bar
• off Always excludes the scroll bar
• auto (default) Allows the container to include it only when

the width of its contents is larger than the width of the
container.

Optional

icon File Specifies the URL to an image file for an icon. Image types
include JPEG, GIF, PNG, SVG image, and SWF file.
You use the following format with this property:
icon="@Embed('relOrAbsoluteURL')"
The referenced image is packaged within the generated
SWF file at compile-time when Flex creates the SWF file for
your application.
Use this property with a container that is a child of a
ViewStack container associated with a LinkBar or TabBar
container, or with the children of a TabNavigator container.
The icon appears in tab of the TabBar or TabNavigator, or in
the link of the LinkBar corresponding to the container. The
container scales the image to fit the tab size of a TabBar or
TabNavigator container, or the link size of the LinkBar
container.

Optional
260 Chapter 8: Introducing Containers

All containers inherit the methods of the View and Container classes described in the following
table:

label String When this container is a child of a navigator container,
specifies the text that appears in the navigation control of the
navigator container. For example, it specifies the text that
appears in the tab of a TabNavigator or TabBar container, or
the text in the link of a LinkBar container.

Optional

numChildren Number A read-only property containing the number of container
children.

Optional

vLineScrollSize Number Specifies the number of pixels to move when the user selects
the up or down arrow in a vertical scroll bar, or presses the Up
or Down Arrow key. The default value is 5.

Optional

vPageScrollSize Number Specifies the number of pixels to move when the user clicks
the scroll bar track of a vertical scroll bar. The default value is
20.

Optional

vPosition Number Specifies the pixel position of the slider in a vertical scroll bar,
where a value of 0 corresponds to the upper end of the scroll
bar. The default value is 0.

Optional

vScrollPolicy String Specifies when to include a vertical scroll bar:
• on Causes the container to always include a scroll bar.
• off Always excludes the scroll bar.
• auto (default) Allows the container to include it only when

the height of its children is larger than the height of the
container.

Optional

Method Description

createChild() Creates a child object inside a container.

createChildAtDepth() Creates a child object inside a container at the specified depth.

destroyAllChildren() Destroys all the children of a container.

destroyChild() Destroys the specified child of the container.

destroyChildAt() Destroys one of the container children at a specified index.

getChildAt() Returns the child object at the specified index.

getChildIndex() Returns the index of the specified child.

getViewMetrics() Returns an object containing four properties: top, bottom, left, right. The
value of each property is equal to the thickness of the container border plus
any other information that should be taken into account when positioning the
container’s children. For example, the TitleWindow’s top value includes the
thickness of its title bar.

setChildIndex() Moves a child to a specified index.

Property Type Description Req/Opt
Configuring containers 261

Using styles to configure a container

You use styles to set some container characteristics, such as margins and alignment. The list of
styles available to each container includes those inherited from its parent and those defined for the
container itself.

The following table describes some of the most common styles that you use with containers:

Style Type Defining
class

Description

backgroundAlpha Number View Adjusts the alpha level of the SWF file or image defined
by backgroundImage, or the color defined by the
backgroundColor property inherited from UIComponent.
Valid values range from 0 to 100. The default value is
100.

backgroundImage URL View Specifies a URL to an external SWF file or JPEG, GIF,
SVG, or PNG image file that appears in the background
of the container. All children of the container appear on
top of the image.
You can use two formats for the syntax with this property:
backgroundImage="@Embed('relOrAbsoluteURL')"
The referenced image is packaged within the generated
SWF file at compile-time when Flex creates the SWF file
for your application.
This form supports the import of GIF, PNG, JPEG, and
SVG images, and SWF files.
backgroundImage="relOrAbsoluteURL"
Flex loads the referenced image file at runtime; it is not
packaged as part of the generated SWF file.
This form only supports the import of JPEG images and
SWF files.

backgroundSize String View Scales the image specified by backgroundImage to
different percentage sizes. By default, the value is auto,
which maintains the original size of the image.
A value of 100% stretches the image to fit the entire
screen. You must include the percent sign with the value.

borderStyle String UIObject Specifies the border style of the container. Possible
values are solid, none, inset, and outset. The default
value is none.

marginLeft Number UIObject Specifies the number of pixels between the container’s
left border and its content area.

marginRight Number UIObject Specifies the number of pixels between the container’s
right border and its content area.

marginTop Number Individual
container

Specifies the number of pixels between the container’s
top border and its content area.

marginBottom Number Individual
container

Specifies the number of pixels between the container’s
bottom border and its content area.
262 Chapter 8: Introducing Containers

For more information on styles, see Chapter 19, “Using Styles, Fonts, and Themes,” on page 455.

Handling container events

All containers inherit the events defined by the UIObject and UIComponent classes. For more
information on these classes, see Chapter 5, “Using Flex Components,” on page 87.

In addition, they also inherit events from the View and Container classes. The following table
describes the events inherited from the View and Container classes:

horizontalAlign Number Individual
container

Specifies the horizontal alignment of children. Possible
values are left, center, and right. The default value is
left.

verticalAlign Number Individual
container

Specifies the vertical alignment of children. Possible
values are top, middle, and bottom. The default value is
top.

horizontalGap Number Individual
container

Specifies the number of pixels between children in the
horizontal direction.

verticalGap Number Individual
container

Specifies the number of pixels between children in the
vertical direction.

Event Description

childCreated Broadcast after a child has been created in a container. If a container has three
children, it broadcasts three childCreated events, one after each child is
created, and then broadcasts a childrenCreated event after all children have
been created.
The relatedNode property of the event object contains a copy of the created
child object.

childDestroyed Broadcast before a child of a container is destroyed.
The relatedNode property of the event object contains a copy of the destroyed
child object.

childIndexChanged Broadcast after a container child’s index has changed.
The event object contains the following properties:
• relatedNode A copy of the moved child object.
• prevValue The child's old index.
• newValue The child's new index.

Style Type Defining
class

Description
Configuring containers 263

Using behaviors with containers

The behaviors available for use with a container are those inherited by all components from the
UIObject and UIComponent classes. For more information on behaviors, see Chapter 20, “Using
Behaviors,” on page 497.

Using skins

The skins available for use with a container are described with the documentation of the
individual containers.

childrenCreated Broadcast after a container creates all of its children. This event lets you
perform one-time initialization of a container’s children, just after they get
created.
This event is useful with a container that is an immediate child of a navigator
container, such as the ViewStack, TabNavigator, and Accordion navigator
containers.
For example, a ViewStack container creates all its immediate child containers,
and all the children of its first visible child container. For the first visible child
container, childrenCreated gets broadcast. Then, as the user moves to each
additional child of the ViewStack, the event gets dispatched for that container.
The event object contains the following properties:
• type A string set to childrenCreated.
• target A reference to the child.

scroll Broadcast when the container is scrolled.
The event object contains the following properties:
• type A string set to scroll.
• direction The string vertical or horizontal, depending on the scroll

direction.
• position The new position of the scroll bar.
• delta The number of pixels the scroll bar moved.

Event Description
264 Chapter 8: Introducing Containers

CHAPTER 9
Using the Application Container
Macromedia Flex defines a default Application container that lets you start adding content to
your application without having to explicitly define another container. The Application container
provides support for an Alert pop-up dialog box that you can use to signal errors to users.

The Application container supports an application preloader that uses a progress bar to show the
download progress of an application SWF file. You can override the default progress bar to define
your own custom progress bar.

This chapter describes how to use an Application container.

Contents

Using the Application container. 265

Application container syntax . 268

Showing the download progress of an application . 274

Using the Application container

Flex defines a default, or Application, container that lets you start adding content to your
application without having to explicitly define another container. Flex creates this container from
the <mx:Application> tag, the first tag in an MXML application file.

While you might find it convenient to use the Application container as the only container in your
application, in most cases you will explicitly define at least one more container before you add any
controls to your application. Often, you use a Panel container as the first container after the
<mx:Application> tag.

An application container has the following default properties:

Property Default

Default size The size of the browser window.

Child alignment Children are arranged in a vertical column.

Child sizing rules Children with positive values of heightFlex or widthFlex are resized in
the corresponding direction.
265

Sizing an Application container

An Application container arranges its children in a single vertical column. You can set the height
and width of the Application container using explicit pixel values, or using percent values, where
the percent values are relative to the size of the browser window. By default, the Application
container has a height and width of 100%, which means that it takes up the entire browser
window.

The following example sets the size of the Application container to one-half of the width and
height of the browser window:
<?xml version="1.0"? >
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

height="50%" width="50%">

...

</mx:Application>

The advantage to using percentages to specify the size is that Flex can resize your application as
the user resizes the browser window. Flex maintains the Application size as a percentage of the
browser window as the user resizes it.

Note: You can use the setSize() method to set the height and width of the Application container.
However, you cannot pass sizes to this method as percentages; you can only specify sizes in pixel
values.

If any children of the Application container are larger than the container’s size, Flex adds scroll
bars to the container.

By setting the widthFlex and heightFlex properties of your components to positive integers,
your components can also resize as your application resizes, as the following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

width="100%" height="100%">

<mx:Panel title="Main Application" />
<mx:HDividedBox>

<mx:TextArea widthFlex="1" heightFlex="1"/>
<mx:VDividedBox >

<mx:DataGrid widthFlex="1" heightFlex="1"/>
<mx:TextArea widthFlex="1" heightFlex="1"/>

</mx:VDividedBox>
</mx:HDividedBox>

Default margins Top, bottom, left, right = 24 pixels.

Child horizontal alignment Centered.

Background image Gray gradient.

Background size 100%.

Property Default
266 Chapter 9: Using the Application Container

</mx:Panel>
</mx:Application>

The following example uses explicit pixel values to size the Application container:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

height="100" width="150">

<mx:Panel title="Main Application" />

<mx:TextInput id="mytext" text="Hello" />
<mx:Button id="mybutton" label="Get Weather" />

</mx:Panel>
</mx:Application>

Overriding the default Application container styles

By default, the Application container has default style properties that define the following visual
aspects of a Flex application:

You can override these default values in your application to define your own default style
properties. For example, to set all margins to 0 pixels, remove the default background image, and
left align the children, you can specify the plain style, as the following example shows:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

styleName="plain" >

This style setting does not change the default backgroundColor, which means that you still see
the gray background during application loading. You can set the backgroundColor style property
to remove the gray background, as the following example show:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

styleName="plain" backgroundColor="0xFFFFFF" />

You can also use the <mx:Style> tag in your application to specify alternative style values, as the
following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

Property Default

backgroundImage Gray gradient

backgroundSize 100%
When you set this property at 100%, the background image takes up the
entire Application container.

horizontalAlign Centered

marginTop 24 pixels

marginLeft 24 pixels

marginBottom 24 pixels

marginRight 24 pixels
Using the Application container 267

<!-- Style definition for the entire application. -->
<mx:Style>

Application {
marginLeft: 10px;
marginRight: 10px;
marginTop: 10px;
marginBottom: 10px;
horizontalAlign: "left";
backgroundImage: " ";
backgroundSize: " ";

}
</mx:Style>

<mx:Panel title="Main Application" />

<mx:TextInput id="mytext" text="Hello" />
<mx:Button id="mybutton" label="Get Weather" click="getTemp(myzip);" />

</mx:Panel>
</mx:Application>

This example removes the background image, sets all margins to 10 pixels, and left aligns
children. For more information on using styles, see Chapter 19, “Using Styles, Fonts, and
Themes,” on page 455.

Application container syntax

You use the <mx:Application> tag to define Application containers. This tag inherits all the
properties of the classes MovieClip, UIObject, UIComponent, View, Container, and Box, except
for the direction property of Box. For a list of these properties, see “Configuring containers”
on page 259.
268 Chapter 9: Using the Application Container

This container also defines the following property and methods:

Specifying options to the Application container

You can specify several options to the <mx:Application> tag to control your application. These
options are not defined by the Application class; they are options built into the compiler and
apply to any tag used as the root tag of your application.

Property/Methods Type Use Description

application Object Property Contains a reference to the Application object. Use this
property when you want to refer to the top-level
application from a script of another application more than
one level down in the hierarchy. The alternative would be
to use multiple parentApplication references.

resetHistory Boolean Property When true, specifies that the history state of the
application is reset to its initial state whenever the
application is reloaded. The default value is true.
Applications are reloaded when the following happen:
• The user selects the Refresh button in the browser.
• The user navigates to another web page, and then

selects the Back button in the browser to return to the
Flex application.

• The user loads a Flex application from the Favorites/
Bookmarks menu in the browser.

For more information on the history manager, see
Chapter 24, “Using the History Manager,” on page 549.

alert() Method Creates an Alert box. For more information, see “Using
alerts with the Application container” on page 270.

getURL() Method Loads a document from the specified URL into the
specified window.
If you reference this method from a file that does not
contain the <mx:Application> tag, you must either import
mx.core.Application, or use the fully qualified method
name of mx.core.Application.getURL().

isFontEmbedded() Method Returns true if the specified font name is embedded. For
more information, see Chapter 19, “Using Styles, Fonts,
and Themes,” on page 455.

popupWindow() Method Creates a pop-up TitleWindow container. For more
information, see Chapter 11, “Using Navigator
Containers,” on page 325.
Application container syntax 269

The following table describes these options:

Using alerts with the Application container

The Application container provides support for an Alert control pop-up dialog box through its
alert() method. All Flex components can call the alert() method to cause a pop-up modal
dialog box to appear with a message and an optional title, buttons, and icons. The following
figure shows an example of an Alert control pop-up dialog box:

Option Type Description

frameRate Number Specifies the frame rate of the application.
The default value is 24.

pageTitle String Specifies a string that appears in the title bar of the browser. This
property provides the same functionality as the HTML <title>
tag.

preloader Path Specifies the path of a SWC component class or ActionScript
component class that defines a custom progress bar.
A SWC component must be in the same directory as the MXML
file or in the WEB-INF/flex/user_classes directory of your Flex
web application.
For more information, see “Showing the download progress of an
application” on page 274.

scriptRecursionLimit Number Specifies the maximum depth of the Macromedia Flash Player call
stack before Flash Player stops. This is essentially the stack
overflow limit.
The default value is 1000.

scriptTimeLimit Number Specifies the maximum duration, in seconds, that an ActionScript
event handler can execute before the Flash Player assumes that it
is hung, and aborts it.
The default value is 60 seconds.

usePreloader Boolean Specifies whether to disable the application preloader, false, or
not, true. The default value is true.
For more information, see “Showing the download progress of an
application” on page 274.

theme File Specifies a theme SWC file that contains skins for your
application. Flex searches for the specified SWC file in a location
relative to the MXML file.
For more information, see Chapter 19, “Using Styles, Fonts, and
Themes,” on page 455.

xmlns URI Specifies a namespace definition. For more information, see
“Using XML namespaces” on page 36.
270 Chapter 9: Using the Application Container

The alert() method has the following syntax:
alert(message:String, title:String, flags:Number, clickHandler,

defaultButton:Number, icon:String) : Number

This method returns 0 if the Alert control is displayed, and nonzero otherwise.

The following table describes the arguments of the alert() method:

You use the alert() method in your application, as the following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Panel title="My Application">
<!-- Input TextInput control. -->
<mx:TextInput id="myInput" width="150" text="" />

<!-- Button control to trigger the copy. -->
<mx:Button id="myButton" label="Copy Text"

click='myText.text = myInput.text;alert("Text Copied!", "Alert Box",
mx.controls.Alert.OK);' />

<!-- Output TextArea control. -->
<mx:TextInput id="myText" />

</mx:Panel>
</mx:Application>

In this example, selecting the Button control copies text from the TextInput control to the
TextArea control, and displays the Alert control.

Argument Description Req/Opt

message Specifies the text message displayed in the dialog box. Required

title Specifies the dialog box title. If omitted, displays a blank title bar. Optional

flags Specifies the button(s) to display in the dialog box. The options are:
mx.controls.Alert.OK OK button
mx.controls.Alert.CANCEL Cancel button
mx.controls.Alert.YES Yes button
mx.controls.Alert.NO No button
Each option is a bit value and can be combined with other options using
the pipe '|' operator. The default value is mx.controls.Alert.OK.

Optional

clickHandler Specifies the handler for click events from the buttons.
In addition to the standard click event parameters, the event object
contains the detail field, which is set to the button flag that was clicked
(mx.controls.Alert.OK, mx.controls.Alert.CANCEL,
mx.controls.Alert.YES, or mx.controls.Alert.NO) .

Optional

defaultButton Specifies the default button using one of the possible values for the flags
argument. This is the button that is selected when the user presses the
Enter key.

Optional

icon Specifies an icon to display to the left of the message text in the dialog
box.

Optional
Application container syntax 271

You can also define an event handler for the Button control, as the following example shows:
<mx:Script>

<![CDATA[

function alertHandler(event)
{

myText.text = myInput.text;
alert("Text Copied!", "Alert Box", mx.controls.Alert.OK);

}
]]>

</mx:Script>

<mx:Button id="myButton" label="Copy Text" click="alertHandler(event)" />

If you want to create an Alert control pop-up dialog box from within a custom component or
other file that does not contain the <mx:Application> tag, you can call either
mx.core.Application.alert() or mx.controls.Alert.show() with the appropriate
arguments. For more information on scoping, see Chapter 15, “Working with ActionScript in
Flex,” on page 393.

Note: After the alert() method creates the dialog box, Flex continues processing of your
application; it does not wait for the user to close the dialog box.

Using event handlers with the Alert control pop-up dialog box

The next example adds an event handler to the Alert control pop-up dialog box. An event handler
lets you perform processing when the user selects a button of the Alert control. In this example,
you only copy the text when the user selects the OK button in the Alert control:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Script>
<![CDATA[

// Import Delegate.
import mx.utils.Delegate;

function alertHandler(event)
{

if (event.detail==mx.controls.Alert.OK)
{ myText.text = myInput.text; }

}
]]>

</mx:Script>

<mx:Panel title="My Application">
<!-- Input Textinput control. -->
<mx:TextInput id="myInput" width="150" text="" />

<!-- Output TextArea control. -->
<mx:TextArea id="myText" />

<!-- Button control to trigger the copy. -->
272 Chapter 9: Using the Application Container

<mx:Button id="myButton" label="Copy Text"
click='alert("Copy Text?", "Alert",

mx.controls.Alert.OK | mx.controls.Alert.CANCEL,
Delegate.create(this, this.alertHandler),
mx.controls.Alert.OK);'

/>
</mx:Panel>

</mx:Application>

This example uses the Delegate class to register the event handler. Event handlers execute in the
scope of their event dispatcher. In this example, the event dispatcher is the Button control.
However, in this example you want the event handler to run in the document scope so that it can
access the TextInput and TextArea controls.

The Delegate class lets you register the event handler and specify the scope in which it executes. In
the previous example, you use the Delegate class to specify a scope of this. The this scope
corresponds to the document scope, which contains the TextInput and TextArea controls. For
more information on scoping, see Chapter 15, “Working with ActionScript in Flex,” on
page 393.

Specifying an Alert control icon

You can include an icon in the Alert control that appears to the left of the Alert control text. This
example modifies the example from the previous section to add the Embed metadata tag to import
the icon. For more information on importing resources, see Chapter 15, “Working with
ActionScript in Flex,” on page 393.

<mx:Script>
<![CDATA[

 [Embed(source="alertIcon.jpg")]
 var iconSymbol:String;

function alertHandler(event)
{

if (event.detail==mx.controls.Alert.OK)
{ myText.text = myInput.text; }

}
]]>

</mx:Script>

<mx:Panel title="My Application">
<!-- Input Textinput control. -->
<mx:TextInput id="myInput" width="150" text="" />

<!-- Output TextArea control. -->
<mx:TextArea id="myText" />

<!-- Button control to trigger the copy. -->
Application container syntax 273

<mx:Button id="myButton" label="Copy Text"
click='this.alert("Copy Text?", "Alert",

mx.controls.Alert.OK | mx.controls.Alert.CANCEL,
Delegate.create(this, this.alertHandler),
mx.controls.Alert.OK,
iconSymbol);'

/>
</mx:Panel>

Alert control styles

The Alert control supports the following styles:

Alert control skins

The Alert control supports the following skins:

Showing the download progress of an application

The Application container supports an application preloader that uses a progress bar to show the
download progress of an application SWF file. By default, the application preloader is enabled.
The preloader keeps track of how many bytes have been downloaded and continually updates the
progress bar.

The preloader appears during the application initialization period. The
Application.creationComplete event dismisses the preloader.

Style Type Use Description

cornerRadius Number Style Specifies the radius of the corners of the window frame. The
default value is 8 pixels.

headerHeight Number Style Specifies the height of the header. The default value is 28 pixels.

headerColors Array Style Specifies an array of two colors for the header. The first element
of the array specifies the top color; the second element specifies
the bottom color. The default value is [0xE1E5EB, 0xF4F5F7].

footerColors Array Style Specifies an array of two colors for the footer. The first element of
the array specifies the top color; the second element specifies
the bottom color. The default value is [0xF4F5F7, 0xE1E5EB].

Skin Description

buttonUp Specifies the skin for the up state of the button. The default value is ButtonSkin.

buttonDown Specifies the skin for the pressed state of the button. The default value is
ButtonSkin.

buttonOver Specifies the skin for the rolled-over state of the button. The default value is
ButtonSkin.

titleBackground Specifies the skin for the window title bar. The default value is TitleBackground.
274 Chapter 9: Using the Application Container

The following figure shows the application preloader:

Disabling the application preloader

To disable the application preloader, you set the usePreloader property of the Application
container to false, as the following example shows:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

usePreloader="false">

Using a custom progress bar

By default, the application preloader uses the DownloadProgressBar class in the mx.preloaders
package to display download progress. To display a custom progress bar, you can create your own
component that implements the DownloadProgressBar API. A custom progress bar component
must extend the MovieClip class and should not use any of the standard Flex components, which
would cause it to load too slowly to be an effective progress bar. You can implement a progress bar
component as a SWC component or an ActionScript component. Do not implement a progress
bar as an MXML component because it would load too slowly.

To use a custom progress bar, you set the preloader property of the Application container to the
path of a SWC component class or ActionScript component class. A SWC component must be in
the same directory as the MXML file or in the WEB-INF/flex/user_classes directory of your Flex
web application. An ActionScript component can be in one of those directories or in a
subdirectory of one of those directories. When a class is in a subdirectory, you specify the
subdirectory location as the package name in the preloader value; otherwise, you specify the
class name. The code in the following example specifies a custom progress bar called CustomBar
that is located in the WEB-INF/flex/user_classes/mycomponents/mybars directory:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

preloader="mycomponents.mybars.CustomBar">
Showing the download progress of an application 275

The following table describes the DownloadProgressBar API:

Property/Method Type Use Description Req/Opt

indeterminate Boolean Read-write
property

The Preloader sets this property to true
when it enters the application initialization
state. A custom progress bar can alter its
behavior at this point, or it can choose to
ignore this request.
No setProgress() calls are made while
indeterminate is true. The default value is
false.

Optional

label String Read-write
property

The text to display when the progress bar is
active. The preloader sets this value before
displaying the progress bar. The default value
is "".
Implementing this property is optional. For
example:
function set label (val : String)
{

// Show the label in a text input
myTextField.text = val; }

function get label () : String
{
 return myTextField.text;
}

Optional
276 Chapter 9: Using the Application Container

For more information about creating SWC components, see Chapter 41, “Creating Advanced
Components in Flash MX 2004,” on page 857. For more information about creating
ActionScript components, see Chapter 17, “Creating ActionScript Components,” on page 437.

visible Boolean Read-write
property

Indicates whether the progress bar is visible.
The default value is false.
When the preloader determines that the
progress bar should be displayed, it sets this
value to true. When the preloader
determines the progress bar should be
hidden, it sets this value to false.
Example:
function set visible (val : Boolean)
{
 _alpha = 75; // Make the progress bar

slightly transparent
 _visible = val; // Show the progress

bar
}

function get visible () : Boolean
{
 return _visible;
}

Required

setProgress() Method Updates the display of the progress bar with
the current download information. A typical
implementation divides the loaded value with
the total value and displays a percentage.
If you do not implement this method, you
should create a progress bar that displays an
animation to indicate to the user that a
download is occurring.
This method has the following signature:
setProgress(loaded, total)
• loaded (required) The number of bytes of

the application SWF file that have been
downloaded. Must be of type Number.

• total (required) The size of the application
SWF file in bytes. Must be of type Number.

Example:
function setProgress(loaded : Number,

total : Number)
{
 if (loaded >=0 && total > 0) {
 var percent:Number = Math.ceil(100

* loaded / total);
 myPercentDisplay.text = percent +

" %"; // Display the percentage as
text

myProgressBar.gotoandStop(percent);
// Move the progress bar movie

 }
}

Optional

Property/Method Type Use Description Req/Opt
Showing the download progress of an application 277

278 Chapter 9: Using the Application Container

CHAPTER 10
Using Layout Containers
Layout containers define rectangular regions of Macromedia Flash Player drawing surface, and
provide a hierarchical structure to arrange and configure the components, such as Button and
ComboBox controls, of a Macromedia Flex application. To use a layout container, you first create
the container in MXML, then add the components that define your application.

This chapter describes layout containers, layout usage, and syntax. This chapter also includes
descriptions of all Flex layout containers, and examples.

Contents

About layout containers . 279

Canvas layout container . 280

Box layout container . 282

ControlBar layout container. 284

DividedBox layout container . 285

Form layout container . 290

Grid layout container . 306

Panel layout container . 311

Tile layout container . 315

TitleWindow layout container . 317

About layout containers

A layout container controls the sizing and positioning of the child controls and child containers
defined within it. For example, a Form layout container sizes and positions its children in a layout
similar to an HTML form.

Flex provides the following layout containers:

• Canvas
• Box
279

• ControlBar
• DividedBox
• Tile
• Grid
• Form
• Panel
• TitleWindow

The following sections describe how to use each of the Flex layout containers.

Canvas layout container

A Canvas layout container defines a rectangular region in which you place child containers and
controls. It is the only container that lets you explicitly specify the location of its children within
the container. That is, you are responsible for using the x and y properties of each child to specify
its location in a Canvas layout container.

Flex does not resize any children of a Canvas layout container. Therefore, if you want to change
the size of a child from its preferred size, use the height and width properties of the child to
explicitly set its size.

A Canvas container has the following default properties:

Canvas container example

You use the x and y properties of each child to specify the child’s location in the Canvas container.
These properties specify the x and y coordinates of a child relative to the upper-left corner of the
Canvas container, where the upper-left corner is at coordinates (0,0). Values for the x and y
coordinates can be positive or negative integers. You can use negative values to place a child
outside the visible area of the container, and then use ActionScript to move the child to the visible
area, possibly as a response to an event.

Property Default

Preferred size Large enough to hold all of its children at the preferred sizes of the children.

Container
resizing rules

Default heightFlex = widthFlex = 0, so the Canvas container is not resizable from
its preferred size. Setting the heightFlex and/or widthFlex properties to a positive
integer enables resizing of the container in the corresponding direction.

Child sizing rules Children are not resized from their preferred size, and any values of heightFlex
and widthFlex for the children are ignored.

Default margins Top, bottom, left, right = 0 pixels
280 Chapter 10: Using Layout Containers

The following figure shows a Canvas container with three Link controls and three Image controls:

The following MXML code creates this Canvas container:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Canvas id="myCanvas" borderStyle="solid" backgroundColor="white" >
<mx:Link label="Search" click="getURL('http://mycomp.com/search')"

x="10" y="30"/>
<mx:Image source="search.jpg" height="50" width="50" x="100" y="10"/>

<mx:Link label="Help" click="getURL('http://mycomp.com/help')"
x="10" y="100"/>

<mx:Image source="help.jpg" height="50" width="50" x="100" y="75" />

<mx:Link label="Complaints" click="getURL('http://mycomp.com/complain')"
x="10" y="170"/>

<mx:Image source="complaint.jpg" height="50" width="50" x="100" y="140" />

</mx:Canvas>
</mx:Application>

You can build logic into your application to reposition a child of a Canvas container at runtime.
For example, the following code repositions an input text box with the id of text1 to x=110,
y=110 in response to a button click:
<mx:TextInput id="text1" text="Move me" x="50" y="50" />
<mx:Button id="button1" label="Move text1" x="50" y="300"

click="text1.x=110; text1.y=110;" />

Canvas container syntax

You use the <mx:Canvas> tag to define a Canvas layout container in MXML. The Canvas layout
container inherits all the properties of its parent classes: MovieClip, UIObject, UIComponent,
View, and Container, but adds no new ones. For a list of these properties, see “Configuring
containers” on page 259.

Note: The Canvas container inherits the marginRight and marginLeft properties, but ignores
them.
Canvas layout container 281

Box layout container

A Box layout container lays out its children in a single vertical column or a single horizontal row.
You use the direction property of a Box container to determine either vertical (default) or
horizontal layout.

A Box container has the following default properties:

Box layout container example

The following figure shows a Box container with a horizontal layout and one with a vertical
layout:

Note: To lay out children in multiple rows or columns, use a Tile or Grid container. For more
information, see “Tile layout container” on page 315 and “Grid layout container” on page 306.

The following example creates a Box container with a vertical layout:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

Property Default

Direction Vertical

Preferred size Vertical Box Height is large enough to hold all of its children at the preferred
height of the children, plus any vertical gap between the children, plus the top and
bottom container margins.
Width is the preferred width of the widest child, plus the left and right container
margins.
Horizontal Box Height is the preferred height of the tallest child, plus the top
and bottom container margins.
Width is large enough to hold all of its children at the preferred width of the
children, plus any horizontal gap between the children, plus the left and right
container margins.

Container
resizing rules

Vertical Box The default heightFlex is the sum of the heightFlex values of its
children; the default widthFlex is the maximum widthFlex value of its children.
Horizontal Box The default heightFlex is the maximum heightFlex value of its
children; the default widthFlex is the sum of the widthFlex values of its children.

Child sizing rules Children with positive values of heightFlex and/or widthFlex are resized in the
corresponding direction.

Default margins Top, bottom, left, right = 0 pixels.

Box container with horizontal layout

Box container with vertical layout (default)
282 Chapter 10: Using Layout Containers

<mx:Box direction="vertical" borderStyle="solid" marginTop="10"
marginBottom="10" marginLeft="10" marginRight="10" >

<mx:Button id="fname" label="Button 1" />
<mx:Button id="lname" label="Button 2" />
<mx:Button id="addr1" label="Button 3" />
<mx:ComboBox id="state" />

</mx:Box>
</mx:Application>

Typically, you use the VBox (vertical box) and HBox (horizontal box) containers as shortcuts so
you do not have to specify the direction property. The following code example is equivalent to
the previous example, except that this example defines a vertical Box container using the
<mx:VBox> tag:

<mx:VBox borderStyle="solid" marginTop="10" marginBottom="10"
marginLeft="10" marginRight="10" >
<mx:Button id="fname" label="Button 1" />
<mx:Button id="lname" label="Button 2" />
<mx:Button id="addr1" label="Button 3" />
<mx:ComboBox id="state" />

</mx:VBox>

Sizing a Box container

If no children of the Box container are resizable, the container’s minWidth and minHeight values
are set to the same values as its preferredWidth and preferredHeight values.

If some of the Box container’s children are resizable, meaning that they have a heightFlex or
widthFlex value greater than zero, the minWidth of the Box container is the sum total of the
minWidth values of its children, and the minHeight is the sum total of the minHeight values of
its children. Since the Box container is also be resizable by default if any of its children are
resizable, you can shrink the Box container down to its minWidth and minHeight values.

Box container syntax

You use the <mx:Box>, <mx:VBox>, and <mx:HBox> tags to define Box containers. These tags
inherit all the properties of the classes MovieClip, UIObject, UIComponent, View, and
Container. For a list of these properties, see “Configuring containers” on page 259.

These containers also define the following properties:

Property Type Use Description Req/Opt

direction String Property For a Box container only, specifies the orientation
of the Box container. Possible values are
horizontal and vertical. The default value is
vertical.

Optional

marginTop Number Style Specifies the number of pixels between the
container’s top border and its content area. The
default value is 0 pixels.

Optional

marginBottom Number Style Specifies the number of pixels between the
container’s bottom border and its content area.
The default value is 0 pixels.

Optional
Box layout container 283

ControlBar layout container

You use the ControlBar container with a Panel or TitleWindow container to hold components
that can be shared by the other children in the Panel or TitleWindow container. For a product
catalog, the ControlBar container can hold the Flex controls to specify quantity and to add an
item to a shopping cart, as the following figure shows:

The ControlBar class is a sublcass of the HBox class and, therefore, inherits the layout
characteristics of the HBox container. The ControlBar container has the following default
properties:

horizontalAlign String Style Specifies the horizontal alignment of children in
the container. The default value is left. Possible
values are left, center, and right.

Optional

verticalAlign String Style Specifies the vertical alignment of children in the
container. The default value is top. Possible
values are top, middle, and bottom.

Optional

horizontalGap Double Style Specifies the number of pixels between children
in the horizontal direction. The default value is 8
pixels.
Ignored for a vertical Box container.

Optional

verticalGap Double Style Specifies the number of pixels between children
in the vertical direction. The default value is 6
pixels.
Ignored for a horizontal Box container.

Optional

Property Default

Direction Horizontal

Preferred size Height is the preferred height of the tallest child, plus the top and bottom container
margins.
Width is large enough to hold all of its children at the preferred width of the
children, plus any horizontal gap between the children, plus the left and right
container margins.

Property Type Use Description Req/Opt

Panel container

ControlBar container
284 Chapter 10: Using Layout Containers

Creating a ControlBar container

You use the <mx:ControlBar> tag to define a ControlBar control in MXML. Specify an id value
if you intend to refer to a component elsewhere in your MXML, either in another tag or in an
ActionScript block. You specify the <mx:ControlBar> tag as the last child tag of an <mx:Panel>
tag, as the following example shows:
<mx:Panel title="My Application" marginTop="10" marginBottom="10"

marginLeft="10" marginRight="10" >

<mx:HBox>
<!-- Area for your catalog. -->

</mx:HBox>

<mx:ControlBar>
<mx:Label text="Quantity" />
<mx:NumericStepper />
<!-- Use Spacer to push Button control to the right. -->
<mx:Spacer widthFlex="1" />
<mx:Button label="Add to Cart" click="addToCart()" />

</mx:ControlBar>
</mx:Panel>

ControlBar container syntax

You use the <mx:ControlBar> tag to define a ControlBar container. The ControlBar container
inherits all the properties of the HBox class, but adds no new ones.

Note: While the ControlBar container inherits the borderStyle, backgroundColor, and
backgroundImage styles from the HBox container, you cannot set them.

DividedBox layout container

The DividedBox layout container lays out its children horizontally or vertically, much like a Box
container, except that it inserts a divider between each child. Users can use a mouse to move the
dividers to resize the area of the container allocated to each child. You use the direction
property of a DividedBox container to determine vertical (default) or horizontal layout.

Container
resizing rules

The container is always resized to fill its parent Panel container or TitleWindow
container, and heightFlex and widthFlex values are ignored.

Child sizing rules Children with positive values of heightFlex and widthFlex are resized in the
corresponding direction.

Default margins Top, bottom, left, right = 10 pixels.

Property Default
DividedBox layout container 285

The following figure shows a DividedBox container:

In this figure, the outermost container is a horizontal DividedBox container. The horizontal
divider marks the border between a Tree control and a vertical DividedBox container.

The vertical DividedBox container holds a DataGrid control (top) and a TextArea control
(bottom). The vertical divider marks the border between these two controls.

A DividedBox container has the following default properties:

Property Default

Direction Vertical

Preferred size Vertical DividedBox Height is large enough to hold all of its children at the
preferred height of the children, plus any vertical gap between the children, plus
the top and bottom container margins.
Width is the preferred width of the widest child, plus the left and right container
margins.
Horizontal DividedBox Height is the preferred height of the tallest child, plus
the top and bottom container margins.
Width is large enough to hold all of its children at the preferred width of the
children, plus any horizontal gap between the children, plus the left and right
container margins.

Container
resizing rules

Vertical DividedBox The default heightFlex is the sum of the heightFlex
values of its children; the default widthFlex is the maximum widthFlex value of its
children.
Horizontal DividedBox The default heightFlex is the maximum heightFlex
value of its children; the default widthFlex is the sum of the widthFlex values of its
children.

Child sizing rules Children with positive values of heightFlex and widthFlex are resized in the
corresponding direction.

Default margins Top, bottom, left, right = 0 pixels.

Default gap Horizontal and vertical gaps are 10 pixels.

Vertical divider

Horizontal divider
286 Chapter 10: Using Layout Containers

Creating a DividedBox container

You define a DividedBox container in MXML using the <mx:DividedBox> tag, as the following
example shows. Specify an id value if you intend to refer to a component elsewhere in your
MXML, either in another tag or in an ActionScript block.

The following example creates the DividedBox shown in the previous figure:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:DividedBox direction="horizontal" >
<mx:Tree id="tree1" widthFlex="1" heightFlex="1" >

...
</mx:Tree>

<mx:DividedBox direction="vertical" >
<mx:DataGrid id="myGrid" widthFlex="1" heightFlex="1" />
<mx:TextArea id="currentMessage" widthFlex="1" heightFlex="1" />

</mx:DividedBox>
</mx:DividedBox>

</mx:Application>

Typically, you use the VDividedBox (vertical DividedBox) and HDividedBox (horizontal
DividedBox) containers as shortcuts so that you do not have to specify the direction property.
The following code example is equivalent to the previous example, except that this example
defines a vertical DividedBox container using the <mx:VDividedBox> tag:

<mx:HDividedBox >
<mx:Tree id="tree1" widthFlex="1" heightFlex="1" >

...
</mx:Tree>

<mx:VDividedBox>
<mx:DataGrid id="myGrid" widthFlex="1" heightFlex="1" />
<mx:TextArea id="currentMessage" widthFlex="1" heightFlex="1" />

</mx:VDividedBox>
</mx:HDividedBox>

Using the dividers

The dividers of a DividedBox container let you resize the area of the container allocated for a
child. However, for the dividers to function, the child has to be resizable. So, a child with an
explicit height or width cannot be resized in the corresponding direction using a divider.

By default, Flex sizes the children of a DividedBox container to the child’s preferred size. You can
use the dividers to resize a child up to its maximum size, or down to its minimum size.

If you specify the heightFlex or widthFlex properties of a child to make it resizable, Flex
initially sizes the child to its preferred size, and then can resize the child to take up all available
space using the rules described in “Sizing components” on page 99. When using the DividedBox
container, you typically include the heightFlex or widthFlex properties for its children to make
them resizable.
DividedBox layout container 287

To constrain the minimum size or maximum size of an area of the DividedBox, set an explicit
value for the minWidth and minHeight properties or the maxWidth and maxHeight properties of
the children within that area.

Using live dragging

By default, the DividedBox container disables live dragging. This means that the DividedBox
container does not update the layout of its children until the user finishes dragging the divider, as
signaled when the user releases the mouse button on a selected divider.

You can configure the DividedBox container to use live dragging by setting the liveDragging
property to true. With live dragging enabled, the DividedBox container updates its layout as the
user moves a divider. In some cases, you may encounter decreased performance if you enable live
dragging.

Using DividedBox events

The DividedBox container supports the events that it inherits from its parents, plus it defines the
following additional events:

• dividerPressed Broadcast when a user selects any divider.
• dividerDragged Broadcast while the user drags the divider. This event is broadcast whenever

the user moves the mouse while a divider is selected.
• dividerReleased Broadcast when the user releases the divider, but before Flex resizes the

container children.

DividedBox container syntax

You use the <mx:DividedBox>, <mx:VDividedBox>, and <mx:HDividedBox> tags to define
DividedBox containers. These tags inherit the properties and methods of the classes MovieClip,
UIObject, UIComponent, View, and Container. For more information, see “Configuring
containers” on page 259. The DividedBox container also inherits the properties and methods of
the Box Container. For more information, see “Box layout container” on page 282.

These containers also define the following properties:

Property Type Use Description Req/Opt

liveDragging Boolean Property Specifies whether to continuously resize
children as a divider is dragged, true, or not,
false. The default value is false.

Optional

dividerAffordance Number Style Specifies the width (HDividedBox) or height
(VDividedBox) of the area of the divider that
can be selected by the mouse pointer. The
default value is 6 pixels.
You can set this property according to the
following relationship:
dividerThickness <= dividerAffordance <=

horizontalGap (HDividedBox), or
verticalGap (VDividedBox)

Optional
288 Chapter 10: Using Layout Containers

dividerColor String Style Specifies the color of the dividers in their up
state. The default value is 0xAAAAAA.
The color of the dividers in their over and
down states is determined by the themeColor
style property.

Optional

dividerThickness Number Style Specifies the thickness, in pixels, of the
visible portion of the dividers. The default
value is 4.
You can set this property according to the
following relationship:
dividerThickness <= dividerAffordance <=

horizontalGap (HDividedBox), or
verticalGap (VDividedBox)

Optional

dividerDragged Event Broadcast when a user drags a divider.
The event object contains the properties:
• target Contains a reference to the

DividedBox object.
• type Contains the string dividerragged.
• dividerIndex Contains the 0-based

index of the divider being dragged.
• delta Contains the number of pixels that

the mouse has moved horizontally or
vertically from where it was pressed.
Positive numbers mean to the right or
bottom; negative numbers mean to the left
or top.

Optional

dividerPressed Event Broadcast when a divider is selected.
The event object contains the following
properties:
• target Contains a reference to the

DividedBox object.
• type Contains the string dividerPressed.
• dividerIndex Contains the 0-based

index of the divider that was pressed.

Optional

dividerReleased Event Broadcast after a divider has been released,
but before Flex resizes the children.
The event object contains the properties:
• target Contains a reference to the

DividedBox object.
• type Contains the string
dividerReleased.

• dividerIndex Contains the 0-based
index of the divider being dragged.

• delta The number of pixels that the
mouse has moved horizontally or vertically
from where it was pressed. Positive
numbers mean to the right or bottom;
negative numbers mean to the left or top.

Optional

Property Type Use Description Req/Opt
DividedBox layout container 289

DividedBox container skins

The following table describes the skins that you can use with the DividedBox containers:

Form layout container

Forms are one of the most common methods web applications use to collect information from
users. Forms are used for collecting registration, purchase, and billing information, and for many
other types of data collection tasks.

Flex supports form development using the Form layout container and several child components
of the Form container. The Form container lets you control the layout of a form, mark form fields
as required or optional, handle error messages, and bind your form data to the Flex data model to
perform data checking and validation. In addition, you can apply style sheets to configure the
appearance of your forms.

You use three different components to create your forms, as the following figure shows:

Skin Description

downSkin Specifies the skin symbol used for the down state of a divider. The default
skin symbol name is BoxDividerDownSkin.

horizontalCursorSkin Specifies the skin symbol used for the divider cursor in a horizontal
DividedBox container. The default skin symbol name is cursorHBoxDivider.

overSkin Specifies the skin symbol used for the over state of a divider. The default
skin symbol name is BoxDividerOverSkin.

upSkin Specifies the skin symbol used for the up state of a divider. The default skin
symbol name is BoxDividerUpSkin.

verticalCursorSkin Specifies the skin symbol used for the divider cursor in a vertical DividedBox
container. The default skin symbol name is cursorVBoxDivider.

FormHeading control

FormItem
containers

Form container
290 Chapter 10: Using Layout Containers

The following table describes the types of components that you use to create forms in Flex:

Creating a Form container

The Form container is the outermost container of a Flex form. The primary use of the Form
container is to control the sizing and layout of the contents of the form, including the size of
labels and the gap between items.

The Form container always arranges its children vertically and left aligns them in the form. The
following example shows the Form container definition for the form shown in the previous figure:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Form id="myForm" width="400" height="100" >

<!-- Define Form Heading and FormItem components here -->

</mx:Form>
</mx:Application>

Creating a FormHeading control

A FormHeading control specifies an optional label for a group of FormItem containers. The left
side of the label is aligned with the left side of the form.

The following example defines the FormHeading control for the example shown in the previous
figure:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Form id="myForm" width="400" height="100" >

<mx:FormHeading label="Billing Information" />

<!--Define FormItem containers here. -->

</mx:Form>
</mx:Application>

You can have multiple FormHeading controls in your form to designate multiple content areas.
You can also use FormHeading controls with a blank label to create vertical space in your form.

Container Tag Description

Form <mx:Form> Defines the container for the entire form. Use the FormHeading
control and FormItem container to define content. You can also
insert other types of components in a Form container.

FormHeading <mx:FormHeading> Defines a heading within your form. You can have multiple
FormHeading controls within a single Form container.

FormItem <mx:FormItem> Defines one or more form children arranged horizontally or
vertically. Children can be controls or other containers. A single
Form container can hold multiple FormItem containers.
Form layout container 291

Creating a FormItem container

A FormItem container specifies a single label and one or more child controls or containers. The
label is vertically aligned with the first child in the FormItem container.

Form containers typically contain multiple FormItem containers, as the following figure shows:

In this example, you define three FormItem containers: one with the label First Name, one with
the label Last Name, and one with the label Address. The Address FormItem container holds two
controls to let a user enter two lines of address information. The other two FormItem containers
each contain a single control.

When you create a FormItem container, you specify its direction as either vertical (default) or
horizontal:

• Vertical direction Flex positions children vertically to the right of the FormItem label.
• Horizontal direction Flex positions children horizontally to the right of the FormItem label.

If all children do not fit on a single row, they are divided into multiple rows with equal-sized
columns.

The following example shows the FormItem container definitions for the example form:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Form id="myForm" width="400" >

<mx:FormHeading label="Billing Information" />

<mx:FormItem label="First Name" >
<mx:TextInput id="fname" widthFlex="1" />

</mx:FormItem>

<mx:FormItem label="Last Name" >
<mx:TextInput id="lname" widthFlex="1" />

</mx:FormItem>

<mx:FormItem label="Address" >
<mx:TextInput id="addr1" widthFlex="1" />
<mx:TextInput id="addr2" widthFlex="1" />

</mx:FormItem>

<mx:FormItem label="City / State" direction="horizontal">
<mx:TextInput id="city" />
<mx:ComboBox id="st" width="50" />

</mx:FormItem>

FormItem
containersFormItem labels
292 Chapter 10: Using Layout Containers

<mx:FormItem label="Zip Code" >
<mx:TextInput id="zip" width="100" />

</mx:FormItem>

<mx:FormItem label="Country" >
<mx:ComboBox id="cntry" />

</mx:FormItem>

<mx:FormItem>
<mx:Button label="Submit"

click="setValues(fnName.text, lname.text, addr1.text, addr2.text,
city.text, st.value, zip.text, cntry.value);" />

</mx:FormItem>

</mx:Form>
</mx:Application>

Defining a default button

You use the defaultButton property of a container to define a default Button control. Pressing
the Enter key while focus is on any form control activates the Button control just as if it was
explicitly selected.

For example, a login form displays user name and password inputs and a submit Button control.
Typically, the user types a user name, tabs to the password field, types the password, and presses
the Enter key to submit the login information without explicitly selecting the Button control. To
define this type of interaction, set the defaultButton to the id of the submit Button control, as
the following example shows:
<mx:Script>

<![CDATA[
function submitLogin(event) {

myWebService.Login.send();
}

]]>
</mx:Script>

<mx:Form defaultButton="mySubmitButton" >
<mx:FormItem label="Username">

<mx:TextInput id="username" width="100"/>
</mx:FormItem>
<mx:FormItem label="Password">

<mx:TextInput id="password" width="100" password="true"/>
</mx:FormItem>
<mx:FormItem>

<mx:Button id="mySubmitButton" label="Login" click="submitLogin(event)"/>
</mx:FormItem>

</mx:Form>

Note: The ComboBox control has a special meaning for the Enter key. When the drop-down list of a
ComboBox control is open, pressing Enter selects the currently highlighted item in the ComboBox
control; it does not activate the default button.
Form layout container 293

Calculating the widthFlex and heightFlex of a Form container

The default widthFlex property of a Form container is the largest widthFlex value of all of its
children. The default heightFlex property of a Form container is the sum of the heightFlex
values of all of its children.

If some of the Form container’s children are resizable, meaning they have a heightFlex or
widthFlex value greater than zero, the value of the minWidth property of the container is the
sum total of the minWidth values of its children, and the minHeight is the sum total of the
minHeight values of its children. Since the container is resizable by default if any of its children
are resizable, you can shrink the container to its minWidth and minHeight values.

If no children of the Form container are resizable, the container’s minWidth and minHeight
values are set to the same values as its preferredWidth and preferredHeight values.

Aligning and spacing Form container children

All Form container labels are right-aligned, and all children are left-aligned in the container. You
cannot override this alignment.

The following figure shows the spacing of Form container children that you can control:

FormItem container:
verticalGap = 6

Form container: indicatorGap = 14

Form container: labelWidth

FormItem container:
verticalGap = 6

Form container:
verticalGap = 6
294 Chapter 10: Using Layout Containers

The following table describes the parameters and default values that you use to control spacing:

Sizing and positioning Form container children

The Form layout container arranges children in a vertical column. The area of the Form container
designated for children does not encompass the entire Form container. Instead, it starts to the
right of the area defined by any labels and the gap defined by the indicatorGap property. For
example, if the width of the Form container is 500 pixels, and the labels and indicatorGap
property allocate 100 pixels of that width, the width of the child area is 400 pixels.

By default, Flex stretches the Form layout children vertically to their preferred height. Flex then
determines the preferred width of each child, and stretches the child’s width to the next highest
value of the child area’s one-quarter, one-half, three-quarter, or full width.

Component Parameter Description Default

Form verticalGap Space between Form container children. 6 pixels

labelWidth Width of labels. Calculated by the
container based on the
child labels

marginTop
marginBottom
marginLeft
marginRight

Border spacing around children. 16 pixels on all sides

indicatorGap Gap between the end of the FormItem
label and the child.

14 pixels

FormHeading indicatorGap Overrides the indicator gap set by the
<mx:Form> tag.

15 pixels

verticalGap Gap between the top of the component
and the label text.

16 pixels

FormItem direction Direction of FormItem children: vertical
or horizontal.

vertical

horizontalGap Horizontal spacing between children in a
FormItem container.

6 pixels

labelWidth The width for the FormItem heading. The width of the label
text

marginTop
marginBottom
marginLeft
marginRight

Border spacing around the FormItem. 0 pixels on all sides

verticalGap Vertical spacing between children in a
FormItem container.

6 pixels

indicatorGap Overrides the indicator gap set by the
<mx:Form> tag.

Determined by the
<mx:Form> tag
Form layout container 295

For example, if a container has a child area 400 pixels wide, and the preferred width of a TextArea
control is 125 pixels, Flex stretches the TextArea control horizontally to the next higher one-
quarter, one-half, three-quarter, or full width of the child area. In this example, Flex stretches the
TextArea to the 200 pixel boundary, which is one-half of the child area. This sizing algorithm
prevents your containers from having ragged right edges caused by controls with different widths.

You can also explicitly set the height or width of any control in the form using the height and
width properties of the child.

If you make a child resizable horizontally by setting the widthFlex to a positive value, Flex
stretches the child to fill the available space, but always rounds off its width to the nearest one-
quarter width.

Defining required fields

Flex includes support for defining required input fields of a form. To define a required field, you
specify the required property of the FormItem container. If specified, all the children of the
FormItem container are marked as required.

Flex inserts a red asterisk (*) character as a separator between the FormItem label and the
FormItem child to indicate a required field. For example, the following figure shows an optional
ZIP code field and a required ZIP code field:

The following example defines these fields:
<mx:FormItem label="ZIP Code" >

<mx:TextInput id="zipOptional" width="100" />
</mx:FormItem>

<mx:FormItem label="ZIP Code" required="true">
<mx:TextInput id="zipRequired" width="100" />

</mx:FormItem>

You can enable the required indicator of a FormItem child at runtime. This could be useful when
the user input in one form field makes another field required. For example, you might have a
form with a CheckBox control that the user selects to subscribe to a newsletter. Checking the box
could make the user e-mail field required, as the following example shows:
<mx:FormItem label="Subscribe" >

<mx:CheckBox label="Subscribe?" click="emAddr.required=true"/>
</mx:FormItem>

<mx:FormItem id="emAddr" label="e-mail address">
<mx:TextInput id="emailAddr" />

</mx:FormItem>
296 Chapter 10: Using Layout Containers

Flex does not perform any automatic enforcement of a required field; it only marks fields as
required. You must build your own validation logic into your form to enforce it. As part of your
enforcement logic, you can use Flex validators. All of the validators supplied with Flex return an
error if a field is empty; therefore, you can use them to display an error message for an empty
Form control. For more information on using validators with forms, see “Using a Flex data model
to store form data” on page 299.

Storing and validating form data

As part of designing your form, you have to consider how you want to store your form data. In
Flex, you have the following choices:

• Store the data within the form controls.
• Create a Flex data model to store your data.

One of the primary tasks in building robust and stable forms is the process of input error
detection and data validation. Your decision on how you represent your data also affects how you
perform data validation. As part of building your form, you can perform data validation using
your own custom logic, take advantage of the Flex data validation mechanism, or use a
combination of the two.

Using Form controls to hold your form data

The following example uses Form controls to store the form data:
<mx:Form id="myForm" >

<mx:FormItem label="Zip Code" >
<mx:TextInput id="zipCode"/>

</mx:FormItem>
<mx:FormItem label="Phone Number" >

<mx:TextInput id="phoneNumber" />
</mx:FormItem>

<mx:FormItem>
<mx:Button label="Submit"

click="processValues(zipCode.text, phoneNumber.text);" />
</mx:FormItem>

</mx:Form>

<mx:Script>
<![CDATA[

function processValues(zip, pn)
{

// Check to see if phoneNumber is a number.
// Check to see if zipCode is less than 4 digits.
// Process data.

}
]]>

</mx:Script>
Form layout container 297

This example form defines two form controls: one for a ZIP code and one for a phone number.
When you submit the form, you call a function that takes the two arguments that correspond to
the data stored in each control. Your submit function can then perform any data validation on its
inputs before processing the form data.

You don’t have to pass the data to the submit function. The submit function can access the form
control data directly, as the following example shows:
<mx:Script>

<![CDATA[
function processValues()
{

var inputZip:String = zipCode.text;
var inputPhone:String = phoneNumber.text;
// Check to see if pn is a number.
// Check to see if zip is less than 4 digits.
// Process data.

}
]]>

</mx:Script>

The only problem with this technique is that the submit function is now specific to your form
and cannot easily be used by other forms.

You typically validate user input before you submit the data to the server. When you store data in
the form controls, you can either validate the user input within the submit function, or when a
user enters data into the form.

To validate form data on user input, you write an event handler for the control for the
valueCommitted event. The valueCommitted event is triggered when a user completes data
entry into a control. The following example uses the valueCommitted event of a control to
perform validation:
<mx:Script>

<![CDATA[
function validateFName()
{

// Perform validation.
// On error, pop up an alert box.
mx.controls.Alert.show("Please enter a valid first name string",

"Alert Box",mx.controls.Alert.OK);
}

]]>
</mx:Script>

<mx:FormItem label="First Name" >
<mx:TextInput id="fname" valueCommitted="validateFName()"/>

</mx:FormItem>

If you validate the input data every time the user enters it, you might not have to do so again in
your submit function. Or, you might still have to perform some validation in your submit
function, especially if you want to make sure that two fields are valid when compared with each
other.
298 Chapter 10: Using Layout Containers

For example, you can use event handlers to validate a ZIP code field and state field individually.
But you might want to validate that the ZIP code is valid for the specified state before submitting
the form data. To do so, you perform a second validation in the submit function.

Using a Flex data model to store form data

Flex provides a data validation mechanism as part of its data model. This mechanism lets you
define the type of data contained within an input field, and generate errors when a user enters an
incorrect value.

For example, you can define an input control to take a ZIP code. ZIP codes are five-digit or nine-
digit numbers that contain no alphabetic characters. If a user attempts to enter an incorrect value,
and you use the Flex data model with your form, Flex can automatically issue an error message.

To take advantage of the Flex validation mechanism, you have to define a data model for the
form. A data model stores data in fields that represent each part of a specific data set. For example,
a person model might store information such as a person’s name, age, and phone number.

The following example defines a Flex data model that contains two values that correspond to the
two input fields of a form:
<!-- Define data model -->
<mx:Model id="myFormModel">

<zipCodeModel>{zipCode.text}</zipCodeModel>
<phoneNumberModel>{phoneNumber.text}</phoneNumberModel>

</mx:Model>

<!-- Define form -->
<mx:Form borderStyle="solid" >

<mx:FormItem label="Zip Code" >
<mx:TextInput id="zipCodeModel"/>

</mx:FormItem>

<mx:FormItem label="Phone Number" >
<mx:TextInput id="phoneNumberModel" />

</mx:FormItem>

<mx:FormItem>
<mx:Button label="Submit"

click="processValues();" />
</mx:FormItem>

</mx:Form>

<mx:Script>
<![CDATA[

function processValues()
{

var inputZip:String = myFormModel.zipCodeModel;
var inputPhone:String = myFormModel.phoneNumberModel;
...
// process data

}

Form layout container 299

]]>
</mx:Script>

You use the <mx:Model> tag to define the data model. Each child tag of the data model defines
one field of the model. The tag body of each child tag in the model defines a binding to a form
control. In this example, you bind the zipCodeModel model field to the text value of the zipCode
TextInput control, and the phoneNumberModel field to the text value of the phoneNumber
TextInput control. For more information on data models, see Chapter 28, “Managing Data in
Flex,” on page 593.

When you bind a control to a data model, Flex automatically copies data from the control to the
model upon user input. In this example, your submit function accesses the data from the model,
not directly from the form controls.

One of the big advantages of using a data model is that it lets you also use the Flex data validation
mechanism. The validation mechanism performs automatic data validation and error reporting
for your form data.

As part of the validation mechanism, Flex provides a set of data validators for the most common
types of data collected by a form. You can use Flex validators with the following types of data:

• Credit card information
• Dates
• E-mail addresses
• Numbers
• Phone numbers
• Social Security numbers
• Strings
• ZIP codes

The following example modifies your data model to insert two data validators: one for the ZIP
code field and one for the phone number field:
<!-- Define data model. -->
<mx:Model id="myFormModel">

<zipCodeModel>{zipCode.text}</zipCodeModel>
<phoneNumberModel>{phoneNumber.text}</phoneNumberModel>

</mx:Model>

<!-- Define validators. -->
<mx:ZipCodeValidator field="myFormModel.zipCodeModel" />
<mx:PhoneNumberValidator field="myFormModel.phoneNumberModel" />
300 Chapter 10: Using Layout Containers

When the user enters data into the zipCode form field, Flex automatically copies that data to the
data model. As part of that operation, Flex uses the associated data validator to verify that the
input data is a valid ZIP code. If the ZIP code is valid, Flex only performs the copy. If the input
data is invalid, Flex draws a red box around the associated form control. In addition, if the user
mouses over the control, Flex displays an error message using a ToolTip, as the following figure
shows:

The error ToolTip disappears as soon as the user moves the mouse away from the form control, or
after a short delay. For more information on using validators, see Chapter 28, “Managing Data in
Flex,” on page 593.

Populating a Form control from a data model

Another use for data models is to include data in the model to populate values of form fields. The
following example shows a form that reads static data from a data model to obtain the value for a
form field:
<!-- Define data model. -->
<mx:Model id="myFormModel">

<fName>{firstName.text}</fName>
<lName>{lastName.text}</lName>
<department>Accounting</department>
...

</mx:Model>

<mx:Form>

<mx:FormItem label="Department" >
<mx:TextInput id="dept" text="{myFormModel.department}" />

</mx:FormItem>

...
</mx:Form>

This data is considered static because the form always shows the same value for the department.
You could also create a dynamic data model that takes the value of the department field from a
web service, or calculates it based on user input.

For more information on data models, see Chapter 28, “Managing Data in Flex,” on page 593.

Submitting data to a server

Form data is typically processed on a server, not locally on the client. Therefore, the submit
handler must have a mechanism for packing the form data for transfer to the server, then handle
any results returned back from the server. In Flex, you typically use a web service, HTTP service,
or remote Java object to pass data to the server.
Form layout container 301

One additional aspect of submitting form data is building logic into your submit function to
control navigation of your application when the submit succeeds, or when it fails. Upon a
successful submit, you typically navigate to an area of your application that displays the results. If
the submit fails, you can return control to the form so that the user can fix any errors.

The following example adds a web service to process form input data. In this example, the user
enters a ZIP code, then selects the Submit button. After performing any data validation, the
submit handler calls the web service to obtain the city name, current temperature, and forecast for
the ZIP code.
<!-- Define the web service connection. Note that the specified WSDL URI

is not functional. -->
<mx:WebService id="WeatherService" wsdl="/ws/WeatherService?wsdl">

<mx:operation name="GetWeather" >
<mx:request>

<ZipCode>{zipCode.text}</ZipCode>
</mx:request>

</mx:operation>
</mx:WebService>

<mx:Script>
<![CDATA[

function processValues()
{

// Check to see if ZIP code is valid.
WeatherService.GetWeather.send();

}
]]>

</mx:Script>

<mx:Form>
<mx:FormItem label="Zip Code" >

<mx:TextInput id="zipCode" width="200" text="Zip code please?"/>
<mx:Button width="60" label="Submit" click="processValues()" />

</mx:FormItem>
</mx:Form>

<mx:VBox>
<mx:TextArea text="{WeatherService.GetWeather.result.CityShortName}"/>
<mx:TextArea text="{WeatherService.GetWeather.result.CurrentTemp}"/>
<mx:TextArea
text="{WeatherService.GetWeather.result.DayForecast[0].Forecast}"/>

<mx:VBox>

This example binds the form’s input zipCode field directly to the ZipCode field of the web service
request. To display the results from the web service, you bind its results to controls in a VBox
container.

You have a great deal of flexibility when passing data to a web service. For example, you might
modify this example to bind the input form field to a data model, and then bind the data model
to the web service request. For more information on using web services, see Chapter 32, “Using
Data Services,” on page 655.
302 Chapter 10: Using Layout Containers

You can also add event handlers for the web service to handle both a successful call to the web
service, using the load event, and a call that generates an error, using the fault event. An error
condition might cause you to display a message to the user with a description of the error. A
successful result might have you navigate to another section of your application.

The following example adds a load event and a fault event to the form. In this example, the
form is defined as one child of a ViewStack container, and the form results are defined as a second
child of the ViewStack container:
<mx:WebService id="WeatherService"

wsdl=
"http://weather.unisysfsp.com/PDCWebService/WeatherServices.asmx?WSDL"

result="successfulCall()"
fault="errorCall();" >

<mx:operation name="GetWeather" >
<mx:request>

<ZipCode>{zipCode.text}</ZipCode>
</mx:request>

</mx:operation>
</mx:WebService>

<mx:Script>
<![CDATA[

function processValues()
{

// Check to see if ZIP code is valid.
WeatherService.GetWeather.send();

}
function successfulCall()

{
vs1.selectedIndex=1;

}
function errorCall()

{
mx.controls.Alert.show("Web service failed!", "Alert Box",

mx.controls.Alert.OK);
}

]]>
</mx:Script>

<mx:ViewStack id="vs1" >
<mx:Form>

<mx:FormItem label="Zip Code" >
<mx:TextInput id="zipCode" width="200" text="Zip code please?"/>
<mx:Button width="60" label="Submit" click="processValues()" />

</mx:FormItem>
</mx:Form>

<mx:VBox>
<mx:TextArea text="{WeatherService.GetWeather.result.CityShortName}"/>
<mx:TextArea text="{WeatherService.GetWeather.result.CurrentTemp}"/>
<mx:TextArea

text="{WeatherService.GetWeather.result.DayForecast[0].Forecast}"/>
Form layout container 303

<mx:VBox>
</mx:ViewStack>

Upon a successful call to the web service, the successfulCall() function switches the current
ViewStack child to the VBox container to show the returned results. An error from the web
service displays an Alert box, but does not change the current child of the ViewStack container, so
the form remains visible, letting the user fix any input errors.

You have many options for handling navigation in your application based on the results of the
submit. The previous example used a ViewStack container to handle navigation. You might also
choose to use a TabNavigator container or Accordion container for this same purpose.

In some applications, you might choose to embed the form in a TitleWindow container. A
TitleWindow container is a pop-up window that appears above Flash Player drawing surface. In
this scenario, users enter form data and submit the form from the TitleWindow container. A
successful submit closes the TitleWindow container and displays the results in another area of
your application; a failure displays an error message and leaves the TitleWindow container visible.

Another type of application might use a dashboard layout, where you have multiple panels open
on the dashboard. Submitting the form could cause another area of the dashboard to update with
results, while a failure could display an error message.

For more information on the TabNavigator, Accordion, and TitleWindow containers, see
Chapter 11, “Using Navigator Containers,” on page 325.

Form container syntax

You use the <mx:Form> tag to define a Form container. The Form container inherits all of the
properties of the classes MovieClip, UIObject, UIComponent, View, and Container. For a list of
these properties, see “Configuring containers” on page 259.

This container also defines the following properties:

Property Type Use Description Req/Opt

indicatorGap Number Style Specifies the number of pixels between the label
and child components. The default value is 14
pixels.

Optional

labelWidth String Style Specifies the width of the form labels. The default
is the length of the longest label in the form.

Optional

marginBottom Number Style Specifies the number of pixels between the
container’s bottom border and its content area. The
default value is 16 pixels.

Optional

marginTop Number Style Specifies the number of pixels between the
container’s top border and its content area. The
default value is 16 pixels.

Optional

verticalGap Double Style Specifies the number of pixels between children in
the vertical direction. The default value is 6 pixels.

Optional
304 Chapter 10: Using Layout Containers

You use the <mx:FormHeading> tag to define a heading. The <mx:FormHeading> tag takes all the
properties of the <mx:Canvas> tag, and the properties described in the following table:

You use the <mx:FormItem> tag to define an item in a Form container. The <mx:FormItem> tag
takes all the properties of the <mx:Canvas> tag, except marginLeft, and the properties defined in
the following table:

Property Type Use Descriptions Req/Opt

label String Property Specifies the label text. Optional

labelWidth String Property Specifies the label width for the heading. Optional

indicatorGap Number Style Specifies the number of pixels between the label
and components, overriding any value set by the
<mx:Form> tag. The default value is 15 pixels.

Optional

verticalGap Double Style Specifies the number of pixels between the top of
the component and the label text. The default value
is 16 pixels.

Optional

Property Type Use Description Req/Opt

direction String Property Specifies the direction of the children. Possible
values are vertical, or horizontal. The default
value is vertical.

Optional

label String Property Specifies the label of the FormItem container. Optional

labelObject Object Property A read-only property that lets you access the label
of the FormItem container.

Optional

required Boolean Property Specifies that the FormItem children require user
input, if true. The default value is false, indicating
that input is not required.

Optional

labelWidth String Style Sets the width for the heading. By default, this is
calculated from the width of the label text.

Optional

indicatorGap Number Style Specifies the number of pixels between the label
and child components, overriding any value set by
the <mx:Form> tag. The default value is 15 pixels.

Optional

marginTop Number Style Specifies the number of pixels between the
container’s top border and its content area. The
default value is 0 pixels.

Optional

marginBottom Number Style Specifies the number of pixels between the
container’s bottom border and its content area. The
default value is 0 pixels.

Optional

horizontalAlign String Style Specifies the horizontal alignment of children. The
default value is left. Possible values are left,
center, and right.

Optional
Form layout container 305

For more information on the syntax of the <mx:Canvas> tag, see “Canvas container syntax”
on page 281.

Grid layout container

You use a Grid layout container to arrange children as rows and columns of cells, much like an
HTML table. The following figure shows a Grid container that consists of nine cells arranged in a
3x3 pattern:

You can put zero or one child in each cell of a Grid container. If you want to put multiple
children in a cell, put a container in the cell, then add children to the container. The height of all
cells in a row is the same, but each row can have a different height. The width of all cells in a
column is the same, but each column can have a different width.

You can define a different number of cells for each row or each column of the Grid container. In
addition, a cell can span multiple columns and/or multiple rows of the container.

A Grid container has the following default properties:

horizontalGap double Style Specifies the number of pixels between children in
the horizontal direction. The default value is 6
pixels.

Optional

verticalGap double Style Specifies the number of pixels between children in
the vertical direction. The default value is 6 pixels.

Optional

Property Default

Preferred height
of each row

The preferred height of the tallest cell in the row.

Preferred width
of each column

The preferred width of the widest cell in the column.

Row sizing rules The heightFlex property of a row equals the maximum heightFlex value of all cells
in the row.

Column sizing
rules

The widthFlex property of a column equals the maximum widthFlex value of all
cells in the column.

Property Type Use Description Req/Opt

Grid container row

Grid container cell

Grid container column
306 Chapter 10: Using Layout Containers

Grid layout container example

The following figure shows an example Grid container with three rows and three columns:

The figure on the left shows how the Grid container appears in Flash Player. The figure on the
right shows the Grid container with borders overlaying it to illustrate the configuration of the
rows and columns. In this example, the buttons in the top row each occupy a single cell. The
button in the second row spans three columns, and the button in the third row spans the second
and third columns.

You do not have to define the same number of cells for every row of a Grid container. The
following figure shows a Grid container with five cells defined for the first row, and three cells for
the next two rows:

You use the following MXML tags to create a Grid container:

The following MXML code creates a Grid container with three rows and three columns:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Grid id="myGrid">

<!-- Define Row 1. -->
<mx:GridRow id="row1" >

<!-- Define the first cell of Row 1. -->

Container
resizing rules

The heightFlex property of a Grid layout container is equal to the sum of the
heightFlex values of all rows.
The widthFlex property of a Grid layout container is equal to the sum of the
widthFlex values of all columns.

Default margins Top, bottom, left, right = 0 pixels.

Tag Description

<mx:Grid> Defines a Grid container. A Grid container has one or more rows.

<mx:GridRow> Defines a grid row. A row has one or more cells.

<mx:GridItem> Defines a grid cell. The <mx:GridItem> tag can contain any number of child tags.

Property Default
Grid layout container 307

<mx:GridItem>
<mx:Button label="Button 1"/>

</mx:GridItem>
<!-- Define the second cell of Row 1. -->
<mx:GridItem>

<mx:Button label="2"/>
</mx:GridItem>
<!-- Define the third cell of Row 1. -->
<mx:GridItem>

<mx:Button label="Button 3"/>
</mx:GridItem>

</mx:GridRow>

<!-- Define Row 2. -->
<mx:GridRow id="row2" >

<!-- Define a single cell to span three columns of Row 2. -->
<mx:GridItem colSpan="3" horizontalAlign="center" >

<mx:Button label="Long-Named Button 4"/>
</mx:GridItem>

</mx:GridRow>

<!-- Define Row 3. -->
<mx:GridRow id="row3">

<!-- Define an empty first cell of Row 3. -->
<mx:GridItem/>
<!-- Define a cell to span columns 2 and 3 of Row 3. -->
<mx:GridItem colSpan="2" horizontalAlign="center">

<mx:Button label="Button 5" />
</mx:GridItem>

</mx:GridRow>

</mx:Grid>
</mx:Application>

To modify this example to include five buttons across the top row, you modify the first
<mx:GridRow> tag as follows:

<!-- Define Row 1 -->
<mx:GridRow id="row1">

<!-- Define the first cell of Row 1. -->
<mx:GridItem>

<mx:Button label="Button 1"/>
</mx:GridItem>
<mx:GridItem>

<mx:Button label="2"/>
</mx:GridItem>
<mx:GridItem>

<mx:Button label="Button 3"/>
</mx:GridItem>
<mx:GridItem>

<mx:Button label="Button 3a"/>
</mx:GridItem>
<mx:GridItem>

<mx:Button label="Button 3b"/>
308 Chapter 10: Using Layout Containers

</mx:GridItem>
</mx:GridRow>

Setting the row and column span

The following figure shows a modification to the previous example, where Button 3a now spans
two rows, Button 3b spans three rows, and Button 5 spans three columns:

This example also adds flex properties to Buttons 3a, 3b, and 5 to make them resizable, as the
following example code shows:
<mx:Grid>

<!-- Define Row 1. -->
<mx:GridRow id="row1">

<!-- Define the first cell of Row 1. -->
<mx:GridItem>

<mx:Button label="Button 1"/>
</mx:GridItem>
<mx:GridItem>

<mx:Button label="2"/>
</mx:GridItem>
<mx:GridItem>

<mx:Button label="Button 3"/>
</mx:GridItem>
<mx:GridItem rowSpan="2" >

<mx:Button label="Button 3a" heightFlex="1" />
</mx:GridItem>
<mx:GridItem rowSpan="3" >

<mx:Button label="Button 3b" heightFlex="1" />
</mx:GridItem>

</mx:GridRow>

<!-- Define Row 2. -->
<mx:GridRow id="row2" >

<!-- Define a single cell to span three columns of Row 2 -->
<mx:GridItem colSpan="3" horizontalAlign="center">

<mx:Button label="Long-Named Button 4"/>
</mx:GridItem>

</mx:GridRow>

<!-- Define Row 3. -->
<mx:GridRow id="row3">

<!-- Define an empty first cell of Row 3. -->
<mx:GridItem/>
<!-- Define a cell to span columns 2 and 3 and 4 of Row 3. -->
<mx:GridItem colSpan="3" >

<mx:Button label="Button 5 expands across 3 columns" widthFlex="1" />
</mx:GridItem>
Grid layout container 309

</mx:GridRow>

</mx:Grid>

If you had omitted the heightFlex properties from Buttons 3a and 3b, Flex would have set the
buttons to their preferred height, so they would not appear to span the rows. By adding the
widthFlex property to Button 5, you cause it to expand to the full width of the three columns,
not to its preferred width, which is the width of its text.

Even though the second row contains only a single <mx:GridItem> tag that defines a cell
spanning three columns, Flex automatically adds cells to the grid to allow Buttons 3a and 3b to
expand down into the row. The same is true for row three, which only defines four cells.

Sizing and positioning a child within a Grid container cell

The preferred size of each grid cell is determined by the preferred height of the tallest cell in the
row and the preferred width of the widest cell in the column. If the preferred size of the child is
larger than the cell, the child is clipped at the cell boundaries.

If the child’s preferred width or preferred height is smaller than the cell, the default horizontal
alignment of the child in the cell is left and the default vertical alignment is top. You can use the
horizontalAlign and verticalAlign properties of the <mx:GridItem> tag to control
positioning of the child.

If the child is resizable, as determined by its heightFlex and widthFlex properties, the child is
enlarged or shrunk to fit the size of the cell.

Setting the spacing between rows and columns

The horizontalGap and verticalGap properties of the <mx:Grid> tag determine the spacing
between rows and columns of the Grid layout container. By default, Flex sets both gaps to 6
pixels.

Note: Flex ignores both the horizontalGap and verticalGap properties for the <mx:GridRow> tag and
the <mx:GridItem> tag.

Grid container syntax

You use the <mx:Grid> tag to define a Grid container. The <mx:Grid> tag takes all the properties
of the <mx:Box> tag, except the direction property. For more information on the syntax of the
<mx:Box> tag, see “Box container syntax” on page 283.

You use the <mx:GridRow> tag to define each row, and it must be a child of the <mx:Grid> tag.
The <mx:GridRow> tag can hold any number of <mx:GridItem> child tags. The <mx:GridRow>
tag takes all the properties of the <mx:Grid> tag, but ignores both the horizontalGap and
verticalGap properties.
310 Chapter 10: Using Layout Containers

You use the <mx:GridItem> tag to define a row cell, and it must be a child of the <mx:GridRow>
tag. The <mx:GridItem> tag takes all the properties of the <mx:Grid> tag, but ignores the
horizontalGap and verticalGap properties. In addition, the <mx:GridItem> tag takes the
properties described in the following table:

Panel layout container

A Panel layout container includes a title bar, a title, a status message, a border, and a content area
for its children. Typically, you use Panel containers to wrap self-contained application modules.
For example, you could define several Panel containers in your application where one Panel
container holds a form, a second holds a shopping cart, and a third holds a catalog.

The following figure shows a Panel container with a Form container as its child:

Property Type Use Descriptions Req/Opt

rowSpan Number Property Specifies the number of rows of the Grid container
spanned by the cell. The default value is 1. You cannot
extend a cell past the number of rows in the Grid container.

Optional

colSpan Number Property Specifies the number of columns of the Grid container
spanned by the cell. The default value is 1. You cannot
extend a cell past the number of columns in the Grid
container.

Optional
Panel layout container 311

A Panel container has the following default properties:

Creating a Panel container

You define a Panel container in MXML using the <mx:Panel> tag, as the following example
shows. Specify an id value if you intend to refer to a component elsewhere in your MXML, either
in another tag or in an ActionScript block.

The following example defines a Panel container that contains a form as the top-level container in
your application. In this example, the Panel container provides you with a mechanism for
including a title bar, as in a standard GUI window.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Panel id="myPanel" title="My Application" />

<mx:Form width="300" >
<mx:FormHeading label="Billing Information" />
...

</mx:Form>

</mx:Panel>
</mx:Application>

Property Default

Preferred size Height is large enough to hold all of its children at the preferred height of the
children, plus any vertical gap between the children, plus the top and bottom
container margins.
Width is the larger of the preferred width of the widest child plus the left and right
container margins, or the width of the title text.

Container layout
rules

The Panel container is a subclass of the VBox container so it lays out its children in
a single vertical column.

Container
resizing rules

The default heightFlex is the sum of the heightFlex values of its children; the
default widthFlex is the maximum widthFlex value of its children.

Child sizing rules Children are resized when you specify an explicit size for the Panel container and
the child is resizable. Otherwise, the Panel container clips a child that is larger than
the Panel container.

Margins Top, bottom, left, right = 4 pixels.
312 Chapter 10: Using Layout Containers

Adding a ControlBar container to a Panel container

You can use the ControlBar container with a Panel container to hold components that can be
shared by the other children in the Panel container. For a product catalog, the ControlBar
container can hold the Flex controls to specify quantity and to add an item to a shopping cart, as
the following figure shows:

You specify the <mx:ControlBar> tag as the last child tag of an <mx:Panel> tag, as the following
example shows:
<mx:Panel title="My Application" marginTop="10" marginBottom="10"

marginLeft="10" marginRight="10" >

<mx:HBox>
<!-- Area for your catalog. -->

</mx:HBox>

<mx:ControlBar>
<mx:Label text="Quantity" />
<mx:NumericStepper id="myNS"/>
<!-- Use Spacer to push Button control to the right. -->
<mx:Spacer widthFlex="1" />
<mx:Button label="Add to Cart" click="addToCart()" />

</mx:ControlBar>
</mx:Panel>

For more information on the ControlBar container, see “ControlBar layout container”
on page 284.

Panel container syntax

You use the <mx:Panel> tag to define a Panel container. The Panel container inherits all of the
properties of the MovieClip, UIObject, UIComponent, View, Container, Box, and VBox classes.
For more information, see “Box container syntax” on page 283.

Panel container

ControlBar container
Panel layout container 313

This container also defines the following properties:

Property Type Use Description Req/Opt

status String Property Specifies text in the status area of the title
bar.

Optional

title String Property Specifies the title text. Optional

statusStyleDeclaration String Property Specifies a stylesheet definition to
configure the status area of the control.

Optional

titleStyleDeclaration String Property Specifies the stylesheet definition for the
title text.

Optional

cornerRadius Number Style Specifies the radius of the four corners of
the window frame. The default value is 8
pixels.

Optional

dropShadow Boolean Style Specifies whether to show the container`s
drop shadow. The default value is true,
which shows the drop shadow.

Optional

footerColors Array Style Specifies an array of two colors for the
footer. The first element of the array
specifies the top color; the second element
specifies the bottom color. The default
value is [0xF4F5F7, 0xE1E5EB].

Optional

headerColors Array Style Specifies an array of two colors for the
header. The first element of the array
specifies the top color; the second element
specifies the bottom color. The default
value is [0xE1E5EB, 0xF4F5F7].

Optional

headerHeight Number Style Specifies the height of the header. The
default value is 28 pixels. To prevent the
container from showing the header, set its
height to 0.

Optional

panelBorderStyle String Style Specifies the style of the bottom two
corners of the container. The default value
is default, which configures the container
to display square corners. Set this property
to roundCorners to configure the container
to display rounded corners.
If you set this property to roundCorners, use
the cornerRadius property to set the corner
radius. The cornerRadius property sets the
radius of all four corners.
The top two corners of the container are
always rounded. If you want to make those
corners square, set cornerRadius to 0.

Optional
314 Chapter 10: Using Layout Containers

Panel container skins

The following table describes the skin that you can use with the Panel container:

Tile layout container

A Tile layout container lays out its children in one or more vertical columns or horizontal rows,
starting new rows or columns as necessary. The direction property determines the layout. The
possible values for the direction property are vertical for a column layout and horizontal
(default) for a row layout.

All Tile container cells have the same size. Flex arranges the cells of a Tile container in a square
grid, where each cell holds a single child component. For example, if you define 16 children in a
Tile layout container, Flex lays it out four cells wide and four cells high. If you define 13 children,
Flex still lays it out four cells wide and four cells high, but leaves the last three cells in the fourth
row empty.

The following figure shows examples of horizontal and vertical Tile containers:

A Tile container has the following default properties:

Skin Description

skinTitleBackground Specifies the skin for the background of the window caption. The default skin
symbol name is TitleBackground.

Property Default

Direction Horizontal

Preferred size of
all cells

Height is the preferred height of the tallest child; width is the preferred width of the
widest child. All cells have the same preferred size.

Preferred size of
Tile container

Flex computes the square root of the number of children, and rounds up to the
nearest integer. For example, if there are 26 children, the square root is 5.1, which
is rounded up to 6. Flex then lays out the Tile container in a 6x6 grid.
The preferred height of the Tile container is equal to (tile cell preferred height) *
(rounded square root of the number of children). The preferred width is equal to
(tile cell preferred width) * (rounded square root of the number of children).

Minimum size of
Tile container

The preferred size of a single cell. Flex always allocates enough space to display
at least one cell.

Horizontal (default)

Vertical
Tile layout container 315

Tile layout container example

You define a Tile container in MXML using the <mx:Tile> tag. Specify an id value if you intend
to refer to a component elsewhere in your MXML, either in another tag or in an ActionScript
block. The following example creates the horizontal Tile container shown in the previous figure:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Tile id="myFlow" direction="horizontal" borderStyle="solid"
marginTop="10" marginBottom="10" marginRight="10" marginLeft="10"
verticalGap="15" horizontalGap="10" >

<mx:TextInput id="text1" text="1" height="50" width="75" />
<mx:TextInput id="text2" text="2" height="50" width="100"/>
<mx:TextInput id="text3" text="3" height="50" width="75"/>
<mx:TextInput id="text4" text="4" height="50" width="75"/>
<mx:TextInput id="text5" text="5" height="50" width="75" />

</mx:Tile>

</mx:Application>

Sizing and positioning a child in a Tile container

Flex sets the preferred size of each Tile cell to the height of the tallest child and the width of the
widest child. All cells have the same preferred size. If the preferred size of a child is larger than the
cell, for example if you used tileHeight and tileWidth to explicitly size the cells, the child is
clipped at the cell boundaries.

If the child’s preferred width or preferred height is smaller than the cell, the default horizontal
alignment of the child in the cell is left and the default vertical alignment is top. You can use the
horizontalAlign and verticalAlign properties of the <mx:Tile> tag to control positioning of
the child.

If the child is resizable, the child is enlarged or shrunk to fit the size of the cell. In the previous
example, the TextInput control named text2 has a width of 100 pixels; therefore, the preferred
width of all Tile cells is 100 pixels. If you want all other TextInput controls to increase in size to
the preferred width of the cells, use the widthFlex property, as the following example shows:

<mx:Tile id="myFlow" direction="horizontal" borderStyle="solid"
marginTop="10" marginBottom="10" marginRight="10" marginLeft="10"
verticalGap="15" horizontalGap="10" >

<mx:TextInput id="fname" text="1" height="50" widthFlex="1" />
<mx:TextInput id="lname" text="2" height="50" width="100" />
<mx:TextInput id="addr1" text="3" height="50" widthFlex="1" />

Child sizing rules Children with positive values of the heightFlex and/or widthFlex properties are
resized in the corresponding direction up to the size of the cell.

Container
resizing rules

Default heightFlex = widthFlex = 0, so the Tile container is not resizable from its
preferred size.

Default margins Top, bottom, left, right = 0 pixels.

Property Default
316 Chapter 10: Using Layout Containers

<mx:TextInput id="addr2" text="4" height="50" widthFlex="1" />
<mx:TextInput id="addr3" text="5" height="50" widthFlex="1" />

</mx:Tile>

Tile container syntax

You use the <mx:Tile> tag to create a Tile container. The <mx:Tile> tag inherits all of the
properties of the classes MovieClip, UIObject, UIComponent, View, and Container. For a list of
these properties, see “Configuring containers” on page 259.

This container also defines the following properties:

TitleWindow layout container

A TitleWindow layout container defines a pop-up window that consists of a title bar, a caption, a
border, and a content area for its children. For example, you can include a form in a TitleWindow
container. When the user completes the form, you can close the TitleWindow container
programmatically, or let the user close it using the Close button.

Property Type Use Description Req/Opt

direction String Property Specifies the orientation of the container. Possible
values are horizontal and vertical. The default
value is horizontal.

Optional

marginTop Number Style Specifies the number of pixels between the
container’s top border and its content area. The
default value is 0 pixels.

Optional

marginBottom Number Style Specifies the number of pixels between the
container’s bottom border and its content area. The
default value is 0 pixels.

Optional

horizontalAlign String Style Specifies the horizontal alignment of container
children. The default value is left. Possible values
are left, center, and right.

Optional

verticalAlign String Style Specifies the vertical alignment of container
children. The default value is top. Possible values
are top, middle, and bottom.

Optional

horizontalGap Double Style Specifies the number of pixels between children in
the horizontal direction. The default value is 6
pixels.

Optional

verticalGap Double Style Specifies the number of pixels between children in
the vertical direction. The default value is 6 pixels.

Optional

tileHeight Double Property Specifies the explicit height of all cells, overriding
the default of the preferred height of the tallest
child.

Optional

tileWidth Double Property Specifies the explicit width of all cells, overriding the
default of the preferred width of the widest child.

Optional
TitleWindow layout container 317

The TitleWindow container is almost the same as the Panel container. The only difference is that
the TitleWindow is designed to work as a pop-up window. The Panel container is designed to
work as a static window.

The following figure shows a TitleWindow container with a Form container as its child:

A TitleWindow container has the following default properties:

Creating a pop-up TitleWindow container

A pop-up TitleWindow container appears on top of your Flex application in Flash Player. A pop-
up TitleWindow container can be modal, which means that it takes all keyboard and mouse input
until it is closed, or nonmodal. Users can move a pop-up TitleWindow container by using the
mouse to drag it around the screen.

Property Default

Preferred size Height is large enough to hold all of its children at the preferred height of the
children, plus any vertical gap between the children, plus the top and bottom
container margins.
Width is the larger of the preferred width of the widest child plus the left and right
container margins, or the width of the title text.

Container
resizing rules

The default heightFlex is the sum of the heightFlex values of its children; the
default widthFlex is the maximum widthFlex value of its children.

Child sizing rules Children are resized when you specify an explicit size for the TitleWindow
container and the child is resizable. Otherwise, the TitleWindow container clips a
child that is larger than the TitleWindow container.

Margins Top, bottom, left, right = 4 pixels.
318 Chapter 10: Using Layout Containers

You use methods of the TitleWindow container to create a modal pop-up TitleWindow container
in Flex. To create a nonmodal pop-up window, you need to use methods of the PopUp Manager.
For more information, see “Creating a pop-up TitleWindow container using the PopUp
Manager” on page 321.

The Application container defines the following method that you can use to open a TitleWindow
container:
popupWindow(class:Object, initobj:Object) : MovieClip;

where:

• class Specifies a reference to the class of object you want to create.
• initobj Specifies an optional object containing initialization properties. This argument is

optional.

This method returns a MovieClip object that you can cast to a TitleWindow object.

Creating a TitleWindow using the popupWindow() method adds the deletePopUp() method to
the TitleWindow container that you can use to close it.

One of the most common ways of creating a TitleWindow container is to define it as a custom
MXML component. You define the TitleWindow container, and all of its children, in the custom
component, then use the popupWindow() method to open the TitleWindow container.

The following example code shows the definition of the custom component:
<?xml version="1.0"?>

<mx:TitleWindow xmlns:mx="http://www.macromedia.com/2003/mxml">
<mx:Label text="Enter User name" />
<mx:TextInput width="100"/>

<mx:Label text="Enter Password" />
<mx:TextInput width="100" password="true"/>
<mx:HBox>

<mx:Button click="submitForm();" label="OK" />
<mx:Button click="deletePopUp()" label="Cancel" />

</mx:HBox>
</mx:TitleWindow>

This file, named MyLogin.mxml, defines a TitleWindow container using the <mx:TitleWindow>
tag. The child of the TitleWindow container is a VBox container that defines two TextInput
controls, for user name and password, and two Button controls, for submitting the form and for
closing the TitleWindow container. This example does not include the code for the
submitForm() event handler.

You create the TitleWindow container from the Main.mxml file, as the following example code
shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script>
<![CDATA[

// Import TitleWindow and Application.
 import mx.containers.TitleWindow;
TitleWindow layout container 319

import mx.core.Application;

function showLogin()
{

// Create the TitleWindow container and cast it to a TitleWindow.
var pop1:TitleWindow = TitleWindow(popupWindow(MyLogin));

}
]]>

</mx:Script>

<mx:VBox width="300" height="500">
<mx:Button click="showLogin()" label="Login" />

</mx:VBox>

</mx:Application>

In this example, when the user selects the Login button, the event handler for the click event
uses the popupWindow() method to create a TitleWindow container, passing to it the name of the
MyLogin.mxml file as the class name.

By default, the TitleWindow container includes a close button in the upper right corner, similar
to dialog boxes in a GUI environment. Users can close the TitleWindow container by selecting
the close button. In addition, the TitleWindow broadcasts a click event when the user selects the
close button. You can optionally specify an event handler for the click event, as the following
code shows:
<mx:TitleWindow click="handleClick(event)"

xmlns:mx="http://www.macromedia.com/2003/mxml" >

To hide the close button, you include the closeButton property in the <mx:TitleWindow> tag,
as the following code shows:
<mx:TitleWindow closeButton="false"

xmlns:mx="http://www.macromedia.com/2003/mxml" >

Passing optional arguments to the popupWindow() method

The popupWindow() method takes an optional initobj argument that lets you pass initialization
properties to the custom component. Since the custom component is a TitleWindow container,
you can pass to it the same properties that you can set in MXML for the TitleWindow container.

For example, the following call to the popupWindow() method passes height, width, and title
properties:
var pop1:TitleWindow = TitleWindow(popupWindow(MyLogin,

{title:'Confirmation', width:300, height:200}));

You can include the closeButton property in the initobj argument, but you cannot specify the
handler for the click event. However, you can set it programmatically, as the following example
shows:
//Create the TitleWindow container.
var pop1:TitleWindow = TitleWindow(popupWindow(MyLogin,

{title:'Confirmation', width:300, height:200, closeButton:true }));

//Create the event handler.
320 Chapter 10: Using Layout Containers

var eventHandlerObj=new Object();
eventHandlerObj.click=function(evt)
{

evt.target.deletePopUp();
}
//Register the event handler with the TitleWindow container.
pop1.addEventListener("click",eventHandlerObj);

Creating a pop-up TitleWindow container using the PopUp Manager

You use the PopUp Manager to create either a modal or a nonmodal pop-up TitleWindow
container. The PopUp Manager defines the following method that you use with the TitleWindow
container:
createPopUp(parent:MovieClip, class:Object

[, modal:Boolean, initobj:Object, outsideEvents:Boolean]) : MovieClip

where:

• parent Specifies a reference to a window to popup over.
• class Specifies a reference to the class of object you want to create.
• modal Specifies an optional Boolean value indicating whether the window is modal (true) or

not (false). The default value is false. This argument is optional.
• initobj Specifies an optional object containing initialization properties. This argument is

optional.
• outsideEvents Specifies an optional Boolean value indicating whether an event is triggered if

the user clicks outside the window (true) or not (false). The default value is false. This
argument is optional.

Creating a TitleWindow container using the createPopUp() method adds the deletePopUp()
method to the TitleWindow container that you can use to close it.

In this example, you define the TitleWindow container, and all of its children, in the custom
component, and then use the createPopUp() method to open the TitleWindow. For a definition
of the custom component, see “Creating a pop-up TitleWindow container” on page 318.

You create the TitleWindow container from the Main.mxml file, as the following example
code shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script>
<![CDATA[

 import mx.containers.TitleWindow;
 import mx.managers.PopUpManager;

function showLogin()
{

// Create the pop-up TitleWindow container.
var pop1:TitleWindow =

TitleWindow(PopUpManager.createPopUp(this, MyLogin));
}

TitleWindow layout container 321

]]>
</mx:Script>

<mx:VBox width="300" height="500">
<mx:Button click="showLogin()" label="Login" />

</mx:VBox>

</mx:Application>

In this example, when the user selects the Login button, the event handler for the click event
uses the createPopUp() method to create a TitleWindow container, passing to it the name of the
MyLogin.mxml file as the class name.

If you want to allow users to close the TitleWindow using the close button when you create it
using the PopUp Manager, you must define an event handler for the container’s click event that
calls the deletePopUp() method.

Passing optional arguments to the createPopUp() method

The createPopUp() method takes several optional arguments. To create a modal TitleWindow
container, set the modal argument to true. When a TitleWindow is modal, you cannot select any
other component while the window is open. The default value of modal is false.

You can use initobj argument of the createPopUp() method to pass initialization properties to
the custom component. The custom component is a TitleWindow container, which means you
can pass to it the same properties that you can set in MXML for the TitleWindow container. For
an example, see “Passing optional arguments to the popupWindow() method” on page 320.

If you set outsideEvents to true, whenever a user clicks the mouse outside of the window, Flex
broadcasts a mouseDownOutside event. The default value is false. To handle this event, you can
create an event handler and register it as a listener, as the following example shows:
listenerObj = new Object();
listenerObj.mouseDownOutside = function()
{
 deletePopUp();
}
myTW.addEventListener("mouseDownOutside", listenerObj);

You can set outsideEvents to true even if you do not want to use the initobj argument, by passing
undefined as its value, as the following example shows:
var pop1:TitleWindow =

TitleWindow(PopUpManager.createPopUp(this, MyLogin, true, undefined, true));

Passing data to a pop-up TitleWindow container

To make the custom component that defines your TitleWindow container more flexible, you
might want to pass data to it or return data from it. For example, the following application opens
a pop-up TitleWindow container and passes to it a reference to a component in the Application
container so that the custom component can write its results back to the container:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">
322 Chapter 10: Using Layout Containers

 <mx:Script>
 <![CDATA[

import mx.containers.TitleWindow;
import mx.core.Application;

function showName()
{

var pop1:TitleWindow = TitleWindow(popupWindow(MyLogin_passdata,
{title:'Enter Name', closeButton:true, parentComponent: this.TA1}));

}
]]>

 </mx:Script>

 <mx:VBox width="300" height="500">
 <mx:Button click="showName()" label="Enter name" />
 <mx:TextArea id="TA1" />
 </mx:VBox>
</mx:Application>

The custom component in the following example defines a variable to hold the reference to the
parent component, then uses that reference to update the parent component:
<?xml version="1.0"?>
<mx:TitleWindow xmlns:mx="http://www.macromedia.com/2003/mxml"

click="deletePopUp()">

<mx:Script>
<![CDATA[

var parentComponent;
function submitData()
{

parentComponent.text="You entered: " + inputText.text;
}

]]>
</mx:Script>

 <mx:VBox>
<mx:Label text="Enter your name" />
<mx:TextInput id="inputText" width="100"/>
<mx:Button label="Send Data" click="submitData(); this.deletePopUp();" />

</mx:VBox>
</mx:TitleWindow>

For more information on passing data to a custom component, see Chapter 2, “Using MXML,”
on page 25.

TitleWindow container syntax

You use the <mx:TitleWindow> tag to define a TitleWindow container. The TitleWindow
container inherits all of the properties of the classes MovieClip, UIObject, UIComponent, View,
Container, and Panel.
TitleWindow layout container 323

This container also defines the following properties and methods:

TitleWindow container skins

The following table describes the skins that you can use with the TitleWindow container:

Property/Method Type Use Description Req/Opt

closeButton Boolean Property Specifies whether to display a Close button in
the TitleWindow container. The default value is
true. Set it to false to hide the Close button.
Selecting the Close button generates a click
event, but does not close the TitleWindow
container. You must write a handler for the click
event and close the TitleWindow from within it.

Optional

click Event Broadcast when the user selects the close
button.
The target property of the event object contains
a reference to the TitleWindow container. The
type property contains the string click.

Optional

deletePopUp() Method Closes a pop-up TitleWindow container.
This method is added to the TitleWindow
container if it is opened using the
Application.popupWindow() or
PopUpManager.createPopUp() methods.

Skin Description

skinCloseDisabled Skin for the disabled close button. The default skin symbol name is
CloseButtonDisabled.

skinCloseDown Skin for the close button. The default skin symbol name is CloseButtonDown.

skinCloseOver Skin for the close button when the mouse is over the button. The default skin
symbol name is CloseButtonOver.

skinCloseUp Skin for the close button. The default skin symbol name is CloseButtonUp.
324 Chapter 10: Using Layout Containers

CHAPTER 11
Using Navigator Containers
Navigator containers control user movement, or navigation, among multiple children where the
children are other containers. The individual child containers of the navigator container oversee
the layout and positioning of their children; the navigator container does not oversee layout and
positioning.

This chapter describes navigator containers, and syntax, and contains samples using the navigator
containers.

Contents

About navigator containers . 325

ViewStack navigator container . 326

LinkBar navigator container. 331

TabNavigator container . 335

TabBar navigator container . 338

Accordion navigator container . 343

About navigator containers

A navigator container controls user movement through a group of child containers. For example,
a TabNavigator container lets you select the visible child container using a set of tabs.

Note: The direct children of a navigator container must be containers, either layout or navigator
containers. You cannot directly nest a control within a navigator; controls must be children of a child
container of the navigator container.

Macromedia Flex provides the following navigator containers:

• ViewStack
• LinkBar
• TabNavigator
• TabBar
• Accordion
325

The following sections describes how to use each of the Flex navigator containers.

ViewStack navigator container

A ViewStack navigator container is made up of a collection of child containers stacked on top of
each other with only one container visible, or active, at a time. The ViewStack container does not
define a built-in mechanism for users to switch the currently active container; you must use a
LinkBar or TabBar navigator container or build the logic yourself in ActionScript to let users
change the currently active child. For example, you can define a set of Button controls that switch
among the child containers.

The following figure shows a representation of a ViewStack container:

The figure on the left shows a ViewStack container with the first child active. The index of a child
in a ViewStack container is zero-based, 0, 1, 2, ... , n - 1, where n is the number of child
containers. The figure on the right shows the ViewStack container with the second child
container active.

A ViewStack container has the following default properties:

Property Default

Preferred size The width and height of the currently active child.

Container
resizing rules

The default widthFlex = heightFlex = 1, meaning the container is resizable.
If the value of the widthFlex of its current child is greater than 1, that value
becomes the default widthFlex of the ViewStack container. If the value of the
heightFlex of its current child is greater than 1, that value becomes the default
heightFlex of the ViewStack container.

Child sizing rules Children are sized to their preferred size, and the size of the ViewStack container
is modified to fit the preferred size of the child.
If the ViewStack container is resizable but the child is not, and the ViewStack
container is resized by Flex, the child is clipped if it is larger than the ViewStack
container. If the child is smaller than the ViewStack container, it is aligned to the
upper-left corner of the ViewStack container.
If the ViewStack container and the child are both resizable, and the ViewStack
container is resized by Flex, the child can grow or shrink to fit the size of the
ViewStack container.

Default margins Top, bottom, left, right = 0 pixels.

Child container 0 active Child container 1 active
326 Chapter 11: Using Navigator Containers

Creating a ViewStack container

You use the following properties of the ViewStack container to control the active child container:

• selectedIndex The index of the currently active container if one or more child containers
are defined; undefined if no child containers are defined. The index is zero-based, 0, 1, 2, ... ,
n - 1, where n is the total number of child containers in the ViewStack container. Set this
property to the index of the container that you want active.
You can use the selectedIndex property of the <mx:ViewStack> tag to set the default active
container when your application starts. The following example sets the index of the default
active container to 1:
<mx:ViewStack id="myViewStack" selectedIndex=1 >

The following example uses ActionScript to set the selectedIndex property so that the active
child container is the second container in the stack:
myViewStack.selectedIndex=1;

• selectedChild The identifier of the currently active container if one or more child
containers are defined; undefined if no child containers are defined. Set this property in
ActionScript to the identifier of the container that you want active.
You can only set this property in an ActionScript statement, not in MXML.
The following example uses ActionScript to set the selectedChild property so that the active
child container is the child container with an identifier of search:
myViewStack.selectedChild=search;

• numChildren Contains the number of child containers in the ViewStack container. The
ViewStack container inherits this property from the View class.
The following example uses the numChildren property in an ActionScript statement to set the
active child container to the last container in the stack:
myViewStack.selectedIndex=myViewStack.numChildren-1;

The following example creates a ViewStack container with three child containers. The example
also defines three Button controls that, when clicked, select the active child container:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<!-- Create a VBox container so the container for the buttons appears above
the ViewStack container. -->
<mx:VBox widthFlex="0">

<!-- Create an HBox container to hold the three buttons. -->
<mx:HBox borderStyle="solid" >

<!-- Define the three buttons. Each uses the child container identifier
to set the active child container. -->

<mx:Button id="searchButton" label="Search Screen"
click="myViewStack.selectedChild=search;" />

<mx:Button id="cInfoButton" label="Customer Info Screen"
click="myViewStack.selectedChild=custInfo;" />
ViewStack navigator container 327

<mx:Button id="aInfoButton" label="Account Info Screen"
click="myViewStack.selectedChild=accountInfo;" />

</mx:HBox>

<!-- Define the ViewStack and the three child containers and have it
resize up to the size of the container for the buttons. -->

<mx:ViewStack id="myViewStack" borderStyle="solid" widthFlex="1" >
<mx:Canvas id="search" label="Search">

<mx:Label text="Search Screen" />
</mx:Canvas>
<mx:Canvas id="custInfo" label="Customer Info">

<mx:Label text="Customer Info" />
</mx:Canvas>
<mx:Canvas id="accountInfo" label="Account Info">

<mx:Label text="Account Info" />
</mx:Canvas>

</mx:ViewStack>

</mx:VBox>
</mx:Application>

When this example loads, the three Button controls appear, and the first child container defined
in the ViewStack container is active. Select a Button control to change the active container.

You can also use a LinkBar or TabBar container to control the active child of a ViewStack
container. A LinkBar or TabBar container determines the number of child containers in a
ViewStack container, then creates a horizontal set of links or tabs that lets the user select the active
child, as the following figure shows:

The items in the LinkBar container correspond to the values of the label property of each child
of the ViewStack container, as the following example shows:

<mx:VBox widthFlex="0">

<!-- Create a LinkBar container to navigate the ViewStack container. -->
<mx:LinkBar dataProvider="myViewStack" borderStyle="solid" />

<!-- Define the ViewStack and the three child containers. -->
<mx:ViewStack id="myViewStack" borderStyle="solid" widthFlex="1">

<mx:Canvas id="search" label="Search">
<mx:Label text="Search Screen" />

</mx:Canvas>
<mx:Canvas id="custInfo" label="Customer Info">

<mx:Label text="Customer Info" />
</mx:Canvas>

LinkBar navigator container

ViewStack navigator container
328 Chapter 11: Using Navigator Containers

<mx:Canvas id="accountInfo" label="Account Info">
<mx:Label text="Account Info" />

</mx:Canvas>
</mx:ViewStack>

</mx:VBox>

You only have to provide a single property to the LinkBar or TabBar container, dataProvider, to
specify the name of the ViewStack container associated with it. For more information on the
LinkBar container, see “LinkBar navigator container” on page 331. For more information on the
TabBar container, see “TabBar navigator container” on page 338.

Sizing the children of a ViewStack container

The default width and height of a ViewStack container is the width and height of the currently
active child, therefore, a ViewStack container could change size every time you change the active
child.

You can use the following techniques to control the sizing of a ViewStack container so that it does
not change size:

1. Set explicit width and height properties for all children to the same values.

2. Set the widthFlex and heightFlex properties for all children to nonzero values.

3. Set explicit width and height properties for the ViewStack container.

The method you use is based on your application and the content of your ViewStack container.

Order of initialization and creationComplete events

When you run your application, Flex broadcasts initialize and creationComplete events for
the child containers of the ViewStack container, and for the children of the child containers.
When Flex creates the ViewStack container, the order in which the events occur is as follows:

1. Broadcast the initialize event for the initially visible child container.

2. Broadcast the initialize event for all other child containers.

3. Broadcast the initialize event for the children of the initially visible child container.

4. Broadcast the creationComplete event for the initially visible child container.

5. Broadcast the creationComplete event for all other child containers.

6. Broadcast the creationComplete event for the children of the initially visible child container.

As you navigate the ViewStack container to make a different child container visible, Flex
broadcasts initialize and creationComplete events for the children of the child container.
The order in which the events occur for the children of a child container as it becomes visible is as
follows:

1. Broadcast the initialize event for the children of the child container.

2. Broadcast the creationComplete event for the children of the child container.
ViewStack navigator container 329

You can also use the childrenCreated event with a ViewStack container. This event is broadcast
after a container creates its children. This event lets you perform one-time initialization of a
container’s children, just after they get created.

For example, a ViewStack container creates all its immediate child containers, and all the children
of its first visible child container. For the first visible child container, childrenCreated gets
broadcast. Then, as the user moves to each additional child of the ViewStack container, the event
gets dispatched for that container.

Applying behaviors to a ViewStack container

You can assign effects to the ViewStack container, or to its children. For example, if you want to
assign the WipeUp effect to the showEffect property, Flex plays the effect once when the
ViewStack first appears.

However, if you want to have the first child of the ViewStack container use a WipeUp effect for
the showEffect property, and the second child use the WipeDown effect, assign the effects to the
children of the ViewStack container, as the following example shows:
<mx:ViewStack id="myViewStack" borderStyle="solid" widthFlex="1">

<mx:Canvas id="search" label="Search" creationCompleteEffect="WipeUp"
showEffect="WipeUp">

<mx:Label text="Search Screen" />
</mx:Canvas>
<mx:Canvas id="custInfo" label="Customer Info" showEffect="WipeDown">

<mx:Label text="Customer Info" />
</mx:Canvas>
<mx:Canvas id="accountInfo" label="Account Info" showEffect="WipeRight">

<mx:Label text="Account Info" />
</mx:Canvas>

</mx:ViewStack>

The showEffect property of a child of a ViewStack container is only triggered when the child’s
visibility changes from false to true. Therefore, the first child of the ViewStack container also
includes a creationCompleteEffect property. This is necessary to trigger the effect when Flex
first creates the component. If you omit creationCompleteEffect property, you do not see the
WipeUp effect when the application starts.

ViewStack container syntax

You use the <mx:ViewStack> tag to define a ViewStack container. The ViewStack container
inherits all of the properties of the classes MovieClip, UIObject, UIComponent, View, and
Container. For a list of these properties, see “Configuring containers” on page 259.
330 Chapter 11: Using Navigator Containers

This container tags also defines the following properties:

LinkBar navigator container

A LinkBar navigator container defines a horizontal row of Link controls that designate a series of
link destinations. You typically use a LinkBar navigator container to control the active child
container of a ViewStack container, or to create a stand-alone set of links.

The following figure shows an example of a LinkBar container that defines a set of links:

Property Type Use Description Req/Opt

historyManagement Boolean Property Specifies to enable history management, true,
or not, false. The default value is false.
For more information, see Chapter 24, “Using
the History Manager,” on page 549.

Optional

selectedChild String Property Specifies the name of the active container when
the ViewStack container loads. The default is the
identifier of the first child container defined in the
ViewStack container.
You can only set this property in an ActionScript
statement, not in MXML.

Optional

selectedIndex Number Property Specifies the index of the active container when
the ViewStack container loads. Indexes are in
the range of 0, 1, 2, ... , n - 1, where n is the
number of child containers. The default value is
0, corresponding to the first child container
defined in the ViewStack container.

Optional

marginBottom Number Style Specifies the number of pixels between the
container’s bottom border and its content area.
The default value is 0.

Optional

marginTop Number Style Specifies the number of pixels between the
container’s top border and its content area. The
default value is 0.

Optional

change Event Broadcast when the current view changes.
The event object contains the following
properties:
• target Contains a reference to the

ViewStack container.
• type Contains the string change.
• newValue Contains the index of the child that

is about to be selected.
• prevValue Contains the index of the child that

was previously selected.

Optional

changeEffect Effect Specifies the effect to play when the currently
active view changes.

Optional
LinkBar navigator container 331

A LinkBar container has the following default properties:

Creating a LinkBar container

One of the most common uses of a LinkBar container is to control the active child of a ViewStack
container. For an example, see “Creating a ViewStack container” on page 327.

You can also use a LinkBar navigator container on its own to create a set of links in your
application. In the following example, you define a click handler for the LinkBar container to
respond to user input, and use the dataProvider property of the LinkBar to specify its label text.
Use the following example code to create the LinkBar container shown in the previous figure:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:LinkBar borderStyle="solid"
click="getURL('http://www.macromedia.com/' +

String(event.label).toLowerCase(), '_blank');" >
<mx:dataProvider>

<mx:Array>
 <mx:String>Flash</mx:String>
 <mx:String>Director</mx:String>
 <mx:String>Dreamweaver</mx:String>
 <mx:String>ColdFusion</mx:String>
</mx:Array>

</mx:dataProvider>
</mx:LinkBar>

</mx:Application>

In this example, you use the <mx:dataProvider> and <mx:Array> tags to define the label text.
The event object passed to the click handler contains the label selected by the user. The handler
for the click event constructs an HTTP request to the Macromedia website based on the label,
and opens that page in a new browser window.

You can also bind data to the <mx:dataProvider> tag to populate the LinkBar container, as the
following example shows:
<mx:Script>

<![CDATA[
var linkData:Array = ["Flash", "Director", "Dreamweaver", "ColdFusion"];
]]>

</mx:Script>

<mx:LinkBar horizontalAlign="right" borderStyle="solid"
click="getURL('http://www.macromedia.com/' +
String(event.label).toLowerCase(), '_blank')" >

Property Default

Preferred size A width wide enough to contain all label text, plus any margins and separators, and
the height of the tallest child.

Container
resizing rules

 widthFlex = heightFlex = 0

Margins Top, bottom, left, right = 2 pixels.
332 Chapter 11: Using Navigator Containers

<mx:dataProvider>
{linkData}

</mx:dataProvider>
</mx:LinkBar>

In this example, you define the data for the LinkBar container as a variable in ActionScript, and
then you bind that variable to the <mx:dataProvider> tag. You could also bind to the
<mx:dataProvider> tag from a Flex data model, from a web service response, or from any other
type of data model.

LinkBar container syntax

You use the <mx:LinkBar> tag to define a LinkBar container. The LinkBar container inherits all
of the properties of the classes MovieClip, UIObject, UIComponent, View, and Container. For a
list of these properties, see “Configuring containers” on page 259.

This container also defines the following properties:

Property Type Use Description Req/Opt

dataProvider Array or
String

Property Specifies the data used to populate the LinkBar
navigator, or the identifier of a ViewStack container
to associate with the LinkBar navigator.
Flex automatically populates the LinkBar labels
using the contents of the ViewStack container. If
the child containers of the ViewStack container
define an icon property, the icon appears in the
corresponding link of the LinkBar container.

Optional

labelField String Property Specifies the name of the field in the dataProvider
Array to use as the label field. The label field defines
the string that appears in each link. If the data
provider is a ViewStack container, this property has
no effect.
If omitted, the Array must contain a field named
label, or the dataProvider property must contain
an Array of Strings. For an example using this
property, see “TabBar navigator container”
on page 338.

Optional

marginBottom Number Style Specifies the number of pixels between the
container’s bottom border and its content area. The
default value is 2.

Optional

marginTop Number Style Specifies the number of pixels between the
container’s top border and its content area. The
default value is 2.

Optional

strokeColor Number Style Specifies the separator color used by the default
separator skin.

Optional

strokeWidth Number Style Specifies the separator pixel width, in pixels. The
default width is 1 pixel.

Optional
LinkBar navigator container 333

LinkBar container skins

The following table describes the skin that you can use with the LinkBar container:

horizontalAlign String Style Specifies the horizontal alignment of children. The
default value is left. Possible values are left,
center, and right.
The preferred width of each label in the LinkBar
container is the size of the label text, therefore, you
have to increase the size of the LinkBar to a size
larger than its preferred width to see different
alignments.

Optional

horizontalGap Number Style Specifies the number of pixels between children in
the horizontal direction. The default value is 8
pixels.

Optional

rolloverColor Number Style Specifies the color of links as you roll the mouse
pointer over them. The default value is 0xE3FFD6
(light green).

Optional

selectionColor Number Style Specifies the text color of the selected link. The
default value is 0xCDFFC1.

Optional

click Event Broadcast when the user selects a label.
The event object contains the following properties:
• target Contains a reference to the LinkBar

container.
• type Contains the string click.
• label String containing the label of the selected

link.
• index Number containing the index of the

selected link.
• relatedNode The selected link.
• data The data associated with the selected link

from the dataProvider array.

Optional

Skin Description

linkSeparatorSkin Specifies the symbol name of the separator skin element. The default skin
symbol name is LinkSeparator.

Property Type Use Description Req/Opt
334 Chapter 11: Using Navigator Containers

TabNavigator container

A TabNavigator container creates and manages a set of tabs, which you use to navigate among its
children. The children of a TabNavigator container are other containers. The TabNavigator
container creates one tab for each child. When the user selects a tab, the TabNavigator container
displays the associated child, as the following figure shows:

The TabNavigator container is a child class of the ViewStack container and inherits much of its
functionality. A TabNavigator container has the following default properties:

Property Default

Preferred size The width and height of the currently active child plus the tabs, or the width
required to display all the tabs at their minimum size (30 pixels), whichever is
larger.
The default tab height is determined by the font, style, and skin applied to the
TabNavigator container. Setting an explicit height using the tabHeight property
overrides the default value.

Container
resizing rules

The default widthFlex = heightFlex = 1, meaning the container is resizable.
If the value of the largest widthFlex of all of its children is greater than 1, that value
becomes the default widthFlex of the container. If the value of the largest
heightFlex of all its children is greater than 1, that value becomes the default
heightFlex of the container.

Child sizing rules Children are sized to their preferred size, and the size of the TabNavigator
container is modified to fit the preferred size of the child when the child becomes
active.
If the TabNavigator container is resizable but the child is not, and the
TabNavigator container is resized by Flex, the child is clipped if it is larger than the
TabNavigator container. If the child is smaller than the TabNavigator container, it
is aligned to the upper-left corner of the TabNavigator container.
If the TabNavigator container and the child are both resizable, and the
TabNavigator container is resized by Flex, the child can grow or shrink to fit the
size of the TabNavigator container.

Default margins Top, bottom, left, right = 0 pixels.

Background
color

White.
TabNavigator container 335

Creating a TabNavigator container

Only one child of the TabNavigator container is visible at a time. Users can make any child the
selected child by selecting its associated tab, or using keyboard navigation controls. Whenever the
user changes the current child, the TabNavigator container broadcasts a change event.

The TabNavigator container automatically creates a tab for each of its children and determines
the tab text from the label property of the child. The tabs are arranged left to right in the order
determined by the child indexes. All tabs are visible, unless they do not fit within the width of the
TabNavigator container.

The following code creates the TabNavigator container shown in the previous figure:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

 <mx:TabNavigator borderStyle="solid" >

<mx:VBox label="Accounts" width="300" height="150" >
<!-- Accounts view goes here. -->

</mx:VBox>

<mx:VBox label="Stocks" width="300" height="150" >
<!-- Stocks view goes here. -->

</mx:VBox>

<mx:VBox label="Futures" width="300" height="150" >
<!-- Futures view goes here. -->

</mx:VBox>

</mx:TabNavigator>
</mx:Application>

You can also set the currently active child using the selectedChild and selectedIndex
properties inherited from the ViewStack container as follows:

• selectedIndex The index of the currently active container if one or more child containers
are defined; undefined if no child containers are defined. The index is zero-based, 0, 1, 2, ... ,
n - 1, where n is the total number of child containers. Set this property to the index of the
container that you want active.

• selectedChild The identifier of the currently active container if one or more child
containers are defined; undefined if no child containers are defined. Set this property to the
identifier of the container that you want active. You can only set this property in an
ActionScript statement, not in MXML.

For more information on the selectedChild and selectedIndex properties, including
examples, see “ViewStack navigator container” on page 326.

You use the changeEffect property to specify an effect to play when the user changes the
currently active child. The default effect is none. The following example uses the WipeLeft effect
for a TabNavigator container:
<mx:TabNavigator borderStyle="solid" changeEffect="WipeLeft" >
336 Chapter 11: Using Navigator Containers

Sizing the children of a TabNavigator container

The default width and height of a TabNavigator container is the width and height of the currently
active child, therefore, a TabNavigator container could change size every time you change the
active child. You can use the following methods to control the container so that it does not change
size:

1. Set explicit width and height properties for all children to the same values.

2. Set the widthFlex and heightFlex properties for all children to nonzero values.

3. Set explicit width and height properties for the TabNavigator container.

The method you use will be based on your application and the content of your container.

Order of initialization events

When you run your application, Flex broadcasts the initialize events for all top-level child
containers of the TabNavigator container, and for the children of the initially visible child
container. The order in which the initialize events occur is as follows:

1. For the initially visible child container

2. For the remaining child containers

3. For the children of the child containers as those containers become visible

You can also use the childrenCreated event with a TabNavigator container. This event is
broadcast after a container creates its children. This event lets you perform one-time initialization
of a container’s children, just after they get created.

For example, a TabNavigator container creates all its immediate child containers, and all the
children of its first visible child container. For the first visible child container, childrenCreated
gets broadcast. Then, as the user moves to each additional child of the TabNavigator container,
the event gets dispatched for that container.

Keyboard navigation

When a TabNavigator container has focus, Flex processes keystrokes as described in the following
table:

Key Action

Down Arrow,
Right Arrow

Gives focus to the next tab, wrapping from last to first, without changing the
selected child.

Up Arrow,
Left Arrow

Gives focus to the previous tab, wrapping from first to last, without changing the
selected child.

Pgdn Selects the next child, wrapping from last to first.

Pgup Selects the previous child, wrapping from first to last.

Home Selects the first child.

End Selects the last child.

Enter, Space Selects the child associated with the tab displaying focus.
TabNavigator container 337

TabNavigator container syntax

You use the <mx:TabNavigator> tag to define a TabNavigator container. The TabNavigator
container inherits all of the properties of the classes MovieClip, UIObject, UIComponent, View,
and Container. For a list of these properties, see “Configuring containers” on page 259.

This container also defines the following properties:

TabNavigator container skins

The following table describes the skin that you can use with the TabNavigator container:

TabBar navigator container

A TabBar navigator container defines a horizontal row of tabs. The following figure shows an
example of a TabBar container:

Property Type Use Description Req/Opt

historyManagement Boolean Property Specifies whether to enable history
management, true, or not, false. The default
value is true.
For more information, see Chapter 24, “Using
the History Manager,” on page 549.

Optional

horizontalAlign String Style Specifies the horizontal alignment of the tabs.
The default value is left. Possible values are
left, center, and right.

Optional

tabHeight Number Style Specifies the tab height.
The default tab height is determined by the font,
style, and skin applied to the TabNavigator
container. Set an explicit height using the
tabHeight property to override the default value.

Optional

tabWidth Number Style Specifies the width of the tabs, in pixels. If
undefined, the default tab widths are
automatically calculated from the label text.
If the width of the container is smaller than the
width of the label text, the labels are truncated. If
a tab label is truncated, Flex displays a ToolTip
with the full label text when a user moves the
mouses over the tab.
If you specify an explicit tab width, labels do not
automatically shrink to fit if they do not exceed
the available space.

Optional

Skin Description

tabSkin Specifies the skin for the tab. The default skin symbol name is TabSkin.
338 Chapter 11: Using Navigator Containers

Like the LinkBar container, you can use a TabBar navigator container to control the active child
container of a ViewStack container. The syntax for using a TabBar container to control the active
child of a ViewStack container is the same as for a LinkBar container. For an example, see
“ViewStack navigator container” on page 326.

While a TabBar container is similar to a TabNavigator container, it does not have any children.
For example, you use the tabs of a TabNavigator container to select its visible child container. You
can use a TabBar container to control the visible contents of a single container to make that
container’s children visible or invisible based on the selected tab.

A TabBar container has the following default properties:

Creating a TabBar container

You use the <mx:TabBar> tag to define a TabBar container in MXML. Specify an id value if you
intend to refer to a component elsewhere in your MXML, either in another tag or in an
ActionScript block.

You specify the data for the TabBar container using the <mx:dataProvider> and <mx:Array>
child tags of the <mx:TabBar> tag. The <mx:dataProvider> tag lets you specify data in several
different ways. In the simplest case for creating a TabBar container, you use the
<mx:dataProvider>, <mx:Array>, and <mx:String> tags to specify the text for each tab, as the
following example shows:
<mx:TabBar>

<mx:dataProvider>
<mx:Array>

<mx:String>Alabama</mx:String>
<mx:String>Alaska</mx:String>
<mx:String>Arkansas</mx:String>

</mx:Array>
</mx:dataProvider>

</mx:TabBar>

The <mx:String> tags define the text for each tab in the TabBar container.

You can also use the <mx:Object> tag to define the entries as an array of objects, where each
object contains a label property and an associated data value, as the following example shows:
<mx:TabBar>

<mx:dataProvider>
<mx:Array>

Property Default

Preferred size A width wide enough to contain all label text, plus any margins, and a height tall
enough for the label text.
The default tab height is determined by the font, style, and skin applied to the
container. Setting an explicit height using the tabHeight property overrides the
default value.

Container
resizing rules

 widthFlex = heightFlex = 0

Margins Left, right = 0 pixels.
TabBar navigator container 339

<mx:Object label="Alabama" data="Montgomery"/>
<mx:Object label="Alaska" data="Juneau"/>
<mx:Object label="Arkansas" data="Little Rock"/>

</mx:Array>
</mx:dataProvider>

</mx:TabBar>

The label property contains the state name and the data property contains the name of its
capital. The data property lets you associate a data value with the text label. For example, the
label text could be the name of a color, and the associated data value could be the numeric
representation of that color.

By default, Flex uses the value of the label property to define the tab text. If the object does not
contain a label property, you can use the labelField property of the TabBar container to
specify the property name containing the tab text, as the following example shows:
<mx:TabBar labelField="state" >

<mx:dataProvider>
<mx:Array>

<mx:Object state="Alabama" data="Montgomery"/>
<mx:Object state="Alaska" data="Juneau"/>
<mx:Object state="Arkansas" data="Little Rock"/>

</mx:Array>
</mx:dataProvider>

</mx:TabBar>

Passing data to a TabBar container

Flex lets you populate a TabBar container from an ActionScript variable definition or from a Flex
data model. When you use a variable, you can define it to contain one of the following:

• A label (string)
• A label (string) paired with data (scalar value or object)

The following example populates a TabBar container from a variable:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Script>
<![CDATA[

var STATE_ARRAY:Array=
[{label:"Alabama", data:"Montgomery"},
{label:"Alaska", data:"Juneau"},
{label:"Arkansas", data:"LittleRock"}];

]]>
 </mx:Script>

 <mx:TabBar >
<mx:dataProvider>

{STATE_ARRAY}
</mx:dataProvider>

</mx:TabBar>

</mx:Application>
340 Chapter 11: Using Navigator Containers

You can also bind a Flex data model to the dataProvider property. For more information on
using data models, see Chapter 28, “Managing Data in Flex,” on page 593.

Handling TabBar container events

The TabBar container defines a click event that is broadcast when a user selects a tab. The event
object contains the following properties:

• label String containing the label of the selected tab.
• index Number containing the index of the selected tab. Indexes are in the range of 0, 1, 2,

..., n - 1, where n is the total number of tabs. The default value is 0, corresponding to the
first tab.

The following example code shows a handler for the click event for this TabBar container:
<mx:Script>

<![CDATA[

var STATE_ARRAY:Array=
[{label:"Alabama", data:"Montgomery"},
{label:"Alaska", data:"Juneau"},
{label:"Arkansas", data:"LittleRock"}

];

function clickEvt(evt) {
forClick.text="label is: " + evt.label + " index is: " + evt.index +

" capital is: " + evt.target.dataProvider[evt.index].data;
}

]]>
</mx:Script>

<mx:TabBar id="myTB" click="clickEvt(event)" >
<mx:dataProvider>

{STATE_ARRAY}
</mx:dataProvider>

</mx:TabBar>

<mx:TextArea id="forClick" width="150" />

In this example, every click event updates the TextArea control with the tab label, selected index,
and the selected data from the TabBar container’s dataProvider Array.

TabBar container syntax

You use the <mx:TabBar> tag to define a TabBar container. The TabBar container inherits all of
the properties of the classes MovieClip, UIObject, UIComponent, View, and Container. For a list
of these properties, see “Configuring containers” on page 259.
TabBar navigator container 341

This container also defines the following properties:

Property Type Use Description Req/Opt

dataProvider Array or
String

Property Specifies the data used to populate the TabBar
container, or the identifier of a ViewStack container
to associate with the TabBar container.
Flex automatically populates the TabBar tabs using
the contents of the ViewStack container. If the child
containers of the ViewStack container define an
icon property, the icon appears in the
corresponding tab of the TabBar container.

Optional

selectedIndex Number Property Specifies the index of the active tab. Indexes are in
the range of 0, 1, 2, ... , n - 1, where n is the total
number of tabs. The default value is 0,
corresponding to the first tab.

Optional

labelField String Property Specifies the name of the property in the
dataProvider Array to use as the label field. The
label field defines the string that appears in each
tab. If omitted, the Array must contain a field named
label, or the dataProvider property must contain
an Array of Strings.
If the data provider is a ViewStack container, this
property has no effect.

Optional

horizontalAlign String Style Specifies the horizontal alignment of the tab text.
The default value is left. Possible values are left,
center, and right.
Since the preferred width of each label in the
TabBar container is the size of the label text, you
have to increase the size of the TabBar container to
a size larger than its preferred width to see different
alignments.

Optional

tabHeight Number Style Specifies the default tab height.
The default tab height is determined by the font,
style, and skin applied to the container. Setting an
explicit height using the tabHeight property
overrides the default value.

Optional
342 Chapter 11: Using Navigator Containers

TabBar container skin

The following table describes the skin that you can use with the TabBar container:

Accordion navigator container

Forms are a basic component of many applications. However, users have difficulty navigating
through complex forms, or moving back and forth through multipage forms. Sometimes, forms
can be so large that they do not fit onto a single screen.

tabWidth Number Style Specifies the width of the tabs, in pixels. If
undefined, the default tab widths are automatically
calculated from the label text.
If the width of the container is smaller than the total
width of the tab text, the labels are truncated. If a
tab label is truncated, Flex displays a ToolTip with
the full label text when a user moves the mouses
over the tab.
If you specify a tab width, labels do not
automatically shrink to fit if they do not fit inside the
available space.

Optional

click Event Broadcast when the user selects a tab.
The event object contains the following properties:
• target Contains a reference to the TabBar

container.
• type Contains the string click.
• label String containing the label of the selected

tab.
• index Number containing the index of the

selected tab.
• relatedNode The selected tab.
• data The data associated with the selected tab

from the dataProvider array.

Optional

Skin Description

tabSkin Specifies the symbol name of the tab skin element. The default skin symbol name
is TabSkin.

Property Type Use Description Req/Opt
Accordion navigator container 343

Flex includes the Accordion navigator container, which can greatly improve the look and
navigation of a form. The Accordion container defines a sequence of child panels, but displays
only one panel at a time. The following figure shows an example of an Accordion container:

To navigate a container, the user clicks on the navigation button that corresponds to the child
panel that they want to access. Accordion containers let users access the child panels in any order
to move back and forth through the form. For example, when the user is at the Credit Card
Information panel, they might decide to change the information on the Billing Address panel. To
do so, they navigate to the Billing Address panel, edit the information, and then navigate back to
the Credit Card Information panel.

In HTML, a form that contains shipping address, billing address, and credit card information is
often implemented as three separate pages, which requires the user to submit each page to the
server before moving on to the next. An Accordion container can organize the information on
three child panels with a single submit button. This architecture minimizes server traffic and lets
the user maintain a better sense of progress and context.

Although Accordion containers are useful for working with forms, you can use any Flex
component within a child panel of an Accordion. For example, you could create a catalog of
products in an Accordion container, where a each panel contains a group of similar products.

An Accordion container has the following default properties:

Property Default

Preferred size The width and height of the currently active child.

Container
resizing rules

The default widthFlex value is the widthFlex value of its current child. The default
heightFlex value is the heightFlex value of its current child.

Accordion container
navigation button

Accordion container
navigation button
344 Chapter 11: Using Navigator Containers

Creating an Accordion container

You define an Accordion container using the <mx:Accordion> tag, as the following example
shows:
<mx:Accordion id="accordion1" height="450">

<!-- Accordion definition.-->

</mx:Accordion>

Within the Accordion container, you define one container for each child panel. For example, if
the Accordion container has four child panels that the correspond to four parts of a form, you
define each child panel using the Form container, as the following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Accordion id="accordion1" height="450">

<mx:Form id="shippingAddress" label="1. Shipping Address">

<mx:FormItem id="sfirstNameItem" label="First Name">
<mx:TextInput id="sfirstName" />

</mx:FormItem>

...

</mx:Form>

<mx:Form id="billingAddress" label="2. Billing Address">
...

</mx:Form>

<mx:Form id="creditCardInfo" label="3. Credit Card Information">
...

</mx:Form>

<mx:Form id="submitOrder" label="4. Submit Order">
...

</mx:Form>

Child sizing rules Children are sized to their preferred size, and the size of the Accordion container is
then modified to fit the preferred size of the child.
If the Accordion container is resizable but the child is not, and the Accordion
container is resized by Flex, the child is clipped if it is larger than the container.
If the Accordion container and the child are both resizable, and the Accordion
container is resized by Flex, the child can grow or shrink to fit the size of the
container.
If the child is smaller than the Accordion container, it is aligned to the upper-left
corner of the Accordion container.

Default margins Top, bottom, left, right = -1 pixel

Property Default
Accordion navigator container 345

</mx:Accordion>
</mx:Application>

This example defines each child panel using a Form container. However, you can use any
container to define a child panel.

Note: All containers can be used to define child panels, however some containers do not really
belong in them, such as a TabNavigator container or another Accordion container.

Keyboard navigation

When an Accordion container has focus, Flex processes keystrokes as described in the following
table:

Note: An empty Accordion container with no child panels cannot take focus.

Using Button controls to navigate an Accordion container

The simplest way for users to navigate the panels of an Accordion container is to click the
navigator button for the desired panel. However, many Accordion containers include additional
navigation Button controls, such as Back and Next, to make it easier for users to navigate.

Navigation Button controls use the following properties of the Accordion container to move
among the child panels:

• selectedIndex The index of the currently active child panel. Child panels are numbered
from 0 to n-1 where n is the total number of panels in the Accordion container. Writing to
selectedIndex changes the currently active panel.

• selectedChild The identifier of the currently active child container if one or more child
containers are defined; undefined if no child containers are defined. Set this property to the
identifier of the container that you want active. You can only set this property in an
ActionScript statement, not in MXML.

• numChildren Contains the total number of child panels defined in an Accordion container.
The Accordion container inherits this property from the View class.

For more information on these properties, see “ViewStack navigator container” on page 326.

For example, you can use the following two Button controls within the second panel of an
Accordion container, panel number 1, to move back to panel number 0 or ahead to panel
number 2:
<mx:Button id="backButton" label="Back" click="accordion1.selectedIndex=0;" />
<mx:Button id="nextButton" label="Next" click="accordion1.selectedIndex=2;" />

Key Action

Pgup Move to the previous child panel, if any.

Pgdn Move to the next child panel, if any.

Home Move to the first child panel.

End Move to the last child panel.
346 Chapter 11: Using Navigator Containers

You can also use relative location with navigation buttons. The following Button controls move
forward and back through Accordion container panels based on the current panel number:
<mx:Button id="backButton" label="Back"

click="accordion1.selectedIndex = accordion1.selectedIndex - 1;" />

<mx:Button id="nextButton" label="Next"
click="accordion1.selectedIndex = accordion1.selectedIndex + 1;" />

For the Next Button control, you also can use the selectedChild property to move to the next
panel based on the id property of the panel’s container, as the following code shows:
<mx:Button id="nextButton" label="Next"

click="accordion1.selectedChild=creditCardInfo;" />

The following Button control opens the last panel in the Accordion container:
<mx:Button id="lastButton" label="Last"

click="accordion1.selectedIndex = accordion1.numChildren - 1;" />

Handling child button events

The Accordion container can recognize an event when the user changes the current panel. The
Accordion container broadcasts a change event when the user changes the child panel, either by
clicking a button or pressing a key, such as the Page Down key.

Note: A change event is not broadcast when the child panel changes programmatically.

You can register an event handler for the change event using the change property of the
<mx:Accordion> tag, or by registering the handler in ActionScript.

Order of initialization events

When you run your application, Flex broadcasts the initialize events for all top-level child
containers of the Accordion container, and for the children of the initially visible child container.
The order in which the initialize events occur is as follows:

1. For the initially visible child container

2. For the remaining child containers

3. For the children of the child containers as those containers become visible

You can also use the childrenCreated event with a Accordion container. This event is broadcast
after a container creates its children. This event lets you perform one-time initialization of a
container’s children, just after they get created.

For example, an Accordion container creates all its immediate child containers, and all the
children of its first visible child container. For the first visible child container, childrenCreated
gets broadcast. Then, as the user moves to each additional child of the Accordion container, the
event gets dispatched for that container.
Accordion navigator container 347

Accordion container syntax

You use the <mx:Accordion> tag to define an Accordion container. The Accordion container
inherits all of the properties of the classes MovieClip, UIObject, UIComponent, View, and
Container. For a list of these properties, see “Configuring containers” on page 259.

This container also defines the following properties:

Property Type Use Description Req/Opt

historyManagement Boolean Property Specifies whether to enable history
management, true, or not, false. The default
value is true.
For more information, see Chapter 24, “Using
the History Manager,” on page 549.

Optional

selectedChild String Property Specifies the name of the active container. The
default is the identifier of the first child container
defined in the Accordion container.
You can only set this property in an ActionScript
statement, not in MXML.

Optional

selectedIndex Number Property Specifies the index of the active container when
the Accordion container loads. Indexes are in the
range of 0, 1, 2, ... , n - 1, where n is the total
number of child containers. The default value is
0, corresponding to the first child container
defined in the Accordion container.

Optional

headerHeight Number Style The height of the Accordion container buttons, in
pixels. The default value is 22.

Optional

marginTop Number Style Specifies the number of pixels between the
container’s top border and its content area. The
default value is -1 pixel.

Optional

marginBottom Number Style Specifies the number of pixels between the
container’s bottom border and its content area.
The default value is -1 pixel.

Optional

openEasing String Style Specifies the tweening function used by the
animation. For more information on easing
functions, see Chapter 13, “Importing Images
and Media,” on page 361.

Optional

openDuration Number Style Specifies the duration, in milliseconds, of the
transition from one child panel to another. The
default value is 250 milliseconds.

Optional
348 Chapter 11: Using Navigator Containers

Accordion container skins

The following table describes the skins that you can use with the Accordion container:

verticalGap Number Style Specifies the number of pixels between children
in the vertical direction. The default value is -1
pixels.

Optional

change Event Broadcast when the current view changes.
The event object contains the following
properties:
• target Contains a reference to the

Accordion container.
• type Contains the string change.
• newValue Contains the index of the child that

is about to be selected.
• prevValue Contains the index of the child that

was previously selected.

Optional

Skins Description

falseUpSkin Specifies the symbol name of the up state. The default skin symbol name is
accordionHeaderSkin.

falseDownSkin Specifies the symbol name of the pressed state. The default skin symbol name is
accordionHeaderSkin.

falseOverSkin Specifies the symbol name of the rolled-over state. The default skin symbol name is
accordionHeaderSkin.

trueUpSkin Specifies the symbol name of the toggled state. The default skin symbol name is
accordionHeaderSkin.

Property Type Use Description Req/Opt
Accordion navigator container 349

350 Chapter 11: Using Navigator Containers

CHAPTER 12
Dynamically Repeating Controls and Containers
This chapter describes how to use the Repeater object. The Repeater object lets you dynamically
repeat any number of controls or containers specified in MXML tags, at runtime. A control or
container is repeated based on an array of dynamic data, such as an Array object returned from a
web service. For example, using just one <mx:Label> tag and one <mx:Repeater> tag, you can
generate a Label control for each element in an Array object.

Contents

Using a Repeater object . 351

Dynamically creating components based on data type . 359

How a Repeater object executes . 360

Using a Repeater object

You use the <mx:Repeater> tag to declare a Repeater object that handles repetition of one or
more user-interface components based on dynamic data arrays at runtime. The repeated
components can be controls or containers.

You can use the <mx:Repeater> tag anywhere a control or container tag is allowed, with the
exception of the <mx:Application> container tag. To repeat a user interface component, you
place its tag in the <mx:Repeater> tag. You can also use more than one <mx:Repeater> tag in an
MXML document, and you can nest <mx:Repeater> tags.

You can use the <mx:Repeater> tag only for objects that extend the UIObject class.
351

Declaring a Repeater object in MXML

You declare a Repeater object in the <mx:Repeater> tag. The following table describes the
Repeater object properties:

To allow for event handling, the Repeater object dispatches a repeat event each time an item is
processed and currentIndex and currentItem are updated.

Property Description

id Instance name of the corresponding Repeater object.

dataProvider Array object or an object that supports the length property and getItemAt()
method of the mx.controls.listclasses.DataProvider class. You must specify a
dataProvider property to repeat components.
Generally, you specify the value of the dataProvider property as a binding
expression because the value is not known until runtime. The following example
shows a dataProvider property bound to a web service result:
...
<mx:Repeater id="r" dataProvider="{ws.getNames.result}">

<!-- User interface component tag goes here. -->
</mx:Repeater>

startingIndex Number that specifies the zero-based array index at which the repetition starts.
If the startingIndex is not within the range of the dataProvider property, no
repetition occurs.

count Number that specifies how many repetitions occur. If there are fewer items in
the dataProvider property, the repetition stops with the last item.

currentIndex Number that is the zero-based index of the dataProvider item that is being
processed. This property changes as the Repeater object executes, and is
undefined after the execution is complete. It is a read-only property that you
cannot set in the <mx:Repeater> tag.

currentItem Reference to the item that is being processed in the dataProvider property.
This property changes as the Repeater object executes, and is undefined after
the execution is complete. It is a read-only property that you cannot set in the
<mx:Repeater> tag.

recycleChildren Boolean value that, when set to true, binds new data items into existing
Repeater children, incrementally creates new children if there are more data
items, and destroys extra children that are no longer required.
When you set this property to false, the Repeater re-creates all the objects
when you swap dataProviders, sort, and so on, which causes a performance
lag. Only set this property to false if you are confident that modifying your
dataProvider should not re-create the Repeater’s children.
The default value of this property is false to ensure that you do not leave stale
state information in a repeated instance. For example, suppose you use a
Repeater to display photo images and each Image control has an associated
NumericStepper control for how many prints you want to order. Some of the
state information, the image, comes from the dataProvider, while other state
information, the print count, is set by user interaction. If you set the
recycleChildren property to true and page through the photos by
incrementing the Repeater’s startingIndex value, The Image controls bind to
the new images, but the NumericStepper controls keep the old information.
352 Chapter 12: Dynamically Repeating Controls and Containers

As the following example shows, you use the currentIndex and currentItem properties in a
binding expression:
...
<mx:Label id="title" text="Employees"/>

<mx:Repeater id="r" dataProvider="{ws.getNames.result}">
<mx:Label id="nameLabel" text="Employee #{r.currentIndex}:
{r.currentItem.firstName} {r.currentItem.lastName}"/>

</mx:Repeater>
...

At runtime, the Repeater object loops over the Array object that the web service returns, and
creates instances of the Label control that is specified in the <mx:Repeater> tag. The repeated
Label controls contain the firstName and lastName values from the Array object that the web
service returns.

The following example shows an <mx:Repeater> tag that repeats a VBox container used in a
Tile container:
...
<mx:Tile>
 <mx:Repeater id="r" dataProvider="{ws.getCameras.result}">
 <mx:VBox>
 <mx:Image contentPath="http://www.saycheese.com/images/

{r.currentItem.imageUrl}"/>
 <mx:Label tex="{r.currentItem.modelName}"/>
 </mx:VBox>
 </mx:Repeater>
</mx:Tile>
...

At runtime, the Repeater object loops over the Array object that the web service returns, and
creates instances of the containers and controls in the <mx:Repeater> tag. The repeated VBox
containers, each of which contains a camera image and model name, are tiled horizontally inside
the Tile container. The source property of the Image control is bound to the imageURL property
in the Array object that the web service returns. The text property of the Label control is bound
to the modelName property in the Array object that the web service returns.

Note: You cannot use the Repeater object to iterate through a two-dimensional Array object that is
programmatically generated. This is because the elements of an Array object do not trigger
changeEvents, and therefore cannot function as binding sources at runtime. Binding copies initial
values during instantiation after variables are declared in an <mx:Script> tag, but before initialize
handlers are executed.

The Repeater object does not successfully create repeated objects if the id property of the object
to be repeated is the same as the id property of a dynamically created object. In the following
example, a Button control with an id value of button is dynamically created in the
create_child() function; this Button is successfully repeated in the r1 Repeater object. A
Button control with an id value of button is also created in an <mx:Button> tag in the r2
Repeater object. The Button control in the <mx:Button> tag is not repeated because it has the
same id as the dynamically created Button control.
<?xml version="1.0"?>
Using a Repeater object 353

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">
<mx:Script>

<![CDATA[

var dp =['a','b', 'c']
var dp1 =['a1','b1', 'c1']

function create_child()
{
b1.createChild(mx.controls.Button, "", {id:"button", label:"Button0"});
}

]]>
</mx:Script>

<mx:VBox id="b1" direction="vertical" borderStyle="solid" marginTop="10"
marginBottom="10" marginLeft="10" marginRight="10" widthFlex="1"
heightFlex="1">

<!-- This Repeater works as expected because it repeats the Button control
that is dynamically created in the create_child() function. -->

<mx:Repeater id="r1" dataProvider="{dp}" repeat="create_child()"/>

<mx:Repeater id="r2" dataProvider="{dp1}" >

<!-- This repeated Button is not created. -->
<mx:Button id="button" label="Button1"/>

</mx:Repeater>

</mx:VBox>
</mx:Application>

Tip: Forgetting curly braces ({ }) in a dataProvider property is a common mistake when using a
Repeater object. If the Repeater object doesn’t execute, make sure the binding is correct.

Referencing repeated components in ActionScript

To reference individual instances of a repeated component in ActionScript, you use indexed id
references on the document object, for example, as the following MXML code example shows:
...
<mx:Label id="title" text="Employees:"/>
<mx:Repeater dataProvider="{ws.getNames.result}">

<mx:Label id="nameLabel"
text="{r.currentItem.firstName} {r.currentItem.lastName}"/>

</mx:Repeater>
...

In this example, the id of the repeated Label control is nameLabel; each nameLabel instance that
is created has this id. You reference the individual Label instances as nameLabel[0],
nameLabel[1], and so on. You reference the total number of nameLabel instances as
nameLabel.length.
354 Chapter 12: Dynamically Repeating Controls and Containers

The for loop in the following example traces the text property of each Label control in the
nameLabel Array object:
...
<mx:Script>

<![CDATA[
labelTrace(){

for (var i = 0; i < nameLabel.length; i++)
trace(nameLabel[i].text);

}
]]>

</mx:Script>
...

When a container is repeated and indexed in an Array object, its children are also indexed. For
example, for the following MXML code, you reference the child Label controls of the HBox
container hb[0] as nameLabel[0] and locationLabel[0]:
...
<mx:Label id="title">Employees:</mx:Label>
<mx:Repeater dataProvider="{ws.getNames.result}">

<mx:HBox id="hb">
<mx:Label id="nameLabel"

text="{r.currentItem.firstName} {r.currentItem.lastName}"/>
<mx:Label id="locationLabel"

text="{r.currentItem.city}, {r.currentItem.state}"/>
</mx:HBox>

</mx:Repeater>
...

When <mx:Repeater> tags are nested, the inner <mx:Repeater> tags are indexed Repeater
objects. For example, for the following MXML code, you access the nested Repeater objects as
r2[0], r2[1], and so on:
...
<mx:Repeater id="r1" dataProvider="{...}">
 <mx:Repeater id="r2" dataProvider="{...}">
 <mx:Button id="b"/>
 </Repeater>
</mx:Repeater>
...

For the nested Repeater objects in the previous example, the instances of the Button control are
multiple-indexed because they are inside multiple Repeater objects. For example, the index
b[2][4] contains a reference to the Button control produced by the third iteration of r1 and the
fifth iteration of r2.
Using a Repeater object 355

When a Repeater object is busy repeating, each repeated object that it creates can bind at that
moment to the Repeater object’s currentItem property, which is changing as the Repeater object
repeats. You cannot give each instance its own event handler by writing something like
click="doSomething({r.currentItem}) because binding expressions are not allowed in event
handlers, and all instances of the repeated component must share the same event handler. When
the Repeater object finishes repeating, you can use the getRepeaterItem() method to determine
what the event handler should do based on the currentItem. To do so, you pass
event.target.getRepeaterItem() to the event handler, as the following example shows.
When the user clicks each repeated Button control, the corresponding colorName value from the
data Model is displayed in the Button control label:
<?xml version="1.0"?>
<mx:Application borderStyle="solid" height="550" width="750"
xmlns:mx="http://www.macromedia.com/2003/mxml" >

 <mx:Label id="foolabel" text="foo"></mx:Label>

 <mx:Model id="data">
 <colorName>Red</colorName>
 <colorName>Yellow</colorName>
 <colorName>Blue</colorName>

 </mx:Model>

 <mx:Script>

<![CDATA[

 function clicker(cName)
 {

 foolabel.text=cName;
 }
]]>

</mx:Script>

 <mx:Repeater id="myrep" dataProvider="{data.colorName}">
 <mx:Button click="clicker(event.target.getRepeaterItem());"

label="{myrep.currentItem}"/>
 </mx:Repeater>
</mx:Application>
356 Chapter 12: Dynamically Repeating Controls and Containers

Repeated components and repeated Repeater objects have three properties, instanceIndices,
repeaters, and repeaterIndices, that you can use to keep track of specific instances of
repeated objects, determine which Repeater object produced them, and determine which
dataProvider items were used by each Repeater object. The following table describes these
properties:

Repeated components and repeated Repeater objects have a getRepeaterItem() method that
returns the item in the dataProvider property that was used to produce the object. This method
takes an optional index that specifies which Repeater object you want when there are nested
Repeater objects; the 0 index is the outermost Repeater object. If you do not specify the index
argument, the innermost Repeater object is implied.

You can use the getRepeaterItem() method in event handlers on repeated objects. The
following example uses the getRepeaterItem() method to display a specific URL for each
Button that the user clicks. The Button controls must share a common data-driven click handler,
because you cannot use binding expressions inside event handlers, but the getRepeaterItem()
method lets you change the functionality for each Button control.
...
<Script>

<![CDATA[
var dp = [{ label: "Flex", url: "http://www.macromedia.com/flex" },
{ label: "Flash", url: "http://www.macromedia.com/flash" }];

]]>
</Script>

<Repeater id="r" dataProvider="{dp}">
<Button label="{r.currentItem.label}"

click="displayUrl(event.target.getRepeaterItem().url)"/>

Property Description

instanceIndices Array that contains the indices required to reference the object from its
document. This array is empty unless the object is in one or more Repeater
objects. The first element corresponds to the outermost Repeater object.
For example, if the id is b and instanceIndices is [2,4], you would
reference it on the document as b[2][4].

repeaters Array that contains references to the Repeater objects that produced the
object. The Array is empty unless the object is in one or more Repeater
objects. The first element corresponds to the outermost Repeater object.

repeaterIndices Array that contains the indices of the items in the dataProvider
properties of the Repeater objects that produced the object. The Array is
empty unless the object is within one or more Repeater object. The first
element corresponds to the outermost Repeater object. For example, if
repeaterIndices is [2,4], the outer Repeater object used its data item
dataProvider[2] and the inner Repeater object used its data item
dataProvider[4].
This property differs from instanceIndices if the startingIndex of any of
the Repeater objects is not 0. For example, even if a Repeater object starts
at dataProvider item 4, the document reference of the first repeated object
is b[0], not b[4].
Using a Repeater object 357

</Repeater>
...

Using a Repeater object in a custom MXML component

You can use the <mx:Repeater> tag in an MXML component definition in the same way that
you use it in an application file. When you use the MXML component as a tag in another
MXML file, the repeated items appear. You can access an individual repeated item by its array
index number, just as you do for a repeated item defined in the application file.

Examples

In the following example, a Button control in an MXML component called childComp is
repeated for every element in an Array object called dp:
<?xml version="1.0"?>
<mx:VBox xmlns:mx="http://www.macromedia.com/2003/mxml" width="100"

height="100">

<mx:Script>
<![CDATA[

var dp=[1,2,3,4];
]]>

</mx:Script>

<mx:Repeater id="r" dataProvider="{dp}">
<mx:Button id="repbutton" label="button {r.currentItem}"/>

</mx:Repeater>

</mx:VBox>

The application file in the following example uses the childComp component to display four
Buttons, one for each element in the Array object. The getLabelRep() function displays the
label text of the second Button in the Array object.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="500"

height="500" >

<mx:Script>
<![CDATA[

function getLabelRep()
{

alert(comp.repbutton[1].label)
}

]]>
</mx:Script>

<childComp id="comp"/>

<mx:Button label="Get label of Repeated element" width="200"
click="getLabelRep()"/>
358 Chapter 12: Dynamically Repeating Controls and Containers

</mx:Application>

Dynamically creating components based on data type

You can use a Repeater object to dynamically create different types of components for specific
items in a set of data. A Repeater object broadcasts a repeat event as it executes, and this event is
broadcast after you set the currentIndex and currentItem properties. You can call an event
handler function on the repeat event, and dynamically create different types of components
based on the individual data items.

In the following example, a Repeater reference is passed as event.target to a function called
isArray(). The isArray() function is called for every item in the Repeater object’s
dataProvider property. The isArray() function checks whether the Repeater object’s
currentItem is an Array. If the currentItem is an Array, the function creates a ComboBox
control using the createChild() method. If the currentItem is a String, the function creates a
TextInput control.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script>
<![CDATA[

function getData1():Array {
var r:Array = new Array();

 var vA:Array = new Array();
vA.push("a");
vA.push("b");
var vB:Array = new Array();
vB.push("c");
vB.push("d");
r.push("text A")
r.push(vA);
r.push("text B")
r.push(vB);
return(r)

}

function isArray(myVal)
{

if(myVal.currentItem instanceof Array){
b1.createChild(mx.controls.ComboBox, undefined,
{dataProvider:myVal.currentItem})

} else{
b1.createChild(mx.controls.TextInput, undefined,
{text:myVal.currentItem});

}
}

]]>

</mx:Script>

<mx:Box id="b1" direction="vertical" borderStyle="solid" marginTop="10"
Dynamically creating components based on data type 359

marginBottom="10" marginLeft="10" marginRight="10" >
<mx:Repeater id="r1" dataProvider="{getData1()}"

repeat="isArray(event.target)"/>
</mx:Box>

</mx:Application>

How a Repeater object executes

A Repeater object executes initially when it is instantiated. If the Repeater object’s dataProvider
property exists, it proceeds to instantiate its children, and they instantiate their children,
recursively.

The Repeater object re-executes whenever its dataProvider, startingIndex, or count
properties are set either explicitly in ActionScript or implicitly by data binding. If the
dataProvider is bound to a web service result, the Repeater object re-executes when the web
service operation returns the result. A Repeater object also re-executes in response to paging
through the dataProvider property by incrementing the startingIndex value, as the following
example shows:
r.startingIndex += r.count;

When a Repeater object re-executes, it destroys any children that it previously created and then
reinstantiates its children based on the current dataProvider property. The number of children
in the container might change, and the container layout changes to accommodate any changes to
the number of children.

A Repeater object re-executes if you set its entire dataProvider value. However, a Repeater
object does not re-execute if you set just one item of its dataProvider value. For example, a
Repeater object does not re-execute for the following code:
r.dataProvider[3] = { imageUrl: "c740.jpg", modelName: "Olympus C-740 Ultra

Zoom " };

Instead, you can call the dataProvider replaceItemAt() method, as the following example
shows:
r.dataProvider.replaceItemAt(3, { imageUrl: "c740.jpg", modelName: "Olympus C-

740 Ultra Zoom " });

When a property of a dataProvider item changes, a Repeater object does not re-execute, but it
does update repeated component bindings to the item’s property. In the following example, a
Repeater object updates repeated bindings to {r.currentItem.modelName}:
r.dataProvider[3].modelName = "Olympus C-740 Ultra Zoom - BUY ME NOW";
360 Chapter 12: Dynamically Repeating Controls and Containers

CHAPTER 13
Importing Images and Media
Macromedia Flex supports several image formats, including JPEG, PNG, GIF, and SVG images
and SWF files. This chapter describes how to import these image types into a Flex application.

You can also use the MediaDisplay, MediaController, and MediaPlayback controls to incorporate
streaming media into Flex applications. Flex supports the Macromedia Flash Video File (FLV)
and MP3 file formats with these controls. This chapter describes how to use the media controls in
your application.

Contents

Importing images. 361

Controlling image importing . 365

Using media controls . 370

Importing images

Many Flex applications import stored images. For example, before buying a product, users
typically want to see a picture of it in the product catalog.

Flex supports importing several of the most common image types including JPEG, SVG, PNG,
and GIF images, and SWF files. The PNG and GIF formats also support the use of an alpha
channel for creating transparent images.
361

Using the <mx:Image> tag

To import JPEG, PNG, GIF, and SVG images, and SWF files, you use the <mx:Image> tag. The
<mx:Image> tag accepts the properties defined by the UIObject and UIComponent classes, and
the properties described in the following table:

The value of the source property specifies a relative or absolute URL to the imported image file.
If the URL is relative, it is relative to the directory that contains the file using the tag. For more
examples, see “Specifying the image path” on page 365.

The source property has the following forms:

• source="@Embed('relativeOrAbsoluteURL')" The referenced image is packaged within the
generated SWF file at compile-time when Flex creates the SWF file for your application.
This form of the source property supports the import of GIF, PNG, JPEG, and SVG images,
and SWF files. However, since packaging the image in the generated SWF file occurs at
compile-time, you cannot use data binding to specify the image file, because data binding is a
runtime operation.
For more information on embedding SWF files, see “Importing SWF files” on page 363. For
more information on embedding SVG images, see “Importing SVG Images” on page 364.

• source="relativeOrAbsoluteURL" Flex loads the referenced image file at runtime; it is not
packaged as part of the generated SWF file. Since the file is loaded at runtime, you can use data
binding to specify the image file.

Property Type Use Description Req/Opt

source String Property Specifies the location of the imported file. Required

scaleContent Boolean Property Specifies whether to scale the imported
image to fit the size of this control, true, or not
to scale the image, false. The default value is
true.

Optional

maintainAspectRatio Boolean Property Specifies whether to maintain the aspect ratio
of the imported image when resizing it, true, or
not, false. The default value is true.

Optional

complete Event Specifies a handler for complete events, which
are broadcast when image loading completes.
This event is only broadcast for images loaded
at runtime.
The event object contains a target property
that contains a reference to the Image control
that triggered the event.

Optional

progress Event Specifies a handler for an event triggered
while content is loading. This event is only
broadcast for images loaded at runtime.
The event is not guaranteed to be broadcast,
meaning the complete event might be
received, without any progress events being
broadcast.

Optional
362 Chapter 13: Importing Images and Media

This form of the source property only supports the import of JPEG images and SWF files,
since these are the only file formats directly supported by Flash Player. Flash Player cannot load
GIF, PNG, or SVG images at runtime.

The following example imports a JPEG image into a Flex application:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

width="500" height="500" >

<mx:VBox id="myVBox" width="500" height="500">
<mx:Image id="image0" source="myJpeg.jpg" />

</mx:VBox>

</mx:Application>

In this example, you include the <mx:Image> tag in a VBox (vertical box) container. The VBox
container controls the location of the image. The size of the image is the default size of the image
file. Since you omitted @Embed from the source property, Flex loads the image at runtime.

Importing an image multiple times

You might want to import the same image multiple times in your application. If you do, Flex only
loads the image once, then references the loaded image as many times as necessary.

Importing SWF files

The <mx:Image> tag works primarily with small SWF files that add graphics or animations to an
application; these files are not intended for user interaction. If you want to import SWF files that
are built as Flex applications, or SWF files that require user interaction, you should build them as
custom Flex components or as custom components in Flash MX 2004.

Restrictions on embedding SWF files

If you specify a SWF file as the value to the source property using @Embed, the embedded SWF
file cannot contain any ActionScript 2 class definitions or Macromedia components. If it does,
Flex will not embed the SWF file. Alternatively, you can omit @Embed, and use the source
property to load the SWF file at runtime.

Importing SWF file symbols

Flex lets you reference exported symbols in an imported SWF file. To reference the symbol, you
specify it as part of the value to the source property using @Embed, in the following form:
@Embed('SWFFileName.swf#symbolName')

where the substring before the pound sign (#) specifies the location of the SWF file, and the
substring following the pound sign (#) references an exported symbol in the SWF file.

This capability is useful when you have a SWF file that contains multiple exported symbols, but
you only want to load some of them into your Flex application. Loading only the symbols
required by your application makes your resulting Flex SWF file smaller than if you imported the
entire SWF file.
Importing images 363

Note: If you are only importing a file symbol from a SWF file, the SWF file might contain ActionScript
2 classes and Macromedia components.

The following example imports a green square from a SWF file that contains a library of different
shapes:
<mx:Image source="@Embed('shapes.swf#greenSquare')" />

Restriction on symbol access when importing SWF files

A Flex application can import any number of SWF files. However, if two SWF files have the same
filename and duplicate exported symbol names, you cannot reference the duplicate symbols, even
if the SWF files are in separate directories.

Importing SVG Images

Flex supports importing Scalable Vector Graphics (SVG) images, or a GZip compressed SVG
image in a SVGZ file, into an application. This lets you import SVG images using the
<mx:Image> tag, and use SVG images as icons for Flex controls. For more information on the
syntax of the <mx:Image> tag, see “Using the <mx:Image> tag” on page 362.

Flex supports a subset of the SVG 1.1 specification to allow you to import static, 2-D scalable
vector graphics. This includes support for basic SVG document structure, Cascading Style Sheets
(CSS) styling, transformations, paths, basic shapes, and colors, and a subset of text, painting,
gradients, and fonts. Flex does not support SVG animation, scripting, or interactivity with the
imported SVG image.

Referencing external SVG images using the <mx:Image> tag

You use the <mx:Image> tag with @Embed tag to reference SVG images to import into your Flex
application, as the following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Image source="@Embed('mylogo.svg')" />

</mx:Application>

In this example, Flex imports the SVG file using the sizing information with the file, which
determines its size in Flex. You can explicitly size the imported image by specifying the height
and width properties in the <mx:Image> tag, as the following example shows:

<mx:Image source="@Embed('mylogo.svg')" height="200" width="200" />

For more information on sizing an imported image, see “Sizing an image” on page 366.

Referencing SVG images in MXML tags

Many Flex tags, such as <mx:Button> and <mx:TabNavigator>, take an icon property or other
property that lets you specify an image file for the control to use. You can specify an SVG file for
any properties that take PNG image files, as the following example shows:
<?xml version="1.0"?>
364 Chapter 13: Importing Images and Media

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Button icon="@Embed('myPic.svg')" />

</mx:Application>

Controlling image importing

The <mx:Image> tag lets you specify the following options when you import an image:

• Specifying the image path
• Positioning an image in a Canvas container
• Sizing an image
• Setting visibility
• Specifying the image path
• Using the Loader control

Specifying the image path

In many applications, you create a directory to hold your application images. Commonly, that
directory is a subdirectory of your main application directory. The source property supports
relative paths to images, which lets you specify the location of an image file relative to your
application directory.

The following example stores all images in an images subdirectory of the application directory:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

width="500" height="500" >

<mx:VBox id="vbox0" width="500" height="500">
<mx:Image id="image0" source="images/myImage.jpg" />

</mx:VBox>

</mx:Application>

The following example uses a relative path to reference an image in a directory above the
application’s root directory:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

width="500" height="500" >

<mx:VBox id="vbox0" width="500" height="500">
<mx:Image id="image0" source="../images/myImage.jpg" />

</mx:VBox>

</mx:Application>

You can also reference an image using a URL, as the following example shows:
<mx:VBox id="vbox0" width="500" height="500">

<mx:Image id="image0" source="http://myhost/images/myImage.jpg" />
</mx:VBox>
Controlling image importing 365

Positioning an image in a Canvas container

A Canvas container lets you specify the location of its children within the container. To specify
the absolute position of an image, you use the x and y properties.

Note: In all other containers except the Canvas container, the container controls the positioning of its
children and ignores the x and y properties.

The x and y properties specify the location of the upper left corner of the image in the Canvas
container. In the following example, you set the position of the image at (10,10), 10 pixels down
and 10 pixels to the right of the upper-left corner of the Canvas container:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

width="500" height="500" >

<mx:Canvas id="vbox0" >
<mx:Image id="img0" source="myImage.jpg" x="10" y="10" />

</mx:Canvas>

</mx:Application>

Sizing an image

Flex sets the height and width of an imported image to the height and width settings in the image
file. By default, Flex will not resize the image.

To set an explicit height or width for an imported image, set its height and width properties.
Setting the height or width property prevents the parent from resizing it. Since the
scaleContent property has a default value of true, Flex scales the image as it resizes it to fit the
specified height and width. Set the scaleContent property to false to disable scaling.

To allow Flex to resize the image as part of laying out your application, set the heightFlex or
widthFlex properties to positive integers. Flex resizes components based on the ratio of their flex
values. You can also use the maxHeight and maxWidth and minHeight and minWidth properties
to limit resizing. For more information on resizing, see Chapter 8, “Introducing Containers,” on
page 237.

One common use for resizing an image is to create image thumbnails. In the following example,
the image has an original height and width of 100 x 100 pixels. By specifying a height and width
of 20 x 20 pixels, you create a thumbnail of the image:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

width="500" height="500" >

<mx:VBox id="vbox0" >
<mx:Image source="myImage.jpg" height="20" width="20" />

</mx:VBox>

</mx:Application>
366 Chapter 13: Importing Images and Media

Maintaining aspect ratio when sizing

The aspect ratio of an image is the ratio of its width to its height. For example, a standard NTSC
television set uses an aspect ratio of 4:3, while an HDTV set uses an aspect ratio of 16:9. A
computer monitor with a resolution of 640 x 480 pixels also has an aspect ratio of 4:3.

All images have an inherent aspect ratio. When you use the height and width properties to resize
an image, by default Flex preserves the aspect ratio of the image so that it does not appear
distorted.

By preserving the aspect ratio of the image, Flex might not draw the image to fill the entire height
and width specified for the <mx:Image> tag. For example, if your original image is a square
100 x 100 pixels, which means it has an aspect ratio of 1:1, and you use the following statement
to load the image:
<mx:Image source="myImage.jpg" height="200" width="200" />

The image scales to four times its original size and fills the entire 200 x 200 pixel area.

The following example sets the height and width of the same image to 150 x 200 pixels, an aspect
ratio of 3:4:
<mx:Image source="myImage.jpg" height="150" width="200" />

In this example, you do not specify a square area for the resized image. Since Flex maintains the
aspect ratio of an image by default, Flex sizes the image to 150 x 150 pixels, the largest possible
image that maintains the aspect ratio and conforms to the size constraints.

You can use a Resize effect to change the width and height of an image in response to a trigger. As
part of configuring the Resize effect, you specify a new height and width for the image. Since Flex
maintains the aspect ratio of the image by default, it resizes the image as much as possible to
conform to the new size, while maintaining the aspect ratio. For more information on the Resize
effect, see Chapter 20, “Using Behaviors,” on page 497.

If you want to resize the image, and do not want to preserve the aspect ratio, you can use the
maintainAspectRatio property. By default, maintainAspectRatio is set to true to enable the
preservation. Setting it to false disables it.

The following example resizes your square image to the exact values of the height and width
properties:
<mx:Image source="myImage.jpg" height="150" width="200"

maintainAspectRatio="false" />

Setting visibility

The visible property lets you load an image but render it invisible. By default, the image is
visible. To make an image invisible, set the visible property to false.

The following example loads the image but does not make it visible:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

width="500" height="500" >

<mx:VBox id="vbox0" height="50" width="50">
Controlling image importing 367

<mx:Image id="img0" source="myImage.jpg" visible="false"/>
</mx:VBox>

</mx:Application>

The VBox container still allocates space for the image when it lays out its children. Therefore, if
your application contained a Button control after the <mx:Image> tag, the button would appear
in the same location as if the image was visible.

Often, you use the visible property to mark all images except one image invisible. For example,
assume that you have an area of your application dedicated to showing one of three possible
images based on some user action. Only one of the possible images would have its visible
property set to true; all other images would be invisible by having their visible property set
to false.

You can use ActionScript to set image properties. In the following example, you include a button
that, when clicked, sets the visible property of the image to true to make it appear:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

width="500" height="500" >

<mx:Script>
<![CDATA[

function showImage()
{

image1.visible=true;
 }

]]>
</mx:Script>

<mx:VBox id="vbox0" width="600" height="600">
<mx:Image id="image1" source="atom.jpg" visible="false" />
<mx:Button id="myButton" label="Show" click="showImage()"/>

</mx:VBox>

</mx:Application>

Using the Loader control

Often in a product catalog, when a user clicks an item, the catalog displays an image of the item.
One strategy for building a catalog is to load the catalog images into your application, but make
them all invisible. When a user selects a product, you make that image visible.

However, this strategy requires that you insert an <mx:Image> tag for all the images in your
catalog and load the images, even if they are invisible, at application startup. The resulting SWF
file would be unnecessarily large because it would have to contain all the images and its start-up
time would be negatively affected by loading invisible images.

A better strategy is to dynamically load the images from your server as necessary. In this way, your
SWF file stays small because it does not have to contain invisible images, and your start-up time
improves.
368 Chapter 13: Importing Images and Media

Note: You cannot use data binding with the source property of the <mx:Image> tag if you include
@Embed. For more information, see “Using the <mx:Image> tag” on page 362.

As part of its implementation, the ActionScript class that defines the <mx:Image> tag is a subclass
of the Flex Loader class. After creating an image, you can use the properties and methods of the
Loader control with your image, including the load() method, which loads a SWF or JPEG file.

Note: The load() method of the Loader control only works with SWF and JPEG files; you cannot use
it to load PNG, GIF, or SVG files.

In addition to the load() method, you can also access the properties of the Loader control,
including contentPath and percentLoaded. For a complete list of the Loader properties and
methods, see Flex API reference.

The following example uses the load() method to replace the atom.jpg image with the
atomAfter.jpg image when the user clicks a button:
<mx:Script>

<![CDATA[
function afterImage()
{

image1.load('atomAfter.jpg');
}

]]>
</mx:Script>

<mx:VBox id="vbox0" width="600" height="600">

<mx:Image id="image1" source="atom.jpg" />
<mx:Button id="myButton" label="Show After" click="afterImage()"/>

</mx:VBox>

The container that holds the image does not adjust the layout of its children when you call the
load() method. Therefore, you typically replace one image with another image of the same size.
If the new image is significantly larger than the original, it can overlay other components in the
container.

You can make the selection of the replacement image based on a user action in your application.
For example, you might want to load an image based on a user selection in a list box or data grid.

In the next example, you use the index number of the selected item in a data grid to determine the
image to load. In this example, images are named 1.jpg, 2.jpg, 3.jpg, and so on, corresponding to
items in the grid.
// Retrieve the image associated with the item selected in the grid
function getImage() {

var cartGrid = dgrid;
var imageSource:String = 'images/' + cartGrid.getSelectedIndex() + '.jpg';

image1.load(imageSource);
}

In this example, the images are stored in the images directory. The complete path to an image is
the directory name, the index number, and the file suffix .jpg.
Controlling image importing 369

You register this function as the event handler for a change event in the data grid as follows:
<mx:DataGrid id="dgrid" height="200" width="350" change="getImage()"/>

When a user changes the currently selected item in the data grid, Flex calls the getImage()
function to update the displayed image.

You could modify this example to use information about the selected item to determine the image
to load rather than using the selected item’s index. For example, the grid could contain a list of
objects, where each object has a property that contains the image name associated with it.

Using media controls

Media, such as movie and audio clips, are used more and more to provide information to web
users. As a result, you need to provide users with a way to stream the media, and then control it.
The following examples are usage scenarios for media controls:

• Showing media that introduces a company
• Streaming movies or movie previews
• Streaming songs or song snippets
• Providing learning material in the form of media

The Flex streaming media controls make it easy to incorporate streaming media into Flash
presentations. Flex supports the Flash Video File (FLV) and MP3 file formats with these controls.

You can use the following media controls:

• MediaDisplay control Lets media be streamed into your application without a supporting
user interface. You can use this control with video and audio data. The user of your application
has no control over the media when you use the MediaDisplay control by itself.

• MediaController control Complements the MediaDisplay control by providing a user
interface that controls media playback using standard controls, such as play and pause. You
only use this control with the MediaDisplay control, not with the MediaPlayback control. The
MediaController control features a drawer, which exposes the contents of the playback controls
when the user positions the mouse pointer over it.

• MediaPlayback control Is a combination of the MediaDisplay and MediaController
controls; it provides methods to stream your media content, and an interface that lets users
control playback.

Keep in mind the following points about media controls:

• The media controls do not support scan forward and scan backward functionality. However,
you can achieve this functionality by moving the playback slider.

• The media controls do not support accessibility or styles.

About the MediaDisplay control

Flex creates a MediaDisplay control with no visible user interface. It is simply a control to hold
and play media.

Note: The user cannot see anything unless some video media is playing.
370 Chapter 13: Importing Images and Media

The appearance of any video media playing in a MediaDisplay control is affected by the following
properties:
• aspectRatio
• height
• width

• volume

When you set aspectRatio to true (the default), the control adjusts the size of the playing
media after the control size has been set to maintain the aspect ratio of the media.

If you omit both width and height properties for the control, Flex makes it the size of the video.
If one is specified but not the other, the unspecified one is taken from the size of the video.

The MediaDisplay control also supports the volume property. This property takes an integer
value from 0 to 100, with 0 being mute and 100 being the maximum volume. The default setting
is 75.

The following example creates a MediaDisplay control:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:VBox>

<mx:MediaDisplay contentPath="http://myhost.com/media/MyVideo.flv"
height="400" width="400" />

</mx:VBox>
</mx:Application>

About the MediaController control

The interface for the MediaController control depends on its controllerPolicy and
backgroundStyle properties. The controllerPolicy property determines if the media control
set is always expanded, always collapsed, or only expanded when the user hovers the mouse over
the control portion of the control.

When collapsed, the controller draws a modified progress bar. It shows the progress of the bytes
being loaded at the bottom of the bar, and the progress of the playhead just above it.

The following figure shows the MediaController control in its expanded state:

The expanded state draws an enhanced version of the control, which contains the following
items:

• Text labels on the left that indicate the playback state (streaming or paused)
• Text labels on the right that indicate playhead location in seconds
• Playhead location indicator that users can drag to navigate within the media
Using media controls 371

The following items are also provided with the MediaController control:

• A Play/Pause state button
• A group of two buttons: Go to Beginning and Go to End, which navigate to the beginning and

end of the media, respectively
• A volume control that consists of a slider, a mute button, and a maximum volume button

Note: When calculating the size of the control, Flex includes the size of the expanded control area so
that it does not overlap other components when it expands.

Both the collapsed and expanded states of the MediaController control use the backgroundStyle
property. This property determines whether the control draws a chrome background (the default)
or lets the movie background display from behind the controls.

The MediaController control has an orientation setting, horizontal, which you can use to draw
the control with a horizontal orientation (the default) or a vertical one. With a horizontal
orientation, the play bar tracks playing media from left to right. With a vertical orientation, the
play bar tracks the media from bottom to top.

You use the associatedDisplay and associatedController properties in MXML, and the
associateDisplay() and associateController() methods in ActionScript, to associate the
MediaDisplay and MediaController controls with each other.

When you associate a MediaController control with a MediaDisplay control, the
MediaController control updates its controls based on events broadcast from the MediaDisplay
control, and lets the MediaDisplay control react to the settings made by the user from the
MediaController control.

The following example uses the MXML associatedDisplay property to associate the two
controls:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:VBox>

<mx:MediaController id="myMC" associatedDisplay="myMD"
controllerPolicy="on" backgroundStyle="default" />

<mx:MediaDisplay id="myMD"
contentPath="http://myhost.com/media/MyVideo.flv"
height="400" width="400" autoPlay="false" />

</mx:VBox>
</mx:Application>

The order in which you define the controls defines the order in which they appear in your
application. In this example, the MediaController control appears above the MediaDisplay
control. Reversing the order in which you define them in the MXML file reverses the order in
which they display in your application.
372 Chapter 13: Importing Images and Media

The following example creates a MediaDisplay control, and associates it with a MediaController
control. You call either the associateDisplay() or the associateController() method; not
both.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:VBox>

<mx:MediaDisplay id="myMD"
contentPath="http://myhost.com/media/MyVideo.flv"
height="400" width="400" autoPlay="false"
initialize='myMD.associateController(myMC)' />

<mx:MediaController id="myMC" controllerPolicy="on" />

</mx:VBox>
</mx:Application>

In this example, you create a MediaController control and configure it so that the controls are
always visible.

About the MediaPlayback control

The MediaPlayback control is a combination of the MediaController and MediaDisplay controls.
The MediaPlayback control uses the controlPlacement property to determine the layout of the
controls. The possible control placements include top, bottom, left, and right, indicating
where the controls are drawn in relation to the display. For example, a value of right gives a
control a vertical orientation and positions it on the right of the display.

The following example creates a MediaPlayback control:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:VBox>

<mx:MediaPlayback contentPath="http://myhost.com/media/MyVideo.flv"
height="400" width="400" controllerPolicy="on" controlPlacement="left"
autoPlay="false" />

</mx:VBox>
</mx:Application>

In this example, you display an FLV file in the control and start the control in the paused state.
The control bar appears on the left side of the control, and it is always visible.

Sizing a media component

By default, the MediaDisplay and MediaPlayback controls size themselves to the size of the
media. If you specify the width or height property to the control, and either is smaller than the
media’s dimensions, the component does not size itself to the size of the media. Instead, Flex sizes
the media to fit within the component.
Using media controls 373

If Flex resizes the media, the aspectRatio and autoSize properties of the control determine
how to perform the resizing. If aspectRatio is true, which is the default, the media retains its
aspect ratio during resizing.

If you set the autoSize property to true, Flex displays the media at its preferred size unless the
control’s playback area is smaller than the preferred size. In that case, Flex shrinks the media to fit
inside the control. The default value is false.

Adding a cue point

You can use cue points to trigger events when the playback of your media reaches a specified
location. To set cue points, you pass an array to the cuePoints property of the MediaDisplay or
MediaPlayback controls. Each element of the array contains two fields: name, which contains an
arbitrary name of the cue point, and time, which contains the playhead location, in seconds, of
the MediaPlayback or MediaDisplay control with which the cue point is associated.

When the playhead of the MediaPlayback or MediaDisplay control reaches a cue point, it
broadcasts a cuePoint event, as the following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Script>
<![CDATA[

function cpHandler(event){
cp.text="got to cuepoint: " + evt.cuePointName + " " +

evt.cuePointTime;;
}

]]>
</mx:Script>

<mx:VBox>

<mx:MediaPlayback contentPath="//myhost.com/media/MyVideo.flv/MyMP3.MP3"
cuePoint="cpHandler()">

<mx:cuePoints>
<mx:Array>

<mx:Object name="first" time="10" />
<mx:Object name="second" time="20" />

</mx:Array>
</mx:cuePoints>

</mx:MediaPlayback>

<mx:TextArea id="cp" />

<mx:VBox>
</mx:Application>

In this example, the event handler writes a text string to the TextArea control when the control
reaches a cue point. The string contains the name and time of the cue point.
374 Chapter 13: Importing Images and Media

Syntax for the media controls

You use the <mx:MediaDisplay>, <mx:MediaController>, and <mx:MediaPlayback> tags to
define media controls. These controls inherit all the properties of the UIComponent class. For a
list of these properties, see Chapter 5, “Using Flex Components,” on page 87.

The following table lists the properties defined by these controls:

Property Control Type Use Description Req/
Opt

activePlay
Control

MediaController Boolean Property Specifies the play state of the
associated MediaDisplay
control when loaded at runtime.
The default value is true, to play
the media file on load.
Set this property to the same
value as the autoPlay property
of the associated MediaDisplay
control.

Optional

aspectRatio MediaDisplay
MediaPlayback

Boolean Property Specifies whether the control
instance maintains its video
aspect ratio, true, or not, false.
The default value is true.

Optional

associated
Controller

MediaDisplay String Property Specifies a MediaController
control associated with the
MediaDisplay control.

Optional

associated
Display

MediaController String Property Specifies a MediaDisplay
control associated with the
MediaController control.

Optional

autoPlay MediaDisplay
MediaPlayback

Boolean Property Specifies whether the control
immediately starts to buffer and
play, true, or not, false. The
default value is true.
For a MediaDisplay control, set
this property to the same value
as the activePlayControl
property of any associated
MediaController control.

Optional

autoSize MediaDisplay
MediaPlayback

Boolean Property If set to true, Flex displays the
media at its preferred size,
unless the control’s playback
area is smaller than the preferred
size. In that case, Flex shrinks
the media to fit inside the
control.
The default value is false.

Optional

backgroundStyle MediaController String Property Specifies whether the control
draws its chrome background,
default, or not, none. The
default value is default.

Optional
Using media controls 375

bytesLoaded MediaDisplay
MediaPlayback

Number Property Read-only property that
contains the total number of
bytes loaded that are available
for playing.

Optional

bytesTotal MediaDisplay
MediaPlayback

Number Property Read-only property that
contains the total number of
bytes to load into the control.

Optional

contentPath MediaDisplay
MediaPlayback

String Property Specifies the absolute or relative
URL of the media to be
streamed and played.

Optional

controllerPolicy MediaController
MediaPlayback

String Property Specifies whether the control is
hidden and only appears when
the user moves the mouse over
the controller’s collapsed state.
The possible values for this
property are as follows:
• on The control is always

expanded.
• off The control is always

collapsed.
• auto (default) The control

remains in the collapsed state
until the user moves the
mouse pointer over the hit
area. The hit area matches the
area in which the collapsed
control is drawn. The control
remains expanded until the
user moves the mouse pointer
off of the hit area.

Optional

controlPlacement MediaPlayback String Property Specifies where the controller
portion of the MediaPlayback
control is positioned in relation
to its display. The possible
values are top, bottom, left, and
right. The default value is
bottom.

Optional

Property Control Type Use Description Req/
Opt
376 Chapter 13: Importing Images and Media

cuePoints MediaDisplay
MediaPlayback

Array Property Specifies an array of cue point
objects that are assigned to a
given control instance.
The name of the cue point is
arbitrary and should be set so
that its name has meaning when
using listener and trace
events.
The time property specifies the
playhead location of the
MediaPlayback or MediaDisplay
control with which the cue point
is associated.

Optional

fps MediaDisplay
MediaPlayback

Number Property Specifies the frames-per-
second of the video. Flex uses
this value to calculate
milliseconds based on frame
number; it does not actually
affect the display of the video.
The default value is 30.

Optional

horizontal MediaController Boolean Property Specifies the orientation of the
control instance as horizontal,
true, or vertical, false. The
default value is true.

Optional

mostRecentCue
Point

MediaDisplay
MediaPlayback

Object Property Read-only property that
contains a reference to the
cuePoint object of the most
recent cue point.
To retrieve the name and time of
the cue point, use:
mostRecentCuePoint.name
mostRecentCuePoint.time

Optional

mostRecentCue
PointName

MediaDisplay
MediaPlayback

String Property Read-only property that
contains the name of the most
recent cue point.

Optional

mostRecentCue
PointTime

MediaDisplay
MediaPlayback

Number Property Read-only property that
contains the time, in seconds,
within the playback media of the
most recent cue point.

Optional

mediaType MediaDisplay
MediaPlayback

String Property Read-only property that
contains the type of media being
played, Flash video (FLV) or
MP3 file (MP3).

Optional

playheadTime MediaDisplay
MediaPlayback

Number Property Read-only property that
contains the current position of
the playhead (in seconds).

Optional

Property Control Type Use Description Req/
Opt
Using media controls 377

playing MediaDisplay,
MediaPlayback

Boolean Property Read-only property that
contains true if the control is
playing media.

Optional

totalTime MediaDisplay
MediaPlayback

Number Property Read-only property that
contains the total length of the
media, in seconds, for an MP3
file, and undefined for an FLV
file.

Optional

volume MediaDisplay
MediaPlayback

Number Property Specifies an integer from 0 to
100 that represents the volume
level. The default value is 75.

Optional

change MediaDisplay
MediaPlayback

 Event Broadcast continuously while
media is playing. The event
object contains the following
properties:
• target A reference to the

control.
• type The string change.

Optional

click MediaController
MediaPlayback

 Event Broadcast when the user clicks
the Play/Pause button. The
event object contains the
following properties:
• detail The string pause or
play.

• target A reference to the
control.

• type The string click.

Optional

complete MediaDisplay
MediaPlayback

 Event Broadcast when the playhead
reaches the end of the media.
The event object contains the
following properties:
• target A reference to the

control.
• type The string complete.

Optional

Property Control Type Use Description Req/
Opt
378 Chapter 13: Importing Images and Media

cuePoint MediaDisplay
MediaPlayback

 Event Broadcast when the value of a
cue point’s time property is
equal to that of the playhead
location of the MediaPlayback
or MediaDisplay control with
which it is associated.
The event object contains the
following properties:
• cuePointName A string that

contains the name of the
cuePoint.

• cuePointTime An integer that
contains the frame number or
playing duration in seconds.

• target A reference to the
control.

• type The string cuePoint.

Optional

playheadChange MediaController
MediaPlayback

 Event Broadcast by the control when a
user moves the playback slider
or clicks the Go to Beginning or
Go to End button.
The event object contains the
following properties:
• detail A number with the

percent completed.
• type The string
playheadChange.

Optional

progress MediaDisplay
MediaPlayback

 Event Broadcast continuously until the
media has downloaded
completely. The event object
contains the following
properties:
• target A reference to the

control.
• type The string progress.

Optional

volumeChange
(MXML)

volume
(ActionScript)

MediaController
MediaPlayback

 Event Broadcast when the user
adjusts the volume.
In your MXML code, you use
volumeChange as the property
name; in ActionScript code, you
use volume.
The event object contains the
following properties:
• detail An integer between 0

and 100 that indicates the
volume.

• type The string volume.

Optional

Property Control Type Use Description Req/
Opt
Using media controls 379

380 Chapter 13: Importing Images and Media

P
A

R
T

 III
PART III
Improving User Experience
This part describes how to improve the user experience by adding additional functionality to your
application.

The following chapters are included:

Chapter 14: Building an Application with Multiple MXML Files . 383

Chapter 15: Working with ActionScript in Flex . 393

Chapter 16: Using Events . 413

Chapter 17: Creating ActionScript Components . 437

Chapter 18: Creating Cell Renderers . 447

Chapter 19: Using Styles, Fonts, and Themes . 455

Chapter 20: Using Behaviors . 497

Chapter 21: Using ToolTips. 517

Chapter 22: Using the Cursor Manager . 525

Chapter 23: Using the Drag and Drop Manager . 531

Chapter 24: Using the History Manager . 549

Chapter 25: Applying Deferred Instantiation . 557

Chapter 26: Printing from SWF Files. 571

Chapter 27: Creating Accessible Applications . 583

CHAPTER 14
Building an Application with Multiple MXML Files
This chapter describes how to use MXML files as custom tags in other MXML files. MXML
components provide an easy way to extend an existing Macromedia Flex component and
encapsulate the appearance and behavior of a component in a custom MXML tag.

Contents

About MXML components . 383

Creating MXML components . 385

Passing component references . 390

Using interfaces . 391

About MXML components

MXML components are MXML files that you use as custom tags in other MXML files. They
encapsulate and extend the functionality of existing Flex components.

Using MXML components promotes code reuse, simplifies the process of building a complex
application, and makes it easier for more than one developer to contribute to a project.

Using MXML components

An application that uses MXML components consists of an MXML application file with an
<mx:Application> root tag that references one or more components defined in separate MXML
files. Each MXML component extends an existing Flex component or another MXML
component.

You create an MXML component in an MXML file with the component tag name. For example,
a file named MyForm.mxml defines a component named MyForm. Flex uses the spelling and
capitalization of the filename to generate a new class that represents the component.

The root tag of an MXML component is the parent component tag. For example, the following
MXML component extends the standard Flex ComboBox control. The root tag specifies the
http://www.macromedia.com/2003/mxml namespace.
<?xml version="1.0"?>
<!-- MyComboBox.mxml -->
383

<mx:ComboBox xmlns:mx="http://www.macromedia.com/2003/mxml">
<mx:dataProvider>

<mx:Array>
<mx:String>AK</mx:String>
<mx:String>AL</mx:String>

</mx:Array>
</mx:dataProvider>

</mx:ComboBox>

The application in the following example uses the MyComboBox component:
<?xml version="1.0"?>
<!-- MyApplication.mxml -->

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"
xmlns:local="*">

<local:MyComboBox/>

</mx:Application>

Referencing MXML components

Depending on where an MXML component is located, you refer to it in one of the following
ways:

• If you have components in the same directory as the application file or in an ActionScript
classpath directory (not a subdirectory) defined in the flex-config.xml file, you can refer to the
components as the following example shows. In this example, the local namespace (*) is
mapped to the prefix local.
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

xmlns:local="*" >

<local:MyButton />

<mx:Application>

If the same file exists in an ActionScript classpath directory and the application directory, Flex
uses the file in the application directory.

• If you have components in a subdirectory of the directory that contains the application file or
in a subdirectory of the ActionScript classpath directory defined in the flex-config.xml file, you
can refer to the components as the following example shows. In this example, the foo.bar
namespace is mapped to the comp prefix. The MyButton.mxml file is located in the foo/bar
directory.
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

xmlns:comp="foo.bar.*" >

<comp:MyButton />

<mx:Application>
384 Chapter 14: Building an Application with Multiple MXML Files

If the same file exists under an ActionScript classpath subdirectory and the application
subdirectory, Flex uses the one under the application subdirectory.

The WEB-INF/flex/user-classes directory is the default ActionScript classpath directory. If you
plan to share components between applications, you should place them in the ActionScript
classpath directory. You configure the ActionScript classpath in the <actionscript-classpath>
tag in the flex-config.xml file. The following example shows the default <actionscript-
classpath> tag:
<compiler>

<actionscript-classpath>
<path-element>/WEB-INF/flex/user_classes</path-element>

</actionscript-classpath>
</compiler>

Note: File lookup is case-sensitive on all file systems. On case-insensitive file systems, such as the
Macintosh and Windows file systems, the Flex compiler generates a case-mismatch error when you
use a component with the incorrect case. On case-sensitive file systems, such as the UNIX file
system, the Flex compiler generates a component-not-found error when you use a component with
the incorrect case.

Creating MXML components

You can create the following types of MXML components:

• Controls
• Containers
• Applications

This section describes how to create and use each type of component and how to add properties
and methods to a custom MXML component.

Creating and using a control

To change the appearance or behavior of a standard Flex control, you can extend it by using its tag
as the root tag of an MXML component file.

For example, the following custom ComboBox control presets a list of states in <mx:String>
tags:
<?xml version="1.0"?>
<!-- StateComboBox.mxml -->

<mx:ComboBox xmlns:mx="http://www.macromedia.com/2003/mxml">
<mx:dataProvider>

<mx:Array>
<mx:String>AK</mx:String>
<mx:String>AL</mx:String>

</mx:Array>
</mx:dataProvider>

</mx:ComboBox>
Creating MXML components 385

The following MXML application file references the StateComboBox control in the
<StateComboBox> tag:
<?xml version="1.0"?>
<!-- myapp.mxml -->

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"
xmlns:local="*">

<local:StateComboBox id="state"/>

</mx:Application>

Creating and using a container

To change the appearance or behavior of a standard Flex container, you can extend it by using its
tag as the root tag of an MXML file. Containers typically contain child controls and other
containers.

For example, the following component contains an address form. One of the <mx:FormItem> tags
contains a <local:StateComboBox> tag:
<?xml version="1.0"?>
<!-- AddressForm.mxml -->

<mx:Form xmlns:mx="http://www.macromedia.com/2003/mxml" xmlns:local="*">

<mx:FormItem label="Name">
<mx:TextInput id="name" />

</mx:FormItem>

<mx:FormItem label="Street">
<mx:TextInput id="street" />

</mx:FormItem>

<mx:FormItem label="City" >
<mx:TextInput id="city" />

</mx:FormItem>

<mx:FormItem label="State" >
<local:StateComboBox id="state"/>

</mx:FormItem>

</mx:Form>

The following application file references the AddressForm component in the <AddressForm> tag:
<?xml version="1.0"?>
<!-- myapp.mxml -->

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" xmlns:local="*"
height="300">

<local:AddressForm/>

</mx:Application>
386 Chapter 14: Building an Application with Multiple MXML Files

Note: If you use child tags in an MXML component file, you cannot add child tags when you use the
component as a custom tag in another MXML file. If you do not use child tags in an MXML
component file, you can add child tags when you use the component as a custom tag.

Creating and using an application component

When you reference an MXML application file as an MXML component at the root of another
MXML file, the MXML component inherits all of the styles and children of the original file.

For example, the following MXML application file declares a WebService object called
weatherService in an <mx:WebService> tag:
<?xml version="1.0"?>
<!-- WeatherBase.mxml -->

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">
<mx:WebService id="weatherService"
wsdl="http://weather.unisysfsp.com/PDCWebService/
WeatherServices.asmx?WSDL">
</mx:WebService>
...

</mx:Application>

The following MXML file uses the WeatherBase component as its root tag, so it inherits the
WebService declared in the WeatherBase.mxml file:
<?xml version="1.0"?>
<!-- weather1.mxml -->

<local:WeatherBase xmlns:local="*" xmlns:mx="http://www.macromedia.com/2003/
mxml">
<mx:TextArea id="zipcode"/>
<mx:Button id="go"/>
<mx:Script>

<![CDATA[
go.click=function() {
weatherService.GetWeather(zipcode.text);
// weatherService is defined in the parent class
}

]]>
</mx:Script>

</local:WeatherBase>

Adding custom properties and methods to a component

You can define properties of MXML components in MXML tags or as ActionScript variables. You
can define a method of an MXML component as an ActionScript function.

Defining properties in MXML tags

In MXML, you can use the <mx:String>, <mx:Number>, and <mx:Boolean> tags to define
properties that take String, Number, or Boolean values, respectively. When using one of these
tags, you must specify an id, which becomes the property name.
Creating MXML components 387

Optionally, you can specify an initial value in the body of the tag, or you can use the source
property to specify the contents of an external URL or file as the initial property value. If you use
the source property, the body of the tag must be empty. The initial value can be static data or a
binding expression.

The following examples show initial properties set as static data and binding expressions; values
are set in the tag bodies and in the source properties:
<!-- String property examples: -->
<mx:String id="myStringProperty">Welcome, {CustomerName}.</mx:String>

<mx:String id="myStringProperty1" source="http://www.somesite.com/file"/>

<!-- Number property examples: -->
<mx:Number id="myNumberProperty">15</mx:Number>

<mx:Number id="minutes">{numHours * 60}</mx:Number>

<!-- Boolean property examples: -->
<mx:Boolean id="myBooleanProperty">true</mx:Boolean>

<mx:Boolean id="passwordStatus">{passwordExpired}</mx:Boolean>

The MXML component in the following example contains a property defined in an
<mx:String> tag:
<?xml version="1.0"?>
<!-- StateComboBox.mxml -->

<mx:ComboBox xmlns:mx="http://www.macromedia.com/2003/mxml">
<mx:String id="myStringProperty"/>
<mx:dataProvider>

<mx:Array>
<mx:String>AK</mx:String>
<mx:String>AL</mx:String>

</mx:Array>
</mx:dataProvider>

...
</mx:ComboBox>

The following MXML application file references the StateComboBox control in the
<local:StateComboBox> tag:
<?xml version="1.0"?>
<!-- myapp.mxml -->

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"
xmlns:local="*">

<local:StateComboBox id="state" myStringProperty="Hello World" />

</mx:Application>
388 Chapter 14: Building an Application with Multiple MXML Files

Defining properties and methods in ActionScript

You can define properties and methods of an MXML component in an <mx:Script> tag. The
<mx:Script> tag must be an immediate child of the root tag of the MXML file. A public
ActionScript function in an <mx:Script> tag becomes a method of the component. A public
variable declaration or a set function in an <mx:Script> tag becomes a property of the
component. You should precede the variable or set function with the [Inspectable] metadata tag if
you plan to use the component in an authoring tool such as the Brady tool. For more information
about defining properties in ActionScript, see Chapter 15, “Working with ActionScript in Flex,”
on page 393.

In the following example, the MyComboBox component contains a MyNumberProperty
property, a MyStringProperty property, and a getStatus() method, in addition to the standard
ComboBox methods and properties:
<?xml version="1.0"?>
<!-- MyComboBox.mxml -->

<mx:ComboBox xmlns:mx="http://www.macromedia.com/2003/mxml">
<mx:Script>

<![CDATA[
// This variable is a property of the component:
public var myNumberProperty:Number;

// This variable is a property of the component:
public var myStringProperty:String;

// This function is a method of the component.
public function getStatus() {

return "Selection was changed \nNumber is " + myNumberProperty;
}

]]>
</mx:Script>
<mx:dataProvider>

<mx:Array>
<mx:String>AK</mx:String>
<mx:String>AL</mx:String>

</mx:Array>
</mx:dataProvider>

</mx:ComboBox>

You can call a component’s custom methods and access its properties just as you would any
instance method or component property, as the following application shows:
<?xml version="1.0"?>
<!-- MyApplication.mxml -->
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

xmlns:local="*">

<local:MyComboBox id="mcb" myNumberProperty="4" change="ta1.text =
mcb.getStatus();"/>
Creating MXML components 389

<mx:TextArea id="ta1" width="300" height="150" />

</mx:Application>

Declaring component metadata

In an ActionScript class, you can declare metadata tags inside brackets. The code in the following
example creates a custom event:
[Event("MyEvent")]

In an MXML component, you can declare metadata tags in an <mx:Metadata> tag, as the
following example shows:
<mx:Metadata>

[Event("itemSelected")]
[Event("checkOut")]

</mx:Metadata>

For more information about metadata tags, see Chapter 41, “Creating Advanced Components in
Flash MX 2004,” on page 857.

Passing component references

This section describes how to reference MXML components in other objects, and how to
reference application objects in an MXML component.

Referencing an MXML component in other application objects

Just like the methods and properties of a standard component, you can access all of the methods
and properties of an MXML component in an <mx:Script> block. Statements that call methods
or set properties must be contained in the body of a function.

Properties have simple or complex types, which govern the syntax used to set them in MXML. If
you set a property to a value in the MXML file that defines a component, you can override that
value in an instance of that component used in another file.

Referencing application objects in an MXML component

To pass object references to an MXML component from other components in an application, you
can create a property in the MXML component to represent the Application object. In the
following example, the MXML component contains a property called app that is of type App.
Creating a property of type App provides strong typing benefits and ensures that binding works
correctly. The text property of the mytext TextInput control is set to the text property value of
the text1 TextInput control that is defined in the application file.
<?xml version="1.0"?>
<!-- MyComponent.mxml -->

<mx:VBox label="User interface" xmlns:mx="http://www.macromedia.com/2003/
mxml">
<mx:Script>

<![CDATA[
390 Chapter 14: Building an Application with Multiple MXML Files

var app:App;
]]>

</mx:Script>

 <mx:Button id="mybutton1" />
 <mx:TextInput id="mytext" text="{app.text1.text}"/>
</mx:VBox>

In the application file, you can bind the Application object to the MXML component’s
application property. In the following example, the MXML component has access to all of the
Application object’s children, including the text property value of the text1 TextInput control:
<!-- App.mxml -->
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

xmlns:local="*">
...
<local:MyComponent id="view1" app="{this}" />

<mx:TextInput id="text1" text="Hello"/>
...

</mx:Application>

Using interfaces

Interfaces are a type of class that you design to act as an outline for your components. When you
write an interface, you provide only the names of public methods rather than any
implementation. If, for example, you define two methods in an interface and then implement
that interface, the implementing class must provide implementations of those two methods.

Interfaces in ActionScript can only declare methods; they cannot specify constants. The benefits
of interfaces are that you can define a contract that all classes implementing that interface must
follow. In addition, if your class implements an interface, instances of that class can also be cast to
that interface.

Custom MXML components can implement interfaces just as other ActionScript classes can. To
do this, you use the implements attribute. All MXML tags support this attribute.

The following code is an example of a simple interface that declares several new methods:
// The following is in a file named SuperBox.as.
interface SuperBox {

function selectSuperItem():String;
function removeSuperItem():Boolean;
function addSuperItem():Boolean;

}

A class that implements the SuperBox interface uses the implements attribute to point to its
interface and must provide an implementation of the new methods. The following example of a
custom ComboBox component implements the SuperBox interface:
<?xml version="1.0"?>
<!-- MyComboBox.mxml -->

<mx:ComboBox xmlns:mx="http://www.macromedia.com/2003/mxml"
implements="SuperBox">
<mx:Script>
Using interfaces 391

function selectSuperItem():String {
return "Super Item was selected";

}
function removeSuperItem():Boolean {

return true;
}
function addSuperItem():Boolean {

return true;
}

</mx:Script>
<mx:dataProvider>

<mx:Array>
<mx:String>AK</mx:String>
<mx:String>AL</mx:String>

</mx:Array>
</mx:dataProvider>

</mx:ComboBox>

All methods declared in an interface are considered public. If you define an interface and then
implement that interface but do not implement all of its methods, the MXML compiler throws
an error.

Methods implemented in the custom component must have the same return type as their
corresponding methods in the interface. If no return type is specified in the interface, the
implementing methods can declare any return type.

Getter and setter functions work differently in interfaces. The special syntax for function get
propertyName() is not supported.
392 Chapter 14: Building an Application with Multiple MXML Files

CHAPTER 15
Working with ActionScript in Flex
Macromedia Flex provides you with a way to build applications with a set of MXML tags,
however, you also use ActionScript to perform certain actions with the Flex components. You use
ActionScript to define custom functions and methods, call ActionScript functions, and work with
components.

This chapter describes how to perform these actions using ActionScript in your MXML
applications.

Contents

Using ActionScript in Flex . 393

Working with components. 394

About scope . 398

Changing the appearance of a component at runtime . 407

Importing external resources . 408

Using the doLater() method. 411

Using ActionScript in Flex

Macromedia Flex provides a means of building applications with a set of MXML tags, but you
also need ActionScript to perform certain actions with the components that are represented by
those tags.

You use ActionScript in your Flex applications to do the following:

• Define custom functions and methods
• Access document and application scopes
• Call ActionScript functions
• Create and destroy components

This chapter describes how to perform these actions using ActionScript in your Flex applications.
For more basic information about using ActionScript, see Chapter 3, “Using ActionScript,” on
page 45.
393

For additional information about using ActionScript in Macromedia Flash development, see Flex
ActionScript Language Reference.

Working with components

ActionScript blocks in your MXML files or ActionScript classes in external packages provide a
powerful way to manipulate your MXML components.

You use scripts to attach properties, methods, and events to the object at the root of the MXML
document. In an MXML application, the scripts are attached to the Application object (which
corresponds to the <mx:Application> tag) or whatever the top-level tag in the current document
is. In an MXML component, the scripts are attached to the component object.

This section describes how to work with components and their properties with ActionScript.

Component basics

To work with a component in ActionScript, you must define an id property for that component
in the MXML tag. This property is optional if you do not want to access the component with
ActionScript.

For example, the following code sets the id property of the Button control to myButton:
<mx:Button id="myButton" label="Click Me" />

After you define the Button control’s id property, you can explicitly refer to this Button control’s
instance with its id property in any ActionScript class or script block. By referring to a
component’s instance, you can modify its properties and call its methods.

For example, the following ActionScript block changes the value of the Button control’s label
property when the user clicks the button:
<mx:Button id="myButton" label="Click Me" click="setLabel();" />

<mx:Script>
<![CDATA[
function setLabel() {

myButton.label = "Click";
}
]]>

</mx:Script>

MXML applications have a flat namespace. This means that all id properties must be unique
within a document. It also means that you can address any id property from anywhere in the
application: functions, external class files, imported ActionScript files, or inline scripts. You can
think of an id property as a public variable, so in order to access it, you must reference the class in
which it occurs.

Calling component methods

You can invoke the public methods of a component instance in your Flex application using the
following dot-notation syntax:
componentInstance.method([parameters]);
394 Chapter 15: Working with ActionScript in Flex

The following example invokes the sortList() method of the list1 List control when the user
clicks the button, which invokes the public sortItems() method of the List control:
<mx:List id="list1" initialize="list1_init();" />

<mx:Script>
<![CDATA[
function sortList(list_obj) {

list_obj.sortItems();
}

function list1_init() {
// Populate list with values.

}
]]>

</mx:Script>

<mx:Button id='b' label="Sort List 1" click="sortList(list1);" />

To invoke a method from a child document (such as a custom MXML component), you can use
the parentApplication, parentDocument, or Application.application properties. For more
information, see “About Document and Application scopes” on page 403.

Initializing components

Every component supports an initialize event, which lets you define actions that occur before
Flex draws the component on the screen. To initialize a component with ActionScript, set the
initialize property to point to a function that you create in an <mx:Script> block.

Note: Because Flex invokes the initialize event before drawing the component, you cannot
access size and position information of that component from within the initialize event handler unless
you use the creationComplete event handler. For more information on the order of initialization
events, see “About component startup order” on page 427.

The following example points the initialize property to the initDate function. When Flex
finishes instantiating the Label control and before it draws the first window of the application,
Flex calls the initDate function.
<mx:Label id="label1" text = "Today's Date: " initialize="initDate();"

width="300" />

<mx:Script>
<![CDATA[
function initDate() {

label1.text = label1.text + Date();
}
]]>

</mx:Script>

You can also express the previous example without an explicit function call by adding the
ActionScript code in the component’s inline definition, as the following example shows:
<mx:Label id="label1" text = "Today's Date: " initialize="label1.text =

label1.text + Date();" width="300" />
Working with components 395

As with other calls that are embedded within component definitions, you can add multiple
ActionScript statements to the initialize property by separating each function or method
call with a semicolon. You can pass values to the functions just as you would with any other
function call.

The following example calls both the initDate and the changeColor functions when the label1
component is instantiated:
<mx:Label id="label1" text = "Today's Date: "

initialize="initDate();setColor(‘blue’);" width="300" />
<mx:Script>

<![CDATA[
function initDate() {

// function implementation
}

function setColor(String:c) {
// function implementation

}
]]>
</mx:Script>

To avoid complicating the tag definition, you should generally create a separate ActionScript
function that handles multiple statements, rather than adding them inline.

Instantiating ActionScript objects

If you declare a variable as a class member, which is what you do when you have it in a script
block outside any function, and set that to anything nonscalar (such as an object), Flex accesses
the variable by reference and it is shared across instances. The Application class has only one
instance, so this is not a problem. Most classes, however, cannot do this, since the compiler
disallows setting nonscalar property defaults directly. You must instantiate the new object inside a
function call, as the following example shows:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

initialize="myInitialize()">
<mx:Script>

<![CDATA[

import A;
var myA:A;

function myInitialize() {
myA = new A();

}
]]>

</mx:Script>
</mx:Application>
396 Chapter 15: Working with ActionScript in Flex

Using component properties

Functions in ActionScript blocks can read and write component properties. You use the following
dot-notation to specify a property:
componentInstance.property = value;

The following example changes the label property of the Button control when the user clicks the
button:
<mx:Button id='b' label="Change Label" click="changeLabel(b,'New');" />

<mx:Script>
<![CDATA[

function changeLabel(obj,lbl) {
obj.label = lbl;

}
]]>
</mx:Script>

Adding component properties

Functions and statements in ActionScript blocks can define new properties for the top-level
component of the current file. For example, adding a variable declaration in your root MXML file
adds a new property to the application object. You can then access this property from other
ActionScript functions.

To see all properties of the application object, you can iterate over it using the following
sample code:
<mx:Script>

<![CDATA[
function getAppProps() {

var fl:String="";
for (var foo in application) {

fl = fl + "application." + foo + " = " + application[foo] + "\n";
}
return fl;

}
]]>

</mx:Script>

As with any variable declared in ActionScript, the property is a member variable of the class. For
more information on scope in ActionScript, see “About scope” on page 398.

The following example creates a new property, count, and increments its value each time the user
clicks the button:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script>
<![CDATA[
var count:Number = 0;

public function getCount():Number {
return count++;
Working with components 397

}
]]>
</mx:Script>

<mx:Button id="b1" label="Get Count" click="taCount.text=getCount();"/>

<mx:TextArea id="taCount" />

</mx:Application>

If you are executing ActionScript code within a child document, such as a custom MXML
component, you can access the application object’s properties using the parentApplication or
Application.application properties. For more information, see “About Document and
Application scopes” on page 403.

Object property introspection

You can use a simple for in loop in ActionScript to view all properties of an object. The following
sample function takes an object as an argument and traces all the properties of that object:
function dumpObj (obj) {

for (var i in obj) {
trace (i + " : " + obj[i]);

}

}

You can also output the trace statements to a TextArea in your Flex applications, as the following
example shows:
<?xml version="1.0" encoding="iso-8859-1"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script>
function dumpObj (obj) {

for (var i in obj) {
ta1.text = ta1.text + i + " : " + obj[i] + "\n";

}
}

</mx:Script>

<mx:TextArea id="ta1" width="400" height="500" />

<mx:Button label="Introspect Me" click="dumpObj(this)" />

</mx:Application>

About scope

Scoping in ActionScript is largely a description of what the this keyword refers to at any given
point. Since ActionScript lets you pass functions and call those functions using different scopes,
the this keyword can refer to different objects at different times. In general, an object’s methods
execute within the context of the object and not the calling object.
398 Chapter 15: Working with ActionScript in Flex

In your application’s core MXML file, you can access the Application object using the this
keyword. However, in custom ActionScript and MXML components, event handler objects, or
external ActionScript class files, Flex executes in the context of those objects and classes, and the
this keyword refers to the current scope and not the Application scope.

You can access the parent Document and Application objects using the following methods:

• Reference the parentDocument, parentApplication, or Application.application
properties.

• Pass a function reference to the target object.

Flex includes an Application.application property that you can use to access the root
application. In addition, you can use the parentDocument property to access the next level up in
the document chain of a Flex application, or the parentApplication property to access the next
level up in the application chain.

Scoping in event handlers can be confusing. Event handlers that are declared as objects execute in
their own scope and not in the scope of the object that triggered the event or the application. As a
result, you can use the Delegate class to pass a reference to the proper scope when defining an
event handler.

The following sections discuss function scope, variable scope, reserved words, the this keyword,
and using the Application.application, parentApplication, and parentDocument
properties to access scopes outside of the current context. For more information about event
handler scoping, see “Scoping in event handlers” on page 421.

Scoping functions

In ActionScript, you can pass a function from one object to another. When the second object
invokes the function, the function runs in the context of the second object. Sometimes you must
run the function in the scope of the original object, such as when you define an event handler as
an object.

The following example defines a new object with a single property and a single method:
var myObj = new Object();
myObj.color = "red";

myObj.setColor = function(c) {
this.color = c;

}

You can pass myObj to a method and it can call the myObj.setColor("green") method. In this
case, this refers to myObj and this.color is the color property of myObj, as you would
expect. However, in ActionScript you can assign a function to a property of a second object, as the
following example shows:
var myOtherObj = new Object();
myOtherObj.setOtherColor = myObj.setColor;

In this example, in a call to the myOtherObj.setOtherColor() method, this refers to
myOtherObj. If you have logic in the myObj.setColor() method that assumes that this refers
to myObj, unexpected results can occur.
About scope 399

ActionScript lets you pass the scope of a function from one object to another. Some global
functions in ActionScript even take scope arguments, such as setInterval().

Flex provides a Delegate object that you can use to wrap a function with a particular scope object.
When you call the function, it executes in the scope that you intended.

The Delegate utility class is in the mx.utils package. You create an instance of the Delegate utility
class with the create() method, as the following example shows:
mx.utils.Delegate.create(scope, function)

The Delegate class ensures that the function meant to run in myObj’s scope continues to run in
that scope. The following code shows how you would use the Delegate class to do this:
myOtherObj.setOtherColor = mx.utils.Delegate.create(myObj, myObj.setColor);

With the Delegate class, calling the myOtherObj.setOtherColor("green") method is the same
as calling the myObj.setColor("green") method.

The Delegate utility class is especially useful when including per-instance event handlers on web
service calls. For example, you can write functions that you want called when the service returns
or faults, such as the following:
function myResultHandler(result) {
 this.myResultLabel.text = result.value;
}
function myFaultHandler(fault) {
 this.alert('There was a problem.');
}

Without the Delegate utility class, your event handlers might resemble the following:
var call = myService.someMethod();
call.onResult = myResultHandler;
call.onFault = myFaultHandler;

When you run this, Flex does not set the value of the text label or raise the Alert; Flex calls the
functions themselves. In this case, you add a Delegate class to execute functions in the proper
scope, as the following code shows:
import mx.utils.*;
var call = myService.someMethod();
call.onResult = Delegate.create(this, myResultHandler);
call.onFault = Delegate.create(this, myFaultHandler);

If you cannot determine what the this keyword refers to in a function, you can add a breakpoint
using the fdb debugger utility. In the breakpoint, trace the value of this with a statement like
"print *this". For more information, see “Using the debugger” on page 717.

Variable scope

Variables declared within a function are locally scoped to that function. These variables can share
the same name as variables in outer scopes, and they do not affect the outer-scoped variable.
General programming practices advise that you scope variables locally. You can refer to the outer-
scoped variable with the this. prefix.
400 Chapter 15: Working with ActionScript in Flex

In the following example, the value of xxx is set in the outer scope to 5. The doSomething()
method called during initialization defines a locally scoped variable of the same name and sets it
to 10. When the user clicks the button, the doSomethingElse() method sets the value of the
TextArea to the value of the outer-scoped variable.
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

initialize="doSomething()">

<mx:Script>
<![CDATA[

var xxx = 5;

function doSomething() { //On initialization, sets value of TextArea to 10.
var xxx = 10;
ta1.text = xxx;
trace(this.xxx); // Traces 5, since this.xxx refers to the outer scope.

}

function doSomethingElse() {
ta1.text = xxx;

}
]]>
</mx:Script>

<mx:VBox>
<mx:TextArea text="" id="ta1"/>
<mx:Button id="b1" label="Do Something Else" click="doSomethingElse();"/>

</mx:VBox>

</mx:Application>

If you remove the variable declaration from the doSomething() method, the function sets the
value of the outer variable xxx to 10, as the following code shows:
function doSomething() { //On initialization, sets value of TextArea to 10.

xxx = 10;
ta1.text = xxx;

}

Variables, methods, and functions in classes, interfaces, and included files used in the MXML file
are available in the application scope. The following example shows the contents of two files. The
first file, myApp.mxml, calls the getCount() function, which is in the second file, myInclude.as:

The following example shows the contents of the myApp.mxml file:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script source="myInclude.as" />

<mx:Button id="b1" label="Compute Sum" click="taCount.text=getCount();"/>

<mx:TextArea id="taCount" />

</mx:Application>

The following example shows the contents of the myInclude.as file:
About scope 401

var count:Number = 0;

public function getCount():Number {
return count++;

}

Using the this keyword

The this keyword refers to the object in the currently executing scope. From inside an object
method, use the this keyword to reference the object instance. You can also use the this
keyword to pass a class instance as an argument of a method, to itself or another class. This is a
common way of setting up a callback mechanism in your classes.

In an <mx:Script> tag, the this keyword refers to the application object, or the top-level
component. If you are executing a method in an ActionScript or MXML component, the this
keyword refers to that component and not the application root.

The following example shows accessing the application object:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script>
<![CDATA[

function startup() {
this.loginPanel.setVisible(true);
this.loginPanel.setModel(true);

}
]]>

</mx:Script>

<mx:Window id="loginPanel" title="Login" width="250" height="150"
visible="false" >

<mx:VBox verticalAlign="top" marginRight="8" marginLeft="8" marginTop="8"
marginBottom="8">

<mx:HBox horizontalAlign="center">
<mx:Button id="b1" label="Login" click="this.startup()"/>
<mx:Button id="b2" label="Cancel"

click="this.loginPanel.setVisible(false)"/>
</mx:HBox>

</mx:VBox>

</mx:Window>
</mx:Application>

One common use for the this keyword is to allow access to a field variable when there is a local
variable with the same name in a different scope. The following example shows how using the
this keyword can avoid confusion, because foo is a local variable and a property of the class:
<mx:Script>

<![CDATA[
var foo:String;
402 Chapter 15: Working with ActionScript in Flex

function setFoo(foo:String) : Void {
this.foo = foo;

}
]]>

</mx:Script>

In class definitions, you do not have to refer to member variables and functions using the this
keyword, but you can.

As with using this in <mx:Script> blocks, using the this keyword in any event handler points
to the top-level object in the MXML file that contains that event handler. It does not point to the
event object or to the object that triggered the event, unless that is the top-level object.

In an ActionScript class file, this refers to the class defined by that file. In the following example,
the this keyword refers to an instance of myClass. Because this is implicit, you do not need to
include it.
class myClass {

var _x:Number = 3;

function get x():Number {
return this._x;

}

function set x(y:Number):Void {
if (y > 0) {

this._x = y;
} else {

this._x = 0;
}

}
}

About Document and Application scopes

Flex applications consist of multiple documents and multiple applications. The following sections
describe the Document and Application objects, and how to use properties to access their scopes.

About the Application object

Flex defines any MXML file that contains an <mx:Application> tag as an Application object. In
most cases, your Flex application has one Application object, which is the root document of the
application. Some applications use the Loader control to add additional applications.

An Application object has the following characteristics:

• Application objects are MXML files with an <mx:Application> tag.
• Most Flex applications have a single Application object.
• The root Application is the first application that is loaded.
• An Application object is also a Document object, but a Document object is not always an

Application object.
About scope 403

• You can refer to the root Application as mx.core.Application.application from anywhere
in the Flex application.

• If you load multiple nested applications using the Loader control, you can access the scope of
each one from the bottom up using parentApplication,
parentApplication.parentApplication, and so on.

About the Document object

Flex creates a Document object for every MXML file used in a Flex application. For example, you
can have a root document, which is also an Application object, and from there, use other MXML
files that define custom controls.

A Document object has the following characteristics:

• All *.mxml files used by a Flex application are Document objects, including the root
Application’s document.

• Custom ActionScript component files are Document objects.
• You cannot directly request documents that are not Application objects. Macromedia Flash

Player cannot compile a SWF file from a file that does not contain an <mx:Application> tag.
• Documents usually consist of MXML custom controls that you use in your Flex application.
• You can access the parent document’s scope using parentDocument,

parentDocument.parentDocument, and so on.
• Flex provides an isDocument() method so that you can detect if any given object is a

Document object.

Accessing Document and Application scopes

In your application’s core MXML file, you can access the methods and properties of the
Application object using the this keyword. However, in custom ActionScript and MXML
components, event handler objects, or external ActionScript class files, Flex executes in the
context of those objects and classes, and the this keyword refers to the current Document object
and not the Application object. You cannot refer to a control or method in the application from
one of these child documents without specifying the location of the parent document.

Flex provides the following properties that you can use to access parent documents:

• mx.core.Application.application The top-level application, regardless of where in the
document tree your object executes.

• parentDocument The parent document of the current document. You can use
parentDocument.parentDocument to walk up the tree of multiple documents.

• parentApplication The application object in which the current object exists. Since Flex
applications can load applications into applications, you can access the immediate parent
application using this property. You can use parentApplication.parentApplication to
walk up the tree of multiple applications.

The following sections describe these properties.
404 Chapter 15: Working with ActionScript in Flex

Using the mx.core.Application.application property

To access properties and methods of the top-level application, you can use the application
property of mx.core.Application. This property provides a reference to the Application object
from anywhere in your Flex application.

You can use the application property in a function or in the tag of an MXML component:
<mx:Button click="mx.core.Application.application.doSomething();" />

Rather than use the full package name when referring to the members of the Application class,
you can import the package at the top of the class, as the following example shows:
import mx.core.Application;
function B1_initialize(event) {

...
Application.application.B1.label="myButton";

}

The application property is especially useful in applications that have one or more custom
MXML or ActionScript components that each use a shared set of data. At the application level,
you often need to store information and provide utility functions that any of the components
can access.

For example, suppose that you store the user’s name at the application level and you implement
a utility function, getSalutation(), which returns the string “Hi, username”. The following
example MyApplication.mxml file shows the application source that defines the
getSalutation() method:
<mx:Script>

var userName:String;
function getSalutation() {

return "Hi, " + userName.substring(0, userName.indexOf(" "));
}

</mx:Script>

The <mx:Script> tag contents, event handlers, and the bindings of a component execute in the
context of that component and not the context of the application. To access the userName and
call the getSalutation() method in your MXML components, you can use the application
property, as the following example code from the MyComponent.mxml component shows:

MyComponent.mxml:
<mx:Script>

function doOneThing() {
doAnotherThing(mx.core.Application.application.name);

}
</mx:Script>

<mx:VBox>
<mx:Label text="{mx.core.Application.application.getSalutation()}" />
...

</mx:VBox>
About scope 405

The Alert static function presents a special case. You cannot invoke it using the
parentApplication property. Instead, you must use the full package name if you want an Alert
to show up from inside a custom component.

The following MXML file uses the myAccordion custom component:
<mx:Application xmlns:my="*" xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:TabNavigator widthFlex="1" heightFlex="1" id="tnTop">
<my:myAccordion/>

</mx:TabNavigator>
 </mx:Application>

The following custom component (myAccordion.mxml) displays an Alert when a user clicks the
button:
<mx:Accordion xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:VBox widthFlex="1" heightFlex="1" label="VBox" id="vb1">
<mx:Button label="Button" click="mx.controls.Alert.show('Alert!');"/>

</mx:VBox>
</mx:Accordion>

Using the parentDocument property

To access the parent Document of an object, you can use the parentDocument property. All
classes that inherit from the UIObject class have a parentDocument property.

The following example from a custom MXML component uses the parentDocument property to
define an Accordion container that is slightly smaller than the enclosing container:
<mx:Accordion width="{parentDocument.width*.80}"

height="{parentDocument.height*.50}" label="Accordion"
xmlns:mx="http://www.macromedia.com/2003/mxml">

You use the parentDocument property in MXML scripts to go up a level in the chain of
document objects. You can use the parentDocument to walk this chain using multiple
parentDocument properties, as the following example shows:
parentDocument.parentDocument.doSomething();

The parentDocument property of the root Application object is not a reference to itself. For the
Application object, parentDocument is undefined.

The parentDocument is typed as an Object so that you can access properties and methods on
ancestor Document objects without casting.

Every UIObject class has an isDocument() method that returns true if that UIObject class is a
document object and false if it is not. If a UIObject class is a document object, it has a
documentDescriptor property. This is a reference to the descriptor at the top of the generated
descriptor tree in the generated document class.

For example, suppose that AddressForm.mxml creates a subclass of the <mx:Form> to define an
address form, and MyApp.mxml creates two instances of it: <AddressForm id="shipping"> and
<AddressForm id="billing">.
406 Chapter 15: Working with ActionScript in Flex

In this case, the shipping object is a Document object. Its documentDescriptor property
corresponds to the <mx:Form> tag at the top of the AddressForm.mxml file (the definition of the
component), while its descriptor corresponds to the <AddressForm id="shipping"> tag in
MyApp.mxml file (an instance of the component).

Walking the document chain using the parentDocument property is similar to walking the
document chain using the parentApplication property.

Using the parentApplication property

Since applications can load other applications, you can have a hierarchy of applications, similar to
the hierarchy of documents within each application. Every UIObject class has a
parentApplication read-only property that references the Application object in which the
object exists. The parentApplication property of an Application object is never itself; it is either
the Application object into which it was loaded, or undefined (for the root Application object).

Walking the application chain using the parentApplication property is similar to walking the
document chain using the parentDocument property.

Changing the appearance of a component at runtime

You can modify the look, size, or position of a component at runtime using the following
component properties or ActionScript methods:

• x and y
• width and height
• setStyle(stylename, value)

You can only set the x and y properties of a component when the component is within a Canvas
container. All other containers perform automatic layout to set the x and y properties of their
children using layout rules.

For example, you could use the x and y properties to reposition a Button control 10 pixels to the
right and 10 pixels down in response to a Button control click event, as the following example
shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script>
<![CDATA[

function moveVBox(){
myButton.x = myButton.x +10;
myButton.y = myButton.y +10;

}
]]>
</mx:Script>

<mx:Canvas>
<mx:Button id="myButton" label="Move Button" click="moveButton()"/>

</mx:Canvas>
Changing the appearance of a component at runtime 407

</mx:Application>

In this example, you can move the Button control without concern for other components.
However, moving a component in an application that contains multiple components, or
modifying one child of a container that contains multiple children, can cause components to
overlap, or in some other way affect the layout of the application. Therefore, be careful when you
perform runtime modifications to container layout.

You can set the width and height properties for a component regardless of the container that
holds it. The next example increases the width and height of a Button control by 10 pixels each
time the user selects it:
<mx:Script>

<![CDATA[
function resizeButton() {

myOtherButton.height = myOtherButton.height + 10;
myOtherButton.width = myOtherButton.width + 10;

}
]]>

</mx:Script>

<mx:VBox borderStyle="solid" height="200" width="200" >

<mx:Button id="myOtherButton" label="Resize Button" click="resizeButton()"/>

</mx:VBox>

If the container holding the Button control is any container other than a Canvas container, it
repositions its children based on the new size of the Button control. The Canvas container
performs no automatic layout, so changing the size of one of its children does not cause the
position or size of any other children within it to be modified.

For more information on sizing, see Chapter 8, “Introducing Containers,” on page 237.

Importing external resources

Flex lets you import external symbols from FLA files into your ActionScript code blocks and
classes. These resources can be images, MP3 files, SWF files, and SWC files. You can bind the
imported resources to Flex components.

The Flex compiler adds these resources to your application at compile-time. Any resources that
you embed in your Flex application are added to the application’s file size.

To use the Embed metadata, use the following syntax:
[Embed(source="source_location")]
var var_name:String;

You must immediately precede the asset’s variable declaration with the Embed metadata keyword.
The variable must be of type String, because that variable stores a reference to the embedded
resource and not the resource itself.

The following example imports the myImage.jpg image and assigns a reference to it as the
ActionScript variable mySymbol:
408 Chapter 15: Working with ActionScript in Flex

[Embed(source="myImage.jpg")]
var mySymbol:String;

To use the imported symbol in your MXML file, refer to the variable name. For example, you can
bind its name to the icon property of the Button control, as the following example shows:
<mx:Button icon={mySymbol} />

The Embed metadata keyword supports the following file types:

• GIF
• JPEG
• PNG
• SVG
• MP3
• SWC
• SWF

Embedding Flash files and symbols

You can embed entire SWF files in your applications by pointing the source property to a SWF
file. The following example loads the entire SWF file’s root timeline as the asset:
[Embed(source="bar.swf")]
var barMovieSymbol:String;

You can embed symbols from inside Flash SWF files using the symbol property of the Embed
metadata keyword. The following example extracts the symbol x from the whee.swf file and
includes it in the Flex application:
[Embed(source="whee.swf", symbol="x")]
var symbolInsideWhee:String;

If the symbol has dependencies, Flex imports them as well; otherwise, Flex imports only the
symbol from the SWF or SWC source file and not the entire source file.

You can use a pound sign (#) to delimit a resource from a symbol name when importing assets
from a SWC or SWF file, as the following example shows:
[Embed("myMovie.swf#image3")]
var myImage3:String;

If you embed an entire SWF file, the embedded SWF file cannot contain any ActionScript 2 class
definitions or Macromedia components. If it does, Flex does not embed the SWF file. If you
embed only a symbol from the SWF file, the SWF file can contain ActionScript 2 classes and
components.

Accessing network resources

The source property of the Embed metadata keyword can point to any file accessible on the file
system or as a networked URI. Unless you begin the source path with a URI or slash, Flex
searches for the file relative to the application source file.
Importing external resources 409

The resource you embed does not have to be a locally stored asset. You can specify network URIs
as the source, as the following example shows:
[Embed(source="http://getpic.com/getsvg")]
var pic:String;

Specifying MIME types

You can optionally specify a MIME type for the imported asset with the mimeType property. If
you do not specify a mimeType property, Flex makes a best guess about the type of file imported
based on the file extension. The mimeType property overrides the default guess of the resource
type.

Flex currently supports the following MIME types:

• image/gif
• image/jpeg
• image/png
• application/x-shockwave-flash
• application/x-macromedia-swc
• image/svg
• image/svg-xml
• audio/mpeg

The following example points to an ambiguously typed source property and specifies a MIME
type so that Flex uses the proper transcoder to import the resource:
[Embed(source="http://getpic.com/getsvg", mimeType="image/svg")]
var pic:String;

Embed example

The following example application embeds an MP3 file and adds two buttons to start and stop
playing the MP3 file. It shows the use of the Sound object in ActionScript, as well as the use of
the Embed metadata keyword to import the MP3 file.
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script>
<![CDATA[

//Create global variable.
var snd:Sound;

//Use Embed metadata keyword to point to resource.
[Embed('bluechristmas.mp3')]
//Declare global variable for the symbol.
var soundSymbol:String;

function startSound() {
//Declare instance of Sound.
snd = new Sound;
//Attach sound symbol.
snd.attachSound(soundSymbol);
410 Chapter 15: Working with ActionScript in Flex

snd.start();
}

function stopSound() {
snd.stop();

}

]]>
</mx:Script>

<mx:VBox>
<mx:Button label="Start" id="b1" click="startSound();" />
<mx:Button label="Stop" id="b2" click="stopSound();" />

</mx:VBox>
</mx:Application>

Using the doLater() method

The doLater() method queues a function to be called when the current operation finishes.
Without the doLater() method, Flash invokes a function and then invokes the next one without
stopping to wait for the first function to finish.

The doLater() method is useful if you have functions or dynamically created controls that rely
on nonsequential operations such as web services. Rather than try to time the return of data from
a web service call, you can use the doLater() method to ensure that the necessary data is
available before continuing.

The doLater() method is from the mx.core.UIObject class. The doLater() method has the
following signature:
doLater(obj:Object, func: String, args: Array):Void

The obj argument is the object that contains the function. The func argument is the function to
call on the object. The args argument is an optional array of arguments you can pass to the
function.

The following example uses a call to the doLater() method to ensure that the current operation
is completed before the createNext() custom method is called:
<?xml version="1.0">
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" xmlns:local="*"

creationComplete="doLater(this,'createNext')">

<mx:Script>
<![CDATA[

var creationOrder = ["box1","box2","box3"];
var creationIndex = 0;

function createNext() {
var nextObj = this[creationOrder[creationIndex++]];
nextObj.addEventListener("childrenCreated", this);
nextObj.createComponents();
if (creationIndex < creationOrder.length) {

nextObj.getChildAt(0).addEventListener("creationComplete", this);
}

Using the doLater() method 411

}

function handleEvent(e:Object):Void {
if (e.type == "creationComplete") {

doLater(this, "createNext");
} else {

super.handleEvent(e);
}

}
]]>
</mx:Script>

<mx:VBox id="box1" width="200" height="200" creationPolicy="none">
<mx:DataGrid width="190" height="95">

... // Add data provider here.
</mx:DataGrid>

</mx:VBox>

<mx:VBox id="box2" width="200" height="200" creationPolicy="none">
<mx:DataGrid width="190" height="95">

... // Add data provider here.
</mx:DataGrid>

</mx:VBox>
<mx:VBox id="box3" width="200" height="200" creationPolicy="none">

<mx:DataGrid width="190" height="95">
... // Add data provider here.

</mx:DataGrid>
</mx:VBox>

</mx:Application>
412 Chapter 15: Working with ActionScript in Flex

CHAPTER 16
Using Events
One of the most important parts of your Macromedia Flex application is handling events. This
chapter describes how to handle events using controls and ActionScript in your Flex applications.

Contents

About events . 413

Handling events . 415

Handling mouse events . 431

Using base class events . 433

About events

Flex applications are event-driven. Events let a programmer know when the user interacts with
the interface, and also when important changes happen in the appearance or life cycle of a
component, such as the creation or destruction of a component or its resizing.

Events can be generated by user input devices, such as the mouse and keyboard, or by external
forces, such as the return of a web service call.

Each component has built-in events that you handle in ActionScript blocks in your MXML
applications. In addition, you can take advantage of the Flex event system’s dispatcher-listener
model to define your own event handlers outside of your applications, and define which objects
listen to certain events. You can register listeners with the target object so that when the target
object broadcasts an event, the listeners get called.

Components generate and broadcast events and consume (listen to) other events. An object that
requires information about another object’s events registers with that object. When an event
occurs, the object broadcasts the event to all registered listeners by calling a function requested
during registration. To receive multiple events from the same object, you must register for each
event.

Note: The Flex event model does not currently support capture and bubbling.

For a description of each component’s events, see the component’s description in Chapter 6,
“Using Controls,” on page 103.
413

Using the event object

The event object is an ActionScript object with properties that contain information about the
event that occurred. The event object is an implicitly created object in MXML, much the same
way the session, request, and response objects are implicitly created by the application server in a
JavaServer Page (JSP). When you use the event object in an MXML tag, you must refer to it as
event. You pass it to an event handler as a parameter. You must pass the event object to an event
handler only if you use properties of the event object in the handler.

An event handler is a function that responds to events, often by accessing the properties of the
event object or some other settings of the application state. Event handlers can only change the
state of some object. The following example shows a simple event handler function that clears a
TextArea control when the user clicks the button:
<mx:Button label="Clear" click="clickEvt()" >
<mx:TextArea id="ta1" width="150" text="This will be cleared" />

<mx:Script>
<![CDATA[

function clickEvt() {
ta1.text="";

}
]]>
</mx:Script>

Passing an event object to, and using it in, an event handler is optional. However, if you want to
access the event object’s properties inside your event handlers, you must pass the event object to
the handler. You can use the event object inside the handler to access details about the event that
was broadcast, or about the component that broadcast the event. With a reference to the instance
name of the broadcasting component, you can access all the properties and methods of that
instance.

The following example creates two event handler functions and registers them with the events of a
ComboBox control. The first event handler, openEvt(), takes no arguments. The second event
handler, changeEvt(), takes the event object as an argument and uses this object to access the
value and selectedIndex of the ComboBox control that triggered the event.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script>
<![CDATA[

function openEvt() {
forChange.text="";

}

function changeEvt(e) {
forChange.text=e.target.value + " " + " " + e.target.selectedIndex;

}
]]>

</mx:Script>

<mx:ComboBox open="openEvt()" change="changeEvt(event)" >
<mx:dataProvider>
414 Chapter 16: Using Events

<mx:Array>
<mx:String>AK</mx:String>
<mx:String>AL</mx:String>
<mx:String>AR</mx:String>

</mx:Array>
</mx:dataProvider>

</mx:ComboBox>

<mx:TextArea id="forChange" width="150" />
</mx:Application>

Event object properties

An event object is created each time an event is triggered. Depending on the component that
triggered the event and the event itself, the event object can have a wide range of properties. These
properties are based on those defined in the W3C specification (www.w3.org/TR/DOM-Level-3-
Events/events.html), but Flex does not implement all of these.

The following table describes the properties for all events of the event object:

The description of each event in the Flash MX 2004 documentation lists the event properties that
are optional and required. For example, the ScrollBar.scroll event adds a detail property in
addition to the type and target properties. For more information, see the event descriptions in
the Flash MX 2004 documentation.

Event objects generated by Flex for keyboard and mouse events have their own set of properties.
These properties let you determine relevant information about the event, such as the key or
sequence of keys that were pressed or the position of the mouse when the event was emitted. For
more information, see “Handling mouse events” on page 431 and “Using base class events”
on page 433.

Handling events

When a component raises an event, two groups of objects are notified, in the following order:

1. Instances of the component

2. Objects that have registered as listeners for that event

There are several different strategies that you can employ when handling events:

• Define an event handler inline. This binds a call to the event handler to the control that
triggers the event:
<mx:Button label="Click Me" click="myEventHandler();" />

In this example, whenever the button is clicked, Flex calls the myEventHandler() function.
For more information, see “Defining event handlers inline” on page 416.

Property Type Description

type String The name of the event; for example, click.

target Object A reference to the component instance that broadcast the event. You
cannot change this to a different object.
Handling events 415

http://www.w3.org/TR/DOM-Level-3-Events/events.html
http://www.w3.org/TR/DOM-Level-3-Events/events.html

• Define an event listener and register components to call the listener object’s functions using the
addEventListener() function, as the following example shows:
<mx:Script>

<![CDATA[
function createListener() {

var myListener = new Object();
myListener.click = function() {

//Handle the event.
}
b1.addEventListener("click", myListener);

}
]]>

</mx:Script>

<mx:Button label="Click Me" id="b1" />

In this example, whenever the button is clicked, Flex calls the listener’s click handler
function. You can register multiple components with this event handler, or add multiple
listeners to a single component. For more information, see “Using event listeners”
on page 418.

• Create an event listener class and register components to use that class for event handling. This
approach of event handling promotes code reuse and lets you centralize event handling outside
of your MXML files. For more information, see “Creating event listener classes” on page 427.

The following sections describe these methods of handling events.

Defining event handlers inline

The simplest method of handling events in Flex applications is to point to an event handler
function in the component’s MXML tag. To do this, you add any of the component’s events as a
tag property followed by an ActionScript statement or function call.

Add an event handler inline using the following syntax:
<mx:TagName eventName="handlerFunction" />

For example, to handle a Button control’s click event, you point the <mx:Button> tag’s click
property to a function, and then define that function in an ActionScript block. The following
example defines the submitForm() function as the handler for the Button control’s click event:
<mx:Button label="Submit" click="submitForm();" />

<mx:Script>
<![CDATA[

function submitForm() {
// Do something.

}
]]>

</mx:Script>
416 Chapter 16: Using Events

Passing parameters to event handlers

You can pass parameters to the event handler function. The following example passes the event
object to the submitForm() event handler:
<mx:Button label="Submit" click='submitForm(event);' />
<mx:Script>

<![CDATA[
function submitForm(evtObj) {

// Do something with the event object.
}

]]>
</mx:Script>

Defining multiple event handlers

You can define multiple handler functions for a single event by separating each function call with
a semicolon. The following example calls the submitForm() and debugMessage() functions
when the user triggers the click event:
<mx:Button click='submitForm(event); debugMessage("Debug message");' label="Do

Both Actions"/>

You can assign a single function to handle multiple events from the same or different
components. The following example creates two Button controls that move a third Button
control up or down. Each Button click event also calls the changeLabel() function that
changes the label of the moved Button control in the application window:
<mx:HBox height="50">

<mx:Button id='a' label="Button1" width="80" />
</mx:HBox>

<mx:HBox height="300">
<mx:Button label="Up" click='runMove("up");' width="80"/>
<mx:Button label="Down" click='runMove("down");' width="80"/>

</mx:HBox>

<mx:Script>
<![CDATA[

function runMove(dir) {
if (dir == "up") {

a.y=a.y-20;
} else if (dir == "down") {

a.y=a.y+20);
}
changeLabel(a);

}

function changeLabel(but) {
but.label = String(but._x) + "," + String(but._y);

}
]]>

</mx:Script>
Handling events 417

Using ActionScript in event handlers

Event handlers can include any legal ActionScript code, including calling global functions and
setting a component property to the return value. The following example calls the getVersion()
global function and sets the value of debug.text to its return value:
<mx:TextArea id="debug" width="250" height="50"/>
<mx:Button label="Get Ver" click='debug.text=getVersion();' width="80"/>

Using the initialize event handler

The initialize property defines the most common inline event handler. Flex calls this event
when it instantiates the object, and all Flex components emit an initialize event. You can use it
to set the styles or data values of your controls, or trigger the creation of other components. When
setting runtime styles, you should try to set the styles as properties on controls rather than calling
the control’s setStyle() method. Doing this can give you better performance.

When working with multiview containers, be aware that Flex calls the initialize event on each
view when it first creates a navigator container, but not on the children within each view of that
container.

Note: If the ActionScript in your initialize event handler refers to child controls of multiview containers
(such as the Accordion container) that Flex has not yet instantiated, Flex attempts to execute the
statements on undefined objects. Undesirable results can occur.

You should also be aware that the initialize event can occur too soon in the component life
cycle for you to access all properties and child components, so you should consider using the
creationComplete or childrenCreated events instead. For more information, see “About
component startup order” on page 427.

The following example initializes the values of a DataGrid control:
<mx:DataGrid id="myGrid" initialize="initData()" label="Mouse Down" />

<mx:Script>
<![CDATA[

function initData() {
myGrid.dataProvider = [

{Name:"Bob", Department:"Sales", Extension:"2345"},
{Name:"Sue", Department:"Marketing", Extension:"5432"},
{Name:"Fred", Department:"Engineering", Extension:"1122"},
{Name:"Betty", Department:"Sales", Extension:"8854"},
{Name:"Steve", Department:"Marketing", Extension:"2389"},
{Name:"Marsha", Department:"Engineering", Extension:"9964"}

];
}

]]>
</mx:Script>

Using event listeners

An event listener listens for events that objects dispatch. Because an event listener is an object and
not a function, you must define it using a special syntax in your script blocks.
418 Chapter 16: Using Events

You declare an event listener as an object and define the events that the listener listens for and
subsequently handles. You then call the addEventListener() method to register an event with
the listener.

Use the following syntax when defining an event listener:
var listenerName = new Object();
listenerName.eventName = function([eventObject]) {

// Handle the event. Optionally access the event object.
}
instanceName.addEventListener("eventName", listenerName);

You can call the addEventListener() method from any component instance. The syntax for the
addEventListener() method is as follows:
componentInstance.addEventListener(eventName:String, listenerName:Object);

The following example defines a new listener object called myListener. It then defines the click
function of the listener, and registers the click event of the Button control with that listener.
When the user clicks the button, Flex calls the myListener.click() function.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

initialize="createListener()" >
<mx:Script>
<![CDATA[

function createListener() {
var myListener = new Object();

myListener.click = function() {
// Handle the event.

}

b1.addEventListener("click", myListener);
}

]]>
</mx:Script>

<mx:Button label="Click Me" id="b1" />

<mx:TextArea id="forNotes" width="350" />
</mx:Application>

Note: In a listener that is defined as an object, the scope is the listener object and not the Document
or Application scope. As a result, you cannot access objects and functions in the Application scope
directly; you can only access those defined for the listener. For information on accessing Application
scope within an event listener, see “Scoping in event handlers” on page 421.

You can remove an event listener using the removeEventListener() method of any component
instance. The syntax for the removeEventListener() method is as follows:
componentInstsance.removeEventListener(eventName:String, listenerName:Object)
Handling events 419

Optionally, event listeners can receive a single argument, the event object. You can use the event
object to determine what object called the listener object’s functions or to access properties of the
control that triggered the event. All event objects have a target property and a type property, as
described in “Event object properties” on page 415.

The following example uses the target property of the event object to determine which Button
instance the user clicked:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

initialize="createListener()" >
<mx:Script>
<![CDATA[

function createListener() {
var lo = new Object();

lo.click = function(event) {
if (event.target == button1) {

trace("button 1 was clicked");
} else if (event.target == button2) {

trace("button 2 was clicked");
}

}

button1.addEventListener("click", lo);
button2.addEventListener("click", lo);

}
]]>
</mx:Script>

<mx:Button label="Click Me" id="button1" />

<mx:Button label="Click Me Too" id="button2" />
</mx:Application>

Even when you pass the event object to the event handler, you cannot access objects within the
Document scope, such as the controls in your MXML application. You must use the Delegate
utility class to do this. For more information, see “Scoping in event handlers” on page 421.

Adding event listeners inline

You can add event listeners inline with the component definition. The following Button control
definition adds the call to the addEventListener() method inline with the Button control’s
initialize property:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

initialize="createListener()" >
<mx:Script>

<![CDATA[
var myEventListener = new Object();
function createListener() {

myEventListener.click = function(event) {
// Handle click event
420 Chapter 16: Using Events

}
}

]]>
</mx:Script>

<mx:Button id='b' initialize='b.addEventListener("click",
myEventListener);'/>

</mx:Application>

Scoping in event handlers

Within an event handler, you can only access the event handler object’s scope if you add
additional code to your Flex application. This means that you cannot use the this keyword to
refer to the document, and you cannot access any component class instances inside the event
handler.

For example, if you try to refer to a component by its id property in an event listener, Flex does
nothing, except in the case of web services. The call to the component actually takes place in the
event listener’s scope and not the Application scope, as you might expect.

Note: In an event listener, the this keyword refers to the listener object, not the Application or
Document object.

The second parameter of the addEventListener() method can take one of two different types:
an event listener object or a function. When you register a function as the event listener, it
executes in the context of the object that dispatches the event and not the enclosing document. If
that dispatcher is a Button control, the this keyword refers to the button and not the application
object, as you might expect; the listener can only access objects in the dispatcher’s scope.

The following example shows this:
<mx:Button id="myButton" initialize="myButton.addEventListener('click',
this.buttonClickedFunction())"/>

<mx:Button id="myOtherButton" ... />

<mx:Script>
function buttonClickedFunction(event) {

// The 'this' keyword refers to myButton instance.
// You can refer to properties on the myButton instance because you are
// in the myButton scope.
// You cannot refer to the myOtherButton instance.

}
</mx:Script>

In ActionScript, you can pass a function from one object to another. When the second object
invokes the function, the function runs in the context of the second object. The result is that
using the this keyword in an object listener refers to the listener and not the Application object.

If you register an object as the event listener, the event handling function executes in the context
of the listener and not in the context of the document or the dispatching object, as the following
example shows:
<mx:Button id="myButton" initialize="doSetup()"/>
<mx:Button id="myOtherButton" ... />
Handling events 421

<mx:Script>
var myListener:Object;

function doSetup() {
myListener = new Object();

myListener.click = function(event) {
// The 'this' keyword refers to myListener instance.
// You cannot refer to myButton instance.
// You cannot refer to myOtherButton instance.

}
myButton.addEventListener('click', myListener);

}
</mx:Script>

The Delegate utility class lets you pass in a function and additionally specify the context in which
it should execute. It creates a wrapper for the original function and runs it in whatever context
you provide. Creating a Delegate class to act as the listener lets you access the Document scope
and instances of components in the document.

You create a Delegate class using the following static function:
mx.utils.Delegate.create(scope, function_to_delegate)

For example:
var myDelegate:Function = mx.utils.Delegate.create(this, click);

Passing the this keyword at the time that Flex creates the Delegate class provides access to the
Document scope of the document. The following example takes advantage of the Delegate class
to access the Document scope in the event listener:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

initialize="createListener()" >
<mx:Script>

<![CDATA[
function createListener() {

// Required for Delegate.
import mx.utils.Delegate;

// The 'this' keyword refers to the Application.
// You can access the ta1 instance that is in the document scope.
// You can access the button1 instance that is in the document scope.
function click(event) {

ta1.text = "This is a log message";

}
var myDelegate:Function = Delegate.create(this, click);
button1.addEventListener("click", myDelegate);

}
]]>

</mx:Script>
422 Chapter 16: Using Events

<mx:Button label="Submit" id="button1" />

<mx:TextArea id="ta1" text="" width="200" />
</mx:Application>

You can create a Delegate class inline with the addEventListener() method to simplify your
code, as the following example shows:
button1.addEventListener("click", mx.utils.Delegate.create(this, click));

Registering multiple events and components

You can register the same listener with several events of the same component, or events of
different components. In the latter case, you should add logic to the event listener that processes
the type of event. The target (or object that broadcast the event) of the event is added for you.
When you register a single listener to handle the events of multiple components, you must use a
separate call to the addEventListener() method for each instance.

The following example registers a single listener (myListener) to the click event of a Button
control and the click event of a CheckBox control. To detect what type of object called the event
handler, the listener checks the className property of the target object.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

initialize="createListener()" >
<mx:Script>

<![CDATA[
function createListener() {

var myListener = new Object();

myListener.click = function (event) {
if (event.target.className == "Button") {

// Perform search.
} else if (event.target.className == "CheckBox") {

// Modify search to include all words.
}

}
button1.addEventListener("click", myListener);
cb1.addEventListener("click", myListener);

}
]]>

</mx:Script>

<mx:Button label="Submit" id="button1" />

<mx:CheckBox label="All Words" id="cb1" />

<mx:TextArea id="ta" text="Please enter a search term" width="200" />
</mx:Application>
Handling events 423

The following example creates a Menu control and a TextArea control. When the user selects an
item on the menu, the TextArea displays the selected endpoint value. The example registers
multiple events, such as change, menuShow, and menuHide to a single handler (menuShowInfo).
By defining the Delegate class as a listener, this example lets you access the Document scope
inside the menuShowInfo event handler.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

initialize="initMenu();">
<mx:Script>
<![CDATA[

import mx.utils.Delegate;
import mx.controls.Menu;

var myMenu:Menu;

/* ---Description of Menu Events To Listen For---
change: Broadcast when a user selects an enabled menu item of type normal,

check, or radio.
menuHide: Broadcast when the entire menu or a submenu closes.
menuShow: Broadcast when the entire menu or a submenu opens.
rollOut: Broadcast when the cursor rolls off of a Menu item.
rollOver: Broadcast when the cursor rolls onto a Menu item.
*/

function initMenu() {
myMenu = Menu.createMenu(null, myDP); //Instantiates Menu.
myMenu.addEventListener("change", Delegate.create(this, menuShowInfo));
myMenu.addEventListener("menuShow", Delegate.create(this, menuShowInfo));
myMenu.addEventListener("menuHide", Delegate.create(this, menuShowInfo));
myMenu.addEventListener("rollOver", Delegate.create(this, menuShowInfo));
myMenu.addEventListener("rollOut", Delegate.create(this, menuShowInfo));

}

function menuShowInfo(event) {
var itemLabel = event.menuItem.attributes.label;
taMenuShow.text = "Label: " + itemLabel;

}
]]>

</mx:Script>

<mx:HBox>
<mx:Button id="showBtn" label="Show Menu" click="myMenu.show();" />
<mx:TextArea id="taMenuShow" text="" width="300"/>

</mx:HBox>

<mx:XML id="myDP">
<node label="Select One" />
<node type="separator" />
<node label="Colors" >

<node label="Soylent Green" />
<node label="Light Goldenrod Yellow" />

</node>
<node label="Names">
424 Chapter 16: Using Events

<node label="Guenter" />
<node label="Reiner" />
<node label="Wolfgang" />

</node>
</mx:XML>

</mx:Application>

Registering multiple event listeners for one component

You can register multiple-event listeners to a single component instance, but you must use a
separate call to the addEventListener() method for each listener. Flex calls each listener
function in no specific order.

The following example creates and registers two listeners for one Button control, maintaining the
default scope of the listener:
<mx:Script>
<![CDATA[

function createListener() {

var myLoggerListener = new Object();
var myProcessInputListener = new Object();

myLoggerListener.click = function (event) {
// ...

}

myProcessInputListener.click = function (event) {
// ...

}

button1.addEventListener("click", myLoggerListener);
button1.addEventListener("click", myProcessInputListener);

}
]]>
</mx:Script>

<mx:Button label="Submit" id="button1" />

Defining the handleEvent() method

You can define a single handleEvent() method for the event handler to catch all events.

When you use the handleEvent() method in your event listener, you must include logic to
determine which target triggered an event. These additional statements add processing overhead,
but defining a single event handler function can simplify the coding process.

The following example checks the properties of the event object to determine what to do when an
event is triggered. If the event is unrecognized, it logs a message.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

initialize="createListener()" >
<mx:Script>

<![CDATA[
Handling events 425

function createListener() {
var myListener = new Object();

myListener.handleEvent = function (event) {
if (event.target.className == "CheckBox") {

// Handle click event for CheckBox.
} else if (event.target.className == "ComboBox") {

if (event.type == "open") {
// Handle open event of ComboBox.

} else if (event.type == "change") {
// Handle change event of ComboBox.

}
} else {

trace("An event of unexpected type occurred.");
trace("Event type: " + event.type);
trace("Event target: " + event.target);

}
}
checkBox1.addEventListener("click", myListener);
comboBox1.addEventListener("change", myListener);
comboBox1.addEventListener("open", myListener);

}
]]>

</mx:Script>

<mx:CheckBox label="US Territory" id="checkBox1" />

<mx:ComboBox id="comboBox1" >
<mx:dataProvider>

<mx:Array>
<mx:String>AK</mx:String>
<mx:String>AL</mx:String>
<mx:String>AR</mx:String>

</mx:Array>
<mx:dataProvider>

</mx:ComboBox>
</mx:Application>

The following example of an external ActionScript class extends an existing class and adds the
ability to capture PAGE-UP and PAGE-DOWN key events:
class PagingList extends List {

var PAGE_DOWN = 120;
var PAGE_UP = 121;

function handleEvent(eventObj):Void {
super.handleEvent(eventObj);
if (eventObj.type == "KeyDown") {

if (eventObj.keycode == PAGE_DOWN) vPosition += rowCount;
else if (eventObj.keycode == PAGE_UP) vPosition -= rowCount;

}
}

}

426 Chapter 16: Using Events

Creating event listener classes

You can create external class files to define your event handlers. This lets you use the same event
handling logic across applications ,and can make your MXML applications more readable. In
addition, with event listener classes, the scope that you are executing in can be much clearer and
easier to understand.

The following ActionScript class writes a trace message when Flex notifies it of a click event:
class MyEventListener {

function MyEventListener() { //Empty constructor.
}

function handleEvent(eventObj:Object):Void {
var type = eventObj.type; // For example, "click"
var target = eventObj.target.className; // For example, "Button"

if (type=="click") {
trace(target + " was " + type + "ed");

}
}

}

Store your event listener class in Flex_app_root/WEB-INF/flex/user_classes or another directory
in your ActionScript classpath.

The following MXML file instantiates the MyEventListener class and defines that class as an
event handler for the click event:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

initialize="createListener()" >
<mx:Script>
<![CDATA[

function createListener() {
var myListener = new MyEventListener();
b1.addEventListener("click", myListener);

}
]]>

</mx:Script>

<mx:Button label="Submit" id="b1" />

<mx:TextArea id="ta1" text="" width="200" />
</mx:Application>

About component startup order

All Flex components trigger a number of events during their startup procedure. These events
indicate when the component is first created, plotted internally, and drawn on the screen. The
events also indicate when the component is finished being created and, in the case of containers,
when its children are created.
Handling events 427

The following table describes the most commonly used startup events for Flex components:

In addition to these events, the show event is triggered during the instantiation of some
components. For more information, see “About show and hide events” on page 429.

The following example creates a VBox container and Button control:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:VBox id="child" >
<mx:Button id="grandChild" />

</mx:VBox>
</mx:Application>

In this example, the Application container is a parent that contains a child VBox container, which
contains a child Button control.

The initialization order is as follows:

1. Call initialize event on grandChild.

2. Call childrenCreated event on child.

3. Call initialize event on child.

4. Call childrenCreated event on the Application container.

5. Call initialize event on the Application container.

6. Call draw event on the Application container.

7. Call draw event on child.

8. Call draw event on grandChild.

9. Call creationComplete event on grandChild.

10. Call creationComplete event on child.

11. Call creationComplete event on the Application container.

Event Description

initialize Broadcast when the component is instantiated. However, you should avoid
triggering visual effects on the control until it emits the creationComplete
event.

childrenCreated (Containers only) Broadcast after the children of the container are initialized,
but before creationComplete is broadcast. When a container emits this event,
the container is not yet fully instantiated, but its children are. You can set
properties on the children, but not the container itself. To set properties on a
container, wait for it to broadcast the creationComplete event.

draw Broadcast when the component is internally drawn. Invisible components do
trigger a draw event.

creationComplete Broadcast when the component is measured, laid out, and drawn, but not yet
showing on the screen. Containers emit this event only when all of their visible
children have been created.
428 Chapter 16: Using Events

Knowing the order of startup events lets you identify the dependencies of some controls on other
controls. For example, if you have a custom layout algorithm for your container, you could trigger
layout to occur after the container’s creationComplete event, rather than after its initialize
event.

You must be aware of an object’s instantiation life cycle so that you do not write an event handler
that references properties of an object that have not yet been set. Properties include the title of a
Panel control or the contents of a TextArea control. Flex sets the properties on an object after that
object’s childrenCreated event is triggered, but before Flex draws the object on the screen.

The startup order of multiview containers (navigators) is different from standard containers. By
default, all top-level views of the navigator are instantiated. However, only the children of the
initially visible view are initialized. When the user navigates to the other views of the navigator,
Flex initializes those views’ children.

Triggering effects during instantiation

Generally, when you play an effect on an object, you must ensure that the object was created. If
you trigger an effect off the initialize event, the object’s size properties and measuring are not
yet complete. The best approach to ensuring that the object is created is to trigger effects off of
the creationComplete event.

Navigator containers trigger the changeEffect event when the currently active view changes.
The following example shows the use of the changeEffect event:
<mx:TabNavigator xmlns:mx="http://www.macromedia.com/2003/mxml"

xmlns:local="*"
initialize="addTabs()"
changeEffect="WipeDown">

About show and hide events

Flex components emit two special events when they are made visible or invisible on the screen.
These events are triggered only when the visible property of a component is set.

The following table describes the hide and show events:

When navigator containers, such as the ViewStack and Accordion containers, are created, they do
not immediately create all of their descendants, but only those descendants that are initially
visible. You can instruct Flex to instantiate all children of all containers (regardless of whether
they are initially visible or not), or instantiate only select children of select containers. For more
information, see Chapter 25, “Applying Deferred Instantiation,” on page 557.

Event Description

hide The component is hidden from view on the screen. Visible components and objects that
are invisible at startup time do not trigger a hide event. The hide event is only triggered
when a component changes from visible to invisible.

show The component is displayed on the screen. Invisible components and objects that are
visible at startup time do not trigger a show event. The show event is only triggered when a
component changes from invisible to visible.
Handling events 429

By default, navigator containers fully create the initially visible view, but create only the top-level
containers of the hidden views. When the top-level containers that were not initially visible are
created, they emit a creationComplete event. If you want specific actions to occur when users
navigate to a new view, you cannot hook into the navigator’s creationComplete event. Instead,
you can use the show event for the descendants of a navigator container.

The following example creates a TabNavigator container with two tabs. The example shows when
the creationComplete event on a deferred view is emitted, and it shows how to use a show event
for multiview containers.
<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

initialize="initApp();">

<mx:Script>
var myCount:Number;
function initApp() {

myCount = 0;
}

function incrementCount() {
myCount++;
lbl.text="count: " + myCount;

}
</mx:Script>

<mx:TabNavigator>
<mx:HBox label="one" show="incrementCount();">

<mx:Button />
</mx:HBox>
<mx:HBox label="two">

<mx:Button creationComplete="lbl.text='The second pane is complete.'"/>
</mx:HBox>

</mx:TabNavigator>
<mx:HBox width="200" height="50" borderStyle="solid">

<mx:Label id="lbl" fontSize="12" />
</mx:HBox>

</mx:Application>

In the previous example, the Label control is empty when the application first starts. When the
user browses to the second pane, the second Button control is finally created and it emits the
creationComplete event. Each time the user returns to the first tab, it emits a show event, which
increments the counter.

The counter is not incremented on the initial access of the first tab when the application starts
because the show event requires an explicit change from invisible to visible, which is only
attainable by selecting the second tab, and then the first tab.
430 Chapter 16: Using Events

Manually dispatching events

You can manually dispatch events using a component instance’s dispatchEvent() method.
When you create an event object and dispatch a new event, you must also define the custom event
in metadata outside the class declaration.

The syntax is as follows:
[Event("event_name")]
class myClass {

...
dispatchEvent(event_object);

}

The Event metadata keyword identifies the event to the ActionScript compiler. You must specify
each event with the keyword so that Flex creates a listener for that event. For more information on
using the Event metadata keyword, see “Event” on page 874.

The syntax for the dispatchEvent() method is as follows:
dispatchEvent(event_object):Boolean

The dispatchEvent() method always returns true. You can explicitly build an event object
before dispatching the event, as the following example shows:
var eventObj = new Object();
eventObj.type = "myEvent";
dispatchEvent(eventObj);

The event object also has an implicit property, target, that is a reference to the object that
triggered the event. You cannot change the target property, but you can add any number of
additional properties to your event object, such as the mouse position or keys that are pressed.
Some low-level built-in events capture these properties; for more information, see “Using base
class events” on page 433.

You can also use a shortcut syntax that sets the value of the type property for the event object and
dispatches the event in a single line, as the following example shows:
myObject.dispatchEvent({type:"myEvent"});

You often use the dispatchEvent() method when you create custom components. For more
information on creating custom components, see Chapter 41, “Creating Advanced Components
in Flash MX 2004,” on page 857.

Handling mouse events

The Flash Player can detect a variety of mouse events, including when a user moves their mouse
pointer over a component (the mouseOver event) and when they click the mouse button (the
mouseDown event). All components that extend UIObject class, including containers and the
Application object, inherit these events.

All Flex components that inherit from the UIObject class support the following mouse events:
• mouseDown
• mouseUp
• mouseMove
Handling mouse events 431

• mouseOver
• mouseOut
• mouseDownSomewhere
• mouseUpSomewhere
• mouseChangeSomewhere
• mouseMoveSomewhere

You can define event handlers for the somewhere events to capture global mouse events, while still
using control-specific mouse events to handle events.

You can use a mouseDownSomewhere event handler on any object, so that it can catch mouseDown
events outside the object it is on. For example, a ComboBox control has an open state and you
could add a mouseDownSomewhere event handler to close it if the user clicks anywhere in the
application.

The global events apply to all controls within the application. For example, if you create a
TabNavigator container with three Canvas containers, and on the first canvas you add the
mouseMoveSomewhere event, the mouseMoveSomewhere event is triggered on all Canvas
containers in the container.

When Flex generates the event object for mouse events, it does not add any special properties to
the object. You can access the x and y coordinates of the mouse pointer through the target
property. The event object for this event has the following read-only properties, in addition to the
type and target properties:
eventObject.target.mouseX
eventObject.target.mouseY

The mouseX and mouseY coordinates are relative to the Application in the Player and are the
mouse pointer’s hotspot in the coordinate system of the UIObject.

A pointer (cursor) is usually larger than 1 pixel by 1 pixel. A particular pixel in the pointer, or
hotspot, is placed at the mouse location. This is usually the upper-left corner of the pointer, but
the actual location of the hotspot depends on where the registration point is set in the symbol
used to create the pointer. It also depends on the offset arguments passed to the
CursorManager.setCursor() method.

You can specify the mouseDownSomewhere event handler on the Application tag to capture a
mouse click at any time, regardless of where the pointer is.

The following example defines a mouseDownSomewhere event handler on the Application object:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

mouseDownSomewhere="handleMyMouseClick()" >
...

The following example acts as a simple tracker that shows the mouse pointer’s current coordinates
in the TextArea control. When the user moves the mouse pointer over the pixel at (x=200,
y=200), the application displays an Alert box.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

mouseMoveSomewhere="trackMouse(event)">
432 Chapter 16: Using Events

<mx:Script>
<![CDATA[
function trackMouse(event) {

var curX = event.target.mouseX;
var curY = event.target.mouseY;

xCoord.text = curX;
yCoord.text = curY;

if (curX == 200 && curY == 200) {
mx.controls.Alert.show("You found it!");

}

}
]]>
</mx:Script>

<mx:TextArea id="xCoord" width="50" />
<mx:TextArea id="yCoord" width="50" />

</mx:Application>

The event object for the mouseDownSomewhere, mouseUpSomewhere, mouseChangeSomewhere,
and mouseMoveSomewhere events also has a relatedTarget property, which is a reference to the
component that the mouse pointer is over.

Using base class events

All components derive from the UIObject or UIComponent base classes. As a result, most
components have a common set of low-level events that they can broadcast.

Every event, including the base class events, has a type and target property, which are explicitly
specified by Flex. The event objects for these low-level events sometimes also have unique
properties that you can set when using the dispatchEvent() method or accessing the event
object.

This section describes the low-level events of the UIObject and UIComponent classes, and the
event object properties that are specific to each event. For more information on the type and
target properties of the event object, see “Event object properties” on page 415.

Event summary for the UIComponent class

The following table lists the events for the UIComponent class:

Event Description

focusIn Broadcast when an object receives focus.

focusOut Broadcast when an object loses focus.

hide Broadcast when an object’s state changes from visible to invisible.

invalid Broadcast when objects should be redrawn on the screen. This is called internally
by Flex or by component authors.
Using base class events 433

The following example captures the ASCII values of each character and prints them to the
TextArea when the low-level keyDown event is triggered. The TextArea control is disabled, which
prevents the user from changing the values of that field.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Script>
<![CDATA[

function logKey(myKey) {
ta1.text = ta1.text + " " + myKey;

}
]]>

</mx:Script>

<mx:TextArea id="ta1" text="" enabled="false" width="600"
keyDown="logKey(event.code)" />

</mx:Application>

Event summary for the UIObject class

The UIObject class events refer to the visibility, instantiation, and size of objects in the
application. Many of the events are also related to the mouse. For more information, see
“Handling mouse events” on page 431.

keyDown Broadcast when a key is pressed.
The event object for this event has the following properties in addition to type and
target:
code (Number) The virtual key code of the last key pressed.
ascii (Number) The ASCII value of the last key pressed.
shiftKey (Boolean) True if the shift key was pressed.
ctrlKey (Boolean) True if the CTRL key was pressed.

keyUp Broadcast when a key is released.
The event object for this event has the following properties in addition to the type
and target properties:
code (Number) The virtual key code of the last key pressed.
ascii (Number) The ASCII value of the last key pressed.
shiftKey (Boolean) True if the shift key was pressed.
ctrlKey (Boolean) True if the CTRL key was pressed.

resize Broadcast when objects are resized. This is called internally by Flex or by
component authors.

show Broadcast when Flex displays objects. This is called internally by Flex or by
component authors.

valid Called internally by Flex or by component authors.

valueCommitted Broadcast when the value of a property changes. This is called internally by Flex.

Event Description
434 Chapter 16: Using Events

The following table describes the events for the UIObject class:

Event Description

creationComplete Broadcast when the object has finished its construction, measuring, layout,
and drawing.

dragBegin Broadcast to the drag initiator when the user makes a gesture that starts a
drag-and-drop operation. No Flex components respond to this event; any
custom components that you create can use this event.

dragComplete Broadcast to the drag initiator when the drag operation completes, either
when you drop the drag data onto a drop target or when you end the drag-
and-drop operation without performing a drop. You can use this event to
perform any final cleanup of the drag-and-drop operation. For example, if
you drag a List control item from one list to another, you can delete the List
control item from the source if you no longer need it.

dragDrop Broadcast to the drop target when the mouse is released over it. You use
this event handler to add the drag data to the drop target.

dragEnter Broadcast to the drop target when a drag initiator passes over the target.
Only components that define a handler for this event can be drop targets.
Within the handler, you can change the appearance of the drop target to
provide visual feedback to the user that the component can accept the
drag. For example, you can draw a border around the drop target, or give
focus to the drop target.

dragExit Broadcast to the drop target when the user drags outside the drop target,
but does not drop the data onto the target. You can use this event to restore
the drop target to its normal appearance if you modified its appearance as
part of handling the dragEnter event.

dragOver Broadcast to the drop target when the user moves the mouse over the
target. You can handle this event if you want to perform additional logic
before allowing the drop, such as dropping data to various locations within
the drop target, reading keyboard input to determine if the drag-and-drop
action is a move or copy of the drag data, or providing different types of
visual feedback based on the type of drag- and-drop action.

draw Broadcast when an object is about to draw its graphics.

effectEnd Broadcast when an effect finishes.

effectStart Broadcast when an effect starts.

initialize Broadcast when the object is finished instantiation.

mouseChangeSomewhere Broadcast when the mouse moves over a different component, to all
listeners that have registered for it, regardless of whether the mouse is over
them.
Listening to this event is more efficient than listening to the
mouseMoveSomewhere event, which triggers whenever the mouse moves,
even if it is still over the same component.
The event object for this event has the following properties, in addition to
the type and target properties:
previousRelatedTarget The component the mouse was over previously.
relatedTarget The component the mouse is currently over.
Using base class events 435

mouseDown Broadcast when the cursor is over the component and the user releases the
mouse button.
The event object for this event has the following properties, in addition to
the type and target properties:
eventObject.target.mouseX
eventObject.target.mouseX

mouseDownSomewhere Broadcast when the mouse is clicked, to all listeners that have registered
for this event, regardless of whether the mouse is over them.
The mouse might be over a subcontrol, which is internal to a component,
such as a row of a DataGrid control. You can walk up the parent chain
looking for a component that has a mouseDown listener.
The event object for this event has the following property, in addition to the
type and target properties:
relatedTarget The component the mouse is currently over.

mouseMove Broadcast when the mouse pointer moves.

mouseMoveSomewhere Broadcast when the mouse moves, to all listeners that have registered for it,
regardless of whether the mouse is over them.
Listening to this event is less efficient than listening to the
mouseChangeSomewhere event.
The event object for this event has the following property, in addition to the
type and target properties:
relatedTarget The component the mouse is currently over.

mouseOver Broadcast when the user hovers the mouse pointer over a control.

mouseOut Broadcast when the user stops holding the mouse pointer over a control.

mouseUp Broadcast when the user releases the mouse button.

mouseUpSomewhere Broadcast when the mouse button is released, to all listeners that have
registered for this event, regardless of whether the mouse is over them.
The mouse might be over a subcontrol, which is internal to a component,
such as a row of a DataGrid control. You can walk up the parent chain
looking for a component that has a mouseUp listener.
The event object for this event has the following property in addition to the
type and target properties:
relatedTarget The component the mouse is currently over.

move Broadcast when the object has moved.
The event object for this event has the following properties, in addition to
the type and target properties:
oldX (Number) The original x coordinate.
oldY (Number) The original y coordinate.

resize Broadcast when the subobjects are being unloaded. This is called internally
by Flex or by component developers.
The event object for this event has the following properties, in addition to
the type and target properties:
oldWidth (Number) The original width, in pixels.
oldHeight (Number) The original height, in pixels.

Event Description
436 Chapter 16: Using Events

CHAPTER 17
Creating ActionScript Components
Macromedia Flex lets you define custom components in ActionScript as part of your application.
Using custom components, you can encapsulate your application logic as modules that you can
reuse in a single application, or share across multiple applications.

You can also define custom ActionScript components to extend the Flex component library. For
example, you can create a customized Button, Tree, or DataGrid component as an ActionScript
component.

This chapter describes how to create custom components in ActionScript, and includes examples
of creating components that extend the Flex component hierarchy.

Contents

About ActionScript components . 437

Defining custom user-interface components . 439

Passing data to a custom tag . 439

Defining events in ActionScript components . 440

Adding ActionScript components to the Flex environment . 441

Defining nonvisual components. 442

About ActionScript components

You create reusable components using ActionScript, and reference these components in your Flex
applications as MXML tags. Components created in ActionScript can contain graphical elements,
define custom business logic, or extend existing Flex components. They can inherit from any
components available in Flex.

For example, you can define a custom button, derived from the Flex Button control, as the
following example shows:
class myControls.MyButton extends mx.controls.Button {

function MyButton() {
...

}

437

...
}

In this example, you write your MyButton control to the MyButton.as file, and you store the file
in the myControls subdirectory of the root directory of your Flex application. The fully qualified
class name of your component reflects its location. In this example, the component’s fully
qualified class name is myControls.MyButton.

You can reference your custom Button control from a Flex application file, such as MyApp.mxml,
as the following example shows:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

xmlns:cmp="myControls.*" >

<cmp:MyButton label="Jack" />

</mx:Application>

In this example, you first define the cmp namespace that defines the location of your custom
component in the application’s directory structure. You then reference the component as an
MXML tag using the namespace prefix.

Typically, you put custom ActionScript components in directories that are in the ActionScript
classpath. These include your application’s root directory, the flex_app_root/WEB-INF/flex/
user_classes directory, or any directory you specify in the <actionscript-classpath> tag in the
flex-config.xml file. For more information, see “Editing the ActionScript classpath” on page 765.

If the component is at the top level of its directory structure (or, not in a package), you can specify
an asterisk (*) for the namespace. Adding a tag prefix is optional in this case.

If you store the MyButton.as file in the root directory of your Flex application, which is the same
directory as the MyApp.mxml file, its fully qualified class name is MyButton. You must still
provide a namespace, as the following example shows:
<mx:Application xmlns:cmp="*" xmlns:mx="http://www.macromedia.com/2003/mxml" >

<cmp:MyButton label="Click Me" />

</mx:Application>

For more information on setting the directory location of your custom components, specifying
your namespace, and determining your classpath, see “Specifying the component namespace”
on page 441.

Benefits of custom components

Defining your own components in ActionScript has several benefits. Components let you divide
your applications into individual modules that you can develop and maintain separately. By
implementing commonly used logic within custom components, you can build a suite of reusable
components that you can share among multiple Flex applications.

In addition, you can base your custom components on the set of Flex components by extending
from the Flex class hierarchy. You can create custom versions of Flex visual controls, as well as
custom versions on nonvisual components, such as data validators, formatters, and effects.
438 Chapter 17: Creating ActionScript Components

Types of custom components

You can create the following types of components in ActionScript:

• User-interface components User-interface components contain both processing logic and
visual elements. These components usually extend the Flex component hierarchy. You can
extend from the UIObject and UIComponent classes, or any of the Flex components, such as
Button, ComboBox, or DataGrid. Your custom ActionScript component inherits all of the
public methods and properties of its parent class.

• Nonvisual components Nonvisual components define no visual elements. By definition, a
nonvisual component is an ActionScript class that does not extend the UIObject,
UIComponent, or MovieClip classes. Using nonvisual components can provide greater
efficiency at runtime.

About scope

In an ActionScript component, the scope is the component itself and not the application or other
MXML file that uses the component. As a result, the this keyword inside the custom component
refers to the component instance and not the Application object.

Nonvisual ActionScript components do not have access to their parent application with the
parentApplication property. However, you can access the top-level Application object using the
mx.core.Application.application property.

For more information on using these properties, see “About the Application object” on page 403.

Defining custom user-interface components

You can extend Flex components to customize them by extending from the component’s fully
qualified class name. The fully qualified class name is not the same as the component name. For
example, to extend from the Flex Grid container, you define your class as the following example
shows:
class myControls.DeleteTextArea extends mx.containers.Grid {

...
}

For the list of fully qualified class names for Flex components, see Flex ActionScript and MXML
API Reference.

Passing data to a custom tag

To make your ActionScript components reusable, you often define them to accept input
properties. To add properties to your ActionScript components, you define variables within the
component. As long as you do not define the variable as private, you can set the value of the
variable using an MXML tag property.

The following example defines the variable startMessage:
class DeleteTextArea extends mx.controls.TextArea {

public var startMessage:String;
Passing data to a custom tag 439

function myInit():Void {
this.text = startMessage;

}

function keyDown(e:Object):Void {
var k:Number = e.code;
// Delete key corresponds to a value of 46
if (k==46) setText("");

}

}

You can use the initialize event to call an event for your custom ActionScript component. The
initialize event triggers after the component has been instantiated. As a result, you can use it
to set property values that you normally cannot set before the component exists.

The following MXML calls the myInit() method of the ActionScript component:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" xmlns="*" >

<mx:Script>
<![CDATA[

function callMyInit() {
myTA.myInit();

}
]]>

</mx:Script>

<DeleteTextArea id="myTA" startMessage= "This is the start message"
initialize="callMyInit();" />

</mx:Application>

Defining events in ActionScript components

You can use events in ActionScript components using the addEventListener() and
dispatchEvent() methods. You must also use the Event metadata keyword at the top of the class
file to specify any events that are being broadcast by the new component. In addition, since your
custom components have their own scope, you might be required to use the Delegate utility class
to allow them to access alternative function or object scopes.

The following example creates a container with a child Button control, and registers the Button
control’s click event to point to the new event, MyEvent:
[Event("MyEvent")]
class MyComponent extends mx.containers.VBox {

// Required for Delegate.
import mx.utils.Delegate;

function MyComponent() {
addEventListener("initialize",myInit);

}

function myInit() {
440 Chapter 17: Creating ActionScript Components

var btn;
var okDelegate:Object = Delegate.create(this, onOk);

btn=createChild(mx.controls.Button,"btn",{label:"Ok"},true);
btn.addEventListener("click",okDelegate);

}

function onOk() {
this.dispatchEvent({type:"MyEvent"});

}

}

Adding ActionScript components to the Flex environment

You can use the ActionScript component in Flex after you add it to a location that is in the Flex
ActionScript classpath and specify the correct namespace for that component. This section
describes how to do this.

Determining the ActionScript classpath

Macromedia recommends that you put components shared by multiple applications in the
system’s ActionScript classpath, and put application-specific components in subdirectories of the
application’s root directory. Flex uses XML namespaces to locate components in your application’s
directory structure.

The following rules can help you organize your custom components:

1. MainApp.mxml can reference components in /dir1/dir2, and its subdirectories.

2. ActionScript components in /dir1/dir2 must have fully qualified class names defined relative to
the location of the application’s root directory. For example, if you define a custom component
in the file /dir1/dir2/smg/controls/PieChart.as, its fully qualified class name must be
smg.controls.PieChart, assuming that the application is in /dir1/dir2/.

3. ActionScript components can reference components located in the classpath.

The component search order in the classpath is based on the order of directories listed in the
classpath. The search is based on fully qualified class names. For example, if you have the files
myButton.as under /dir1/dir2, and under WEB-INF/flex/user_classes, Flex uses the file under
/dir1/dir2.

4. The <mx:Script> tag in the MainApp.mxml file, and in dependent MXML components, can
reference components located in the ActionScript classpath.

For more information about the ActionScript classpath, see “About the ActionScript classpath”
on page 53.

Specifying the component namespace

Depending on where a component is located, you specify its namespace in one of the following
ways:
Adding ActionScript components to the Flex environment 441

• If component files are in the same directory as the application file or in the ActionScript
classpath directory (not a subdirectory) defined in the flex-config.xml file, you can refer to
them as the following example shows. In this example, the local namespace (*) is mapped to
the prefix local.
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

xmlns:local="*" >
...

<local:MyButton />
...
<mx:Application>

If the same file exists in the ActionScript classpath directory and the application directory, Flex
uses the file in the application file directory.

• If the component is in a subdirectory of the directory that contains the MXML application
file, you use a namespace that specifies the subdirectory. The following code declares a
component that is in the custom/components subdirectory of the directory that contains the
MXML file in which it is used:
<m1:MyComponent xmlns:m1="custom.components.*" />

If the same file exists in the ActionScript classpath directory and the application directory, Flex
uses the file in the application file directory.

• If the component is in a subdirectory of the ActionScript classpath directory defined in the
flex-config.xml file, you use a namespace that specifies the subdirectory. The following code
declares an MXML component that is in the flex_app_root/WEB_INF/flex/user_classes/
global/custom/mxml directory:
<m1:mycomponent xmlns:m1="global.custom.mxml.*" />

If the same file exists in the ActionScript classpath directory and the application directory, Flex
uses the file in the application file directory.

For additional information about component namespaces, see “Defining component
namespaces” on page 792.

Defining nonvisual components

Nonvisual components are a special kind of ActionScript component. Nonvisual components
extend nonvisual Flex classes or objects, such as data validators, data formatters, and effects. To
create these component types, you derive from mx.validators.Validator,
mx.formatters.Formatter, or mx.effects.TweenEffect.

Nonvisual components can also implement the MXMLObject interface, so that the initialization
of the nonvisual component is timed properly.

The benefit of nonvisual components is that they are reusable, but they do not require the
overhead of the Flex component architecture.

You are not required to extend an existing class in the Flex hierarchy to create a nonvisual
component. You can define nonvisual components to implement any programming logic that
does not require a user interface. In this case, you create a stand-alone class definition.
442 Chapter 17: Creating ActionScript Components

Because nonvisual components do not have visual elements, you cannot use them in your
application where you use visual components, such as a Button control. You must declare
nonvisual ActionScript components in the MXML file as either a child of the root tag, or as the
value of a property, if the property is an object. Nonvisual ActionScript components are not
allowed as children of a container, except when that container is the tag at the root of the
document.

All nonvisual components must have a no-argument constructor and must follow the same rules
as a user-interface component for having public variables. The following example shows a simple
nonvisual component:
class myFacelessComp {

function myFacelessComp() {
}

}

When instantiating a nonvisual component, if a parameter is an object, you can only pass in a
binding expression, you cannot instantiate an anonymous object inline.

Flex effect example

One example of a nonvisual component is a Flex effect. Effects extend
mx.effects.TweenEffect, or a child of mx.effects.TweenEffect, and effects’ constructors
take a parameter. For example, you can extend the WipeRight effect, as the following example
shows:
class myEffects.myShowEffect extends mx.effects.WipeRight {

function myShowEffect(targetObj:Object) {
target=targetObj;
trace("myShowEffect constructor");

}
}

This example is a simple modification that writes a trace statement to the error log when the
effect is invoked. Otherwise, it acts like its parent class.

You can use your nonvisual component to define an effect within the <mx:Effect> tag. Flex
requires that you always specify a name property for your nonvisual components when you use
them in an application, as the following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

xmlns:eff="myEffects.*">

<mx:Effect>
<eff:myShowEffect name="effect1" />

</mx:Effect>

<mx:TextInput id="text0" width="200" text="click button for effects"
showEffect="effect1" />

<mx:Button label="button0" click="text0.visible=!text0.visible;" />

</mx:Application>
Defining nonvisual components 443

Nonvisual components do not have a standard initialize event that other components
support. Flex provides an interface that specifies a single method that is called after all of the
properties have been set on a newly instantiated component. The interface has a single method,
initialized(). Flex calls the initialized() method after the implementing object has been
created and all properties specified on the tag have been assigned.

The initialized() method has the following signature:
initialized (Object document, String id):Void

The following table describes the properties of the initialized() method:

The following example implements the mx.core.MXMLObject interface, and then overrides the
initialized() method:
class TempConverter implements mx.core.MXMLObject {

public var view;
function initialized(doc : Object, id : String) {

view.myButton.addEventListener("click", this);
}

function click(event) {
view.celsius.text=(view.farenheit.text-32)/1.8;

}
}

For more information on creating custom formatter components in ActionScript, see Chapter 31,
“Formatting Data,” on page 639. For information on creating custom validator components in
ActionScript, see Chapter 28, “Managing Data in Flex,” on page 593.

Custom event dispatcher example

The following nonvisual component defines a generic event dispatcher. This class abstracts the
event listener code from the MXML document, but still lets the MXML file define the handlers
for events that this class dispatches:
import mx.events.*;
[Event("result")]
class MyDispatcher {

private static function staticConstructor(Void):Boolean {
EventDispatcher.initialize(MyDispatcher.prototype);
return true;

}

private static var EventDispatcherDependency = EventDispatcher;

// Load an EventDispatcher
private static var staticConstructed:Boolean = staticConstructor();
public var addEventListener:Function;

Property Type Description

document Object The MXML document that created this object.

id String The ID used by the document to refer to this object.
444 Chapter 17: Creating ActionScript Components

public var removeEventListener:Function;
private var dispatchEvent:Function;

function MyDispatcher() { // Empty constructor.
}

public function load():Void {
dispatchEvent({type:"result"});

}
}

The following MXML file uses the MyDispatcher function as a custom event dispatcher. It does
not add an event listener; it triggers the custom event dispatcher when the button is clicked. In
addition, the MXML tag specifies the event handler for the result event, as the following code
shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

xmlns:myClasses="*">
<myClasses:MyDispatcher id="myInstance" result="statusLabel.text='Loaded';"
/>

<mx:Button label="Load" click="myInstance.load()"/>

<mx:Label id="statusLabel" text="" />

</mx:Application>

To handle other events in the custom dispatcher, you insert Event metadata tags at the top of the
class file and add additional dispatchEvent() methods.
Defining nonvisual components 445

446 Chapter 17: Creating ActionScript Components

CHAPTER 18
Creating Cell Renderers
This chapter describes how to create a custom cell renderer class that you can use for custom cells
in List-based controls, such as the List, DataGrid, and Tree controls.

The CellRenderer application programming interface (API) is a set of properties and methods
that List-based controls use to manipulate and display custom cell content for each of their rows.
This customized cell can contain a prebuilt component, such as a CheckBox control, or any user
interface component that you create.

Contents

Creating a cell renderer class . 447

Creating a cell renderer class

You use the CellRenderer API to write a custom cell renderer class for List-based controls. Before
using the CellRenderer API, you should become familiar with the List class and List-based
controls. A List-based control is composed of rows that display rollover and selection highlights,
are used as hit states for row selection, and provide scrolling functionality. Each row contains one
cell, with the exception of the DataGrid rows, which contain multiple cells. Standard List-based
controls include the List, DataGrid, and Tree controls.

Using List-based controls

By default, List cells are TextField objects that implement the CellRenderer API. You can create a
custom CellRenderer class to use a different type of component as the cell for each row. The only
requirement is that the class must implement the CellRenderer API, which the List-based control
uses to communicate with the cell.

A List-based control only lays out as many rows as it can display at once; items beyond the value
of the rowCount property do not get rows. When the list scrolls, the component moves all the
rows up or down. The component then recycles the rows that are scrolled out of view. It
reinitializes them and uses them for the new rows being scrolled into view by setting the value of
the old row to the new item in the view, and moving the old row to where the new item is scrolled
into view.
447

This scrolling behavior means that you cannot expect a cell to be used for only one value. Because
rows are recycled, it is the responsibility of the CellRenderer object to know how to completely
reset its state when it is set to a new value. For example, if your CellRenderer object creates an
icon to display one item, it might need to remove that icon when another item is rendered with it.
Assume that the CellRenderer object is a container that will be filled with numerous item values
over time; it has to know how to completely change itself from displaying one value to displaying
another. The cell should know how to properly render undefined items, which might mean
removing all old content in the cell.

About the CellRenderer API

A custom CellRenderer class should extend the UIComponent class or any subclass of the
UIComponent class. The only method in the following table that a CellRenderer class must
implement is the createChildren() method, but the other methods can be useful.

Method Description

CellRenderer.createChildren() Cell renderers implement this method to create the
subobjects in the component.
The following example creates a CheckBox control:
function createChildren(Void) : Void
{

check = createClassObject(CheckBox, "check", 1,
{styleName:this,
owner:this});
check.addEventListener("click", this);
size();

}

CellRenderer.getPreferredHeight() Returns the preferred height of a cell.
This method is especially important for getting the right
height of text within the cell. If you set this value higher than
the rowHeight property of the component, cells will extend
above and below the rows.
Declare the method in your own class as the following
example shows. This example returns the value 16, which
indicates that the cell’s preferred height is 16 pixels.

function getPreferredHeight(Void) : Number
{
 return 16;
}

448 Chapter 18: Creating Cell Renderers

CellRenderer.getPreferredWidth() Returns the preferred width of a cell. This method is only
required when using the Menu component, but it is good
practice to create a method stub.
If you specify more width than the component has, the cell
can be clipped.
Declare the method in your own class as the following
example shows. This example returns the value 3, which
indicates that the cell’s preferred width is three times as wide
as the length of the string it is rendering:

function getPreferredWidth(Void) : Number
{
 return myString.length*3;
}

CellRenderer.setSize()
CellRenderer.size()

Returns the preferred width of a cell. Classes that extend the
UIComponent class inherit this method, but the
UIComponent class expects any class that extends it to
implement a size() method.
Declare a size() method in your own class, as the following
example shows:
function size(Void) : Void
{

check.setSize(20, layoutHeight);
}

CellRenderer.setValue(str:String,
item:Object, sel:Boolean)

Sets the content to be displayed in the cell. Takes the values
given and creates a representation of them within the cell.
This clears up any difference in what was displayed in the cell
and what needs to be displayed in the cell for the new item.
Any cell could display many values during its time in the list.
This is the most important method in any cell renderer.
This method has the following arguments:
str Value to be used for the cell renderer's text, if any is
needed.
item An object that is the entire item to be rendered. The
cell renderer can use any properties of this object for
rendering.
sel A Boolean value that indicates whether the row the cell
is on is selected (true) or not (false).
Declare the method in your own class, as the following
example shows:
function setValue(str:String, item:Object,

sel:Boolean) : Void
{

check._visible = (item!=undefined);
check.selected = item[getDataLabel()];

}

Method Description
Creating a cell renderer class 449

It is useful to give the CellRenderer class a reference to the List-based control that contains it to
call the selectedIndex property of the List-based control. To set the selectedIndex property
to the correct value, the cell must reference the index of the item that it is currently rendering. To
do so, the cell can use the property and methods described in the following table. You do not need
to implement this property or these methods, but you must declare variables for them if you use
them in your class.

CellRenderer examples

The following example shows a CellRenderer class that displays a standard CheckBox control in
the cells of a List-based control:

//

//Copyright (C) 2003 Macromedia, Inc. All Rights Reserved.
//The following is Sample Code and is subject to all restrictions on
//such code as contained in the End User License Agreement accompanying
//this product.
//**

import mx.core.UIComponent
import mx.controls.CheckBox

class CheckCellRenderer extends UIComponent
{

var check : MovieClip;
var listOwner : MovieClip; // the reference we receive to the list
var getCellIndex : Function; // the function we receive from the list
var getDataLabel : Function; // the function we receive from the list

function CheckCellRenderer()
{
}

function createChildren(Void) : Void
{

Property/Method Description

CellRenderer.listOwner A reference to the List component that contains the cell.
Declare it in your class, as the following example shows:
var owner : UIObject

CellRenderer.getDataLabel() Returns a string that contains the name of the CellRenderer
class’s data field.
Declare it in your class, as the following example shows:
var getDataLabel : Function;

CellRenderer.getCellIndex() Returns an object with two fields, columnIndex and
itemIndex, that indicate the position of the cell.
Declare it in your class, as the following example shows:
var getCellIndex : Function;
450 Chapter 18: Creating Cell Renderers

check = createClassObject(CheckBox, "check", 1, {styleName:this,
owner:this});

check.addEventListener("click", this);
size();

}

// Note that the setSize() method is implemented by the UIComponent class
// and calls the size() method, after setting __width and __height.

function size(Void) : Void
{

check.setSize(20, layoutHeight);
check._x = (layoutWidth-20)/2;
check._y = (layoutHeight-16)/2;

}

function setValue(str:String, item:Object, sel:Boolean) : Void
{

check._visible = (item!=undefined);
check.selected = item[getDataLabel()];

}

function getPreferredHeight(Void) : Number
{

return 16;
}

function getPreferredWidth(Void) : Number
{

return 20;
}

function click()
{

listOwner.editField(getCellIndex().itemIndex,
getDataLabel(), check.selected);

}

}

In the following MXML example, a DataGrid control uses the CheckCellRenderer class:
<?xml version="1.0"?>
<mx:Application width="600" height="400"

xmlns:mx="http://www.macromedia.com/2003/mxml">

 <mx:Model id="employeeModel">
<employee>

<name>John Doe</name>
<phone>555-219-2270</phone>
<email>jdoe@fictitious.com</email>
<active>true</active>

</employee>
<employee>

<name>Jane Doe</name>
Creating a cell renderer class 451

<phone>555-219-2100</phone>
<email>jdoe@fictitious.com</email>
<active>false</active>

 </employee>
 </mx:Model>

<mx:HBox>
 <mx:DataGrid id="dg" height="300" widthFlex="1" heightFlex="1"

dataProvider="{employeeModel.employee}">
 <mx:columns>

<mx:Array>
<mx:DataGridColumn columnName="name" headerText="Name"/>
<mx:DataGridColumn columnName="phone" headerText="Phone"/>
<mx:DataGridColumn columnName="email" headerText="Email"/>
<mx:DataGridColumn columnName="active" headerText="Active"

textAlign="center" cellRenderer="{CheckCellRenderer}"/>
</mx:Array>

</mx:columns>
 </mx:DataGrid>

</mx:HBox>

<mx:VBox>
<mx:Form>

<mx:FormItem label="Name">
<mx:TextInput id="name" width="200" text="{dg.selectedItem.name}"/>

</mx:FormItem>
<mx:FormItem label="Email">

<mx:TextInput id="email" width="200"
text="{dg.selectedItem.email}"/>

</mx:FormItem>
<mx:FormItem label="Phone">

<mx:TextInput id="phone" width="200"
text="{dg.selectedItem.phone}"/>

</mx:FormItem>
<mx:FormItem label="Active">

<mx:TextInput id="active" width="200"
text="{dg.selectedItem.active}"/>

</mx:FormItem>
</mx:Form>

</mx:VBox>
</mx:Application>

The following example shows a cell renderer written as an MXML component. This MXML
component provides the same functionality as the CheckCellRenderer class, and you can use it
the same way in an application.
<mx:HBox borderStyle="none" xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script>
<![CDATA[

import mx.controls.CheckBox

var check : MovieClip;
var listOwner : MovieClip; // the reference we receive to the list
var getCellIndex : Function; // the function we receive from the list
452 Chapter 18: Creating Cell Renderers

var getDataLabel : Function; // the function we receive from the list

function CheckCellRenderer()
{
}

function createChildren(Void) : Void
{

check = createClassObject(CheckBox, "check", 1, {styleName:this,
owner:this});

check.addEventListener("click", this);
size();

}

// Note that the setSize() method is implemented by the UIComponent
// class and calls the size() method after setting __width and __height.
function size(Void) : Void
{

check.setSize(20, layoutHeight);
check._x = (layoutWidth-20)/2;
check._y = (layoutHeight-16)/2;

}

function setValue(str:String, item:Object, sel:Boolean) : Void
{

check._visible = (item!=undefined);
check.selected = item[getDataLabel()];

}

function getPreferredHeight(Void) : Number
{

return 16;
}

function getPreferredWidth(Void) : Number
{

return 20;
}

function click()
{

listOwner.editField(getCellIndex().itemIndex,
getDataLabel(), check.selected);

}
]]>

</mx:Script>
</mx:HBox>
Creating a cell renderer class 453

454 Chapter 18: Creating Cell Renderers

CHAPTER 19
Using Styles, Fonts, and Themes
Styles, fonts, themes, and skins are useful tools for defining the look and feel (appearance) of your
Macromedia Flex applications. You can use them to change the appearance of a single
component, or apply them across all components. You can use skins to modify or replace graphic
symbols and code in components. This chapter describes how to use styles, fonts, themes, and
skins, including the Cascading Style Sheet (CSS) syntax, in your applications.

Contents

About styles . 455

Using external style sheets . 474

Using local style definitions . 475

Using the StyleManager . 479

Using the setStyle() and getStyle() methods . 482

Using inline styles . 484

About fonts . 485

Using themes . 491

Skinning . 494

About styles

You modify the appearance of Flex components through style properties. These properties can
define the size of a font used in a Label control, or the background color used in the Tree control.
In Flex, some styles are inherited from parent containers to their children, and across style types
and classes. This means that you can define a style once, and then have that style apply to all
controls of a single type or to a set of controls. In addition, you can override individual properties
for each control at a local, document, or global level, giving you great flexibility in controlling the
appearance of your applications.
455

This section introduces you to applying styles to controls. It also provides a primer for using
Cascading Style Sheets (CSS), an overview of the style value formats (Length, Color, and Time),
and describes style inheritance. Subsequent sections provide detailed information about different
ways of applying styles in Flex.

Using styles in Flex

There are many ways to apply styles in Flex. Some provide more granular control and can be
approached programmatically. Others are not as flexible, but can require less computation. In
Flex, you can apply styles to controls in several ways.

When applying styles, you must be aware of which properties your theme supports. The default
theme in Flex does not support all style properties. For more information, see “About supported
styles” on page 493.

External style sheets

Use Cascading Styles Sheets (CSS) to apply styles to a document or across entire applications. You
can point to a style sheet without invoking ActionScript. This is the most concise method of
applying styles, but can also be the least flexible. Style sheets can define global styles that are
inherited by all controls, or individual classes of styles that only certain controls use.

The following example applies the external style sheet myStyle.css to the current document:
<mx:Style source="myStyle.css"/>

Flex includes a global style sheet defined in the flex-config.xml that is the basis of all style
definitions applied to all applications. By default, this global style sheet has no style definitions,
but it provides a convenient location to define them.

For more information on using external style sheets, see “Using external style sheets” on page 474.

Local style definitions

Use the <mx:Style> tag to define styles that apply to the current document and its children. You
define styles in the <mx:Style> tag using CSS syntax and can define styles that apply to all
instances of a control or to individual controls. The following example defines a new style and
applies it to only the myButton control:
<mx:Style>

.myFontStyle { fontSize: 15 }
</mx:Style>
<mx:Button id="myButton" styleName="myFontStyle" label="Click Here" >

The following example defines a new style that applies to all instances of the Button class:
<mx:Style>

Button { fontSize: 15 }
</mx:Style>
<mx:Button id="myButton" label="Click Here" >

For more information on using local style definitions, see “Using local style definitions”
on page 475.
456 Chapter 19: Using Styles, Fonts, and Themes

StyleManager class

Use the mx.styles.StyleManager class to apply styles to all classes or all instances of specified
classes. The following examples set the fontSize style to 15 on all TextArea controls:
StyleManager.styles.TextArea.fontSize = 15;
StyleManager.styles.TextArea.setStyle("fontSize",15);

You can also use the StyleManager to apply global styles. For more information on using the
StyleManager, see “Using the StyleManager” on page 479.

getStyle() and setStyle() methods

Use the setStyle() and getStyle() methods to manipulate style properties on instances of
controls. Using these methods to apply styles requires a greater amount of processing power on
the client than using style sheets but provides more granular control over how styles are applied.

The following example sets the fontSize to 15 on only the myButton instance:
myButton.setStyle("fontSize", 15);

For more information on using the getStyle() and setStyle() methods, see “Using the
setStyle() and getStyle() methods” on page 482.

Inline styles

Use attributes of MXML tags to apply style properties. These properties apply only to the
instance of the control. This is the most efficient method of applying instance properties because
no ActionScript code blocks or method calls are required.

The following example sets the fontSize to 15 on the myButton instance:
<mx:Button id="myButton" fontSize="15" label="My Button"/>

For more information on using inline styles, see “Using inline styles” on page 484.

Setting global styles

Most text and color styles, such as fontSize and color, are inheritable. When you apply an
inheritable style to a container, all the children of that container inherit the value of that style
property. If you set the color of a Panel container to green, all buttons in the Panel container will
also be green, unless those buttons override that color.

Many styles, however, are not inheritable. If you apply them to a parent container, only the
container uses that style. Children of that container do not use the values of noninheritable styles.

By using global styles, you can apply noninheritable styles to all controls that do not explicitly
override that style. Flex provides the following ways to apply styles globally:

• StyleManager global style
• CSS global type selector

The StyleManager lets you apply styles to all controls using the global style. For more
information on using the StyleManager class, see “Using the StyleManager” on page 479.
About styles 457

You can also apply global styles using the global type selector in your CSS style definitions.
These are located either in external CSS style sheets or in an <mx:Style> tag. For more
information, see “Using the global type selector” on page 477.

About style value formats

Style properties can be of types Boolean, String, or Number. They can also be arrays of these
types. In addition to a type, style properties also have a format (Length, Time, or Color) that
describes the valid values of the property. This section describes these formats.

Length format

The Length format applies to any style property that takes a size value, such as the size of a font.
Length is of type Number.

The Length type takes the following form:
[+|-]length[unit]

Note: Spaces are not allowed between the modifier (+ or -), the length value, and the unit.

The following table describes the Length units:

In Flex, all lengths are converted to pixels prior to being displayed. In this conversion, Flex
assumes that an inch equals 72 pixels. All other lengths are based on that assumption. For
example, 1 cm is equal to 1/2.54 of an inch. To get the number of pixels in 1 cm, multiply 1 by
72, and divide by 2.54.

There are two categories of units: relative and absolute. Relative values are calculated based on
other length units, and, therefore, are more useful when the size and format of the output device
is unknown. When specifying relative values, you can use the modifiers + and -.

Absolute values give you more control over specifying the lengths, but do not necessarily scale
well to the output device. As a result, relative units are more commonly used in style definitions
and produce more predictable results across the most platforms.

When using inline styles, Flex ignores units and uses pixels as the default.

Unit Scale Description

em Relative Ems. The width of the character m in the character set.

ex Relative x-height. The height of the character x in the character set.

px Relative Pixels.

in Absolute Inches.

cm Absolute Centimeters.

mm Absolute Millimeters.

pt Absolute Points.

pc Absolute Picas.
458 Chapter 19: Using Styles, Fonts, and Themes

The fontSize style property allows a set of keywords in addition to numbered units. You can use
the following keywords when setting the fontSize style property. The exact sizes are defined by
the client browser.
• xx-small
• x-small
• small
• medium
• large
• x-large
• xx-large

The following example class selector defines the fontSize as x-small:
.smallFont {

fontFamily: Arial, Helvetica, "_sans";
fontSize: x-small;
fontStyle: oblique;

}

Time format

You use the Time format for component properties that move or have built-in effects, such as the
ComboBox component when it drops down and pops up. The Time format is of type String and
is represented in milliseconds. Do not specify the units when entering a value in the Time format.

The following example sets the selectionDuration style property of the myTree control to 100
milliseconds:
myTree.setStyle("selectionDuration", 100);

Color format

You define Color in several formats. You can use most of the formats only in the CSS style
definitions. The following table describes the recognized Color formats for a style property:

Format Description

hexadecimal Hexadecimal colors are represented by a six-digit code preceded by either a zero and
small x (0x) or a pound sign (#). The range of possible values is 0x000000 to 0xFFFFFF
(or #000000 to #FFFFFF).
You can use the 0x prefix when defining colors anywhere. You can use the # prefix in
CSS style sheets and in <mx:Style> tag blocks. Styles that use the # prefix require
less client side processing.
When using the 0x prefix, you should surround the Hex color value with quotation
marks.
You can use hexadecimal format in all types of style definitions: inline properties, CSS
files, <mx:Style> tag definitions, setStyle() method calls, and StyleManager
definitions.

RGB RGB colors are a mixture of the colors red, green, and blue, and are represented in
percentages. The format of RGB colors is x%, y%, z%.
You can use the RGB format only in style sheet definitions.
About styles 459

Color formats are of type Number. When you specify a format such as a VGA color name, Flex
converts that String to a Number.

CSS style definitions and the <mx:Style> tag support the four color formats, as the following
example shows:
<mx:Style>

.myclass {
shadowColor: #6666CC; // CSS hexadecimal format
buttonColor: “0x6666CC”; // Hexadecimal format
borderColor: rgb(77%,22%,0%); // RGB format
errorColor: rgb(0,255,0); // 8-bit octet RGB format
color: Blue; // VGA color name

}
</mx:Style>

The StyleManager and setStyle() method support only the hexadecimal color format. You can
optionally surround the value with quotation marks, as the following example shows:
StyleManager.styles.TextArea.setStyle("color", "0xFF0099");
btn2.setStyle("color","0x999933");

When setting style properties inline, you can use either the hexadecimal format or the VGA color
name, as the following example shows:
<mx:Button id="btn1" label="Click 1" color="0x9966CC"/>
<mx:Button id="btn2" label="Click 2" color="Yellow"/>

When defining styles in CSS style sheets or in an <mx:Style> tag, you should use the # prefix
rather than the 0x prefix in the color definition, as the following example shows:
.myStyle, Button {

color: #FF0033; // preferred
color: 0xFF0033: // not preferred

}

This method of assigning a color value is more efficient than using the 0x prefix because it uses a
CSS color value. A string value must be interpreted into a color value before it can be applied.

8-bit octet
RGB

The 8-bit octet RGB colors are red, green, and blue values from 1 to 255. The format
of 8-bit octet colors is [0-255], [0-255], [0-255].
You can use the 8-bit octet RGB format only in style sheet definitions.

VGA color
names

VGA color names are a set of 16 basic colors supported by all browsers that support
CSS. The available color names are Aqua, Black, Blue, Fuchsia, Gray, Green, Lime,
Maroon, Navy, Olive, Purple, Red, Silver, Teal, White, Yellow. Some browsers support
a larger list of color names.
You can use the VGA color names format in style sheet definitions and inline style
declarations.
VGA color names are not case-sensitive. Do not surround color names with quotation
marks in CSS definitions.

Format Description
460 Chapter 19: Using Styles, Fonts, and Themes

Some controls accept arrays of colors. For example, the Tree control’s depthColors style property
can use a different background color for each level in the tree. To assign colors to a property in an
array, add the items in a comma-separated list to the property’s definition. The index is assigned
to each entry in the order that it appears in the list.

The following example defines arrays of colors for properties of the Tree type selector:
Tree {

depthColors: #EAEAEA, #FF22CC, #FFFFFF;
alternatingRowColors: red, green, blue, yellow;

}

In addition to defining properties that take an array of values using a style sheet, you can define
the array of an instance property in ActionScript using a comma-separated list of values, as the
following example shows:
myTree.setStyle("depthColors",[“0xEAEAEA", "0xFF22CC", "0xFFFFFF"]);

You can also set the depthColors property inline, as the following sample application shows:
<?xml version="1.0" encoding="iso-8859-1"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:XML id="dp">
<node label="New">

<node label="HTML Document" />
<node label="Text Document" />

</node>
<node label="Close"/>

</mx:XML>

<mx:Tree depthColors="[0xEFEFEF, 0xFF0000]" dataProvider="{dp}"
rollOverColor="0xFFFFFF"/>

</mx:Application>

About Cascading Style Sheets

Cascading Style Sheets (CSS) are a standard mechanism for declaring text styles in HTML and
most scripting languages. A style sheet is a collection of formatting rules for types of components
or classes that include sets of components. Flex supports the use of CSS syntax and styles to apply
styles to Flex components.

In CSS syntax, each declaration associates a style name, or selector, with one or more style
properties and their values. For example, the following style defines a selector named bodyText.
.bodyText { textAlign: left }

In this example, bodyText defines a new class of styles, so it is called a class selector. In the markup,
you can explicitly apply the bodyText style to a control.

A type selector implicitly applies itself to all components of a particular type. The following
example defines a type selector named Label:
Label { textAlign: left }
About styles 461

Flex applies this style to all components of type Label.

Note: The names of class selectors cannot include hyphens in Flex. If you use a hyphenated class
selector name, such as my-class-selector, Flex ignores the style.

You define multiple style properties in each selector by separating each property with a semicolon,
as the following example shows:
Label {

textAlign: left;
fontSize: 12;
color: Blue;

}

You can programmatically define values in class and type selectors using the
mx.styles.StyleManager class. For more information, see “Using the StyleManager” on page 479.

Applying color formats in CSS

CSS style definitions support all four color formats, as the following example shows:
<mx:Style>

.myClass { buttonColor: #6666CC } // Hexadecimal format

.yourClass { borderColor: rgb(77%,22%,0%) } // RGB format

.hisClass { errorColor: rgb(0,255,0) } // 8-bit octet RGB format

.herClass { color: Blue } // VGA color name
</mx:Style>

When using hexadecimal color values in CSS style sheets or in an <mx:Style> tag, you should
use the # prefix rather than the 0x prefix in the color definition, as the following example shows:
.myStyle, Button {

color: #FF0033; // Preferred
color: 0xFF0033: // Not preferred

}

This method of assigning a color value is more efficient than using the 0x method because it uses
a CSS color value. A string value must be interpreted into a color value before it can be applied.

About inheritance in CSS

Some style properties are inherited. If you set an inheritable style property on a parent container,
its children inherit that style property. For example, if you define fontFamily as Times for a
Panel container, all children of that container will also use Times for fontFamily, unless they
override that property.

Not all styles are inheritable, however. If you set a noninheritable style such as textDecoration
on a parent container, only the parent container and not its children use that style. For more
information on inheritable style properties, see “About style inheritance” on page 466.

There is an exception to the rules of inheritance. If you use the global type selector in a CSS style
definition, Flex applies those style properties to all controls, regardless of whether the properties
are inheritable. For more information about the global type selector, see “Using the global type
selector” on page 477.
462 Chapter 19: Using Styles, Fonts, and Themes

CSS differences

There are two major differences in Flex between support of CSS and the CSS specification:

• Flex supports a subset of the style properties that are available in CSS. Flex controls also have
unique style properties that are not defined by the CSS specification. For a list of styles that
you can apply to your Flex controls, see “Supported CSS properties” on page 465.

• Flex controls support styles that are defined by the current theme. If a theme does not use a
particular style, applying that style to a control or group of controls has no effect. For example,
the default theme, Halo, does not support styles such as symbolColor and
symbolBackgroundColor. For more information on themes, see “Using themes” on page 491.

About class selectors

Class selectors define a set of styles (or a class) that you can apply to any component. You define
the style class, and then point to the style class using the styleName property of the component’s
MXML tag. All Flex components that are a subclass of the UIComponent class support the
styleName property.

The following example defines a new style myclass and applies that style to a Button component
by assigning the Button to the myclass style class:
<mx:Style>

.myclass { color: #6666CC }
</mx:Style>
<mx:Canvas>

<mx:Button styleName="myclass" label="This text is dark blue">
</mx:Canvas>

About type selectors

Type selectors assign styles to all components of a particular type. When you define a type
selector, you are not required to explicitly apply that style. Instead, Flex applies the style to all
classes of that type.

The following example shows a type selector for the Button component:
<mx:Style>

Button { color: #6666CC } // Dark blue
</mx:Style>
<mx:Canvas>

<mx:Button label="This text is dark blue">
</mx:Canvas>

In this example, Flex applies the color style to all Button components in the current document,
and all Button controls in all the child documents.

You can set the same style declaration for multiple component types by using a comma-separated
list of components. The following example defines style information for all Buttons, Labels, and
TextInput components:
<mx:Style>

Button, TextInput, Label { fontStyle: italic }
</mx:Style>
About styles 463

Flex does not support contextual or sequential selectors.

Using compound selectors

You can mix class and type selectors to create a component that has styles based on compound
style declarations. For example, you can define the color in a class selector and the font size in a
type selector, and then apply both to the component:
<mx:Style>

Label { fontSize: 10pt }
myLabel { color: Blue }

</mx:Style>

<mx:Label styleName="myLabel" label="This label is 10pt Blue">
...

</mx:Label>

About selector precedence

Class selectors take precedence over type selectors. In the following example, the text for the first
button is red, and the text of the second button, with the class selector, is yellow:
<mx:VBox xmlns:mx="http://www.macromedia.com/2003/mxml" width="500"

height="200">

<mx:Style>
.myclass { color: Red }
Button { fontSize: 10pt; color: Yellow }

</mx:Style>

<mx:Button styleName="myclass" label="I am red"></mx:Button>

<mx:Button label="I am yellow"></mx:Button>

</mx:VBox>

The font size of both buttons is 10. When a class selector overrides a type selector, it does not
override all values, just those that are explicitly defined.

Default application style

Flex applications have default style settings that define the application’s appearance in a browser.
The following table lists the default style settings:

Style Default

backgroundImage Gray gradient

backgroundSize 100%

marginTop 24 pixels

marginLeft 24 pixels

marginBottom 24 pixels
464 Chapter 19: Using Styles, Fonts, and Themes

You can override these settings with a built-in style: plain. To use plain, you reference it in the
<mx:Application> tag’s styleName property, as the following example shows:
<mx:Application styleName="plain" />

The following table lists the properties of the plain style:

The plain style does not change the default stage color, which is the color of the background
when the initialize progress bar appears. To change this, set the <mx:Application> tag’s
backgroundColor property to 0xFFFFFF, as the following example shows:
<mx:Application styleName="plain" backgroundColor="0xFFFFFF" />

The following image shows the differences between the default style and an application that
applies the plain style:

Supported CSS properties

Flex supports the following subset of the CSS style properties as defined by the CSS specification:
• color
• display

marginRight 24 pixels

horizontalAlign Centered

Style Description

backgroundImage White (0xFFFFFF).

backgroundSize None.

marginTop 0 pixels.

marginLeft 0 pixels.

marginBottom 0 pixels.

marginRight 0 pixels.

horizontalAlign Left.

Style Default

Default application style Plain application style
About styles 465

• fontFamily
• fontSize
• fontStyle
• fontWeight
• marginLeft
• marginRight
• textAlign
• textDecoration
• textIndent

Flex also supports properties that you can define using CSS syntax and inheritance rules, but are
not part of the CSS property library.

About style inheritance

If you define a style in only one place in a document, Flex uses that definition to set a property’s
value. However, an application can have several style sheets, local style definitions, global style
properties, and style properties set directly on component instances. In such a situation, Flex
determines the value of a property by looking for its definition in all these places in a specific
order.

Lower-level styles take precedence over higher level or global styles. If you set a style on an
instance and then set the style globally, the global style does not override the local style, even if
you set it after you set the local style.

Style inheritance order

The order in which Flex looks for styles is important to understand so that you can know which
style properties apply to which controls.

Flex looks for a style property that was set inline on the component instance. If no style was set on
the instance using an inline style, Flex checks if a style was set using an instance’s setStyle()
method. If did not directly set the style on the instance, Flex examines the styleName property of
the instance to see if a style declaration is assigned to it.

If you did not assign the styleName property to a style declaration, Flex looks for the property on
a type selector style declaration. If there are no type selector declarations, Flex checks the global
style declaration. If all of these checks fail, the property is undefined, and Flex applies the default
style.

In the early stages of checking for a style, Flex also examines the control’s parent container for
style settings. If the style property is not defined and the property is inheritable, Flex looks for the
property on the instance’s parent container. If the property isn’t defined on the parent container,
Flex checks the parent’s parent, and so on. If the property is not inheritable, Flex ignores parent
container style settings.

Flex does not examine the parent class of a container to determine style information, but rather, it
examines instances of the parent class. For example, if an MXML component’s root element is
Panel, and no style for the type Panel is in that document, Flex does not use styles for the
Container type (mx.containers.Panel extends mx.containers.Container).
466 Chapter 19: Using Styles, Fonts, and Themes

The following figure shows the flow of the Flex style assignment operation:

In this image, the shaded boxes indicate where Flex checks if the parent container’s style property
was set. If Flex finds a setting on a parent container, and the style is inheritable, Flex immediately
stops checking for styles and renders the control.

Style definitions in <mx:Style> tags, external style sheets, and the global.css style sheet also
follow an order of precedence. The same style definition in global.css is overridden by an external
style sheet specified by an <mx:Style source="stylesheet"/> tag, which is overridden by a
style definition within an <mx:Style> tag.
About styles 467

The following example defines a type selector for Panel that sets the fontFamily property to
Times. As a result, all controls inside the Panel container inherit that style. However, button2
overrides the inherited style by defining the fontFamily style inline. When the application
renders, button2 uses Arial for the font.
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="500"

height="400" >

<mx:Style>
Panel {
 fontFamily: Times, "_serif";
}
</mx:Style>

<mx:Panel title="My Panel">

<mx:Button id="button1" label="Button 1" />

<mx:Button id="button2" label="Button 2" fontFamily="Arial" />

<mx:TextArea text="Flex has is own set of style properties which are
extensible so you can add to that list when you create a custom component."
width="425" height="400" />
</mx:Panel>

</mx:Application>

Inheritance exceptions

Not all styles are inheritable, and not all styles are supported by all components and themes. A
style is inherited only if it meets the following conditions:

• The style is supported by the theme. For a list of styles supported by the Flex themes, see
“Using themes” on page 491.

• The style is inheritable. For a list of styles and their inheritance, see “Style descriptions”
on page 469.

• The style is supported by the control. For information about which controls support which
styles, see the control’s description in Chapter 6, “Using Controls,” on page 103.

• The style is set on the control’s parent container or the container’s parent. A style doesn’t get
inherited from another class, unless that class is a parent container of the control, or a parent
container of the control’s parent container.

• The style is not overridden at a lower level. For example, if you define a style type selector
(such as Button { color:red }), but then set an instance property on a control (such as
<mx:Button color="blue"/>, the type selector style will not override the style instance
property even if the style is inheritable.

You can apply noninheritable styles to all controls using the global type selector. For more
information, see “Using the global type selector” on page 477.
468 Chapter 19: Using Styles, Fonts, and Themes

Style descriptions

There are several basic kinds of styles: text, container, and color. Text styles apply to display text.
Container styles apply to containers such as Panel and TabNavigator. Color styles define the
colors of properties on many types of components.

Each type has some inheritable and some noninheritable styles. If a style is not inheritable, then
you must set it on each class for it to apply to instances of that class. Styles that are inheritable
apply to all components and their children.

The theme of the application defines the styles that are available to set on components. The
default theme for Flex is Halo. Styles that are listed but do not have a theme associated with them
are not usable unless you use a theme whose components support those styles. For more
information about themes, see “Using themes” on page 491.

The following table describes the styles and orders them by type:

Name Format Description Theme

Inheritable text styles

color Number
(Color)

Sets the text color of a component label. Default

fontFamily String Defines a comma-separated list of fonts to use, in
descending order of desirability. You can use any font
family name. If you specify a generic font name, Flex
converts it to an appropriate device font.
The fontFamily property supports embedded fonts.
For more information on font faces, see “About fonts”
on page 485.

Default

fontSize Number
(Length)

Sets the size of the text. Default

fontStyle String Determines whether the text is italic. Recognized values
are normal and italic. The default value is normal.

Default

fontWeight String Determines whether the text is bold. Recognized values
are normal and bold. The default value is normal.

Default

textAlign String Defines alignment of text within a container.
Recognized values are left, right, or center. The
default value is right.
The Button, Link, and AccordionHeader controls
support the textAlign property if labelPlacement is set
to left or right. If labelPlacement is set to top or
bottom, the text and icon is centered. The default value
for textAlign on these controls is center.

Default

textIndent Number
(Length)

Defines the offset of first line of text from the left side of
the container. The default value is 0.

Default

Noninheritable text styles

lineHeight Number
(Length)

Sets the height of the specified line.
About styles 469

marginLeft Number
(Length)

Specifies the number of pixels between the container’s
left border and its content area.

Default

marginRight Number
(Length)

Specifies the number of pixels between the container’s
right border and its content area.

Default

textDecoration String Determines whether the text is underlined. Recognized
values are none and underline. The default value is none.

Default

Inheritable control styles

direction String Specifies the direction of fill of the ProgressBar control.
Valid values are right and left. The default value is
right.

Default

Noninheritable container styles

backgroundColor Number
(Color)

Sets the background color of the container. For more
information, see “Using the Application container”
on page 265.

backgroundImage String Sets the background image of a container. For more
information, see “Using the Application container”
on page 265.

borderStyle String Defines the bounding box style of a container. The
possible values are none, solid, inset, and outset. The
default value is inset.

Default

cornerRadius Number
(Length)

Radius of the corners of the window frame in Panel,
TitleWindow, and Alert components. The default value
is 8 pixels.

Default

headerHeight Number
(Length)

Sets the height of the Panel, Alert, and TitleWindow
headers, in pixels. The default value is 22 pixels.
Accordion also has a headerHeight property; you must
set it on the Accordion class to apply it; global settings
do not override this setting.

Default

horizontalAlign String Specifies the horizontal alignment of children in a
container. Possible values are left, center, and right.
The default value is left.

Default

horizontalGap Number
(Length)

Specifies the number of pixels between children in the
horizontal direction.

Default

marginLeft Number
(Length)

Specifies the number of pixels between a container’s
left border and its content area.

Default

marginRight Number
(Length)

Specifies the number of pixels between a container’s
right border and its content area.

Default

marginBottom Number
(Length)

Specifies the number of pixels between a container’s
bottom and its content area.

Default

marginTop Number
(Length)

Specifies the number of pixels between a container’s
top and its content area.

Default

Name Format Description Theme
470 Chapter 19: Using Styles, Fonts, and Themes

modalTransparency Number Sets transparency level. Modality is simulated by
creating a large transparent window underneath the
Window component. Due to the way transparent
windows are rendered, you may notice a slight dimming
of the objects under the transparent window.
You can set the effective transparency by changing the
modalTransparency value from 0 (fully transparent) to 100
(opaque). If you make the window partially transparent,
you can also set the color of the window by changing the
Modal skin in the default theme.
For more information, see Chapter 8, “Introducing
Containers,” on page 237.

Default

strokeWidth Number
(Length)

Specifies the separator width in pixels for containers.
The default value is 1 pixel.

Default

tabHeight Number
(Length)

Specifies the default tab height in TabNavigator and
TabBar containers. The default value is 22 pixels.

Default

tabWidth Number
(Length)

Specifies the width of the tabs, in pixels, for
TabNavigator and TabBar containers.

Default

verticalAlign Number
(Length)

Specifies the vertical alignment of children in a
container. Possible values are top, middle, and bottom.
The default value is top.

Default

verticalGap Number
(Length)

Specifies the number of pixels between children in the
vertical direction.

Default

Inheritable color styles

backgroundDisabled
Color

Number
(Color)

Sets the background color of CheckBox and
RadioButton controls when disabled. The default value
is 0xEFEEEF (light gray).
Only the DataGrid, List, Tree, and Menu controls
support this style.

barColor Number
(Color)

Sets the color of the outer bar.

borderCapColor Number
(Color)

Sets the outside left and outside right color for skins. Default

borderColor Number
(Color)

Sets the color for the black section of a three-
dimensional border or the color section of a two-
dimensional border.

Default

buttonColor Number
(Color)

Sets the face color of a Button control and a section of
the three-dimensional border. The default value is
0xEFEEEF (light gray).

Default

dateHeaderColor Number
(Color)

Specifies the skin for the color of the band at the top of
the DateChooser control. The default value is
0x0FFFFFF.

Default

Name Format Description Theme
About styles 471

dateRollOverColor Number
(Color)

Sets the color of the box highlighting a date in the
DateChooser control as you roll the mouse pointer over
it.

Default

disabledColor Number
(Color)

Sets the disabled color for text controls such as
TextInput. The default value is 0x848384 (dark gray).

Default

errorColor Number
(Color)

Sets the color of error text.

fillColor Number
(Color)

Sets the generic fill color for controls such as Buttons.

footerColors Array
(Colors)

Array of two colors used to draw the footer of the Panel,
Alert, and TitleWindow containers. This is defined by the
ControlBar subcomponent. The first color is the top
color. The second color is the bottom color. The default
values are (0xF4F5F7, 0xE1E5EB).

Default

headerColors Array
(Colors)

Array of two colors used to draw the headers on Alert,
TitleWindow, Accordion, and Panel. The first color is the
top color. The second color is the bottom color. The
default values are (0xE1E5EB, 0xF4F5F7).

Default

highlightColor Number
(Color)

Sets the inside top color of a Button control’s skin. The
default value is 0xFFFFFF (white).

Default

rollOverColor Number
(Color)

Specifies the color of Link controls as you roll the mouse
pointer over them. The default value is 0xE3FFD6 (light
green).

Default

scrollTrackColor Number
(Color)

Sets the scroll track for a ScrollBar control. The default
value is 0xEFEEEF (light gray).

selectedDateColor Number
(Color)

Sets the color of the box highlighting the selected date
in the DateChooser control.

Default

selectionColor Number
(Color)

Specifies the text color of the selected Link control. The
default value is 0xCDFFC1.

Default

shadowCapColor Number
(Color)

Sets the color for the left and right inside edges of a
Button control’s skin.

Default

shadowColor Number
(Color)

Sets the bottom inside color of a Button control’s skin.
The default value is 0x848384 (dark gray).

Default

strokeColor Number
(Color)

Specifies the separator color in containers.

symbolBackground
Color

Number
(Color)

Sets the background color of CheckBox and
RadioButton controls. The default value is 0xFFFFFF
(white).

symbolBackground
DisabledColor

Number
(Color)

Sets the background color of CheckBox and
RadioButton controls when disabled. The default value
is 0xEFEEEF (light gray).

Name Format Description Theme
472 Chapter 19: Using Styles, Fonts, and Themes

You can use multiple type selectors of the same name at different levels to set different style
properties. In a global CSS file, you can set all Label components to use the Blue color for the
fonts, as the following example shows:
Label { color: Blue }

Then, in a local style declaration, you can set all Labels to use the font size 10, as the following
example shows:
<mx:Style>

Label { fontSize: 10pt }
</mx:Style>

The local style declaration does not interfere with the global style declaration. Flex applies only
the style properties that you specified. The result is that Label controls that are children of the
current document will use Blue for the color and 10 for the font size.

Global styles are shared across all documents in an application and across all applications that are
loaded inside the same application. For example, if you load two SWF files inside separate tabs in
a TabNavigator container using Loader controls, both SWF files share the global style definitions
in the parent application and each other.

symbolBackground
PressedColor

Number
(Color)

Sets the background color of CheckBox and
RadioButton controls when pressed. The default value
is 0xFFFFFF (white).

symbolColor Number
(Color)

Sets the color of the check mark of a CheckBox control
or the dot of a RadioButton control. The default value is
0x000000 (black).

symbolDisabled
Color

Number
(Color)

Sets the disabled check mark of a CheckBox control or
dot color of a RadioButton control. The default value is
0x848384 (dark gray).

themeColor String Sets the background color of a component. Possible
values include haloGreen, haloBlue, haloSilver, and
haloOrange. The default value is haloGreen.
Macromedia recommends setting the themeColor
property in the <mx:Application> tag or other global
style and not on an individual control.
The themeColor property takes any valid color, but the
“halo” effect only appears if you use one of the
predefined Halo colors. For example, setting themeColor
to a value such as 0xCCCCCC is valid.

Default

todayColor Number
(Color)

Sets the color of the DateChooser control’s box
highlighting the current day. The default value is
0x2B333C.

Default

trackColor Number
(Color)

Sets the track color for the ScrollBar control.

Name Format Description Theme
About styles 473

Using external style sheets

Flex supports external CSS style sheets. You can declare the location of a local style sheet or use
the global style sheet to define the styles that all applications use. To apply a style sheet to the
current document and its child documents, use the source property of the <mx:Style> tag.

Note: You should try to limit the number of style sheets used in an application, and set the style sheet
only at the top-level document in the application (the document that contains the <mx:Application>
tag). If you set a style sheet only on a child document, unexpected results can occur.

The following example points to the MyStyleSheet.css file in the flex_app_root/assets directory:
<?xml version="1.0"?>

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="500"
height="500">

<mx:Style source="/assets/MyStyleSheet.css"/>

...

</mx:Application>

The value of the source property is the URL of a file that contains style declarations. When you
use the source property, the contents of that <mx:Style> tag must be empty. You can use
additional <mx:Style> tags to define other styles. Do not add <mx:Style> tags to your included
file.

The external style sheet file can contain both type and class selectors. External style sheets support
the four Color formats, as the following example shows:
.myclass { buttonColor: #6666CC } // Hexadecimal format
.myclass { borderColor: rgb(77%,22%,0%) } // RGB format
.myclass { errorColor: rgb(0,255,0) } // 8-bit octet RGB format
.myclass { color: Blue } // VGA color name

Using the global style sheet

Flex includes a default style sheet that is used across all applications. You can use it to apply a
consistent theme for your applications.

The default global.css file is empty.

You specify the location of the global style sheet in the flex_app_root/WEB-INF/flex/flex-
config.xml file using the <global-css-url> child tag of the <compiler> tag. The default style
sheet is defined as follows:
<compiler>

...
<global-css-url>/WEB-INF/flex/global.css</global-css-url>
...

</compiler>
474 Chapter 19: Using Styles, Fonts, and Themes

If you specify a relative URL, such as one that begins with a forward slash, the value of the
<global-css-url> tag is relative to the application root. You can specify an absolute URL that
points to a style sheet in another domain, as the following example shows:
<global-css-url>http://www.acme.com/styles.css</global-css-url>

Adding a style definition to the global.css file is not the same as applying a global style. It acts as a
basis from which Flex builds the application’s runtime style sheet. You can use the global type
selector in an external style sheet to apply noninheritable styles to all controls. For more
information, see “Using the global type selector” on page 477.

Using local style definitions

The <mx:Style> tag contains style sheet definitions that adhere to the CSS 2.0 syntax. These
style sheets apply to the current document and all children of the current document. The
<mx:Style> tag has the following syntax to define local styles:
<mx:Style>

selector_name {
style_property: value;
[...]

}
</mx:Style>

The following example defines a class and a type selector in the <mx:Style> tag:
<mx:Style>

.myclass { color: Red } /* class selector */
Button { fontSize: 10pt; color: Yellow } /* type selector */

</mx:Style>

For ActionScript, the naming convention for property names is to use mixed case. For CSS
properties, the convention is to use a hyphen. In style definitions, you can use either the
ActionScript property name or the CSS property names, as the following example shows:
.myclass { fontStyle: italic } /* Valid property name */
.myclass { font-style: italic } /* Valid property name */

Button { fontSize: 14 } /* Valid property name */
Button { font-size: 14 } /* Valid property name */

However, for the style name itself, you cannot use a hyphenated name, as the following example
shows:
.myClass { ... } /* Valid style name */
.my-class { ... } /* Not a valid style name */

Local style definitions support all four color formats, as the following example shows:
<mx:Style>

.myClass { color: #6666CC } // Hexadecimal format

.yourClass { color: rgb(77%,22%,0%) } // RGB format

.hisClass { color: rgb(0,255,0) } // 8-bit octet RGB format

.herClass { color: Blue } // VGA color name
</mx:Style>
Using local style definitions 475

Using the Application type selector

The Application container is the top-most container in a Flex application. Styles defined on the
Application type selector that are inheritable are inherited by all of the container’s children. Styles
that are not inheritable are only applied to the Application container itself and not its children.

Styles applied with the Application type selector are not inherited by the Application object’s
children if those styles are noninheritable. To use CSS to apply a noninheritable style globally, you
can use the global type selector. For more information, see “Using the global type selector”
on page 477.

When you define the styles for the Application type selector, you are not required to declare a
style for each component, because the components are children of these classes and inherit the
Application type selector styles.

Use the following syntax to define styles for the Application type selector:
<mx:Style>

Application { style_definition }
</mx:Style>

The following example defines the Application type selector’s fontFace and fontSize. Flex
applies this style to all components in the application that have the fontFace and fontSize
styles; in this case, the Button, Label, and TextField controls.
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="425"

height="400">

<mx:Style>
@font-face { fontFamily:myfont; src:url("fonts/AGENCYR.TTF"); }
Application { fontFamily:myfont; fontSize: 18pt }

</mx:Style>

<mx:Script>
<![CDATA[

function detectFontType() {
var f2 = String(application.isFontEmbedded("myfont"));
return f2;

}
]]>
</mx:Script>

<mx:Button label="Click Me" id="btn" click="flist.text=detectFontType();"/>

<mx:Label styleName="mystyle" id="out" text="Result" />

<mx:TextArea width="400" height="75" id="flist" text="" />

</mx:Application>

In addition to using the Application type selector to define styles, you can create a custom style
sheet inside an <mx:Style> tag and then attach that style sheet to the Application object using its
styleName property, as the following example shows:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="425"

height="400" styleName="myGlobalStyle" >
476 Chapter 19: Using Styles, Fonts, and Themes

<mx:Style>
myGlobalStyle { fontFamily:myfont; fontSize: 18pt }

</mx:Style>

...

</mx:Application>

You can use the Application type selector to set the background image and other display settings
that define the way the Flex application appears in a browser. The following sample Application
style definition aligns the SWF file to the left, removes margins, and sets the background image to
be empty:
Application {

marginLeft: 0px;
marginRight: 0px;
marginTop: 0px;
marginBottom: 0px;
horizontalAlign: "left";
backgroundImage: " "; // Empty string sets the image to nothing.

}

You can programmatically define values in the Application type selector using the
mx.styles.StyleManager class. For more information, see “Using the StyleManager” on page 479.

Using the global type selector

Flex includes a global type selector that you can use to apply noninheritable styles to all controls.
Properties defined by a global type selector apply to every control unless that control explicitly
overrides it.

The following example defines fontSize, an inheritable property, and textDecoration, a
noninheriting property, to the global type selector:
global {

fontSize:22;
textDecoration: underline;

}

Defining styles for complex components

Some complex components include multiple subcontrols. These components often have
properties that apply a style class definition to each subcontrol. To style complex components,
you can apply style definitions to the subcontrols rather than the main control. Global styles
applied with the StyleManager or as a global type selector apply to the subcontrols of complex
components.
Using local style definitions 477

For example, the Alert control comprises a title bar, message area, and set of buttons. You can
add styles to the title, message, and buttons by using the titleStyleDeclaration,
messageStyleDeclaration, and buttonStyleDeclaration properties of the Alert control.
Other complex controls that have style declaration properties include TitleWindow,
DateChooser, and DateField. The Panel container also has style declaration properties. Most
controls and containers do not have style declaration properties. For information, see the control’s
or container’s entry in Chapter 6, “Using Controls,” on page 103, Chapter 10, “Using Layout
Containers,” on page 279, or Chapter 11, “Using Navigator Containers,” on page 325.

For Panel, TitleWindow and other containers and controls, you declare style declaration
properties as instance properties in the MXML tag. For Alert, you set style declaration properties
as static class properties in ActionScript, because you cannot set individual properties on an Alert.

The following example defines three class styles in an <mx:Style> block and applies these to the
Alert control’s style declaration properties in the initAlert() method. The result is that the
Alert control’s title bar, message area, and buttons each have a unique style:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

initialize="initAlert()" width="700" height="1000">

<mx:Script>
<![CDATA[

import mx.controls.Alert;

function initAlert() {
Alert.titleStyleDeclaration = "AlertTitle";
Alert.messageStyleDeclaration = "AlertMessage";
Alert.buttonStyleDeclaration = "AlertButton";

}
]]>
</mx:Script>

<mx:Style>
AlertTitle { color: red; font-family: Symbol; font-size: 16pt;
font-style: italic; font-weight: bold; }

AlertMessage { color: blue; font-family: Verdana; font-size: 8pt;
font-style: italic; font-weight: bold; backgroundColor: yellow; }

AlertButton { color: green; font-family: Georgia; font-size: 12pt;
font-style: italic; font-weight: bold; }

</mx:Style>

<mx:Grid>
<mx:GridRow>

<mx:GridItem>
<mx:Button id="showAlert_btn" label="show Alert dialog"

click="alert('This tests style objects!', 'Test Styles',
Alert.OK | Alert.CANCEL | Alert.NONMODAL)" />

</mx:GridItem>
</mx:GridRow>

</mx:Grid>
478 Chapter 19: Using Styles, Fonts, and Themes

</mx:Application>

The following example defines a the PanelTitle style in an <mx:Style> block. The Panel
container’s MXML tag assigns the titleStyleDeclaration property to the PanelTitle style.
The result is that the Panel’s title text is green:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="500"

height="400">

<mx:Style>
PanelTitle {
 color: green;
}

</mx:Style>

<mx:Panel title="My Panel" titleStyleDeclaration="PanelTitle" width="200">
// Panel contents

</mx:Panel>
</mx:Application>

Using the StyleManager

The mx.styles.StyleManager class lets you access global style sheets, class selectors, and type
selectors in ActionScript. It also lets you apply inheritable and noninheritable properties globally.
Using the StyleManager, you can define new CSS style declarations and apply them to controls in
your Flex applications.

To set a value using the StyleManager, use the following syntax:
mx.styles.StyleManager.styles.style_name.setStyle("property", value);

The style_name can be the global style sheet (the literal “global”), a type selector such as Button
or TextArea, or a class selector that you define in either the <mx:Style> tag or an external style
sheet. In addition, it can be any object of type CSSStyleDeclaration.

You can also set the value of a style property directly using the following syntax:
mx.styles.StyleManager.styles.style_name.property = "value";

The former method is preferable because calling the setStyle() method forces the Macromedia
Flash Player to redraw the screen, while setting a style property directly does not always do so.

The StyleManager can also apply styles to all controls using the global style name. Global styles
apply to every object that does not explicitly override them. This is useful is you want to apply a
noninheritable style such as textDecoration to many classes at one time.

The following examples illustrate applying the fontWeight property to the ToolTip, myStyle,
and global style names:
// Type selector; applies to all ToolTips.
mx.styles.StyleManager.styles.ToolTip.fontWeight = "bold";

// Class selector; applies to all controls using the style named myStyle.
mx.styles.StyleManager.styles.myStyle.fontWeight = "bold";
Using the StyleManager 479

// Global style: applies to all controls.
mx.styles.StyleManager.styles.global.fontWeight = "bold";

Note: If you set either inheritable and noninheritable styles to the global style, Flex applies it to all
controls, regardless of their location in the hierarchy.

You can access the values of these properties using the getStyle() method or using a reference to
the property, as the following examples show:
var s1 = mx.styles.StyleManager.styles.global.getStyle("fontWeight");
var s2 = mx.styles.StyleManager.styles.global.fontWeight;

The getStyle() method requires more computation, so you should use it only when necessary.

The following example defines the fontFamily and fontWeight style properties for all
components using the global stylesheet. In addition, it sets the borderStyle of all TextInput
controls to solid.
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="500"

height="400" initialize="initializeStyles()">

<mx:Script>
<![CDATA[

import mx.styles.StyleManager;

 function initializeStyles():Void {
 // Initialize the global settings.
 StyleManager.styles.global.fontFamily = "Arial";
 StyleManager.styles.global.fontWeight = "bold";

 // Initialize all TextInput controls to have solid borders.
 StyleManager.styles.TextInput.borderStyle = "solid";

}
]]>
</mx:Script>

<mx:Button id="btn2" label="Click Me" />

<mx:TextArea width="425" height="250" text="this is a text area" />

</mx:Application>

Creating style declaration objects

You can create CSS style declarations using ActionScript with the mx.styles.CSSStyleDeclaration
class. This lets you create and edit styles at runtime and apply them to classes in your Flex
applications. To change the definition of the styles or to apply them during runtime, you can use
the setStyle() method or set the new style directly on a class of objects. If you do not use
setStyle(), the components might not redraw immediately with the new style settings.

You cannot use the StyleManager to apply styles to instances of objects, such as an instance of
TextInput. You can use the StyleManager to define and update CSSStyleDeclaration objects.
480 Chapter 19: Using Styles, Fonts, and Themes

You can use the setStyle() method to define style properties in the global style sheet, in a type
selector, or in a class selector. The following examples illustrate defining styles in these different
scopes:
import mx.styles.StyleManager;

function changeStyles():Void {
// Change the global font to Verdana.
StyleManager.styles.global.setStyle("fontFamily", "Verdana");

// Change all TextInput controls to have inset borders.
StyleManager.styles.TextInput.setStyle("borderStyle", "inset");

// Change the custom style named "redTahoma18" to be blue.
StyleManager.styles.redTahoma18.setStyle("color", "0x0000FF");

}

Macromedia recommends that you do not use the setStyle() method when defining styles
during application initialization because it requires more computation than setting the properties
directly.

The following example creates a new style, redTahoma18, when the application initializes, and
then applies that style using the StyleManager:

Note: When using the StyleManager’s setStyle() method to set the color property, you cannot use
the VGA color name for the format. The following example uses the hex 0x notation.

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="500"
height="400" initialize="createStyle()">
<mx:Script>
<![CDATA[

import mx.styles.StyleManager;
import mx.styles.CSSStyleDeclaration;

var redTahoma18;

function createStyle() {
// Initialize a custom style named "redTahoma18".
redTahoma18 = new CSSStyleDeclaration();
redTahoma18.color = "0xFF0000";
redTahoma18.fontFamily = "Tahoma";
redTahoma18.fontSize = 18;

// Apply new CSSStyleDeclaration to all TextArea controls.
StyleManager.styles.TextArea = redTahoma18;

}

]]>
</mx:Script>

<mx:TextArea id="ta1" height="200" width="300" text="This is a text area
used for testing programmatic style application." />

</mx:Application>
Using the StyleManager 481

If you define a style the way the previous example does, you are responsible for all the style
properties of the TextArea control. In this example, the newly-styled TextArea controls lack the
standard borders, background, and other properties unless you add them to the redTahoma18
style. If you define using CSS, Flex merges the styles together for you.

Using the setStyle() and getStyle() methods

You can interact with the style properties at runtime using the getStyle() and setStyle()
ActionScript methods. When using the getStyle() and setStyle() methods, you can access
the style properties of instances of objects or of style sheets.

Every Flex component exposes these methods. However, the setStyle() method is a
computationally expensive method to invoke and should only be used when absolutely necessary.
You should not use the setStyle() method when you are instantiating an object and setting the
styles for the first time. It should only be used when you are changing an object’s styles during
runtime.

You can also programmatically create and apply style declarations using the
mx.styles.StyleManager class, which also has getStyle() and setStyle() methods.

The getStyle() method has the following signature:
return_type componentInstance.getStyle(property_name)

The property_name is a String indicating the name of the style property (for example, fontSize,
or borderStyle). The return_type depends on the style that you access. Styles can be of type
String, Number, or Boolean.

The setStyle() method has the following signature:
componentInstance.setStyle(property_name, property_value)

The property_value sets the new value of the specified property. To determine valid values for
properties, see “Style descriptions” on page 469.

The following example uses the getStyle() and setStyle() methods to change the Button’s
fontSize style and display the new size in the TextInput:
<?xml version="1.0"?>

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="500"
height="500">

<mx:Style>
Button {

fontSize: 10pt;
color: Blue;

}
.myClass {

fontFamily: Arial, Helvetica, "_sans";
color: Red;
fontSize: 22;
fontWeight: bold;

}
</mx:Style>
482 Chapter 19: Using Styles, Fonts, and Themes

<mx:Script>
<![CDATA[

function showStyles() {
lb1.text=ip1.getStyle("fontSize");

}

function setNewStyles(newSize) {
lb1.text=ip1.setStyle("fontSize",newSize);

}
]]>
</mx:Script>

<mx:VBox id="vb">

<mx:TextInput styleName="myClass" text="My attrs" id="ip1" width="400"/>

<mx:Label id="lb1" text="" width="400"/>

<mx:Button label="Show Style" click="showStyles();"/>

<mx:Button label="Set Style" click="setNewStyles(ip2.text);"/>

<mx:TextInput text="" id="ip2" width="50"/>

</mx:VBox>

</mx:Application>

You can use the getStyle() methods to access style properties regardless of how they were set. If
you defined a style property as a tag property inline rather than in an <mx:Style> tag, you can get
this style. However, you cannot override inline style definitions with the setStyle() method.
You can override style properties that were applied in any other way, such as in an <mx:Style> tag
or in an external style sheet.

The following example sets a style property inline, and then reads that property using the dot-
notation syntax:
<?xml version="1.0"?>

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="1000"
height="1000">

<mx:Script>
<![CDATA[

function readStyle() {
myLabel.text = "Style: " + myLabel.fontStyle;

}
]]>
</mx:Script>

<mx:VBox xmlns:mx="http://www.macromedia.com/2003/mxml" width="500"
height="200">

<mx:Button id="b1" click="readStyle()" label="Get Style" />
Using the setStyle() and getStyle() methods 483

<mx:Label fontStyle="italic" id="myLabel"/>

</mx:VBox>

</mx:Application>

The setStyle() method supports only the hexadecimal color format, as the following example
shows:
btn2.setStyle("color","0x999933");

Using inline styles

You can set style properties as properties of the component in the MXML tag. Inline style
definitions take precedence over any other style definitions. The following example defines a type
selector for Button components, but then overrides the borderStyle with an inline definition:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="500"

height="200">

<mx:Style>
Button {

fontSize: 10pt; color: Red;
fontStyle: italic;
borderStyle: inset;

}
</mx:Style>

<mx:Button label="Inset border"></mx:Button>

<mx:Button borderStyle="outset" label="Outset border"></mx:Button>

</mx:Application>

If you set a style property inline, you cannot override it with any other styles. For example, if you
declare a button with a color red (<mx:Button id="btn1" color="0x999933"/>, you cannot
override it with a setStyle() method on the button instance
(btn1.setStyle("color","0x999933";)).

When setting style properties inline, you must adhere to the ActionScript style property naming
syntax rather than the CSS naming syntax. For example, you can set a Button’s fontSize
property as either font-size or fontSize in an <mx:Style> declaration, but you must set it as
fontSize in a tag definition:
<mx:Style>

Button { font-size: 15; }
SimpleButton { fontSize: 15; }

</mx:Style
<mx:Button fontSize="15" label="My Button"/>

When setting color style properties inline, you can use either the hexadecimal format or the VGA
color name, as the following example shows:
484 Chapter 19: Using Styles, Fonts, and Themes

<mx:Button id="btn1" label="Click 1" color="0x9966CC"/>
<mx:Button id="btn2" label="Click 2" color="Yellow"/>

About fonts

You define the font that appears in each of your components using the fontFamily style
property. This property can take a list of fonts, as the following example shows:
.myClass {

fontFamily: Arial, Helvetica;
color: Red;
fontSize: 22;
fontWeight: bold;

}

If the client’s system does not have the first font in the list, the Flash Player attempts to find the
second, and so on, until it finds a font that matches. If no fonts match, Flash Player makes a best
guess to determine which font the client uses.

Using device fonts

The safest course when specifying font faces is to include a device font as a default at the end of
the font list. Device fonts do not export font outline information and are not embedded in the
Flash SWF file. Instead, Flash Player uses whatever font on the local computer most closely
resembles the device font.

The following example specifies the device font _sans to use if the Flash Player cannot find either
of the other fonts on the client machine:
.myClass {

fontFamily: Arial, Helvetica, "_sans";
color: Red;
fontSize: 22;
fontWeight: bold;

}

Note: You must surround device font names with quotation marks when defining them within style
declarations.

Flash includes three device fonts. The following table describes these fonts:

Using device fonts does not impact the size of the SWF file because they are included in the Flash
Player. Using them in your applications guarantees that your text appears the same across all
platforms. However, using device fonts impacts performance of the application because it requires
that the Flash Player interact with the local operating system.

Font name Description

_sans The _sans device font is a sans-serif typeface. It is similar to Helvetica or Arial.

_serif The _serif device font is a serif typeface. It is similar to Times Roman.

_typewriter The _typewriter device font is a monospace font. It is similar to Courier.
About fonts 485

Using embedded fonts

Rather than rely on a client machine to have the fonts you specify, you can embed the font
information for a single TrueType font family in your Flex application. This means that the font
is always available to the Flash Player when running this application and you do not have to
consider the implications of a missing font.

Embedded fonts have the following benefits:

• Client does not need the font to be installed on the local machine.
• Embedded fonts are anti-aliased, which means that their edges are smoothed for easier

readability. This is especially apparent when the text size is large.
• Embedded fonts can be transparent.
• Embedded fonts can be rotated.
• Text appears exactly as you expect when using embedded fonts.

Using embedded fonts is not always the best solution, however. Embedded fonts have the
following drawbacks:

• You can only embed TrueType fonts.
• Embedded fonts increase the file size of your application, because the document must contain

font outlines for the text. This can result in longer download times for your users.
• Embedded fonts decrease legibility of the text at sizes below 10 points. All embedded fonts use

anti-aliasing to render the font information on the client screen. As a result, fonts may look
fuzzy or illegible at small sizes.

• You can only specify a single fontFamily style property when embedding fonts. Flex does not
support a list of embedded fonts.

Flex supports the CSS syntax for embedding fonts in Flex applications. You use the @font-face
“at-rule” to specify the source of the embedded font, and then define the name of the font using
the fontFamily property. The source can be a local font or one that is accessible using a URL.
You use this name in your MXML code to refer to the embedded font.

Note: Check your font licenses before embedding any font files in your Flex application. Double-byte
fonts may have licensing restrictions that preclude them from being stored as vector information.

Embedded font syntax

To embed TrueType fonts, you use the following syntax in your style sheet or <mx:Style> tag:
@font-face {

src: [url("location"); | local("name")]
fontFamily:reference_name;
[descriptor: value;]

}

486 Chapter 19: Using Styles, Fonts, and Themes

The src attribute specifies the location of the fontFamily. You can specify either a url or a
local function. The following table describes these functions:

You begin by defining the font using the @font-face rule, adding a src attribute with either the
url or local function, plus a pointer to the embedded fontFamily. The following example
defines the akbar font using the url function:
<mx:Style>
@font-face{

src: url("akbar.ttf");
fontFamily: akbar;

}
</mx:Style>

You must specify the url or local function of the src descriptor in the @font-face declaration.
All other descriptors are optional.

After you define a @font-face, you define the new fontFamily name, or alias, as a type or class
selector. The following example sets the fontFamily type selector for the Accordion controls to
use the font defined by the akbar alias:
Accordion {

fontFamily: akbar
}

If the specified embedded font was described as an @font-face rule, but there were errors in
creating the font in the SWF file, Flex logs a warning and displays the default device _sans font
in place of the embedded font.

Note: Lists of font families are not supported for embedded fonts. You should specify only one family
name when using an embedded font.

Do not mix embedded and non-embedded fonts in the same fontFamily descriptor.

src Attribute Description

url Embeds a TrueType font by location by specifying a valid URI to the font. The URI
can be relative (for example, /fontfolder/kbar.ttf) or absolute (for example, http://
www.macromedia.com/fonts/akbar.ttf). The URI can also use the file protocol (for
example, file:///c:/myfonts/akbar.ttf).

local Embeds a TrueType font by name rather than location. You can embed fonts that
are locally accessible by the application server’s Java Runtime Environment (JRE).
These fonts include *.ttf files in the jre/lib/fonts folder, fonts that are mapped in the
jre/lib/font.properties file, and fonts that are made available to the JRE by the OS.
In Windows, *.ttf files in the /windows/fonts directory (or /winnt/fonts) are available
to the local function. On Solaris or Linux, fonts that are registered with a font server
such as xfs are available.
The font name that you specify is determined by the operating system. In general,
you do not include the font file’s extension, but this is OS-dependent. Consult your
operating system documentation for more information.
About fonts 487

Adding multiple faces

Using the @font-face declaration embeds a single face for the font. A face is the general outline
that describes the font’s appearance. The result is that each style of font must include a new font-
face declaration. For example, if you want to use bold and plain versions of the akbar font, you
must embed akbar twice; once with the fontWeight property set to bold, and once for plain font:
<mx:Style>
@font-face {

src:url("akbar.ttf");
fontFamily: myfont;

}

@font-face {
src:url("akbar.ttf");
fontWeight: bold;
fontFamily: myfontBold;

}
</mx:Style>

By default, Flex includes the entire font definition for each embedded font in the application, so
you should limit the number of fonts that you use to reduce the size of the application. You can
limit the size of the font definition by defining the character range of the font. For more
information, see “Setting character ranges” on page 489.

Identifying embedded fonts

The application object has a property called embeddedfontlist that stores the names of all fonts
that are embedded in the current Flex application. You do this by using the iterator syntax var...
in application.embeddedfontlist.

The following example iterates over the application object’s embeddedfontlist property to get a
list of fonts embedded in this application:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="425"

height="400">
<mx:Style>

@font-face { fontFamily:myfont; src:url("fonts/AGENCYR.TTF"); }
@font-face { fontFamily:myfont2; src:url("fonts/AGENCYB.TTF"); }
Application { fontFamily:myfont; fontSize: 18pt }

</mx:Style>

<mx:Script>
<![CDATA[

function getfontlist() {
var fl:String="";
for (var foo in application.embeddedFontList) {

fl = fl + "application.embeddedFontList." + foo + " = " +
application.embeddedFontList[foo] + “\n";

}
return fl;

}
]]>
</mx:Script>
488 Chapter 19: Using Styles, Fonts, and Themes

...//process the value f1 from getfontlist

</mx:Application>

If you have a font name, you can determine if it is embedded using the isFontEmbedded()
method of the Application object. The isFontEmbedded() method has the following signature:
Application.application.isFontEmbedded(fontFace:String):Boolean

To call the isFontEmbedded() method, pass in the style name for the font face. It returns true if
that font is embedded, or false if it is not. The following example detects if the
AGENCYR.TTF font is embedded:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="425"

height="400">

<mx:Style>
@font-face { fontFamily:myfont; src:url("fonts/AGENCYR.TTF"); }
Application { fontFamily:myfont; fontSize: 18pt }

</mx:Style>

<mx:Script>
<![CDATA[

function detectFontType() {
var f2 = String(Application.application.isFontEmbedded("myfont"));
return f2;

}
]]>
</mx:Script>

<mx:Button label="Click Me" id="btn" click="flist.text=detectFontType();"/>

<mx:Label styleName="mystyle" id="out" text="Result" />

<mx:TextArea width="400" height="75" id="flist" text="" />

</mx:Application>

Caching embedded font faces

Flex caches a specified number of embedded font faces in memory. The default number of fonts is
20. You can change the number of cached fonts by editing the flex-config.xml file. For more
information, see “Editing font settings” on page 760.

Setting character ranges

By specifying a range of symbols that compose the face of an embedded font, you reduce the size
of an embedded font. Each character in a font must be described; if you remove some of these
characters, it reduces the overall size of the description information that Flex must include for
each embedded font.
About fonts 489

You can set the range of glyphs in the flex-config.xml file or in the font-face declaration in each
MXML file. You specify individual characters or ranges of characters using the Unicode values for
the characters, and you can set multiple ranges for each font declaration.

If you use a character that is outside of the declared range, Flex displays nothing for that character.

For more information on character ranges, see the CSS-2 Fonts specification at http://
www.w3.org/TR/1998/REC-CSS2-19980512/fonts.html#descdef-unicode-range.

Setting ranges in font-face declarations

You can set the range of allowable characters in an MXML file using the unicode-range
attribute of the font-face declaration. The following example embeds the akbar font and defines
the range of characters for the font in the <mx:Style> tag:
<?xml version="1.0"?>

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Style>
@font-face {

fontFamily: akbar;
src: local("akbar");
unicode-range:

U+0020-U+0040, /* Punctuation, Numbers and Symbols */
U+0041-U+005A, /* Upper-Case A-Z */
U+005B-U+0060, /* Punctuation and Symbols */
U+0061-U+007A, /* Lower-Case a-z */
U+007B-U+007E; /* Punctuation and Symbols */

}

TextArea { fontFamily: akbar; }
</mx:Style>

<mx:TextArea text="This is My Text Area" />
</mx:Application>

Setting ranges in flex-config.xml

You can specify the language and character range for embedded fonts in the flex-config.xml file
using the <language-range> child tag. This lets you define the range once and use it across
multiple font-face declarations.

The following example creates an englishRange and an otherRange named ranges in the
flex-config.xml file:
<fonts>

<language-range>
<lang>englishRange</lang>
<range>U+0020-U+007E</range>

</language-range>

<language-range>
<lang>otherRange</lang>
<range>U+00??</range>
490 Chapter 19: Using Styles, Fonts, and Themes

</language-range>
</fonts>

In your MXML file, you point to the defined ranges using the unicode-range attribute of the
font-face declaration, as the following example shows:
@font-face {

fontFamily: Excelsior;
src: local("akbar");
unicode-range: englishRange;

}

Flex includes a file that lists convenient mappings of the Flash MX 2004 UnicodeTable.xml
character ranges for use in the Flex configuration file. The file is located at flex_app_root/WEB-
INF/flex/flash-unicode-table.xml.

The following example shows the predefined range Latin 1:
<language-range>

<lang>Latin I</lang>
<range>U+0020,U+00A1-U+00FF,U+2000-U+206F,U+20A0-U+20CF,U+2100-U+2183
</range>

</language-range>

To make ranges listed in flash-unicode-table.xml available in your Flex applications, copy the
range from this file and add them to the flex-config.xml files.

Using themes

A theme defines the look of a Flex application. It is a collection of styles and skins that make up a
component’s appearance. The theme of an application can manifest itself as a color scheme or a
distinctive brush used to draw icons and other on-screen elements. A theme can also be a subtle
change, such as a light shadow, to existing graphics that makes an application’s appearance
distinctive.

Themes define what styles are available to set in your Flex applications. If the theme does not
define styles such as buttonColor, then you cannot set the buttonColor style property in your
application. The default theme included with Flex supports a subset of the style properties. For
more information, see “About supported styles” on page 493.

The default theme in Flex is called Halo. The signature of this theme is a glowing ring of light
around each control. Flex includes HaloTheme.fla, the source file for the skins used by the Halo
theme in the flex_install_dir/flexforflash directory. The default location in Windows is C:/
Program Files/Macromedia/Flex/flexforflash/HaloTheme.fla. To edit this FLA file, open it in
Flash MX 2004.

Creating themes

To create a theme, you can edit an existing theme’s FLA file in Flash MX 2004 and export it as a
SWC file. You change the appearance of Flex components by creating a new set of graphics that
replace the existing graphics used by those controls.
Using themes 491

You can also create a theme without editing an existing theme, but you must gather the symbol
names and sizes for all the graphics you want to skin. For more information on creating and
editing FLA files that contain symbols used in themes, see the Flash MX 2004 documentation.

Using the theme property

You can apply a theme to your Flex application using the theme property of the
<mx:Application> tag. The following example applies the FreakyStyley theme to the
application:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="500"

height="300" theme="../themes/FreakyStyley.swc">

You must store theme SWC files in directories outside of the application root. Flex searches for
the specified SWC file in a location relative to the MXML file.

You can use the theme included with Flex as a basis for creating your own theme. Open the
HaloTheme.fla file and change the graphical assets. Then export the master symbol to a new
SWC file. You can name the SWC file anything you want. In the <mx:Application> tag, set the
value of the theme property to the name of the SWC file.

Flex treats themes SWC files differently than other SWC files. You must store the custom theme’s
SWC file in a separate directory from the application files and from other SWC files. If you store
the theme in the same directory as the application root or in a directory specified by the <lib-
path> settings in flex-config.xml, Flex can produce unexpected results.

Understanding limitations of themes

Applying a new theme to a Flex application is designed to be simple. However, because of its
simplicity, you should be aware of the following limitations:

• You can assign only one SWC file as the theme for an application. If you want to use skins
from multiple FLA files, you must combine them before exporting the SWC file from the
Flash IDE.

• The symbols in the SWC file take precedence over all other symbols in the component
definitions. If the SWC file includes symbols that you do not want to use in your Flex
application, you must remove those symbols.

• Class implementations found in the application or its libraries generally take precedence. Do
not attach graphic resources directly to class definitions that have the same name as library
classes, because Flex ignores those assets.

• You cannot apply skins to a single control or an instance of a control. The symbols in the SWC
file are applied to all components in your application.

• Each component is composed of many skins and some components share skins. As a result,
components that share skins may use the same skins for different purposes. When you apply a
new theme, you must be aware that the theme can unintentionally apply to some components.
492 Chapter 19: Using Styles, Fonts, and Themes

About supported styles

All themes support the inheritable and noninheritable text styles, but not all styles are supported
by all themes. If you try to set a style property on a control but the current theme does not
support that style, Flex does not apply the style.

Some styles are only used by skins in the theme, while others are used by the component
code itself. The display text of components is not skinnable, so support for text styles is
theme-independent.

All themes support the following inheritable text styles:
• color
• fontFamily
• fontSize
• fontStyle
• fontWeight
• textAlign
• textIndent

All themes support the following noninheritable text styles:
• marginLeft
• marginRight
• textDecoration

In addition to the text styles, the Halo theme supports the following styles:
• borderCapColor
• borderColor
• borderStyle
• buttonColor
• cornerRadius
• dateHeaderColor
• dateRollOverColor
• direction
• disabledColor
• footerColors
• headerColors
• headerHeight
• highlightColor
• horizontalAlign
• horizontalGap
• marginLeft
• marginRight
• marginTop
• marginBottom
• rollOverColor
• selectionColor
• selectedDateColor
• shadowCapColor
Using themes 493

• shadowColor
• strokeWidth
• tabHeight
• tabWidth
• themeColor
• todayColor
• verticalAlign
• verticalGap

Skinning

Skinning is the process of changing the appearance of a component by modifying or replacing its
source graphics (or symbols). A skin can be a small piece, like a border’s edge or corner, or a
composite piece like the entire picture of a button in its up state (the state in which it hasn’t been
pressed). A skin can also be a symbol without a graphic, which contains code that draws a piece of
the component. When you create a skin either from graphics or code, you specify which style
property names, if any, your skin responds to.

There are two types of skins in Flex: asset skins and programmatic skins. Asset skins are Flash
symbols that can be changed directly in the Flash authoring environment. Programmatic skins are
drawn using ActionScript statements and are defined in class files. Visual components in Flex uses
both types of skins.

You can also change the skins of Flex controls by creating a new custom component in Flash and
changing the properties of the skins in the component’s class files. This technique is
recommended for only experienced Flash designers. For more information, see “Skinning custom
controls” on page 881.

Asset skins

You can use the included HaloTheme.fla file to edit asset skins used in Flex. This file is located in
the flex_install_dir/flexforflash directory. The default location in Windows is C:/ Program Files/
Macromedia/Flex/flexforflash/HaloTheme.fla.

Open the HaloTheme.fla file in Flash MX 2004 and edit the graphical assets that correspond to
skins for the controls that you want to reskin. For example, if you want to reskin a Button, you
could change the following skin properties of the Button:
• falseUpSkin
• falseDownSkin
• falseOverSkin
• falseDisabledSkin

The complete list of Button control skins is available at “Button control skins” on page 113. For a
list of skin properties for each control, see that control’s entry in the corresponding section of this
document.

Note: Before exporting the new control as a SWC file, deselect the Export in First Frame option for
the HaloTheme’s symbol if you are working in the HaloTheme.fla file.
494 Chapter 19: Using Styles, Fonts, and Themes

When you are finished editing the skin assets, export the control (or set of controls) as a SWC file
and add the SWC file to your Flex application. For more information on using SWC files in Flex,
see “Distributing SWC files” on page 791.

If you do not completely reskin all components that you use in your application, the default skins
“bleed through” your custom theme so that the end result is a combination of themes.

Programmatic skins

The ActionScript files for programmatic skinning are located in the FlexforFlash.zip file. Flex
installs this file in the flex_install_dir/flexforflash directory. The default location in Windows is
C:/Program Files/Macromedia/Flex/flexforflash/FlexforFlash.zip.

In the FlexforFlash.zip file, the programmatic skin files are in the Flex Classes/mx/skins/
directory. You can subclass these classes to change the way the Flash API draws the skins.
Then you add the new class file to your theme’s FLA file and export it as a SWC file from
Flash MX 2004.

The following ActionScript class files in the Flex Classes/mx/skins/ directory are the base classes:

• Border.as
• ColoredSkinElement.as
• CustomBorder.as
• RectBorder.as
• SkinElement.as

These base classes are then extended by the ActionScript classes in the Halo theme. The following
files in the Flex Classes/mx/skins/halo directory extend the base classes:

• AccordionHeaderSkin.as
• ActivatorSkin.as
• BoxDividerSkin.as
• ButtonSkin.as
• Defaults.as
• DropShadow.as
• FocusRect.as
• LinkDropIndicator.as
• LinkSeparator.as
• RectBorder.as
• TabSkin.as
• TitleBackground.as
Skinning 495

496 Chapter 19: Using Styles, Fonts, and Themes

CHAPTER 20
Using Behaviors
Behaviors let you add animation and motion to your application in response to some user or
programmatic action. For example, you can use behaviors to cause a dialog box to bounce slightly
when it receives focus, or to slowly fade in when it becomes visible.

This chapter describes how to build behaviors into your applications and also describes the two
parts of a behavior: triggers and effects.

Contents

Applying behaviors. 497

Customizing an effect . 505

Defining a custom effect . 509

Defining and playing an effect in ActionScript. 512

Using a custom effect trigger . 514

Applying behaviors

A behavior is a combination of a trigger paired with an effect. A trigger is an action, such as a
mouse click on a component, a component getting focus, or a component becoming visible. An
effect is a visible or audible change to the component that occurs over a period of time, measured
in milliseconds. Examples of effects are fading, resizing, or moving a component. You can define
multiple effects for a single trigger.

For example, a pet store application might contain a button for each pet category. When the user
clicks a button, a window that contains breed names becomes visible. As the window becomes
visible, it moves to the bottom left corner of the screen, and it grows from 100 x 100 pixels to
300 x 300 pixels.

By default, Macromedia Flex components do not play an effect when a trigger occurs. To
configure a component to use an effect, you associate an effect with the trigger. For example, you
could define an effect that causes a button to slowly fade in when it becomes visible.
497

Note: Triggers are not events. For example, a Button control has both a mouseDownEffect trigger and
a mouseDown event. The trigger initiates an effect when a user performs a mouse click on a component.
You use the mouseDown event to specify the event handler that is executed when the user clicks the
component.

About triggers and effects

Flex uses a Cascading Style Sheet (CSS) to define a trigger that you reference as a property of an
MXML tag or in an ActionScript function. The CSS property of a trigger uses the following
naming convention:
triggerEffect

where trigger is the trigger name. For example, the focusIn trigger occurs when a component
gains focus; the CSS property name for the focusIn trigger is focusInEffect. The focusOut
trigger occurs when a component loses focus; its CSS property name is focusOutEffect.

The following table lists the CSS style name that corresponds to each trigger:

Applying an effect in MXML

You use the CSS property name as a property of an MXML tag to configure a behavior. For
example, to configure the effect for the hide trigger in an <mx:Button> tag, you use the following
MXML syntax:
<mx:Button id="myButton" hideEffect="WipeLeft" ... />

A WipeLeft effect makes the Button control appear as if it were being wiped onto the
Macromedia Flash Player stage from right to left. Flex also supports the WipeRight, WipeUp, and
WipeDown effects. For more information, see “List of effects” on page 502.

CSS style name Triggering event

creationCompleteEffect Component is created.

focusInEffect Component gains keyboard focus.

focusOutEffect Component loses keyboard focus.

hideEffect Component becomes invisible by changing the visible property of the
component from true to false.

mouseDownEffect User presses the mouse button while the mouse pointer is over the
component.

mouseOutEffect User rolls the mouse pointer off of the component.

mouseOverEffect User rolls the mouse pointer over the component.

mouseUpEffect User releases the mouse button.

moveEffect Component is moved.

resizeEffect Component is resized.

showEffect Component becomes visible by changing the visible property of the
component from false to true.
498 Chapter 20: Using Behaviors

Applying an effect in ActionScript

Because Flex implements effect triggers as styles, you can use the setStyle() and getStyle()
methods to apply effects.

The code in the following example alternates the Fade and WipeLeft effects for the
mouseDownEffect style of a Button control:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script>
<![CDATA[

function changeEffect()
{

if (myButton.getStyle("mouseDownEffect") == "WipeLeft") {
myButton.setStyle("mouseDownEffect","Fade");

}
else if (myButton.getStyle("mouseDownEffect") == "Fade") {

myButton.setStyle("mouseDownEffect","WipeLeft");
}

}
]]>
</mx:Script>

<mx:Effect>
<mx:Fade name="Fade" duration="1000"/>

</mx:Effect>

<mx:Button id="myButton" click="changeEffect();" label="My Button"
mouseDownEffect="WipeLeft" mouseUpEffect="WipeRight" />

</mx:Application>

Using the effectStart and effectEnd events

Every user interface component has an effectStart and an effectEnd event. Event handlers
you assign to these events execute when an effect starts or ends, respectively.

The event object passed to the handler for these effects contains the following properties:

• target A reference to the component that uses the effect.
• type The string effectStart or effectEnd.
• effect A reference to the effect.

For an example, see “Zooming a component above 100 percent” on page 501.

Disabling container layout for effects

By default, Flex updates the layout of a container’s children when a new child is added to it, when
a child is removed from it, when a child is resized, and when a child is moved. Since the Move
effect modifies a child’s position, and the Zoom effect modifies a child’s size and position, they
both cause the container to update its layout.
Applying behaviors 499

However, when the container updates its layout, it can actually reverse the results of the effect. For
example, you use the Move effect to reposition a container child. At some time later, you change
the size of another container child, forcing the container to update its layout. This layout update
can cause the child that moved to be sent back to its original position.

To prevent Flex from performing layout updates, you can set the autoLayout property of a
container to false. Its default value is true, which configures Flex to always update layouts. You
always set the autoLayout property on the parent container of the component using the effect.
For example, if you want to control the layout of a child of a Grid container, you set the
autoLayout property for the parent GridItem container of the child, not for the Grid container.

You set the autoLayout property to false when you use a Move effect in parallel with a Resize or
Zoom effect. You must do this because the Resize or Zoom effect can cause an update to the
container’s layout, which can return the child back to its original location.

When you use the Zoom effect on its own, you might decide to set the autoLayout property to
false, or you may leave it with its default value of true. For example, if you use a Zoom effect
with the autoLayout property set to true, as the child grows or shrinks, Flex automatically
updates the layout of the container to reposition its children based on the new size of the child. If
you use a Zoom effect with the autoLayout property set to false, the child resizes around its
center point and the remaining children do not change position.

The HBox container in the following example uses the default vertical alignment of top and the
default horizontal alignment of left. If you apply a Zoom effect to the image, the HBox
container resizes to hold the image, and the image remains aligned with the top left corner of the
container:
<mx:HBox>

<mx:Image source="myImage.jpg" />
</mx:HBox>

In the next example, the image is centered in the HBox container. If you apply a Zoom effect to
the image, as it resizes it remains centered in the HBox container.
<mx:HBox horizontalAlign="center" verticalAlign="middle">

<mx:Image source="myImage.jpg" />
</mx:HBox>

By default, the size of the HBox container is big enough to hold the image at it original size. If
you disable layout updates, and use the Zoom effect to enlarge the image, or use the Move effect
to reposition the image, the image might extend past the boundaries of the HBox container, as
the following example shows:
<mx:HBox autoLayout="false">

<mx:Image source="myImage.jpg" />
</mx:HBox>

Since you set the autoLayout property to false, the HBox container does not resize as the image
resizes. If the image grows to a size so that it extends beyond the boundaries of the HBox
container, the container adds scroll bars and clips the image at its boundaries.
500 Chapter 20: Using Behaviors

To prevent the scroll bars from appearing, you can use the height and width properties to
explicitly size the HBox container so that it is large enough to hold the modified image, or set the
clipContent property of the container to false so that the image can extend past its boundaries.

Zooming a component above 100 percent

By default, when you use the Zoom effect with a zoomTo value that is greater than 100, it causes
undesirable layering of components. You can work around this by calling the zoomed
component’s swapDepths() method to manually change the depth of the component when
zooming it and restore its original size. When you swap the depth of the component, you can
enlarge it over other components in the application.

The popToTop() function in the following example changes the depth of a zoomed component
when the zoomTo value is greater than 100; the popToTop() function is specified as the
effectStart event handler for a Button control. The restore() method resets a zoomed
component to its original depth; the restore() method is specified as the effectEnd event
handler for the Button control.

This example also sets the autoLayout property to false to prohibit the Tile container from
updating the layout during zooming, and sets the clipContent property to false to allow the
Button controls to extend beyond the boundaries of the Tile container.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Script>
<![CDATA[

var dp:Array = [1, 2, 3, 4, 5, 6, 7, 8, 9];

function popToTop(effect:Object)
{

var target = effect.target;
if (effect.zoomTo > 100)
target.swapDepths(target.getDepth() + 100);

}

function restore(effect:Object)
{

var target = effect.target;
if (effect.zoomTo == 100)
target.swapDepths(target.getDepth() - 100);

}

]]>
</mx:Script>

<mx:Effect>

<mx:Zoom name="myZoom" zoomFrom="100" zoomTo="175" />
<mx:Zoom name="cut" zoomTo="100" duration="1" />

</mx:Effect>

<mx:Tile backgroundColor="#A9C365" marginLeft="3" marginRight="3"
Applying behaviors 501

marginTop="3" marginBottom="3" horizontalGap="3" verticalGap="3"
autoLayout="false" clipContent="false" >
<mx:Repeater dataProvider="{dp}">

<mx:Button height="49" width="50" label="hi!"
mouseOverEffect="myZoom"
mouseOutEffect="cut"
effectStart="popToTop(event.effect)"
effectEnd="restore(event.effect)" />

</mx:Repeater>
</mx:Tile>

</mx:Application>

List of effects

The following table lists the effects that Flex supports. Included in this table is the MXML tag
definition for each effect. You use the tag to customize effect properties. For more information,
see “Customizing an effect” on page 505.

Effect MXML tag Description

Fade <mx:Fade
name="ID"
alphaFrom="val"
alphaTo="val"
duration="val"
easing="funcName"
suspendBackGround
Processing="val"
/>

Animate the component from transparent to opaque, or from
opaque to transparent.
The Fade effect has the following properties:
• name Specifies the effect identifier.
• alphaFrom Specifies the initial alpha level (0= transparent,

100 =fully opaque). If omitted, Flex uses the component’s
current alpha level.

• alphaTo Specifies the final alpha level.
• duration Specifies the effect duration. The default value is
500 ms.

• easing Specifies an easing function, which lets you change
the speed of an animation; for more information, see “Easing
functions” on page 507.

• suspendBackGroundProcessing If true, blocks all
background processing, such as measurement and layout
and responses from data services, while the effect is playing.

If you specify the Fade effect for the show or hide trigger, and if
you omit the alphaFrom and alphaTo properties, then the effect
automatically transitions from 0 to 100 for a show trigger, and
100 to 0 for a hide trigger.
Note: To use the Fade effect with text, you must use an
embedded font, not a device font. For more information, see
Chapter 19, “Using Styles, Fonts, and Themes,” on page 455.
502 Chapter 20: Using Behaviors

Move <mx:Move
name="ID"
xFrom="val"
yFrom="val"
xTo="val"
yTo="val"
xBy="val"
yBy="val"
duration="val"
easing="funcName"
suspendBackGround
Processing="val"
/>

Changes the position of a component over a specified time
interval.
The Move effect has the following properties:
• name Specifies the effect identifier.
• xFrom and yFrom Specify the initial position of the

component. If omitted, Flex uses the current position.
• xTo and yTo Specify the destination position.
• xBy and yBy Specify the number of pixels to move the

component in the x and y directions. Values can be positive
or negative.

• duration Specifies the effect duration. The default value is
500 ms.

• easing Specifies an easing function, which lets you change
the speed of an animation; for more information, see “Easing
functions” on page 507.

• suspendBackGroundProcessing If true, blocks all
background processing, such as measurement and layout
and responses from data services, while the effect is playing.

For the xFrom, xTo, and xBy properties, you can specify any two
of the three values; Flex calculates the third. If you specify all
three properties, Flex ignores the xBy property. The same is
true for the yFrom, yTo, and yBy properties.
If you specify a Move effect for a move trigger, and if you do
not set the six From, To, and By properties, Flex sets them to
create a smooth transition between the object’s old position
and its new position.

Pause <mx:Pause
name="ID"
duration=”val”
suspendBackGround
Processing="val"
/>

Does nothing for a specified period of time. This effect is
useful when you need to composite effects. For more
information, see “Composite effects” on page 506.
The Pause effect has the following properties:
• name Specifies the effect identifier.
• duration Specifies the effect duration. The default value is
500 ms.

• suspendBackGroundProcessing If true, blocks all
background processing, such as measurement and layout
and responses from data services, while the effect is playing.

Effect MXML tag Description
Applying behaviors 503

Resize <mx:Resize
name="ID"
widthFrom="val"
heightFrom="val"
widthTo="val"
heightTo="val"
widthBy="val"
heightBy="val"
duration="val"
easing="funcName"
suspendBackGround
Processing="val"
/>

Changes the width and height of a component over a
specified time interval.
The Resize effect has the following properties:
• name Specifies the effect identifier.
• widthFrom and heightFrom Specify the initial width and

height. If omitted, Flex uses the current size.
• widthTo and heightTo Specify the final width and height.
• widthBy and heightBy Specify the number of pixels to

modify the size as either a positive or negative number
relative to the initial width and height.

• duration Specifies the effect duration. The default value is
500 ms.

• easing Specifies an easing function, which lets you change
the speed of an animation; for more information, see “Easing
functions” on page 507.

• suspendBackGroundProcessing If true, blocks all
background processing, such as measurement and layout
and responses from data services, while the effect is playing.

For widthFrom, widthTo, and widthBy, you can specify any two
of the three values, and Flex calculates the third. If you specify
all three, Flex ignores widthBy. The same is true for
heightFrom, heightTo, and heightBy.
If you specify a Resize effect for a resize trigger, and if you do
not set the six From, To, and By properties, Flex sets them to
create a smooth transition between the object’s old size and
its new size.
When you apply a Resize effect, the layout manager resizes
neighboring components based on the size changes to the
target component. To run the effect without resizing other
components, place the target component in a Canvas
container.

Effect MXML tag Description
504 Chapter 20: Using Behaviors

Customizing an effect

Every effect accepts at least one property that you can use to configure it. In addition, all effects
take the following properties:

• duration Specifies the time, in milliseconds, over which the effect occurs.
• easing (except Pause) Specifies a pointer to an easing function, which lets you change the

speed of an animation; for more information, see “Easing functions” on page 507.

For a complete list of effect properties, see “List of effects” on page 502.

WipeLeft
WipeRight
WipeUp
WipeDown

<mx:WipeXXX
name="ID"
show="boolean"
duration="val"
easing="funcName"
suspendBackGround
Processing="val"
/>

Defines a bar wipe effect. The before or after state of the
component must be invisible.
These effects have the following properties:
• name Specifies the effect identifier.
• show If true (default), causes the component to appear. If
false, causes the component to disappear.

• duration Specifies the effect duration. The default value is
500 ms.

• easing Specifies an easing function, which lets you change
the speed of an animation; for more information, see “Easing
functions” on page 507.

• suspendBackGroundProcessing If true, blocks all
background processing, such as measurement and layout
and responses from data services, while the effect is playing.

If you specify a Wipe effect for a show or hide trigger, by
default Flex sets the show property to true if the component is
invisible, and false if the component is visible.

Zoom <mx:Zoom
name="ID"
zoomFrom="val"
zoomTo="val"
duration="val"
easing="funcName"
suspendBackGround
Processing
="val"
/>

Zooms a component in or out from its center point.
The Zoom effect has the following properties:
• name Specifies the effect identifier.
• zoomFrom Specifies a number that represents the scale at

which to start the zoom. The default value is 0.
• zoomTo Specifies a number to zoom to. The default value is
100. The maximum value is also 100.

• duration Specifies the effect duration. The default value is
500 ms.

• easing Specifies an easing function, which lets you change
the speed of an animation; for more information, see “Easing
functions” on page 507.

• suspendBackGroundProcessing If true, blocks all
background processing, such as measurement and layout
and responses from data services, while the effect is playing.

To use a zoomTo value greater than 100, you must swap the
depth of the component being zoomed so that it appears
above other components in the application. For more
information, see “Customizing an effect” on page 505.

Effect MXML tag Description
Customizing an effect 505

To customize an effect:

1. Add an <mx:Effect> tag near the top of the MXML document.

2. Inside the <mx:Effect> tag, insert the MXML tag for the effect that you want to modify.

3. Set the name property of the MXML tag for the effect to a unique name.

When using the modified effect in an MXML application, refer to it by its name property.
4. Set the properties of the new effect tag.

For more information on tag properties, see “List of effects” on page 502.

Custom effects

The following example creates two new versions of the Fade effect. The SlowFade effect uses a
two-second duration; the ReallySlowFade effect uses an eight-second duration:
<!-- Customize the Fade effect to create two new effects. -->
<mx:Effect>

<mx:Fade name="SlowFade" duration="2000"/>
<mx:Fade name="ReallySlowFade" duration="8000"/>

</mx:Effect>

<!-- Use the built-in Fade effect for this label.-->
<mx:Image creationCompleteEffect="Fade" source="first.jpeg" />

<!-- Use custom versions of the Fade effect for these labels. -->
<mx:Image creationCompleteEffect="SlowFade" source="second.jpeg" />
<mx:Image creationCompleteEffect="ReallySlowFade" source="third.jpeg" />

The following example creates three versions of the Move effect:
<mx:Effect>

<mx:Move name="SmallMove" xBy="5" yBy="5" duration="1000"/>
<mx:Move name="MediumMove" xBy="20" yBy="20" duration="1000"/>
<mx:Move name="LargeMove" xBy="50" yBy="50" duration="1000"/>

</mx:Effect>

Composite effects

Flex supports two methods to combine, or composite, effects: parallel and sequence. When you
combine multiple effects in parallel, the effects play at the same time. When you combine
multiple effects in sequence, one effect must complete before the next effect starts.

To define parallel or sequential effects, include the <mx:Parallel> or <mx:Sequence> tag in the
<mx:Effect> tag. The <mx:Parallel> and <mx:Sequence> tags accept only an name property.

The following example defines the parallel effect WipeRightUp, which combines the WipeRight
and WipeUp effects:
<mx:Effect>

<mx:Parallel name="WipeRightUp">
<mx:WipeRight duration="1000" />
<mx:WipeUp duration="1000" />

</mx:Parallel>
</mx:Effect>
506 Chapter 20: Using Behaviors

<mx:VBox id="myBox" hideEffect="WipeRightUp" >
<mx:TextArea id="aTextArea" text="hello" />

</mx:VBox>

<mx:Button id='myButton' click="myBox.visible = !myBox.visible;"
label="Wipe!"/>

The click handler for the Button control alternates turning the VBox container visible and
invisible. When the VBox container becomes invisible, it uses the WipeRightUp effect as its
hide effect.

The following example shows a sequence effect that moves and resizes a component:
<mx:Effect>

<mx:Sequence name="MoveResize">
<mx:Move xBy="20" yBy="20" duration="1000"/>
<mx:Resize heightBy="20" widthBy="20" duration="1000"/>

</mx:Sequence>
</mx:Effect>

You can nest <mx:Parallel> and <mx:Sequence> tags inside each other. For example, two
effects can run in parallel, followed by a third effect running in sequence.

Easing functions

You can change the speed of an animation by defining an easing function for an effect. With
easing, you can create a more realistic rate of acceleration and deceleration. You can also use an
easing function to create a bounce effect or control other types of motion.

Note: An easing function takes four arguments, following the function signature popularized by
Robert Penner. For more information, see www.ericd.net/chapter7.pdf.

The following code shows the format of an easing function:
function myEasingFunction(t, b, c, d) {

...
}

You specify the following arguments to an easing function:

• t specifies time
• b specifies the initial position of a component
• c specifies the total change in position of the component
• d specifies the duration of the effect, in milliseconds

In the following example, an easing function creates a bounce effect when combined with the Flex
Move effect:
<mx:Script>

<![CDATA[
function myEasingFunction(t, b, c, d) {

if ((t /= d) < (1 / 2.75)) {
return c * (7.5625 * t * t) + b;

}
else if (t < (2 / 2.75)) {
Customizing an effect 507

http://www.ericd.net/chapter7.pdf

return c * (7.5625 * (t -= (1.5 / 2.75)) * t + .75) + b;
}
else if (t < (2.5 / 2.75)) {

return c * (7.5625 * (t -= (2.25 / 2.75)) * t + .9375) + b;
}
else {

return c * (7.5625 * (t -= (2.625 / 2.75)) * t + .984375) + b;
}

};
]]>

</mx:Script>

To use this easing function, you use the <mx:Effect> tag to define a custom effect, as the
following example shows:
<mx:Effect>

<mx:Move name="moveLeftShow" xFrom="600" xTo="0" yTo="0" duration="3000"
easing="myEasingFunction" />

<mx:Move name="moveRightHide" xFrom="0" xTo="600" duration="3000"
easing="myEasingFunction" />

</mx:Effect>

In this example, you create two custom Move effects. The first effect moves a component to the
left; the second effect moves it to the right. You can use these custom effects in a Flex application,
as the following example shows:
<mx:LinkBar dataProvider="myVS" />
<mx:ViewStack id="myVS" borderStyle="solid">

<mx:Canvas id="Canvas0" label="Canvas0"
creationCompleteEffect="moveLeftShow"
showEffect="moveLeftShow"
hideEffect="moveRightHide" >

<mx:Box height="300" width="600" backgroundColor="#00FF00">
<mx:Label text="Screen 0" color="#FFFFFF" fontSize="40"/>

</mx:Box>
</mx:Canvas>
<mx:Canvas id="Canvas1" label="Canvas1"

showEffect="moveLeftShow" hideEffect="moveRightHide" >
<mx:Box height="300" width="600" backgroundColor="#0033CC">

<mx:Label text="Screen 1" color="#FFFFFF" fontSize="40"/>
</mx:Box>

</mx:Canvas>
</mx:ViewStack>

In this example, you use the custom effects in the showEffect and hideEffect properties of the
children of a ViewStack container. When you click a label in the LinkBar navigator container, the
corresponding child of the ViewStack container slides in from the right, and bounces to a stop
against the left margin of the ViewStack container, while the previously visible child of the
ViewStack container slides off to the right.

The custom effect for the showEffect property is only triggered when the child’s visibility
changes from false to true. Therefore, the first child of the ViewStack container also includes a
creationCompleteEffect property. This is necessary to trigger the effect when Flex first creates
the component. If you omit the creationCompleteEffect property, you will not see the
moveLeftShow effect when the application starts.
508 Chapter 20: Using Behaviors

Defining a custom effect

To define a custom effect, you create a subclass of the mx.effects.Effect class. You can also create a
subclass of one of the standard effects included with Flex; these effects are all subclasses of
mx.effects.Effect class. The class should contain a playEffect() method to start the effect, and
can optionally contain an endEffect() method to stop the effect.

The following example shows an effect class that uses a Sound object to play an embedded MP3
file. This class directly extends the mx.effects.Effect class.
// MySound.as
class MySound extends mx.effects.Effect
{

[Embed(mimeType="audio/mpeg",source="sample.mp3")]
var soundSymbol:String;

var s:Sound;

public function playEffect():Void
{

super.playEffect();

s = new Sound();
s.attachSound(soundSymbol);
s.start();

}

public function endEffect():Void
{

s.stop();
}

}

To declare a custom effect class in an MXML file, you place an effect tag with the same name as
the effect class inside an <mx:Effect> tag. You reference the custom effect the same way you
reference a standard effect.

The following example shows an application that uses the MySound effect. The MySound.as class
file and the sample.mp3 file are in the same directory as the MXML file.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

xmlns:local="*":>

<!-- Declare the SoundEffect effect. -->
<mx:Effect>
 <local:MySound name="mySoundEffect"/>
</mx:Effect>

<!-- Use the SoundEffect effect with a mouseOver trigger. -->
<mx:Label fontSize="20" text="Chime right in!"
mouseOverEffect="mySoundEffect" />

</mx:Application>
Defining a custom effect 509

The following example shows a custom visual effect that rotates a component. The effect extends
the mx.effects.TweenEffect class.
// Rotate.as
import mx.effects.Tween;

/*
Rotate
extends TweenEffect

Animate the rotation of the component
*/

[Style(name="angleFrom",type="Number")]
[Style(name="angleTo",type="Number")]

/**
Rotate a component from its center point.

<p>MXML Syntax</p>
<p>You use the <Rotate> tag to define a Rotate effect. The <Rotate>

tag accepts
the properties in the following syntax example.</p>
<p>
<PRE>
<Rotate

 rotateFrom="30"

 rotateTo="60"

 styleName="<i>Style name; no default.</i>"

 duration="500"

 easing="<i>Easing function name; no default.</i>"

/>
</PRE>
</p>

Let (phi) be angle between r=(Ox,Oy - Cx,Cy) and -X Axis.
(theta) be clockwise further angle of rotation.

Xtheta = Cx - rCos(theta + phi);
Ytheta = Cy - rSin(theta + phi);

Xtheta = Cx - rCos(theta)Cos(phi) + rSin(theta)Sin(phi);
Ytheta = Cy - rSin(theta)Cos(phi) - rCos(theta)Sin(phi);

Now Cos(phi) = w/2r; Sin(phi) = h/2r;

Xtheta = Cx - rCos(theta)Cos(phi) + rSin(theta)Sin(phi);
Ytheta = Cy - rSin(theta)Cos(phi) - rCos(theta)Sin(phi);

Xtheta = Cx - rCos(theta)w/2r + rSin(theta)h/2r;
Ytheta = Cy - rSin(theta)w/2r - rCos(theta)h/2r;

Xtheta = Cx - wCos(theta)/2 + hSin(theta)/2;
Ytheta = Cy - wSin(theta)/2 - hCos(theta)/2;
510 Chapter 20: Using Behaviors

*/

class Rotate extends mx.effects.TweenEffect
{

var className:String = "Rotate";

var centerX:Number;
var centerY:Number;

/**
*/
[Inspectable(defaultValue=0)]
/**
*/
var angleFrom:Number;
[Inspectable(defaultValue=360)]
/**
*/
var angleTo:Number;

function Rotate(targetObj:Object)
{

target = targetObj;
}

function playEffect():Void
{

super.playEffect();

var radVal:Number = Math.PI * target._rotation/180;

// Find the center point
centerX = target._x + (target.width / 2)*Math.cos(radVal) - (target.height

/ 2)*Math.sin(radVal);
centerY = target._y + (target.width / 2)*Math.sin(radVal) + (target.height

/ 2)*Math.cos(radVal);

if(angleFrom == undefined)
{

angleFrom = 0;
}

if(angleTo == undefined)
{

angleTo = 360;
}

tween = new Tween(this, angleFrom, angleTo, duration);

if (easing)
tween.setEasingEquation(target, easing);

// Set back to initial position before the screen refreshes
target._rotation = angleFrom;
radVal = Math.PI * angleFrom/180;
Defining a custom effect 511

target._x = centerX - (target.width / 2)*Math.cos(radVal) + (target.height
/ 2)*Math.sin(radVal);

target._y = centerY - (target.width / 2)*Math.sin(radVal) - (target.height
/ 2)*Math.cos(radVal);
}

function onTweenUpdate(val):Void
{

target._rotation = val;
var radVal:Number = Math.PI * val/180;

target._x = centerX - (target.width / 2)*Math.cos(radVal) + (target.height
/ 2)*Math.sin(radVal);

target._y = centerY - (target.width / 2)*Math.sin(radVal) - (target.height
/ 2)*Math.cos(radVal);
}

function getAffectedProperties():Array
{

return ["_rotation"];
}

}

The following example shows an application that uses the Rotate effect:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<!-- Declare the Rotate effect.-->
<mx:Effect>
 <local:Rotate name="myRotateEffect" angleFrom="0" angleTo="100"

duration="5000" xmlns:local="*"/>
</mx:Effect>

<mx:Button id="panel" label="Rotate" mouseOverEffect="myRotateEffect"/>

</mx:Application>

Defining and playing an effect in ActionScript

You can declare and play the effect in an event handler function. This is very useful for using a
control to trigger an effect on another control. For example, the event handler in the following
example is applied to a Button control’s click event to trigger a Resize effect on an Image
control:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="800"

height="518">
<mx:Script>

<![CDATA[

function myEffectHandler(){
// Create a Resize effect and apply it to a TextArea control named
// myText.
512 Chapter 20: Using Behaviors

var resizeLarge = new mx.effects.Resize(myText);

// Set resized width and height, and effect duration.
resizeLarge.widthTo=150;
resizeLarge.heightTo=150;
resizeLarge.duration=750;

// Play the effect.
resizeLarge.playEffect();

}
]]>

</mx:Script>

<mx:Canvas height="300" width="500" borderStyle="solid">
<mx:Button x="50" y="50" click="myEffectHandler();"/>
<mx:TextArea x="100" y="100" id="myText" text="Here is some text."/>

</mx:Canvas>

</mx:Application>

You can also create an event handler that combines effects into a composite effect and then plays
the composite effect, as the following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="800"

height="518">
<mx:Script>

<![CDATA[

function myEffectHandler(){
// Create a Resize effect.
var resizeLarge = new mx.effects.Resize(myText);

// Set resized width and height, and effect duration.
resizeLarge.widthTo=150;
resizeLarge.heightTo=150 ;
resizeLarge.duration=750;

var moveToRight = new mx.effects.Move(myLabel);
moveToRight.xTo=200;
moveToRight.duration=750;

var resizeAndMove = new mx.effects.Parallel();
resizeAndMove.addChild(resizeLarge);
resizeAndMove.addChild(moveToRight);

// Play the composite effect.
resizeAndMove.playEffect();

}
]]>

</mx:Script>

<mx:Canvas height="300" width="500" borderStyle="solid">
<mx:Button x="50" y="50" click="myEffectHandler();"/>
<mx:TextArea x="100" y="100" id="myText" text="Here is some text."/>
Defining and playing an effect in ActionScript 513

</mx:Canvas>

</mx:Application>

Using a custom effect trigger

You can create a custom effect trigger to handle situations for which standard triggers do not meet
your needs. For example, suppose you want to apply an effect that sets the brightness level of a
component. The standard showEffect and hideEffect properties are paired with a component’s
the visible property. As a result, you can only trigger the effect specified in a hideEffect
property by setting a component’s visible property to false. When a component’s visible
property is set to false, the component should be invisible, so showEffect and hideEffect are not
appropriate triggers for setting a component to different levels of brightness.

The following example shows a custom Button control that dispatches two events, darken and
brighten, based on changes to the bright property. The control also defines two effect triggers,
darkenEffect and brightenEffect; when you declare an event [Event("eventname")] , you
can create a corresponding effect by declaring [Effect("eventnameEffect")].
<?xml version="1.0"?>

<!-- MyButton.mxml -->
<mx:Button xmlns:mx="http://www.macromedia.com/2003/mxml" width="200"

height="200">

 <mx:Metadata>
 [Event("darken")]
 [Event("brighten")]
 [Effect("darkenEffect")]
 [Effect("brightenEffect")]
 </mx:Metadata>

 <mx:Script>
 var _bright:Boolean = true;

 function set bright(val:Boolean)
 {
 _bright = val;

 if (val)
 dispatchEvent({type:"brighten"});
 else
 dispatchEvent({type:"darken"});
 }

 function get bright():Boolean
 {
 return _bright;
 }
 </mx:Script>

</mx:Button>
514 Chapter 20: Using Behaviors

The application file in the following example contains a MyButton control. The darkenEffect
and brightenEffect properties are set to the FadeOut and FadeIn effects, respectively. The
click property of another Button control toggles the MyButton control’s bright property and
executes the corresponding effect (FadeOut or FadeIn).
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" xmlns:local="*"

height="800" width="800">

 <mx:Effect>
 <mx:Fade name="FadeOut" alphaFrom="100" alphaTo="20"/>
 <mx:Fade name="FadeIn" alphaFrom="20" alphaTo="100"/>
 </mx:Effect>

 <local:MyButton id="btn" darkenEffect="FadeOut" brightenEffect="FadeIn"/>

 <mx:Button click="btn.bright = !btn.bright"/>

</mx:Application>
Using a custom effect trigger 515

516 Chapter 20: Using Behaviors

CHAPTER 21
Using ToolTips
Macromedia Flex ToolTips are a flexible method of providing helpful information to your users.
When a user moves the mouse pointer over a graphical component, the ToolTip pops up and text
appears. You can use ToolTips to guide users through working with your application or customize
them to provide additional functionality. This chapter describes how to use ToolTips in your
Flex applications.

Contents

About ToolTips . 517

Using ToolTips . 518

Using the ToolTipManager . 521

About ToolTips

ToolTips are a standard feature of many desktop applications. They make the application easier to
use by displaying messages when the user rolls the mouse pointer over an on-screen element, such
as a Button control.

The following figure shows ToolTip text that Flex shows when the user hovers the mouse pointer
over a button:

When the user moves the mouse pointer away from the component or, in the case of the button,
clicks the component, the ToolTip disappears. If the mouse pointer remains over the component,
the ToolTip eventually disappears. Only one ToolTip is visible at a time.

You can set the time it takes for the ToolTip to appear when a user moves the mouse pointer over
the component, and set the amount of time it takes for the ToolTip to disappear.

Child controls inherit their parent’s ToolTips. As a result, if the ToolTip is defined on a container,
all children of that container will have that ToolTip, unless they override it with a new ToolTip or
assign an empty string for ToolTip text.
517

Flex ToolTips support style sheets and the dynamic loading of ToolTip text. ToolTip text does
not support embedded HTML. For more information on using style sheets and dynamic loading
of text, see “Setting styles in ToolTips” on page 519 and “Using dynamic ToolTip text”
on page 523.

Using ToolTips

Every visual Flex component supports a toolTip property. You set the value of the toolTip
property to a text string and, when the mouse pointer hovers over that component, Flex displays
the text string. The following example sets the toolTip property text for a Button control:
<mx:Button id="myButton" label="Submit" width="100" toolTip="Click this button

to submit the form." click="doSomething();" />

To set the value of a ToolTip in ActionScript, use the toolTip property of the component. The
following example sets the toolTip property of a Button control:
<mx:Button id="myButton" label="Do Something" width="100"

click="doSomething();" />

<mx:Script>
<![CDATA[

function doSomething() {
myButton.toolTip = "Click this button to Do Something";

}
]]>

</mx:Script>

Children of containers inherit the ToolTips of their parents. If you add a Button control to a
Panel container that has a ToolTip, the user sees the Panel container’s ToolTip text when they
move their mouse pointer over the Button control. A child can clear the ToolTip text of an
ancestor by setting toolTip="".

The following example shows the inheritance of ToolTip text and how to override it:
<mx:VBox toolTip="VBOX">

<mx:Button id="b1" toolTip="BUTTON"/>
<mx:Button id="b2" toolTip=""/>
<mx:Button id="b3"/>

</mx:VBox>

When the mouse pointer is over button b1, the ToolTip displays BUTTON. When the mouse
pointer is over button b2, no ToolTip text appears. When the mouse is over button b3 or is over
anywhere in the VBox container except the buttons, the ToolTip displays VBOX.

The tabs of the TabNavigator container use the ToolTips of their children. If you add a ToolTip
to a child view of a TabNavigator container, the ToolTip appears when the mouse is over the tab
for that view, but not when the mouse is over the view itself. ToolTips in the Accordion container
also function this way.

There is no limit to the size of the ToolTip text, although long messages can be difficult to read.
When the ToolTip text reaches the width of the ToolTip box, the text wraps to the next line. You
can add line breaks in ToolTip text. In ActionScript, you use the \n escaped newline character. In
MXML tags, you use the  XML entity.
518 Chapter 21: Using ToolTips

The following examples show using the \n escaped newline character and the  entity:
<mx:Script><![CDATA[

function doSomething() {
// Use the \n to force a line break in ActionScript
myButtonAS.toolTip = "Click this button \n to do something";

}

]]></mx:Script>

<mx:Button id="myButtonAS" label="Do Something" width="100"
click="doSomething();" />

<!-- Use  to force a line break in MXML tags -->
<mx:Button id="myButton" label="Submit" width="100" toolTip="Click this button

 to submit the form." />

You also have some flexibility in formatting the text of the ToolTip. You can access the
mx.controls.ToolTip class to apply styles and change other settings for all ToolTips in your
application. The following sections describe how to set styles on the ToolTip text and box.

Setting styles in ToolTips

You can change the appearance of ToolTip text and the ToolTip box using Cascading Style Sheets
(CSS) syntax or the mx.styles.StyleManager class. Changes to ToolTip styles apply to all ToolTips
in the current application.

You use a type selector in the <mx:Style> tag to set the styles of your ToolTips in CSS syntax.
The following example sets the font characteristics of the type selector ToolTip using CSS syntax:
<mx:Style>

ToolTip { font-family: "Arial"; font-size: 9; font-style: "italic"; font-
weight: "bold"; color: "0xFAFAD2" }

</mx:Style>

To use the StyleManager class, apply a style to the ToolTip type selector, as the following example
shows:
<mx:Script>

<![CDATA[
import mx.styles.StyleManager;

function setTTSTyle() {
StyleManager.styles.ToolTip.fontWeight = "bold";

}
]]>

</mx:Script>

ToolTips use inheritable styles that you set globally. For example, you can set the fontWeight of
ToolTips with the StyleManager by setting it on the global style sheet, as the following example
shows:
StyleManager.styles.global.fontWeight = "bold";
Using ToolTips 519

The following table describes the ToolTip styles that you can change. If you set a style that is
inheritable on the ToolTip’s parent container, the ToolTip inherits that style:

For more information on using styles in Flex, see Chapter 19, “Using Styles, Fonts, and Themes,”
on page 455.

Setting ToolTip width

You can set the width of the ToolTip box by changing the maxWidth property of the
mx.controls.ToolTip class. For example, the following line changes the maximum width of the
ToolTip box to 100 pixels:
mx.controls.ToolTip.maxWidth = 100;

Property Description Inheritable

backgroundColor The color of the ToolTip box, expressed as a hexadecimal value;
for example, #FFFFFF.

No

borderColor The color of the border around the ToolTip box, expressed as a
hexadecimal value; for example, #CCCC66.

Yes

borderStyle The bounding box style. The possible values are: none, solid,
inset, and outset. The default value is inset.

No

color The color of the font, expressed as a hexadecimal value; for
example, #FFFFFF.

Yes

fontFamily The name of the font face; for example, Times or Arial. Yes

fontSize The size, in points, of the font; for example, 12. Yes

fontStyle Determines whether the text is italic. Recognized values are
normal and italic. The default value is normal.

Yes

fontWeight Determines whether the text is bold. Recognized values are
normal and bold. The default value is normal.

Yes

marginBottom The number of pixels that ToolTip text is offset from the bottom of
the ToolTip box.

No

marginLeft The number of pixels that ToolTip text is offset from the left of the
ToolTip box.

No

marginRight The number of pixels that ToolTip text is offset from the right of
the ToolTip box.

No

marginTop The number of pixels that ToolTip text is offset from the top of the
ToolTip box.

No

shadowColor The color of the ToolTip box’s shadow, expressed as a
hexadecimal value; for example, #FFFFFF.

Yes

textAlign Alignment of text within the ToolTip box. Recognized values are
left, right, or center. The default value is right.

Yes

textDecoration Determines whether the text is underlined. Recognized values are
none and underline. The default value is none.

No
520 Chapter 21: Using ToolTips

The maxWidth property is the maximum width in pixels for new ToolTips boxes. Flex wraps the
text of a ToolTip onto multiple lines to ensure that the width does not exceed this value. If the
text in the ToolTip box is not as wide as the maxWidth property, Flex creates a box only wide
enough for the text to fit.

The default maxWidth value is 300. The minimum maxWidth value is 30. If the maxWidth value
exceeds the width of the application, Flex clips the text in the ToolTip box.

ToolTip events

ToolTips trigger the following events:

• showToolTip Broadcast when the ToolTip text box becomes visible.
• hideToolTip Broadcast when the ToolTip’s state changes from visible to invisible.

In addition to the type and target properties, the event object for ToolTip events contains a
currentToolTip property.

Using the ToolTipManager

The ToolTipManager lets you set basic ToolTip functionality, such as display delay and the
disabling of ToolTips.

This section describes how to use the ToolTipManager.

Enabling and disabling ToolTips

You can enable and disable ToolTips in your Flex applications. When you disable ToolTips, no
box appears when the user moves the mouse pointer over a visible component, regardless of
whether that component’s tooltip property is set.

You use the enabled property of the ToolTipManager to enable or disable ToolTips. You set this
property to true to enable ToolTips or false to disable ToolTips. The default value is true.

The following example toggles ToolTips on and off when the user clicks the Toggle ToolTips
button:
<mx:Script>

<![CDATA[
function toggleTT() {

if (mx.managers.ToolTipManager.enabled == false) {
mx.managers.ToolTipManager.enabled = true;
} else {

mx.managers.ToolTipManager.enabled = false;
}

}
]]>

</mx:Script>
<mx:Button label="Toggle ToolTips" width="100" click="toggleTT();" />
Using the ToolTipManager 521

Setting delay times

The delay time is a measurement of time that passes before something takes place. For example,
after you move the mouse pointer over a component, there is a brief delay before the ToolTip
appears. This gives someone who is not looking for ToolTip text enough time to move the mouse
pointer away before seeing the pop-up.

The ToolTipManager lets you set the length of time that a ToolTip remains on the screen when a
mouse pointer hovers over the component and the length of time that passes before the ToolTip
box appears.

You set the value of the ToolTipManager showDelay and hideDelay properties in your
ActionScript code blocks. The following table describes the time delay properties of the
ToolTipManager:

The following example uses the Application control’s initialize event to set the starting values
for the ToolTipManager:
<mx:Application width='500' height='300' xmlns:mx="http://www.macromedia.com/

2003/mxml" initialize="initApp();" >

<mx:Script>
<![CDATA[

function initApp() {
mx.managers.ToolTipManager.enabled = true;// Optional. Default is true.
mx.managers.ToolTipManager.showDelay = 0;// Display immediately.
mx.managers.ToolTipManager.hideDelay = 3000; // Hide after 3 seconds.

}
]]>

</mx:Script>
...
</mx:Application>

Property Description

showDelay The length of time, in milliseconds, that Flex waits before displaying the ToolTip box
when a user moves the mouse pointer over a component that has a ToolTip.
To make the ToolTip appear instantly, set the showDelay property to 0. The default
time is 500 milliseconds or half of a second.

hideDelay The amount of time, in milliseconds, that Flex waits to hide the ToolTip box after it
appears. After Flex hides a ToolTip box, the user must move the mouse pointer off the
component and back onto it to see the ToolTip box again.
If you set the hideDelay property to 0, Flex does not display the ToolTip. Macromedia
recommends using the default time of 10,000 milliseconds, or 10 seconds.
If you set the hideDelay property to Infinity, Flex does not hide the ToolTip until the
user triggers an event (such as moving the mouse pointer off the component). The
following example sets the hideDelay property to Infinity:
mx.managers.ToolTipManager.hideDelay = Infinity;
522 Chapter 21: Using ToolTips

Using effects with ToolTips

You can use a custom effect or one of the standard Flex effects with ToolTips. You set the
showEffect property of the ToolTipManager to point to the effect that you want to be triggered
whenever a ToolTip is displayed. You can only use one ToolTip effect in each application.

To use an effect with your ToolTips:

1. Name the effect and define its properties using the <mx:Effect> tag.

2. Set the showEffect property of the ToolTipManager to set that effect for your ToolTips; for
example:
mx.managers.ToolTipManager.showEffect = "MyCustomEffect";

For more information about using effects and defining custom effects, see Chapter 20, “Using
Behaviors,” on page 497.

The following example uses the Fade effect so that ToolTips fade in when the user moves the
mouse pointer over a component:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="600"

height="600" initialize="app_init();">
<mx:Script>
<![CDATA[

function app_init() {
mx.managers.ToolTipManager.showEffect = "ToolTipFadeIn";
}

]]>
</mx:Script>

<mx:Effect>
<mx:Fade name="ToolTipFadeIn" alphaFrom="0" alphaTo="100"

duration="1000"/>
</mx:Effect>
<mx:Button label="Do Nothing" toolTip="Click this button if you don't want
anything to happen."/>

</mx:Application>

To turn off the ToolTip effect, use the ToolTipManager hideEffect property; for example:
mx.managers.ToolTipManager.hideEffect = "ToolTipFadeIn";

Using dynamic ToolTip text

You can use ToolTips for more than just displaying static help text to the user. You can also bind
the ToolTip text to data or component text. This lets you use ToolTips as a part of the user
interface, showing drill-down information, query results, or more helpful text that is customized
to the user experience.

You bind the value of the ToolTip text to the value of another control’s text using curly
braces ({ }).

The following example inserts the value of the txtTo TextInput control into the ToolTip text
when the user moves the mouse pointer over the Button control:
Using the ToolTipManager 523

<mx:TextInput id="txtTo" width="300" />
<mx:Button label="Send" toolTip="Send e-mail to {txtTo.text}"/>

In this example, if the user enters fred@fred.com in the TextInput box, and then moves the
mouse pointer over the button, Flex displays the message “Send e-mail to fred@fred.com” in the
ToolTip box.
524 Chapter 21: Using ToolTips

CHAPTER 22
Using the Cursor Manager
The Macromedia Flex Cursor Manager lets you control the cursor image in your Flex application.
You can use the Cursor Manager to provide visual feedback to users to indicate when to wait for
processing to complete, to indicate allowable actions, or to provide other types of feedback.

The cursor image can be a JPEG, GIF, PNG, or SVG image, or a SWF file.

Contents

About the Cursor Manager . 525

Cursor Manager syntax . 528

About the Cursor Manager

By default, Flex uses the system cursor as the application cursor. You control the system cursor
using the settings of your operating system.

The Flex Cursor Manager lets you control the cursor image in your Flex application. For example,
if your application performs processing that requires the user to wait until the processing
completes, you can change the cursor so that it reflects the waiting period. In this case, you can
change the cursor to an hourglass or other image.

You also might want to change the cursor to provide feedback to the user to indicate the actions
that the user can perform. For example, you can use one cursor image to indicate that user input
is enabled, and another to indicate that input is disabled.

You can use a JPEG, GIF, PNG, or SVG image, or a SWF file as the cursor image.

Using the Cursor Manager

To use the Cursor Manager, you import the mx.managers.CursorManager class into your
application, and then reference its properties and methods.

The Cursor Manager controls a prioritized list of cursors, where the cursor with the highest
priority is currently visible. If the cursor list contains more than one cursor with the same priority,
the Cursor Manager displays the most recently created cursor.
525

You create a new cursor, and set an optional priority for the cursor, using the setCursor()
method of the CursorManager class. This method adds the new cursor to the cursor list. If the
new cursor has the highest priority, it is displayed immediately. If the priority is lower than a
cursor already in the list, it is not displayed until the cursor with the higher priority is removed.

To remove a cursor from the list, you use the removeCursor() method. If the cursor is the
currently displayed cursor, the Cursor Manager displays the next cursor in the list, if one exists. If
the list ever becomes empty, the Cursor Manager displays the default system cursor.

The setCursor() method has the following signature:
setCursor(cursorSymbol:String, priorityLevel:Number, xOffset:Number,

yOffset:Number) : Number

The following table describes the parameters for the setCursor() method:

This method returns the ID of the new cursor. You pass the ID to the removeCursor() method
to delete the cursor. The signature of this method is as follows:
static removeCursor(cursorID:Number) : Void

Creating and removing a cursor

The following example changes the cursor to a wait cursor during the loading of a large image
file. After the load completes, the application removes the wait cursor and returns the cursor to
the system cursor.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Script>
<![CDATA[

import mx.managers.CursorManager;

// Define a variable to hold the cursor ID.
var cursorID : Number = 0;

// Embed the cursor symbol.
[Embed(source="wait.jpg")]
var waitCursorSymbol:String;

Parameter Description Req/Opt

cursorSymbol Specifies a String that contains the symbol name of the cursor to display. Required

priorityLevel Specifies a Number that contains the priority level of the cursor. Possible
values are CursorManager.HIGHPRIORITY, CursorManager.MEDIUMPRIORITY,
and CursorManager.LOWPRIORITY. The default value is
CursorManager.MEDIUMPRIORITY.

Optional

xOffset Specifies a Number that contains the x offset of the cursorSymbol relative
to the mouse pointer. The default value is 0.

Optional

yOffset Specifies a Number that contains the y offset of the cursorSymbol relative
to the mouse pointer. The default value is 0.

Optional
526 Chapter 22: Using the Cursor Manager

// Define event handler to display the wait cursor and to load the image.
function initImage(event)

 {
cursorID = CursorManager.setCursor(waitCursorSymbol);
image1.load("DSC00034.JPG");

}

// Define an event handler to remove the wait cursor.
function hideCursor(event)
{

CursorManager.removeCursor(cursorID);
}

]]>
</mx:Script>

<mx:VBox>
<!-- Loader control to load the image. -->
<mx:Loader id="image1" complete="hideCursor(event)" />

<!-- Button triggers the load. -->
<mx:Button id="myButton" label="Show" click="initImage(event)"/>

</mx:VBox>
</mx:Application>

This example uses a JPEG image as the cursor image. You can also use a SWF file, as the following
example shows:
[Embed(source="wait.swf")]
var waitCursorSymbol:String;

Or, you can reference a symbol from a SWF file, as the following example shows:
[Embed(source="cursorList.swf" symbol="wait")]
var waitCursorSymbol:String;

An advantage to using a SWF file is that you can create an animated cursor.

Setting a busy cursor

Flex defines a default busy cursor that you can use to indicate to the user that your application is
processing, and that they should wait until that processing completes before the application will
respond to inputs. The default busy cursor is a rotating circle.

To support the busy cursor, the Cursor Manager defines the following two methods:

• setBusyCursor() Displays the busy cursor. The busy cursor has a priority of
CursorManager.LOWPRIORITY. Therefore, if the cursor list contains a cursor with a higher
priority, the busy cursor is not displayed until you remove the higher-priority cursor. If you
want to create a busy cursor at a higher priority level, use the setCursor() method, as the
following example shows:
CursorManager.setCursor(CursorManager.BUSYCURSORSYMBOL,

CursorManager.HIGHPRIORITY);
About the Cursor Manager 527

• removeBusyCursor() Removes the busy cursor from the cursor list. If other busy cursor
requests are still active in the cursor list, which means that you called the setBusyCursor()
method more than once, a busy cursor does not disappear until you remove all busy cursors
from the list.

You can modify the previous example to use the default busy cursor, as the following example
shows:
<mx:Script>

<![CDATA[
import mx.managers.CursorManager;

function initImage(event)
 {

CursorManager.setBusyCursor();
image1.load("DSC00034.JPG");

}

function hideCursor(event)
{

CursorManager.removeBusyCursor();
}

]]>
</mx:Script>

You do not have to import a cursor symbol or declare a variable to track the cursor ID.

Using the Cursor Manager with the Loader control and other tags

To support the Cursor Manager, Flex adds the showBusyCursor property to the Loader control,
and to the <mx:WebService>, <mx:HttpService>, and <mx:RemoteObject> tags. The default
value is false for the Loader control, and true for the <mx:WebService>, <mx:HttpService>,
and <mx:RemoteObject> tags.

For the Loader control, if you set the showBusyCursor property to true, Flex displays the busy
cursor when the first progress event of the control is triggered, and hides the busy cursor when
the complete event is triggered. For example, you can rewrite the previous example as the
following example shows:
<mx:VBox>

<!-- Loader control to load the image. -->
<mx:Loader id="image1" showBusyCursor="true" />

<!-- Button triggers the load -->
<mx:Button id="myButton" label="Show" click="initImage()"/>

</mx:VBox>

Cursor Manager syntax

The following sections describe the syntax of the classes that make up the Cursor Manager.
528 Chapter 22: Using the Cursor Manager

Class mx.managers.CursorManager syntax

The following table describes the syntax of the mx.managers.CursorManager class:

Syntax for controls that directly support the Cursor Manager

The Cursor Manager adds the following property to the Loader control, and to the
<mx:WebService>, <mx:HttpService>, and <mx:RemoteObject> tags:

Property/Method Type Use Description

currentCursorID Number Property Read-only property that returns the ID of the currently
displayed cursor.

removeBusyCursor() Method Removes the busy cursor from the cursor list. If other busy
cursor requests are still active in the cursor list, which
means that you called the setBusyCursor() method more
than once, the busy cursor does not disappear until you
remove all busy cursors from the list.

removeCursor() Method Removes the specified cursor from the list of active
cursors. If the cursor was the currently displayed cursor,
this method displays the next cursor in the list, if one exists.
This method returns nothing.

setBusyCursor() Method Inserts the busy cursor into the cursor list. The busy cursor
is given a priority of CursorManager.LOWPRIORITY. If no
cursor with a higher priority is defined in the cursor list, the
busy cursor is displayed.

setCursor() Method Assigns a cursor in the list of active cursors. The cursor
might not display immediately depending on the number
of other active cursors, and the priority level of the cursors.
This method returns the ID of the cursor.

Property Type Use Description Req/
Opt

showBusyCursor Boolean Property If set to true, specifies to display the busy cursor
when the first progress event of the control is
triggered, and hide the busy cursor when the
complete event is triggered.
The default value for the Loader control is false.
The default value for the <mx:WebService>,
<mx:HttpService>, and <mx:RemoteObject> tags
is true.

Optional
Cursor Manager syntax 529

530 Chapter 22: Using the Cursor Manager

CHAPTER 23
Using the Drag and Drop Manager
The Drag and Drop Manager lets you move data from one place in a Macromedia Flex
application to another. This feature is especially useful in a visual application where your data can
be items in a list, images, or Flex components.

Contents

About the Drag and Drop Manager . 531

Using a List, Tree, or DataGrid control . 540

Drag and Drop Manager syntax . 543

About the Drag and Drop Manager

Visual development environments typically lets you manipulate objects in an application by
selecting them with a mouse and moving them around the screen. The Flex Drag and Drop
Manager lets you select an object, such as an item in a List control or a Flex control such as an
Image control, and then drag it over another component to add it to that component.

All Flex components support the drag-and-drop operation. In addition, Flex has added additional
support to drag and drop to the List, Tree, and DataGrid controls.

Using drag-and-drop

A user initiates a drag-and-drop operation by using the mouse to select a Flex component, or an
item in a Flex component, and then moving the component while holding down the mouse
button. For example, a user selects an item in a List control with the mouse and, while holding
down the mouse button, moves the mouse several pixels. The selected component is called the
drag initiator.

While holding down the mouse button, the user moves the mouse around the Flex application.
Flex displays an image during the drag, called the drag proxy.
531

When the user moves the drag proxy over another Flex component, that component becomes a
possible drop target. The drop target inspects the data being dragged, called the drag source, to
determine whether the data is in a format that the target accepts and, if so, lets the user drop the
data onto it. If the drop target determines that the data is not in an acceptable format, the drop
target does not permit the drop operation.

Upon a successful drop operation, the data is added to the target and, optionally, can be deleted
from its original location.

Drag and drop events

Flex uses events to control drag-and-drop operations. Several of these events apply to the drag
initiator, and other events apply to the drop target.

The drag initiator events include the following:

• mouseDown Broadcast to the drag initiator when the user selects the object with the mouse
and holds down the mouse button. You typically use this event to initiate the drag-and-drop
operation.

• dragComplete Broadcast to the drag initiator when the drag operation completes, either
when you drop the drag data onto a drop target or when you end the drag-and-drop operation
without performing a drop operation. You can use this event to perform any final cleanup of
the drag-and-drop operation. For example, if you drag a List control item from one list to
another, you can delete the List control item from the source if you no longer need it.

• dragBegin Broadcast to the drag initiator when the user makes a gesture that starts a drag-
and-drop operation. No Flex components respond to this event; it is for use by any custom
components that you create.

The drop target events include the following:

• dragEnter Broadcast to the drop target when a drag initiator passes over the target. Only
components that define a handler for this event can be drop targets. Within the handler, you
can change the appearance of the drop target to provide visual feedback to the user that the
component can accept the drag operation. For example, you can draw a border around the
drop target, or give focus to the drop target.

• dragOver Broadcast to the drop target when the user moves the mouse over the target. You
can handle this event if you want to perform additional logic before allowing the drop
operation, such as dropping data to various locations within the drop target, reading keyboard
input to determine if the drag-and-drop action is a move or copy of the drag data, or providing
different types of visual feedback based on the type of drag-and-drop action.

• dragDrop Broadcast to the drop target when the mouse is released over it. You use this event
handler to add the drag data to the drop target.

• dragExit Broadcast to the drop target when the user drags outside the drop target, but does
not drop the data onto the target. You can use this event to restore the drop target to its normal
appearance if you modified its appearance as part of handling the dragEnter event.
532 Chapter 23: Using the Drag and Drop Manager

The following steps define the drag-and-drop operation:

1. A component detects that a drag-and-drop operation can be started on it. The component
becomes the drag initiator. Typically, you use the mouseDown event to start the drag-and-drop
operation.

a Within the handler, the drag initiator creates an instance of the mx.core.DragSource class
that contains the drag data, and specifies the format(s) for the data.

b Within the handler, call the mx.managers.DragManager.doDrag() method, to initiate the
drag-and-drop operation.

2. While the mouse button is still down, the user moves the mouse around the application. Flex
displays the drag proxy image in your application.

Note: Releasing the mouse button when the drag proxy is not over a target ends the drag-and-
drop operation. Flex generates a DragComplete event on the drag initiator, and sets the action
property of the event object to DragManager.NONE.

3. When the user moves the drag proxy over a Flex component, Flex broadcasts a dragEnter event
to the component. If the component does not define a dragEnter event handler, it cannot be
a drop target.

4. If the component defines a dragEnter event handler, the handler examines the DragSource
object to determine whether the drag data is in an accepted data format. If so, the dragEnter
event handler sets the event.handled property to true to signal that it can accept the drop.

5. If the drop target does not accept the drop, the drop target component’s parent chain is
examined to determine if any component in the chain accepts the drop data.

6. If the drop target accepts the drop data, as determined by setting the event.handled property
to true, Flex broadcasts the dragOver event to the target.

7. If the user moves the drag proxy outside of the drop target, Flex broadcasts a dragExit event
to the drop target. In this case, the user decided not to drop the data onto the drop target.

8. If the user releases the mouse while over the drop target, Flex broadcasts a dragDrop event to
the drop target. The dragDrop event handler adds the drag data to the target.

9. If the user drops the drag data onto a target, Flex broadcasts a dragComplete event to the drag
initiator.

Initiating a drag-and-drop operation

To initiate a drag-and-drop operation, you call the DragManager.doDrag() method from within
the event handler for the dragBegin or mouseDown events, as the following example shows. In
this example, the drag initiator is a Canvas container.

<mx:Script>
<![CDATA[
// Import the DragManager and DragSource classes.
import mx.managers.DragManager;
import mx.core.DragSource;

// Handle the drag initialization for a mousedown event.
function dragIt(event, text, format) {
About the Drag and Drop Manager 533

// Create an instance of DragSource.
var ds:DragSource = new DragSource();

ds.addData(text, format);
DragManager.doDrag(event.target, ds, mx.containers.Canvas,

{backgroundColor:event.target.backgroundColor, width:30, height:30},
undefined, undefined, 30);

}
]]>

</mx:Script>

This event handler takes the following arguments:

• event An object that contains a reference to the drag initiator
• text An object that represents the data to drag (in this case a text string)
• format A String that contains the format of the data

The format argument is a text string that you use to label a data format, such as “list data” or
“grid data.” The drop target examines this string to determine whether the data format matches a
format that it accepts. If yes, you can drop the data on the target; if no, you cannot.

Within the event handler, you first create an instance of a DragSource object, and then initialize
it with the drag data and the format.

The event handler calls the DragManager.doDrag() method. This method has the following
signature:
doDrag(dragInitiator, dragSource, dragImage, imageInitObj,

xOffset, yOffset, imageAlpha)

where:

• dragInitiator An Object that specifies the component that initiates the drag operation.
This argument is required.

• dragSource A DragSource object that contains the data to drag. This argument is required.
• dragImage A String or Function that specifies the drag proxy, which is the image of the drag

initiator that you see as you drag it. In the preceding example, you specify the Canvas
container as the object.
To specify a symbol, use a string that specifies the symbol’s name. To specify a class, pass in the
constructor for the class. This argument is optional. If omitted, Flex uses a standard drag
rectangle.
For example, to specify a JPEG file named atom.jpg as the drag icon, you can use the following
statement:
DragManager.doDrag(event.target, ds, 'atom.jpg');

• imageInitObj An Object that specifies the Initialization object sent to dragImage. This
argument is optional.

• xOffset A Number that specifies the x offset, in dragInitiator coordinates, for dragImage.
This argument is optional.

• yOffset A Number that specifies the y offset, in dragInitiator coordinates, for dragImage.
This argument is optional.
534 Chapter 23: Using the Drag and Drop Manager

• imageAlpha A Number that specifies the alpha value used for dragImage. This argument is
optional. If omitted, Flex uses an alpha value of 50, where a value of 0 corresponds to
transparent and a value of 100 corresponds to fully opaque.

Example drag-and-drop operation

The following figure shows an example that lets you drag colored Canvas containers into a
List control:

In this example, you can only drag red boxes into the first List control, blue boxes into the second,
and any colored boxes into the third. The following MXML code defines the Canvas containers
and the three List controls. The ActionScript code for the event handlers is shown later.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="400"

height="600" marginLeft="6" marginRight="6" initialize="appInit()">

<!-- Script block goes here. -->

<mx:Tile width="175">
<mx:Canvas backgroundColor="#FF0000" borderStyle="solid" width="30"

height="30" mouseDown="dragIt(event, 'Red 1', 'red')">
<mx:Label text="1" x="8" y="6" width="22" height="24"/>

</mx:Canvas>
<mx:Canvas backgroundColor="#FF0000" borderStyle="solid" width="30"

height="30" mouseDown="dragIt(event, 'Red 2', 'red')">
<mx:Label text="2" x="8" y="6" width="22" height="24"/>

</mx:Canvas>
<mx:Canvas backgroundColor="#0000FF" borderStyle="solid" width="30"

height="30" mouseDown="dragIt(event, 'Blue 1', 'blue')">
<mx:Label text="1" x="8" y="6" width="22" height="24"/>

</mx:Canvas>
<mx:Canvas backgroundColor="#0000FF" borderStyle="solid" width="30"

height="30" mouseDown="dragIt(event, 'Blue 2', 'blue')">
<mx:Label text="2" x="8" y="6" width="22" height="24"/>

</mx:Canvas>
<mx:Canvas backgroundColor="#00FF00" borderStyle="solid" width="30"

height="30" mouseDown="dragIt(event, 'Green 1', 'green')">
<mx:Label text="1" x="8" y="6" width="22" height="24"/>

</mx:Canvas>
About the Drag and Drop Manager 535

<mx:Canvas backgroundColor="#00FF00" borderStyle="solid" width="30"
height="30" mouseDown="dragIt(event, 'Green 2', 'green')">
<mx:Label text="2" x="8" y="6" width="22" height="24"/>

</mx:Canvas>
</mx:Tile>
<mx:VBox>

<mx:Label text="Drag red items into this list" />
<mx:List dragEnter="doDragEnter(event, 'red')"

 dragExit="doDragExit(event);"
 dragOver="doDragOver(event);"
 dragDrop="doDragDrop(event, 'firstList', ['red'])"
 widthFlex="1"
 heightFlex="1"
 id="firstList" />

<mx:Label text="Drag blue items into this list" />
<mx:List dragEnter="doDragEnter(event, 'blue')"

 dragExit="doDragExit(event);"
 dragOver="doDragOver(event);"
 dragDrop="doDragDrop(event, 'secondList', ['blue'])"
 widthFlex="1"
 heightFlex="1"
 id="secondList" />

<mx:Label text="Drag any items into this list" />
<mx:List dragEnter="doDragEnter(event, 'any')"

 dragExit="doDragExit(event);"
 dragOver="doDragOver(event);"
 dragDrop="doDragDrop(event, 'thirdList', ['red','blue','green'])"
 widthFlex="1"
 heightFlex="1"
 id="thirdList" />

</mx:VBox>
</mx:Application>

Each Canvas container defines a mouseDown event handler. This event handler initiates a
drag-and-drop operation when the user selects the Canvas container and holds down the
mouse button.

Each List control defines handlers for the dragEnter, dragExit, dragOver, and dragDrop
events. Within these event handlers, the List control determines whether a drag initiator is in the
correct format and, if so, handles the drop operation.

The <mx:Script> block for this example is as follows:
<mx:Script>

<![CDATA[
// Import the DragManager and DragSource classes.
import mx.managers.DragManager;
import mx.core.DragSource;

// Handle the drag initialization for the Canvas containers.
in the mouseDown event

function dragIt(event, text, format) {
var ds:DragSource = new DragSource();

ds.addData(text, format);
536 Chapter 23: Using the Drag and Drop Manager

DragManager.doDrag(event.target, ds, mx.containers.Canvas,
{backgroundColor:event.target.backgroundColor, width:30, height:30},
undefined, undefined, 30);

}

// Handle the dragEnter event for the List controls.
function doDragEnter(event, format) {

if (event.dragSource.hasFormat(format) || format == "any")
{

event.handled = true;
event.target.drawFocus(true);

}
}

// Handle the dragExit event for the List controls.
function doDragExit(event) {

event.target.drawFocus(false);
}

// Handle the dragOver event for the List controls.
function doDragOver(event) {

if (Key.isDown(Key.CONTROL))
event.action = DragManager.COPY;

else if (Key.isDown(Key.SHIFT))
event.action = DragManager.LINK;

else
event.action = DragManager.MOVE;

}

// Handle the dragDrop event for the List controls.
function doDragDrop(event, target, formats) {

var prefix:String = "";

if (event.action == DragManager.COPY)
prefix = "Copy of ";

else if (event.action == DragManager.LINK)
prefix = "Link to ";

// Since the drag is over, remove focus from the target.
doDragExit(event);

for (var i = 0; i < formats.length; i++)
{

var data = event.dragSource.dataForFormat(formats[i]);

if (data != undefined)
this[target].addItem(prefix + data);

}
}

// Initialize the List controls.
function appInit() {

firstList.dataProvider = [];
secondList.dataProvider = [];
thirdList.dataProvider=[];
About the Drag and Drop Manager 537

}

]]>
</mx:Script>

The following sections describe the ActionScript code in more detail.

Handling the dragEnter event

The drop target must define a handler for a dragEnter event for it to be a target. Within the
event handler, you use the format information in the DragSource object to determine whether the
drag data is in a format accepted by the drop target.

In this example, the event handler takes an argument from the drop target that defines the format
of the data that it accepts. It then uses the DragSource.hasFormat() method to determine
whether the DragSource object contains data in the accepted format. If the drop target can accept
the drop, the handler sets the event.handled property to true. Otherwise, you cannot drop the
data onto the target.

The handler also sets focus on the drop target to provide visual feedback to the user that the List
control accepts a drop operation.

Handling the dragOver event

The handler for the dragOver event is optional; you do not need to define it to perform a
drag-and-drop operation. One reason to define it is to determine if the drag action is a copy,
move, or link action. For a copy action, you drop data onto the target, but leave the initiator
unchanged. In a move action, you delete the drag data after dropping it.

In this example, the handler determines whether the user is pressing a key to determine the
drag action.

Handling the dragDrop event

The drop target defines a handler for the dragDrop event to handle the actual drop operation.
The way you write this handler depends on the specific type of the target component. In the
example, the target is a List control and uses the addItem() method to add the drag data to the
drop target.

Handling the dragExit event

The handler for the dragExit event performs any cleanup on the drop target if the user decides
not to drop the data onto it. In the example, the handler removes focus from the target to signal
to the user that the drop operation has completed.

The handler for the dragDrop event also calls this handler to remove focus from the drop target
in the case where the user does drop the drag data onto it. You can call any user-defined function
to remove focus from the target; you are not required to call the dragExit event handler just for
that purpose.
538 Chapter 23: Using the Drag and Drop Manager

Handling the dragComplete event

You can optionally define a handler for the dragComplete event. This handler can perform any
final cleanup on the drag initiator, if necessary. For example, in the case of a move operation, the
handler can delete the initiator or data from the initiator since you moved it to the target.

Using a container as a drop target

If you want to use a container as a drop target, you must use the backgroundColor property of
the container to set a color. Otherwise, the background color of the container is transparent, and
the Drag and Drop manager is unable to detect that the mouse pointer is on a possible drop
target.

Dragging between SWF files

You can use the Loader and Image controls to load one SWF file from another SWF file,
including loading a SWF file that contains a Flex application. If you want to drag items from a
drag source in the loading SWF file to a drag target in the loaded SWF file, make sure that your
MXML code defines the Loader control or Image control that loads the SWF file after the drag
source control in your application. Otherwise, the drag proxy appears behind the drag target
when you perform the drag operation.

Alternatively, you can use the UIObject.swapDepths() method to switch the depths of the drag
source and drag target components to ensure that the drag target is at a lower depth than the drag
source.

Specifying the drag proxy

This example uses the <mx:Image> tag to load a draggable image into a Canvas container. As you
drag the image, the Drag and Drop Manager uses the loaded image as the drag proxy.

To specify the loaded image as the drag proxy, you specify the class name of the drag proxy as
mx.Controls.Image, and use the imageInitObj argument of the doDrag() method to specify the
source value of the drag proxy.

The imageInitObj argument lets you pass initialization properties to the drag proxy. Since the
drag proxy is the mx.Controls.Image class, you can pass to it the same properties that you can set
in MXML for the <mx:Image> tag, as the following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script>
<![CDATA[

import mx.managers.DragManager;
import mx.core.DragSource;
var xOff:Number;
var yOff:Number;

function dragMe(event, img1, format)
{

var ds = new DragSource()
ds.addData(img1, format);
About the Drag and Drop Manager 539

DragManager.doDrag(event.target, ds, mx.controls.Image,
{source: event.target.source});

}

function doDragEnter(event)
{

event.handled = true;
event.action=DragManager.MOVE

}

function doDragDrop(event,target1, format)
{

myimg.x = target1.mouseX - xOff
myimg.y = target1.mouseY - yOff

}

function myoffset(img){
xOff = img.mouseX
yOff = img.mouseY

}
]]>

</mx:Script>

<mx:Canvas id="v1" width="500" height="500" dragEnter="doDragEnter(event)"
dragDrop ="doDragDrop(event,v1, 'img')" borderStyle="solid"
backgroundColor="#DDDDDD">

<mx:Image id="myimg" source="@Embed('w_p.gif')"
mouseDown="dragMe(event, 'Image', 'img');myoffset(myimg)"/>

</mx:Canvas>
</mx:Application>

Using a List, Tree, or DataGrid control

Flex built support for the drag-and-drop operation directly in the List, Tree, and DataGrid
controls. Using any of these controls as the drag initiator makes the process of dragging and
dropping simpler than for other controls.

If the initiator is a List, Tree, or DataGrid control, you set the dragEnabled property to true;
you do not need to define a dragBegin or mouseDown event. Flex automatically creates a
DragSource object for the drag operation, and calls the DragManager.doDrag() method to
initiate the drag.

The DataSource object created by Flex contains the following data objects:

• For a List or DataGrid control, the first data object contains a copy of the selected item or
items in the List or DataGrid control, and has a format string of items. The selected items
implement the DataProvider API.

• For a Tree control, the first data object contains a copy of the selected item or items in the Tree
control, and has a format string of treeItems. The selected items implement the
TreeDataProvider API.

• The second data object contains a copy of the initiator, and has a format string of source.
540 Chapter 23: Using the Drag and Drop Manager

Dragging and dropping using a Tree control

In the following example, you drag items for the Tree control and drop them in a List control:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

width="400" height="220" marginLeft="6" marginRight="6" >

<mx:Script>
<![CDATA[
import mx.managers.DragManager;

function doDragEnter(event) {
event.handled = true;

}

function doDragExit(event) {
event.target.hideDropFeedback();

}

function doDragOver(event) {
event.target.showDropFeedback();
if (Key.isDown(Key.CONTROL))

event.action = DragManager.COPY;
else if (Key.isDown(Key.SHIFT))

event.action = DragManager.LINK;
else

event.action = DragManager.MOVE;
}

function doDragDrop(event) {
// Since the drag is over, remove visual feedback from the target.
doDragExit(event);

var dragItems = event.dragSource.dataForFormat("treeItems");
var dest = event.target;
var dropLoc = dest.getDropLocation();

dest.clearSelected();
for (var i = dragItems.length - 1; i >= 0; i--)
{

dest.addItemAt(dropLoc, dragItems[i]);
dest.selectItem(dropLoc, true);

}
}

function initApp() {

firstList.dataProvider = treeDP;
secondList.dataProvider = [];

}
]]>

</mx:Script>

<mx:XML id="treeDP">
Using a List, Tree, or DataGrid control 541

<node label="Mail">
<node label="Inbox"/>
<node label="Personal Folder">

<node label="Demo" isBranch="true" />
<node label="Personal" isBranch="true" />
<node label="Saved Mail" isBranch="true" />
<node label="bar" isBranch="true" />

</node>
<node label="Sent" isBranch="true" />
<node label="Trash"/>

</node>
<node label="Calendar"/>

</mx:XML>

<mx:Label text="Drag items from one list to another" />
<mx:HBox marginBottom="6">

<mx:Tree widthFlex="1"
 heightFlex="1"
 id="firstList"
 dragEnabled="true"
 multipleSelection="true"
 initialize="initApp()"/>

<mx:List
 dragEnter="doDragEnter(event)"
 dragExit="doDragExit(event);"
 dragOver="doDragOver(event);"
 dragDrop="doDragDrop(event)"
 widthFlex="1"
 heightFlex="1"
 dragEnabled="true"
 id="secondList" />

</mx:HBox>
</mx:Application>

In this example, you populate a Tree control from a data model, and set the dragEnabled
property in the Tree control to true. You do not have to define any additional events on the Tree
control to support drag-and-drop operations.

The target of the drag-and-drop operation is the List control, which defines event handlers for the
dragEnter, dragExit, dragOver, and dragDrop events, similar to the previous example.

The handler for the dragDrop event does most of the work in this example. Remember that Flex
automatically creates a DataSource object for the Tree control. In the DataSource object, the
selected items in the Tree control are copied into the DataSource object with a format string of
items. Therefore, the following statement writes the selected items to the variable named
dragItems:
var dragItems = event.dragSource.dataForFormat("items");

The dragItems variable always contains an Array. If you drag a single item from the Tree control,
the array is one item long. If you select multiple Tree items, it contains one array entry per item.
You use the addItemAt() method of the Tree control to add the dragged items to the Tree
control.
542 Chapter 23: Using the Drag and Drop Manager

Removing a drag item from a List, Tree, or DataGrid control

The item that you drag from a List, Tree, or DataGrid control is actually a copy of the item, not
the item itself. Therefore, when you drop the item onto the drop target, the item appears in both
the drag initiator and the drop target.

If you want to modify the drag initiator to delete the item, you can add the logic to the event
handler for the dragComplete event. The following example removes one or more items from a
Tree control when the Tree control is the drag initiator:
<mx:Script>

<![CDATA[

function doDragComplete(event)
{

var dragItems = event.dragSource.dataForFormat("source").selectedItems;
var counter = dragItems.length;
for (var i=0;i<counter;i++)
{

var item = dragItems[i];
item.removeTreeNode();

}
}

]]>
</mx:Script>

For an example using the DataGrid control, see the Explorer sample application in the
samples.war file.

Drag and Drop Manager syntax

The following sections describe the syntax of the classes that make up the Drag and Drop
Manager.

Class mx.managers.DragManager syntax

The following table describes the syntax of the mx.managers.DragManager class:

Property Type Use Description

isDragging Boolean Static
property

Read-only property that returns true if a drag is in progress.

NONE String Static
property

Read-only constant that specifies a drag action. The value is none.

MOVE String Static
property

Read-only constant that specifies a drag action. The value is move.

COPY String Static
property

Read-only constant that specifies a drag action. The value is copy.
Drag and Drop Manager syntax 543

Class mx.core.DragSource syntax

The following table describes the syntax of the mx.core.DragSource class:

LINK String Static
property

Read-only constant that specifies a drag action. The value is link.

doDrag() Static
method

Initiates a drag-and-drop operation.

Property Type Use Description

formats String
Array

Property Read-only property that contains the formats of the drag data.
Set this property using the addData() or addHandler()
methods.
The default value depends on the data added to the
DragSource object.

addData() Method Adds data and a corresponding format string to the drag
source. This method does not return a value.
The signature of this method is as follows:
addData(data, format)
• data (Required) An Object that specifies the drag data.

This can be any object , a String, DataProvider, and so on.
• format (Required) A String that specifies a label that

describes the format for this data.

addHandler() Method Adds a handler that is called when data for the specified
format is requested. This is useful when dragging large
amounts of data. The handler is only called if the data is
requested. This method does not return a value.
The signature of this method is as follows:
addHandler(obj, handler, format)
• obj (Required) An Object that contains the handler.
• handler (Required) A function that specifies the handler

called to request the data. This function must return the data
in the specified format.

• format (Required) A String that specifies the format for
this data.

Property Type Use Description
544 Chapter 23: Using the Drag and Drop Manager

UIObject events

The Drag and Drop Manager adds several new events to the UIObject class. The following table
describes these events. For information on the mouseDown event, see Chapter 15, “Working with
ActionScript in Flex,” on page 393.

dataForFormat() Method Retrieves the data for the specified format. If the addData()
method added the data, it is returned directly. If the
addHandler() method added the data, it calls the handler
function to return the data.
This method returns an array of Objects containing the data, in
the requested format. If you drag a single item, the array is one
item long.
The signature of this method is as follows:
dataForFormat(format)
• format (Required) A String that specifies a label that

describes the format for the data to return.

hasFormat() Method This method returns true if the data source contains the
requested format, and false otherwise.
The signature of this method is as follows:
hasFormat(format)
• format (Required) A String that specifies a label that

describes the format for the data.

Event Description

dragBegin Broadcast to the drag initiator when the user makes a gesture that starts a drag-and-
drop operation. No Flex generate this event; it is used by any custom components
that you create.
The handler for this event calls the DragManager.doDrag() method if a drag-and-drop
operation occurs. For more information, see “Class mx.managers.DragManager
syntax” on page 543.

dragComplete Broadcast to the drag initiator component when the drag has completed. If you
release the mouse button when the drag proxy is not over a target, you end the drag-
and-drop operation. Flex generates a DragComplete event on the drag initiator, and
sets the action property of the event object to DragManager.NONE.
The event object contains the following properties:
• dragSource A DragSource object that contains the drag initiator.
• action A String that specifies what happened at the end of the drag:
DragManager.NONE, DragManager.MOVE, DragManager.COPY, or DragManager.LINK.

dragDrop Broadcast to the drop target when the mouse is released over a drop target.
The event object contains the following properties:
• dragSource The DragSource object that contains the drag data.
• action A String that specifies the action taken during the drag operation.
dragEnter and dragOver event handlers set this value.

Property Type Use Description
Drag and Drop Manager syntax 545

List, DataGrid, and Tree control syntax

The Drag and Drop Manager adds the following properties and to the List, DataGrid, and Tree
controls:

dragEnter Broadcast to the drop target when a drag operation passes over the target. If the
handler sets event.handled to true, the component becomes a drop target.
The event object contains the following properties:
• dragSource The DragSource object that contains the drag data.
• handled A Boolean value that the event handler sets to true if the drag is

accepted.
• action A String that the event handler sets to show the correct feedback cursor

during the drag. Possible values are DragManager.MOVE, DragManager.COPY,
DragManager.LINK, and DragManager.NONE. The default value is DragManager.MOVE.

dragExit Broadcast to the drop target when the user drags outside the target, which means
that the drag data will not be dropped on the target.
The event object contains the following property:
• dragSource The DragSource object that contains the drag data.

dragOver Broadcast to the drop target when the user moves the mouse over the target and
after the dragEnter event handler sets event.handled to true.
The event object contains the following properties:
• dragSource The DragSource object that contains the drag data.
• action A String that the event handler can set to show different drag operation

feedback. The default value is the value set in the dragEnter event handler.

Property Type Use Description Req/Opt

dragEnabled Boolean Property Specifies that the control is a drag initiator,
true, or not, false (default). When true, you
can drag selected items in the control; Flex
automatically creates a DragSource object,
where:
• The first data object contains a copy of the

selected item, or items, in the List, Tree, or
DataGrid control, and has a format string of
items.

• The second data object contains a copy of
the initiator, and has a format string of source.

Optional

dragImage Function Property Read-only property that returns a class name
that you can use as a drag image.
The default value is
mx.controls.listclasses.DragProxy.

Optional

dragImageInitObj Object Property Read-only property that contains an
initialization object that you can use as the
imageInitObj argument to the
DragManager.doDrag() method.
The default value depends on the data being
dragged.

Optional

Event Description
546 Chapter 23: Using the Drag and Drop Manager

dragOffset Object Property Read-only property that contains the offset
that you can use as the offset argument to the
DragManager.doDrag() method.
The default value depends on where the
mouse was clicked.

Optional

dropIndicatorSkin String Skin Specifies the name of the skin element to use
for the drop insert indicator. The default value is
ListDropIndicator.

Optional

getDropLocation() Method Returns the item index in the initiator control at
the current mouse location.

Optional

hideDropFeedback() Method Hides drop target feedback and removes the
focus rectangle. You typically call this method
from within the handler for the dragExit and
dragDrop events.
This method returns nothing.

Optional

showDropFeedback() Method Specifies to display the focus rectangle around
the target control and positions the drop
indicator where the drop operation should
occur. If the List, Tree, or DataGrid control has
active scrollbars, hovering the mouse pointer
over the top or bottom of it scrolls the contents.
You typically call this method from within the
handler for the dragOver event.
This method returns nothing.

Optional

Property Type Use Description Req/Opt
Drag and Drop Manager syntax 547

548 Chapter 23: Using the Drag and Drop Manager

CHAPTER 24
Using the History Manager
The Macromedia Flex History Manager lets users navigate through a Flex application using the
web browser’s back and forward navigation commands.

Contents

About history management . 549

Using standard history management . 549

Using custom history management . 551

How the HistoryManager class saves and loads state . 554

Using history management in a custom HTML file . 555

About history management

The Flex History Manager lets users navigate through a Flex application using the web browser’s
back and forward navigation commands. For example, a user can navigate through several
Accordion container panes in a Flex application, and then click the browser’s back button to
return to the application to its previous states.

By default, Flex enables history management for navigator containers, without using any
ActionScript or MXML tags. You can also use the HistoryManager class in ActionScript to
provide custom history management for other objects in an application, and to call the
HistoryManager class’s methods.

Note: History management is not supported on Netscape 4.x and Opera 6.0 web browsers.

Using standard history management

History management is available by default for the Accordion and TabNavigator navigator
containers. It is disabled by default for the ViewStack navigator containers. When history
management is enabled, as the user navigates within different navigator containers within an
application, each navigation state is saved. Selecting the web browser’s back or forward browser
command displays the previous or next navigation state that was saved. History management
keeps track of where you are in an application, but it is not an undo and redo feature that
remembers what you have done.
549

Note: When history management is enabled for a particular component, such as a navigator
container, only the state of the navigator container is saved. The state of any of the navigator
container’s child components is not saved unless history management is specifically enabled for that
component.

For information about how the navigation state is saved and restored, see “How the
HistoryManager class saves and loads state” on page 554.

Flex automatically enables history management for the following navigator containers:

• Accordion
• TabNavigator

To enable history management for a navigator container, you set the container’s
historyManagement property to true, as the following example shows:
<mx:TabNavigator historyManagement="true">

You can disable or enable history management for a navigator container by setting the container’s
historyManagement property to false or true, respectively. The following example shows a
TabNavigator container with history management enabled:
<mx:TabNavigator historyManagement="true">

In the following example, the user’s panel sections are saved for the first Accordion container
because it uses default settings, but the second Accordion container has the historyManagement
property explicitly set to false. When the user selects the web browser’s back or forward
command, the previous or next state is displayed for the first container, but not for the second.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="600"

height="800">

<!-- History management is enabled by default for this Accordion. -->
<mx:Accordion widthFlex="1" heightFlex="1">

<mx:VBox label="View 1">
<mx:TextInput text="View 1" />

</mx:VBox>
<mx:VBox label="View 2">

<mx:TextInput text="View 2" />
</mx:VBox>

</mx:Accordion>

<!-- History management is disabled for this Accordion. -->
<mx:Accordion historyManagement="false" widthFlex="1" heightFlex="1">

<mx:VBox label="View 1">
<mx:TextInput text="View 1" />

</mx:VBox>
<mx:VBox label="View 2">

<mx:TextInput text="View 2" />
</mx:VBox>

</mx:Accordion>
</mx:Application>
550 Chapter 24: Using the History Manager

You can disable history management for an entire application by requesting a myapp.mxml.swf
file directly or in a custom HTML wrapper page that does not use history management. For more
information about customizing the HTML wrapper, see Chapter 38, “Deploying Applications,”
on page 785.

Using custom history management

You can register a component with the HistoryManager class if it implements the
mx.managers.StateInterface interface. All of the navigator containers implement the
StateInterface interface in their class definitions.

The StateInterface interface contains two methods, saveState() and loadState(). As their
names imply, these methods save and load a component’s navigation states.

The HistoryManager class contains a load() method that calls the loadState() method for
each registered component with an object identical to the one that the saveState() method
returns.

Registering a component with the HistoryManager class

To register a component with the HistoryManager class, you call the HistoryManager class’s
register() method with a reference to a component instance that implements the StateInterface
interface. Each registered component receives a unique state ID based on its full pathname. In the
following example, the Application component (this) is registered with the HistoryManager
class when the Application is initialized:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

initialize="mx.managers.HistoryManager.register(this);">

Implementing the saveState() and loadState() methods

To use the HistoryManager class for a registered component, you must implement the
StateInterface saveState() and loadState() methods to save and load the state information
you want. The saveState() method returns an object that contains property:value pairs that
represent the current navigation state of a component. An application’s total navigation state is
limited to the maximum URL size supported by the user’s web browser, so you should write the
saveState() method for a component to save the least amount of data possible. For example,
you can write a saveState() method for a List control that saves just the selectedIndex
property.

The following example contains saveState() and loadState() methods for an Application
component. The saveState() method saves the ZIP code used to call a web service that provides
stock market information. When the user selects the web browser’s back or forward command,
the loadState() method compares the current ZIP code value to the saved ZIP code value. If
the saved value is different, the loadState() method calls the web service using the saved ZIP
code value.
<mx:Application implements="mx.managers.StateInterface"

initialize="initBrowser()">
<mx:Script>

<![CDATA[
Using custom history management 551

...
importmx.managers.HistoryManager;

function initBrowser() {
// Register with the HistoryManager.
HistoryManager.register(this);

}

public function saveState():Object
{

var state = new Object();
if (myZip.text != undefined) {

state.zipCode = myZip.text;
}
if (myTicker.text != undefined) {

 state.ticker = myTicker.text;
}
return state;

}

 public function loadState(state:Object)
 {
 if (state.zipCode == undefined) {
 resetGetStockQuotes();
 } else if (state.zipCode != myZip.text) {
 myZip.text = state.zipCode;
 ws.GetStockQuotes.send();
 }
 if (state.ticker == undefined) {
 resetStocks();
 } else if (state.ticker != myTicker.text) {
 myTicker.text = state.ticker;
 ws2.GetStockQuotes.send();
 }
 }

]]>
</mx:Script>

...
</mx:Application>

The following example is an MXML component, Browser.mxml, that registers with the
HistoryManager and implements the saveState() and loadState() methods. The component
lets the user browse through a set of images.
<?xml version="1.0"?>
<mx:HBox xmlns:mx="http://www.macromedia.com/2003/mxml"

verticalAlign="middle" width="300" height="150" initialize="initBrowser()">
<mx:Script>

<![CDATA[
import mx.managers.HistoryManager;

var data;
552 Chapter 24: Using the History Manager

function initBrowser() {

// Register with the HistoryManager
HistoryManager.register(this);

// Select the first image by default
imageList.selectedIndex = 0;
selectImage(false);

}

function selectImage(bSaveState:Boolean) {
holder.contentPath =

imageList.dataProvider[imageList.selectedIndex].image;

if (bSaveState)
HistoryManager.save();

}

function saveState():Object {
var state = new Object();

state.selectedIndex = imageList.selectedIndex;

return state;
}

function loadState(state:Object) {
var newIndex = state.selectedIndex;

if (newIndex == undefined)
newIndex = 0;

if (newIndex != imageList.selectedIndex) {
imageList.selectedIndex = newIndex;
selectImage(false);

}
}

]]>
</mx:Script>
<mx:List id="imageList" dataProvider="{data}"

width="150" height="130" change="selectImage(true)" />
<mx:Spacer width="20" />
<mx:Loader id="holder" width="50" height="50"/>

</mx:HBox>

The following example shows an application file that uses the Browser component. The Array of
data defined in the <mx:Array id="data1"> element is bound to the Browser component’s data
property.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" xmlns:local="*"

width="400" height="400" >

<mx:Array id="data1">
<mx:Object>
Using custom history management 553

<label>Product1</label>


</mx:Object>
<mx:Object>

<label>Product2</label>


</mx:Object>
<mx:Object>

<label>Product3</label>


</mx:Object>
</mx:Array>

<local:Browser data="{data1}"/>
</mx:Application>

Calling the HistoryManager class’s static methods

When you register a component with the HistoryManager class, the HistoryManager save()
method is invoked automatically when the user navigates through an application and uses the
web browser’s back and forward navigation commands.

The save() method and the register() and unregister() methods, which let you register
and unregister a component, are static methods you can call from your ActionScript code. The
following table describes these methods:

How the HistoryManager class saves and loads state

The history management feature uses the Macromedia Flash getURL() function to load an
invisible HTML frame in the current web browser window. It then encodes a Flex application’s
navigation states into the invisible frame’s URL query parameters. A SWF file, called history.swf,
in the invisible frame decodes the query parameters and sends the navigation state back to the
HistoryManager class. This section describes how the HistoryManager class encodes navigation
data into a URL query string and then decodes that navigation data to restore navigation states.

Method Description

register(StateInterface) Registers a component with the HistoryManager class; for example:
HistoryManager.register(myList);

save() Saves the current navigation state of all components registered with
the HistoryManager class; for example:
HistoryManager.save();

unregister(StateInterface) Unregisters a component from the HistoryManager class; for
example:
HistoryManager.unregister(myList);
554 Chapter 24: Using the History Manager

Encoding navigation state data

The HistoryManager class’s save() method collects the state object returned by the
StateInterface.saveState() method for each registered component. The save() method
encodes each property of each object into a query string that uses the standard
prop1=value1&prop2=value2 format. The state ID of the appropriate registered component is
added to each property name to identify which component each property belongs to. For
example, for a TabNavigator container with a state ID of 4 that returns the following state object:
{selectedIndex:5}

The query string is:
id4_selectedIndex=5

Decoding and restoring navigation state data

The history.swf file passes stored state properties to a Flex application in a single object. The
HistoryManager class extracts the state IDs from the properties in this object and rebuilds state
objects for each registered component. The state objects are constructed from the Application
object down through its children. For example, when an Accordion container is the third item in
a ViewStack container, the ViewStack container must be set to its third item before the Accordion
container’s navigation state is restored.

Using history management in a custom HTML file

When you place a Flex application inside a custom HTML page instead of generating the HTML
page automatically, you must set up the HTML page to support history management if you want
to use it.

The following steps are required to support history management:

1. Include the following text at the top of the HTML document:
<script language='javascript' charset='utf-8' src='/flex/flex-

internal?action=js'></script>

2. Add the historyUrl and lconid parameters to the flashVars variable for both the object
and embed tags, as the following example shows. You must add these parameters in JavaScript
because history management uses a JavaScript variable called lc_id.
document.write(" <param name='flashVars' value='historyUrl=%2Fflex%2Fflex-

internal%3Faction%3Dhtml&lconid=" + lc_id +"'>");

3. Add the _history iframe, as the following example shows:
<iframe src='/flex/flex-internal?action=html' name='_history'

frameborder='0' scrolling='no' width='22' height='0'></iframe>
Using history management in a custom HTML file 555

556 Chapter 24: Using the History Manager

CHAPTER 25
Applying Deferred Instantiation
Macromedia Flex provides settings that let you determine when controls and other components
are created when you invoke a Flex application. You can use these settings to reduce the startup
display of your applications, or stagger the display so that parts of the application appear before
the entire application loads.

Contents

About deferred instantiation . 557

Using deferred instantiation . 558

Manually instantiating controls . 562

Using the childDescriptors property. 564

Starting applications incrementally. 567

About deferred instantiation

By default, containers create only the controls that initially appear to the user. Flex creates the
other controls, or descendants, later, if the user navigates to them. Containers with a single view,
such as Box, Form, and Grid containers, create all of their descendants because these containers
display all of the descendants immediately.

Containers with multiple views, called navigator containers, only display the descendants that are
visible at any given time. When navigator containers such as the ViewStack and Accordion
containers are created, they do not immediately create all of their descendants, but only those
descendants that are initially visible. This is known as deferred instantiation.

The result of this deferred instantiation of navigator containers is that an MXML application
with navigator containers loads quickly, but the user experiences brief pauses when he or she
moves from one view to another.

You can specify that your application instantiate every control at application startup using a single
MXML property. This lets you override the default way that Flex handles instantiation. You can
also completely control the instantiation process by using an ActionScript application
programming interface (API) for instantiation.
557

Using deferred instantiation

Every container has a creationPolicy property that determines how the container decides
which of its descendants, if any, to create when the container is created. You can change the policy
of a container using MXML or ActionScript.

Classes that descend from the UIObject class that do not specify a creationPolicy property
inherit their parent’s creationPolicy property.

The values for the creationPolicy property are auto, all, and none. The meaning of these
settings depends on whether the container is a navigator container (multiple-view container) or a
single-view container.

Single-view containers

The following table describes the values of the creationPolicy property when used with single-
view containers:

The following example sets the value of a VBox container’s creationPolicy property to all:
<?xml version="1.0"?>
<mx:Application width='500' height='400'

xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:VBox id="myVBox" height="100" width="125" creationPolicy="all">
<mx:Button id="mybutton" label="Get Weather" click="ws.getTemp.send();" />

</mx:VBox>
</mx:Application>

This example does not require a creationPolicy property because it is a single-view container
and the default behavior is to create all children. However, it is provided to show you the syntax.

The default behavior of all single-view containers is that they and their children are entirely
instantiated when the application starts. If you set the creationPolicy property to none,
however, you can then selectively instantiate controls within the containers. For more
information, see “Manually instantiating controls” on page 562.

Value Description

all, auto Creates all controls in the single-view container. The default value is auto, but all
results in the same behavior.

none Instructs Flex to not instantiate any component within the container until instantiation
methods are explicitly called.
When the value of the creationPolicy property is none, you should explicitly set a
width and height (or widthFlex and heightFlex) for that container so that the
application determines the appropriate size of that container. Normally, the container
is scaled to fit the children that are inside it, but since no children are created, proper
scaling is not possible. If you do not explicitly resize the container, it grows to
accommodate the children when they are created.
For more information on manually instantiating controls, see “Manually instantiating
controls” on page 562.
558 Chapter 25: Applying Deferred Instantiation

Multiple-view containers

The createComponents() method has a different implementation when used with navigator
containers than when used with single-view containers. The following containers have multiple
views and, so, are defined as navigator containers:

• ViewStack
• TabNavigator
• Accordion

When you instantiate a multiple-view container, Flex creates all of the top-level children. For
example, creating an Accordion container triggers the creation of every pane. The
creationPolicy property determines the creation of the child controls inside each panel.

When you set the creationPolicy property to auto (the default value), navigator containers
instantiate only the controls and their children that appear in the initial view. The first panel of
the Accordion container is the initial panel view, as the following figure shows:

When the user navigates to another panel in the Accordion container, the navigator container
creates the next set of controls, and recursively creates the new view’s controls and their
descendants.

If you set the Accordion container’s creationPolicy property to all, the navigator container
creates all controls and their descendents for all panels in the Accordion container when the
application starts. This results in longer startup time for the application, but quicker response
time for user navigation.
Using deferred instantiation 559

The following table describes the values of the creationPolicy property when used with
navigator containers:

The following example sets the creationPolicy property of an Accordion container to all,
which instructs the container to instantiate all controls for every panel in the navigator container
when the application starts:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Accordion id="myAccordion" creationPolicy="all" >
...
</mx:Accordion>
...

</mx:Application>

Initializing controls in navigator containers

The order in which Flex calls the initialize event handlers has an impact on navigator
containers.

Flex calls the initialize events in the following order:

1. vbox0

2. vbox1

3. viewStack0

4. Application

5. button0

The following pseudocode example shows the order in which Flex calls the initialize events:
<Application>

<ViewStack id="viewStack0">
<VBox id="vbox0">

<Button id="button0/>
</VBox>
<VBox id="vbox1">

<Button id="button1/>
</VBox>

Value Description

all Creates all controls in all views of the navigator container. This setting causes a delay
in application startup time, but results in quicker response time for user navigation.

auto Creates all controls in the initial view of the navigator container, only. This setting
causes a faster startup time for the application, but results in slower response time for
user navigation. This setting is the default for multiple-view containers.

none Instructs Flex to not instantiate any component within the navigator container or any of
the navigator container’s panels until instantiation methods are explicitly called.
For more information on manually instantiating components, see “Manually
instantiating controls” on page 562.
560 Chapter 25: Applying Deferred Instantiation

</ViewStack>
</Application>

Flex defers the instantiation of the button1 control until the user navigates to the vbox1 VBox
container.

In addition to the initial view, Flex creates the top-level navigator container, but defers the child
views and the controls inside those child views until the user navigates to that view.

Flex does, however, call the initialize event on each view when it first creates the navigator
container. Code inside the event handler that references the view’s children does not work,
because the children haven’t been instantiated yet. To avoid this situation, you can use the
childrenCreated event instead of the initialize event to perform initialization functions.
Flex triggers the childrenCreated event when the view’s children are instantiated.

The following example defines the childrenCreated event in an Accordion container:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Accordion id="acc1" creationPolicy="none">
<mx:Canvas id="c0" childrenCreated="childrenCreatedNotification()">

<mx:Label id="l1" text=""/>
<mx:Button id="b1" label="My Button"/>

</mx:Canvas>
</mx:Accordion>

<mx:Script>
<![CDATA[
function createComp() {

acc1.createComponent(0);
}

function childrenCreatedNotification() {
ta1.text = "Children created";

}
]]>
</mx:Script>

<mx:TextArea id="ta1" />

<mx:Button label="My Other Button" click="createComp()" />

</mx:Application>

Uninstantiating objects

After you instantiate a component, it continues to exist until the user quits the application or you
call the mx.core.View class’s destroyChild(), destroyChildAt(), or destroyAllChildren()
methods. For more information on using these methods, see the View class in Flex ActionScript
and MXML API Reference.
Using deferred instantiation 561

Manually instantiating controls

Flex provides an API that lets you manually instantiate the controls in a container. You can use
these methods to control the instantiation of controls in single-view containers and navigator
containers.

To manually control instantiation, you set the creationPolicy property of the container to
none and then call the createComponent() or createComponents() methods to instantiate
controls in Flex applications. The following sections describe these methods.

Note: Complete instantiation of some UIObject class objects can take more than a single draw and
refresh of Macromedia Flash Player. This might result in the methods returning before the child is in
its final state.

Using the createComponent() method

The createComponent() method instantiates the specified child of the specified container. This
method does not recursively instantiate any children of the specified child by default. If the child
has already been instantiated, this method does not instantiate it again, but instead returns the
previously instantiated child.

The createComponent() method has the following signature:
container.createComponent(index|childDescriptor [, recursionFlag]):Object

The index argument is a number that specifies one of the child descriptors in a given container.
For example, if an HBox container contains five text fields, each with an id property, you can
refer to the first as 0, the second as 1, and so on. Controls do not have to be instantiated to have
an index entry.

The childDescriptor argument is similar to index, but provides additional information about
the child control. For more information on using childDescriptor, see “Using the
childDescriptors property” on page 564.

The optional argument recursionFlag determines whether Flex should instantiate children of
the specified child. Set the parameter to true to instantiate children of the specified child, or
false to not instantiate the children.

The createComponent() method creates a child at the end of the container’s list of children. You
can use the setChildIndex() method to change the index, if necessary.

The following example sets the creationPolicy property in a VBox container to none. Each
time the user clicks a new button, Flex instantiates the next child in the VBox container using the
createComponent() method. However, because the recursion flag is set to false, Flex does not
instantiate any children of the VBox container’s child controls (in this example there are none):
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Button id="myButton" label="My Button" width="75" click="inst(0);" />

<mx:VBox id="vb" creationPolicy="none">
<mx:Button id="b0" label="First" width="75" x="0" click="inst(1);" />
<mx:Button id="b1" label="Second" width="75" y="50" click="inst(2);" />
562 Chapter 25: Applying Deferred Instantiation

<mx:Button id="b2" label="Third" width="75" y="100" />
</mx:VBox>

<mx:Script>
<![CDATA[
function inst(n) {

vb.createComponent(n, false);
}
]]>
</mx:Script>

</mx:Application>

After the application runs to completion, Flex displays the initial button (labeled My Button) and
the three child buttons of the VBox container, as the following figure shows:

Using the createComponents() method

The createComponents() method instantiates some or all descendants of the specified
container, according to the container’s creationPolicy property.

The createComponents() method has the following signature:
container.createComponents():Void

Calling the createComponents() method on a single-view container instantiates all controls in
that container, regardless of the value of the creationPolicy property.

In navigator containers, if you set the creationPolicy property to all, calling the
createComponents() method creates all controls in all views of the container. If you set the
creationPolicy property to none or auto, calling the createComponents() method creates
only the current view’s controls and their descendents.

The following example does not instantiate any of the buttons in an HBox container at startup,
but does so only when the user selects all from the drop-down list and clicks the Change Policy
button. The script block shows that you use the createComponents() method to instantiate
objects based on the current policy of the container.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:ComboBox id="policy">
<mx:dataProvider>

<mx:Array>
<mx:String>none</mx:String>
Manually instantiating controls 563

<mx:String>all</mx:String>
</mx:Array>

</mx:dataProvider>
</mx:ComboBox>

<mx:Button label="Change Policy" click="changePolicy();"/>
<mx:HBox id="hb" creationPolicy="none">

<mx:Button label="1" width="50" y="0" x="0"/>
<mx:Button label="2" width="50" y="0" x="75"/>
<mx:Button label="3" width="50" y="0" x="150"/>

</mx:HBox>

<mx:Script>
<![CDATA[

function changePolicy() {
var polType = policy.value;
hb.creationPolicy = polType;
if (polType == "none") {
} else if (polType == "all") {

hb.createComponents();
}

}
]]>

</mx:Script>
</mx:Application>

Using the childDescriptors property

When a Flex application starts, initially there are no controls. Instead, every container has an
Array of objects that each contain the MXML information of the child controls in the container.
Depending on the value of the creationPolicy property, Flex immediately begins instantiating
controls or it defers the instantiation. If instantiation is deferred, you can use the properties of this
Array to control the instantiation process.

Each object in the Array is a child descriptor. You can access this Array using a container’s
childDescriptors property, and use a zero-indexed value to identify which descriptor you want.

The following example accesses the type property of the myTile container’s first
childDescriptors property:
var t = myTile.childDescriptors[0].type;

The following table describes the public properties of the childDescriptors property:

Property Description

id The MXML id of the child control, if an id property was assigned in the MXML tag;
otherwise, the ActionScript compiler generates an id.
For more information, see “Using the childDescriptors.id property” on page 565.
564 Chapter 25: Applying Deferred Instantiation

The childDescriptors property points to an Array of objects, so you can use Array functions,
such as length, to iterate over the children, as the following example shows:
<?xml version="1.0"?>
<mx:Application width='500' height='400'

xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Script>
<![CDATA[

function iterateOverChildren() {
var n = tile.childDescriptors.length;
for (var i = 0; i < n; i++) {

// Process the child controls.
// tile.childDescriptors[i]...

}
}

]]>
</mx:Script>

<mx:Tile id="tile">
<mx:TextInput id="input" />
<mx:Button id="ok" label="OK" initialize="iterateOverChildren();" />

</mx:Tile>
</mx:Application>

The following sections describe the properties of the childDescriptors property in more detail.

Using the childDescriptors.id property

The id property is the MXML ID of a control. Each MXML document has a flat namespace, so
you must not set the same id property for two different components. If you do not specify an id
property for a control, Flex generates an id, such as _TextArea1.

The following example shows that the id property of a TextInput control (index 0 of the HBox
container), which does not specify an id property, results in _TextInput1. The TextArea control
(index 1) results in ta1, because it has an id property.
<?xml version="1.0"?>
<mx:Application width='500' height='400'

xmlns:mx="http://www.macromedia.com/2003/mxml" initialize="traceHB();" >

<mx:HBox id="hb">
<mx:TextInput/>
<mx:TextArea id="ta1" />

</mx:HBox>

properties A plain object that stores the MXML-specified properties and children of the child
control; otherwise, the ActionScript compiler generates an id.
For more information, see “Using the childDescriptors.properties property”
on page 566.

type A reference to the constructor function for the child control.
For more information, see “Using the childDescriptors.type property” on page 566.

Property Description
Using the childDescriptors property 565

<mx:Script>
<![CDATA[

function traceHB() {
trace(hb.childDescriptors[0].id) // Writes "_TextInput1"
trace(hb.childDescriptors[1].id) // Writes "ta1"

}
]]>

</mx:Script>
</mx:Application>

Using the childDescriptors.properties property

The properties property specifies the MXML properties of the specified control and its
children. The following example shows the properties of a TextArea control in an HBox
container:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

width="500" height="450">

<mx:Script>
<![CDATA[

function traceProps() {
for (prop in hb.childDescriptors[0].properties) {
trace(prop + " : " + hb.childDescriptors[0].properties[prop]);
}

}
]]>

</mx:Script>

<mx:HBox id="hb">
<mx:TextArea id="ta" initialize="traceProps();" preferredWidth="200"

preferredHeight="25" text="hello ??" />
</mx:HBox>

</mx:Application>

Using the childDescriptors.type property

The type property is the constructor function for the MXML tag that was used to create the
control. This property is of type Function.

The following example shows the value of the type property:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:HBox id="hb">
<mx:TextInput/>
<mx:Button id="ok" label="OK" click="traceHB();" />

</mx:HBox>

<mx:Script>
<![CDATA[

function traceHB() {
566 Chapter 25: Applying Deferred Instantiation

// Returns mx.controls.TextInput
trace(hb.childDescriptors[0].type);

// Returns mx.controls.Button
trace(hb.childDescriptors[1].type);

}
]]>

</mx:Script>
</mx:Application>

Starting applications incrementally

Flex uses deferred instantiation when a Flex application is invoked to determine when
components are created. You can use the creationPolicy property to decide when to create
containers and controls. You can create them at startup, when a user navigates to a container view,
when an event is triggered, or when some other user interaction takes place.

You can write your application to lay out controls in a progressive fashion at startup so that there
is a shorter initial delay before controls begin appearing on the screen. You change the creation
policies of Flex containers so that they are not created as the Application starts up, but when
triggered. You can define the creation order so that as one control finishes being created, the next
one is triggered to start.

You must first identify the order in which you want to display your application. This means
identifying and ordering the top-level containers you want to display, as well as ordering the
children in those containers. You can choose to lay out your application top to bottom, left to
right, or any way you prefer.

After you decide on the ordering, set the container’s creationPolicy property to none to
prevent the containers and their children from being created when the application starts. When
you set the creationPolicy property to none, you should explicitly set a width and height for
that container (or widthFlex and heightFlex). This allows the application to determine the size
of that container without creating its children.

You can create an ActionScript function that performs the object instantiation by calling either
the createComponent() or createComponents() method.

The following example incrementally instantiates three top-level VBox containers and their
children. The creationOrder Array stores the id properties of the VBox containers, and the
application iterates over the Array to create each one in order.

When the creationComplete event is triggered, the application calls the createNext() method
to start the instantiation of the next object. The creationComplete event is triggered under two
circumstances. Initially, it is triggered when the Application object is created, which initiates the
creation of the first container in the Array. It is then triggered each time a child object is created,
which recursively calls the createNext() method.
Starting applications incrementally 567

The createNext() method is not directly called, however. Instead, it is wrapped in calls to
doLater() methods. The doLater() method queues a function to be called when the current
operation finishes. Without the doLater() method, Flash invokes a function and then invokes
the next one without stopping to wait for the first function to finish. The result, from an
instantiation point of view, is that all containers and their children are created at the same time,
which would negate the purpose of the example.

The doLater() method is from the mx.core.UIObject class. The doLater() method has the
following signature:
doLater(obj:Object, func: String, args: Array):Void

The obj argument is the object that contains the function. In the following example, the object is
this. The func argument is the function to call on the object. In this example, it is the
createNext() function.
<?xml version="1.0">
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" xmlns:local="*"

creationComplete="doLater(this,'createNext')">

<mx:Script>
<![CDATA[

var creationOrder = ["box1","box2","box3"];
var creationIndex = 0;

function createNext() {
var nextObj = this[creationOrder[creationIndex++]];
nextObj.addEventListener("childrenCreated", this);
nextObj.createComponents();
if (creationIndex < creationOrder.length) {

nextObj.getChildAt(0).addEventListener("creationComplete", this);
}

}

function handleEvent(e:Object):Void {
if (e.type == "creationComplete") {

doLater(this, "createNext");
} else {

super.handleEvent(e);
}

}
]]>
</mx:Script>

<mx:VBox id="box1" width="200" height="200" creationPolicy="none">
<mx:DataGrid width="190" height="95">

... // Add data provider here.
</mx:DataGrid>

</mx:VBox>

<mx:VBox id="box2" width="200" height="200" creationPolicy="none">
<mx:DataGrid width="190" height="95">

... // Add data provider here.
</mx:DataGrid>
568 Chapter 25: Applying Deferred Instantiation

</mx:VBox>
<mx:VBox id="box3" width="200" height="200" creationPolicy="none">

<mx:DataGrid width="190" height="95">
... // Add data provider here.

</mx:DataGrid>
</mx:VBox>

</mx:Application>
Starting applications incrementally 569

570 Chapter 25: Applying Deferred Instantiation

CHAPTER 26
Printing from SWF Files
Many Macromedia Flex applications let users print from within the application. Users may want
to print an entire Macromedia Flash Player screen, or they might only want to print parts of the
screen. For example, you might have an application that returns confirmation information after a
user completes a purchase. You can build functionality into your application that lets users print
that page to keep for their records.

This chapter describes the options for printing all or parts of a Flex application.

Contents

About Printing . 571

Printing from the Flash Player context menu . 572

Using the ActionScript PrintJob class . 573

Starting a print job. 576

About Printing

You can add printing functionality to your applications that lets users print from Flash Player. To
print an entire application screen, users access the Flash Player context menu and select the Print
command.

To add greater control over printing than provided by the Flash Player context menu, or to build
a print option directly into your user interface, use the ActionScript PrintJob class. This class gives
you control over how the user prints the application or individual components of the application.
You can print the component as it is currently displayed on the screen, or you can add logic to
modify the component to optimize it for printing.

Note: The API reference for the PrintJob class is contained in Flex ActionScript Language Reference.

Additionally, users can print from a browser, rather than from Flash Player, by selecting a
command such as File > Print from the browser window. However, printing from Flash Player
directly, rather than from a browser window Print menu, offers the following advantages:

• Users can print all of the application, or only some parts of the application.
571

• You can specify that the content prints as vector graphics (to take advantage of higher
resolution) or as bitmaps (to preserve transparency and color effects).

• The ActionScript PrintJob class adds the ability to print dynamically rendered pages as a single
print job. The PrintJob class also provides the user’s printer settings, which you can use to
format reports specifically for the user. For more information, see “Using the ActionScript
PrintJob class” on page 573.

Supported printers

With Flash Player, you can print to PostScript and non-PostScript printers. For a list of supported
Flash Player printing platforms, see the “Macromedia Flash Player Web Printing FAQ” on the
Macromedia website (www.macromedia.com/software/flash/open/webprinting/faq.html).

Printing from the Flash Player context menu

The simplest way to print a Flex application is to use the Print command in the Flash Player
context menu. While your Flex application is executing, you open the context menu by right-
clicking (Windows) or control-clicking (Macintosh) in Flash Player.

The context menu’s Print command cannot print transparency or color effects. Instead, use the
PrintJob class. For more information, see “Using the ActionScript PrintJob class” on page 573.

To print frames using the Flash Player context menu Print command:

1. Start your Flex application.

2. Right-click (Windows) or Control-click (Macintosh) in Flash Player in the browser window to
display the Flash Player context menu.

3. Select Print from the Flash Player context menu to display the Print dialog box.

4. In Windows, select the print range to select which frames to print:

■ Select All to print the entire application.
■ Select Pages and enter a range to print the labeled frames in that range.
■ Select Selection to print the current frame.

5. On the Macintosh, in the Print dialog box, select the pages to print:

■ Select All to print the current frame if no frames are labeled or to print all labeled frames.
■ Select From and enter a range to print the labeled frames in that range.

6. Select other print options, according to your printer’s properties.

7. Click OK (Windows) or Print (Macintosh).

Note: Printing from the context menu does not interact with calls to the PrintJob class.
572 Chapter 26: Printing from SWF Files

http://www.macromedia.com/software/flash/open/webprinting/faq.html

Using the ActionScript PrintJob class

The ActionScript PrintJob class lets you print an entire application screen, an individual
component, or multiple components. You can use the PrintJob class to render dynamic content at
runtime, prompt users with a single print dialog box, and print an unscaled document with
proportions that map to the proportions of the content. This capability is especially useful for
rendering and printing external dynamic content, such as database content and dynamic text.

Additionally, with properties populated by the PrintJob.start()method, your document
can access your user’s printer settings, such as page height, width, and orientation, and you
can configure your document to dynamically format Flash content that is appropriate for the
printer settings.

Often, you use the PrintJob class within an event handler. For example, you can add a Button
control to your application that, when selected, prints some or all of the application from within
the Button control’s event handler.

Building a print job

To build a print job, you use functions that complete the tasks in the order described later in this
section. The sections that follow the procedure provide explanations of the functions and
properties associated with the PrintJob class.

Because you are spooling a print job to the user’s operating system between your calls to the
methods PrintJob.start() and PrintJob.send(), and because the PrintJob functions might
temporarily affect the Flash Player internal view of onscreen Flash content, you should implement
print-specific activities only between your calls to the methods PrintJob.start() and
PrintJob.send(). For example, the Flash content should not interact with the user between the
methods PrintJob.start() and PrintJob.send(). Instead, you should expeditiously complete
the formatting of your print job, add pages to the print job, and send the print job to the printer.

To build a print job:

1. Create an instance of the PrintJob class: new PrintJob().

2. Start the print job and display the print dialog box for the operating system:
PrintJob.start().

3. Add pages to the print job (call once per page to add to the print job): PrintJob.addPage().

4. Send the print job to the printer: PrintJob.send().

5. Delete the print job: delete PrintJob.

Only one print job may can run at any given time. You cannot start a second print job until one
of the following has happened with the previous print job:

• The print job was entirely successful and the PrintJob.send() method was called.
• The PrintJob.start() method returned a value of false.
• The PrintJob.addPage() method returned a value of false.
• The delete PrintJob method was called.

Following is an ActionScript example that creates a print job for a DataGrid control:
Using the ActionScript PrintJob class 573

<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script>
<![CDATA[

// Create a PrintJob instance.
function doPrint() {

var pj : PrintJob = new PrintJob();

// Start the print job.
if(pj.start() != true){

delete pj;
return;

}

// Add pages.
pj.addPage(myDataGrid);
pj.send();
// Delete print job.
delete pj;

}
]]>

</mx:Script>

<mx:HBox>
<mx:Button id="myButton" label="Print" click="doPrint()" />
<mx:DataGrid id="myDataGrid" width="300" height="200" >

<mx:DataProvider>
...

</mx:DataProvider>
</mx:DataGrid>

</mx:HBox>
</mx:Application>

In this example, selecting the Button control invokes the doPrint event handler. The event
handler creates an instance of the PrintJob class to print the DataGrid control, adds the DataGrid
control to the print job using the addPage() method, and then uses the send() method to print
the page.

By default, Flex prints the entire DataGrid control. If you want only to print part of the control,
you can specify a second argument to the addPage() method that defines the print area of the
control. The following example prints only the top half of the DataGrid control:
var dgPrintArea={xMin:0,xMax:myDataGrid.width,yMin:0,yMax:myDataGrid.height/2}
pj.addPage(myDataGrid,dgPrintArea);

The xMin, yMin, xMax, and yMax values are relative to the upper-left corner of the control. For
more information, see “Specifying a print area” on page 577.

You can also print both the DataGrid control and the Button control, as the following example
shows:
function doPrint() {

var pj : PrintJob = new PrintJob();
574 Chapter 26: Printing from SWF Files

if(pj.start() != true){
delete pj;
return;

}

pj.addPage(myDataGrid);
pj.addPage(myButton);
pj.send();
delete pj;

}

Each call to the addPage() method adds a new printed page to the print job. Therefore, the
controls print on separate pages.

Modifying a component for printing

A DataGrid control with many rows might not fit on a single screen in your application. In that
case, you typically add scroll bars to let users view the entire control when your application
executes in Flash Player. By default, when you print the DataGrid control, it prints as it appears
on the screen. Therefore, if your DataGrid control has rows or columns that are not visible, they
will not print.

You can add logic to your application to modify a component for printing. For example, you can
scale a component so that it prints larger than it appears on the screen. If you modify the visual
aspects of a component for printing, you should restore the component to its original state so that
the user does not see the modifications. For an example that uses scaling, see “About scaling”
on page 578.

For a DataGrid control, you can print the control across several pages so that all rows print. The
following example uses a doPrint() function to print the entire DataGrid control on multiple
pages, where each page contains a subset of the rows:
function doPrint() {

var pj : PrintJob = new PrintJob();

//Save the current vertical scroll position of the DataGrid control.
var prev_vPosition:Number = myDataGrid.vPosition;

if(pj.start() != true){
delete pj;
return;

}

//Calculate the number of visible rows.
var rowsPerPage:Number = Math.floor((myDataGrid.height -

myDataGrid.rowHeight)/ myDataGrid.rowHeight);

//Calculate the number of pages required to print all rows.
var pages:Number = Math.ceil(myDataGrid.dataProvider.length /

rowsPerPage);

//Scroll down each page of rows, then call addPage() once for each page.
for (var i=0;i<pages;i++) {
Using the ActionScript PrintJob class 575

myDataGrid.vPosition = i*rowsPerPage;
pj.addPage(myDataGrid);

 }

pj.send();
delete pj;

// Restore vertical scroll position.
myDataGrid.vPosition = prev_vPosition;

}

This example saves the current vertical scroll position of the DataGrid control, and then resets it
just before the function returns. Otherwise, users would see the DataGrid scroll to the bottom of
the control every time it prints.

Starting a print job

Calling the PrintJob.start() method prompts Flash Player to spool the print job to the user’s
operating system, and also prompts the user’s operating system print dialog box to appear.

If the user selects an option to begin printing from the print dialog box, the PrintJob.start()
method returns a value of true. (The value is false if the user cancels the print job, in which
case the script should only call delete.) If successful, the PrintJob.start() method sets values
for the paperHeight, paperWidth, pageHeight, pageWidth, and orientation properties.

Depending on the user’s operating system, an additional dialog box might appear until spooling is
complete and the PrintJob.send() method is called: calls to PrintJob.addPage() and then
PrintJob.send() should be made expeditiously. If 10 seconds elapse between the
PrintJob.start() method call and the PrintJob.send() method call, which sends the print
job to the printer, Flash Player effectively calls the PrintJob.send() method, which causes any
pages that are added using the PrintJob.addPage() method to print, and spooling stops.

When a new print job is constructed, the PrintJob() method properties are initialized to 0.
When the PrintJob.start() method is called, after the user selects the print option in the
operating system print dialog box, Flash Player retrieves the print settings from the operating
system. The PrintJob.start() method populates the following properties:

Note: A point is a print unit of measurement that is equal in size to one pixel, a screen unit of measure.
For more information about unit equivalencies, see “About scaling” on page 578.

Property Type Unit Notes

PrintJob.paperHeight Number Points Overall paper height.

PrintJob.paperWidth Number Points Overall paper width.

PrintJob.pageHeight Number Points Height of actual printable area on the page;
does not include any user-set margins.

PrintJob.pageWidth Number Points Width of actual printable area on the page;
does not include any user-set margins.

PrintJob.orientation String N/A Portrait or landscape orientation.
576 Chapter 26: Printing from SWF Files

Adding pages to a print job

You add pages to your print job with the PrintJob.addPage() method. Although the method
can include up to four arguments, target is the only required argument. The three optional
arguments are printArea, options, and frameNum.

The addPage() method uses the following signature:
MyPrintJob.addPage(target, printArea:Object, options:Object,

frameNum:Number):Boolean;

Note: Do not set the frameNum argument when printing in Flex. Always leave that argument unset, or
set it to 0.

Use NULL in place of optional arguments that you are not setting. If you provide an invalid
argument, the print job uses default argument values, which are specified in the sections that
follow.

Each call to add a new page is unique, which lets you modify arguments without affecting
previously set arguments. For example, you can specify that one page prints as a bitmap image,
and another page prints as a vector graphic. You can add as many new pages to your print job as
the print job requires. One call to add a page equals one printed page.

Note: Any ActionScript that you have to call to change a resulting printout must run before calling the
PrintJob.addPage() method. The ActionScript can, however, run before or after you create a new
PrintJob class object.

Specifying a target

The target argument can be a number that represents a level (such as 0 for the root document),
or a string that represents the instance name of a component.

You can add the entire application to the print job by using the this keyword, as the following
example shows:
pj.addPage(this);

Specifying a print area

The printArea optional argument includes the following values:
{xMin:Number, xMax:Number, yMin:Number, yMax:Number}
Starting a print job 577

The xMin, xMax, yMin, and yMax values represent screen pixels relative to the target level or upper-
left corner of the component. The print area orientation is from the upper-left corner of the
printable area on the page. If the print area is larger than the printable area on the page, the print
data that exceeds the right and bottom edge of the page is clipped.

If you don’t specify a print area, or if you specify an invalid print area, the print area is the Stage
area of the root document.

About scaling

A print job that uses the PrintJob class prints, by default, without scaling. For example, an object
that is 144 pixels wide onscreen prints as 144 points, or 2 inches wide.

To understand how Flash Player screen content maps to the printed page, it helps to understand
screen and print units of measure. Pixels are a screen measurement and points are a print
measurement. Both pixels and points equal 1/72 of an inch. A twip is 1/20 of a point and pixel.

The following list further explains the relationship between these units of measure:

• 1 pixel = 1 point = 20 twips
• 72 pixels = 72 points = 1 inch
• 567 twips = 1 cm
• 1440 twips = 1 inch

To scale a component before printing, set its scaleX and scaleY properties before you call the
addPage() method, and then set them back to their original values afterward. The following
example scales a DataGrid control to 200% before printing:
function doPrint() {

var pj : PrintJob = new PrintJob();

if(pj.start() != true){
delete pj;

Paper rectangle

Page rectangle

(594,774)
(576,756)

(0,0)

(-18,-18)
578 Chapter 26: Printing from SWF Files

return;
}

//Save the current scale.
var currentScaleX:Number = myDataGrid.scaleX;
var currentScaleY:Number = myDataGrid.scaleY;
//Scale the DataGrid to 200%.
myDataGrid.scaleX=200;
myDataGrid.scaleY=200;

pj.addPage(myDataGrid);
pj.send();
delete pj;

//Restore the scale.
myDataGrid.scaleX=currentScaleX;
myDataGrid.scaleY=currentScaleY;

}

If you scale a component and also pass a value for the printArea argument, the pixel values
passed to printArea reflect the original size of the component. That is, if you set a component’s
scale to 50% and specify a print area of 500 x 500 pixels, the content that prints is identical to the
content that would print if you didn’t scale the component; however, it prints at half the size.

Specifying printing as a vector image or bitmap graphic

The options argument lets you specify whether to print as a vector graphic or bitmap image.
When using this optional argument, use the following syntax:
{printAsBitmap:boolean}

The default value is false, which represents a request for vector printing. Keep in mind the
following suggestions when determining which value to use:

• If the content that you’re printing includes a bitmap image, specify that the print job print as a
bitmap to include any transparency and color effects.

• If the content does not include bitmap images, specify that the print job print as vector
graphics to take advantage of the higher image quality.

Sending the print job to a printer

To send the print job to a printer after using the addPage() method calls, use the
PrintJob.send() method, which causes Flash Player to stop spooling the print job so that the
printer starts printing.

Deleting the print job

After sending the print job to a printer, use the ActionScript function delete PrintJob to
delete the PrintJob class object and free memory.
Starting a print job 579

580 Chapter 26: Printing from SWF Files

P
A

R
T

 IV
PART IV
Data Access and Interconnectivity
This part describes how to use Macromedia Flex data models and data services.

The following chapters are included:

Chapter 28: Managing Data in Flex . 593

Chapter 29: Binding and Storing Data in Flex . 601

Chapter 30: Validating Data in Flex. 619

Chapter 31: Formatting Data. 639

Chapter 32: Using Data Services . 655

CHAPTER 27
Creating Accessible Applications
You can create Macromedia Flex applications that are accessible to all users, including those with
disabilities, using the accessibility features provided with Flex. As you design accessible
applications, consider how your users will interact with the content. Visually impaired users, for
example, might rely on assistive technology, such as screen readers that provide an audio version
of screen content, while hearing-impaired users might read text and captions in the document.
Other considerations arise for users with mobility or cognitive impairments.

This chapter describes the accessibility features of Flex.

Contents

Accessibility overview. 583

About screen reader technology . 585

Configuring Flex applications for accessibility . 585

Using accessible components and managers . 587

Creating tab order and reading order . 589

Accessibility for hearing-impaired users . 591

Testing accessible content. 591

Accessibility overview

You create accessible content by using accessibility features included with Flex, by taking
advantage of ActionScript designed to implement accessibility, and by following recommended
design and development practices. The list of recommended practices that follows is not
exhaustive, but suggests common issues to consider. Depending on your audience’s needs,
additional requirements might arise.

Visually impaired users For visually impaired users, including those with color blindness, keep
in mind the following design recommendations:

• Describe the layout of your movie and the individual controls used to navigate through the
Macromedia Flash application.

• Design and implement a logical tab order.
583

• Design the document so that constant changes in content do not unnecessarily cause screen
readers to refresh. For example, you should group or hide looping elements.

• Provide captions for narrative audio. Be aware of audio in your document that might interfere
with a user being able to listen to the screen reader.

• Ensure that color is not the only means of conveying information. In addition, ensure that
foreground and background colors contrast sufficiently to make text readable for people with
low vision and color blindness.

• Ensure that controls are device-independent (or accessible by keyboard).

Users with mobility impairment For users with mobility impairment, ensure that controls are
device-independent (or accessible by keyboard).

Hearing-impaired users For hearing impaired users, you can caption audio content.

Users with cognitive impairment Users with cognitive impairments vary widely in how they
experience difficulty interacting with and understanding content. Many users will benefit from
one or more of the following design recommendations:

• Uncluttered design that is easily navigable.
• Graphical imagery that helps convey the purpose and message of the application.
• Multiple methods to accomplish common tasks.

About worldwide accessibility standards

Many countries, including the United States, Australia, Canada, Japan, and countries in the
European Union, have adopted accessibility standards based on those developed by the World
Wide Web Consortium (W3C). The W3C publishes Web Content Accessibility Guidelines, a
document that prioritizes actions that designers should take to make web content accessible. For
information about the Web Accessibility Initiative, see the W3C website at www.w3.org/WAI.

In the United States, the law that governs accessibility is commonly known as Section 508, which
is an amendment to the U.S. Rehabilitation Act. Section 508 prohibits federal agencies from
buying, developing, maintaining, or using electronic technology that is not accessible to those
with disabilities. In addition to mandating standards, Section 508 lets government employees and
the public sue agencies in federal court for noncompliance.

For additional information about Section 508, see the following websites:

• The U.S. government-sponsored website at www.section508.gov
• The Macromedia accessibility web page at www.macromedia.com/macromedia/accessibility/

Viewing the Macromedia Flex Accessibility web page

This chapter contains an introduction to the accessibility features in Flex, and to developing
accessible applications. For the latest information on creating and viewing accessible Flex content,
including supported platforms, known issues, screen reader compatibility, articles, and accessible
examples, see the Macromedia Flash Accessibility web page at www.macromedia.com/
macromedia/accessibility/.
584 Chapter 27: Creating Accessible Applications

http://www.w3.org/WAI/
http://www.section508.gov
http://www.macromedia.com/macromedia/accessibility/
http://www.macromedia.com/macromedia/accessibility/
http://www.macromedia.com/macromedia/accessibility/

About screen reader technology

A screen reader is software designed to navigate through a website and read the web content
aloud. Visually impaired users often rely on this technology. You can create content designed for
use with screen readers for Windows platforms only. Those viewing your content must have
Flash Player 7 or later, and Internet Explorer in Windows 98 or later.

JAWS, from Freedom Scientific, is one example of screen reader software. You can access the
JAWS page of the Freedom Scientific website at www.hj.com/fs_products/software_jaws.asp.
Another commonly used screen reader program is Window-Eyes, from GW Micro. To access the
latest information on Window-Eyes, visit the GW Micro website at www.gwmicro.com.

Note: Flex supports only the JAWS screen reader.

Screen readers help users understand what is contained in a web page or Flex application. Based
on the keyboard shortcuts that you define, you can allow users to easily navigate through your
application using the screen reader.

Because different screen reader applications use varying methods to translate information into
speech, your content will vary in how it’s presented to each user. As you design accessible
applications, keep in mind that you have no control over how a screen reader behaves. You can
only mark up the content in your applications in such a way as to expose the text and ensure that
screen reader users can activate the controls. You only have control over the content, not the
screen readers. This means that you can decide which objects in the movie are exposed to screen
readers, provide descriptions for them, and decide the order in which they are exposed to screen
readers. However, you cannot force screen readers to read specific text at specific times or control
the manner in which that content is read.

Flash Player and Microsoft Active Accessibility (Windows only)

Flash Player is optimized for Microsoft Active Accessibility (MSAA), which provides a highly
descriptive and standardized way for applications and screen readers to communicate. MSAA is
available for Windows operating systems only. For more information on Microsoft Accessibility
Technology, visit the Microsoft Accessibility website at www.microsoft.com/enable/default.aspx.

The Windows ActiveX (Internet Explorer plug-in) version of Flash Player 7 supports MSAA, but
the Windows Netscape and Windows stand-alone players do not.

Flex supports a debug version of Flash Player that can display debugging information during
runtime, and generate profiling information so that you can more easily develop applications.
However, the debug version of Flash Player does not support accessibility.

Caution: MSAA is currently not supported in the opaque windowless and transparent windowless
modes. (These modes are options in the HTML Publish Settings panel, available for use with the
Windows version of Internet Explorer 4.0 or later, with the Flash ActiveX control.) If you need your
Flash content to be accessible to screen readers, avoid using these modes.

Configuring Flex applications for accessibility

This section describes how to enable the accessibility features of Flex and how to configure a
screen reader for use with Flex applications.
Configuring Flex applications for accessibility 585

http://www.hj.com/fs_products/software_jaws.asp
http://www.gwmicro.com/
http://www.microsoft.com/enable/default.aspx

Enabling accessibility in Flex

By default, Flex accessibility features are not enabled. When you enable accessibility, you do add
overhead that can increase the size of the resulting SWF file.

To enable accessibility, you can use one of the following methods:

• Enable accessibility by default for all Flex applications so that all requests return accessible
content.
To enable accessibility for all Flex applications, edit the flex-config.xml file to set the
<accessible> property to true, as the following example shows:
<compiler>

...
<accessible>true</accessible>
...

<compiler>

• Enable accessibility on an individual request.
If you have not enabled accessibility for all applications by default, you can enable it on an
individual request by setting the accessible query parameter to true, as the following
example shows:
http://www.mycompany.com/myflexapp/app1.mxml?accessible=true

If you edited the flex-config.xml file to enable accessibility by default, you can disable it for an
individual request by setting the accessible query parameter to false, as the following
example shows:
http://www.mycompany.com/myflexapp/app1.mxml?accessible=false

• Enable accessibility when you are using the mxmlc command-line compiler.
When you compile a file using the mxmlc command-line compiler, you can use the
-accessible option to enable accessibility, as the following example shows:
mxmlc -accessible c:/dev/myapps/mywar.war/app1.mxml

For more information on the command-line compiler, see Chapter 36, “Administering Flex,”
on page 753.

Configuring a JAWS screen reader for Flex applications

To use a JAWS screen reader with a Flex application, you must download scripts from the
Macromedia website before invoking a Flex application. These scripts enable some of the
accessibility features of Flex.

You can download these scripts, and the installation instructions, from the Macromedia website at
www.macromedia.com/macromedia/accessibility/.

To execute correctly, some of the Flex components require the screen reader to be in Forms mode.
These scripts let you switch between Virtual Cursor mode and Forms mode using the
Control+Shift+A key sequence.
586 Chapter 27: Creating Accessible Applications

http://www.macromedia.com/macromedia/accessibility/

Using accessible components and managers

To accelerate building accessible applications, Macromedia built support for accessibility into Flex
components and managers that automate many of the most common accessibility practices
related to labeling, keyboard access, and testing and help ensure a consistent user experience
across rich applications. Flex comes with the following set of accessible components and
managers:

Component/
Manager

Notes

Accordion
container

Use the Page Up and Page Down keys to move between the individual panes of
an Accordion container.
When a screen reader encounters an Accordion container, it indicates each pane
with the word tab. It indicates the current pane with the word active. When a pane
is selected, the user moves to that pane by pressing the Enter key.

Button control Activate the Button control using the Space bar.
When using a screen reader, activate the Button controls using the Enter key.

CheckBox
control

Activate the check box items using the Space bar.
When using a screen reader, select the CheckBox control using either the Space
bar or the keyboard.

ComboBox
control

Use the Up and Down Arrow keys to move through the items in the ComboBox
drop-down list. To open the ComboBox list, press Control + Down Arrow.
When using a screen reader in Forms mode, use the Up and Down Arrow keys to
move through the items in the list. To open the ComboBox list, press Control +
Down Arrow.

ControlBar
container

None

DataGrid control Use the arrow keys to highlight the contents, and then move between the
individual characters within that field.
When using a screen reader, use Control+Shift+A to enter Forms mode. Use the
Tab key to move between editable fields in the DataGrid control. To edit a field,
use the arrow keys to highlight the contents and then move between the individual
characters within that field.

DateChooser
control

Use Up, Down, Left, and Right Arrow keys to change the selected date. Use
Home & End keys to reach the first enabled date in the month and the last enabled
date in a month, respectively. Use the Page Up and Page Down keys to reach the
previous and next months.
When using a screen reader, to move focus to the calendar view, press the Enter
key to enter Forms mode. Use Up, Down, Left, and Right Arrow keys to change
the selected date. Use Home and End keys to reach the first enabled date in a
month and last enabled date in a month, respectively. Use the Page Up and Page
Down keys to reach the previous and next months.

DateField
control

Use the Space bar to open the DateChooser control and select the appropriate
date.
With the focus on the DateField control, press Enter to switch to Forms mode.
Use the Space bar to open the DateChooser control and select the appropriate
date.
Using accessible components and managers 587

Form container None

Image control The image control itself is not accessible, but you can add a ToolTip to it so that
the contents of the ToolTip are read.

Label control None

Link control Activate the Link control using the Space bar.
When using a screen reader, activate the Link control using the Enter key.

List control Use the Up and Down Arrow keys to move through the items in the menu.
When using a screen reader with Forms mode on, use the Up and Down Arrow
keys to move through the items in the menu.

Menu control Use the Tab key to bring focus to the Menu control. Next, use the Left or Right
Arrow key to select an individual menu. Select submenu items using the Up and
Down Arrow keys. To exit the menu bar, select a submenu item on any menu and
press the Tab key.
When using a screen reader, use the Tab key to bring focus to the Menu control.
Press the Enter key to switch to Forms mode. Use the Left or Right Arrow key to
select an individual menu. Select submenu items using the Up and Down Arrow
keys. To exit the menu bar, select a submenu item on any menu and press the Tab
key to bring focus back to the menu bar. Press the Tab key again to move to the
next item in the tab order.

MenuBar
control

Use the Tab key to bring focus to the MenuBar control. Next, use the Left or Right
Arrow key to select an individual menu. Select submenu items using the Up and
Down Arrow keys. To exit the menu bar, select a submenu item on any menu and
press the Tab key.
When using a screen reader, use the Tab key to bring focus to the MenuBar
control. Press the Enter key to switch to Forms mode. Use the Left or Right Arrow
key to select an individual menu. Select submenu items using the Up and Down
Arrow keys. To exit the menu bar, select a submenu item on any menu and press
the Tab key to bring focus back to the menu bar. Press the Tab key again to move
to the next item in the tab order.

NumericStepper
control

None

Panel container None

RadioButton
control

With one radio button selected within a group, press the Enter key to enter that
group. Next, use the arrow keys to move between items within that group. The
Down and Right Arrow keys move to the next item in a group; the Up and Left
Arrow keys will move to a previous item in the group.
When using a screen reader, select a radio button using the Enter key.

RadioButton
Group control

With one radio button selected within a group, press the Enter key to enter that
group. Next, use the arrow keys to move between items within that group. The
Down and Right Arrow keys move to the next item in a group; the Up and Left
Arrow keys will move to a previous item in the group.
When using a screen reader, select a radio button using the Enter key.

Component/
Manager

Notes
588 Chapter 27: Creating Accessible Applications

Creating tab order and reading order

There are two aspects to tab indexing order—the tab order in which a user navigates through the
web content, and the order in which things are read by the screen reader, called the reading order.

Flash Player uses a tab index order from left to right and top to bottom. However, if this is not the
order you want to use, you can customize both the tab and reading order using the tabIndex
property. (In ActionScript, the tabIndex property is synonymous with the reading order.)

Tab order You can use the tabIndex property of every component to create a tab order that
determines the order in which objects receive input focus when a user presses the Tab key.

Reading order You can also use the tabIndex property to control the order in which a screen
reader reads information about the object (known as the reading order). To create a reading order,
you assign a tabIndex property to every component in your application. You must create a
tabIndex property for every accessible object, not just the focusable objects. For example, a Text
control must have tabIndex properties, even though a user cannot tab to it. If you do not provide
a tabIndex property for every accessible object, Flash Player ignores all tabIndex properties
whenever a screen reader is present, and uses the default tab order instead.

Creating accessibility with ActionScript

For accessibility properties that apply to the entire document, you can create or modify a global
variable called _accProps. For more information on the _accProps variable, see Flex ActionScript
Language Reference.

TabNavigator
container

Use the Page Up and Page Down keys to move between individual panes of the
TabNavigator container.
When a screen reader encounters a TabNavigator container pane, it indicates
each panel with the word tab. It indicates the current pane with the word active.
When a pane is selected, the user moves to that pane by pressing the Enter key.

Text control None

TextArea control None

TextInput
control

None

TitleWindow
container

None

ToolTipManager When using a screen reader, the contents of a ToolTip are read after the item to
which the ToolTip is attached.

Tree control Use the Up and Down Arrow keys to move between items in a Tree control. To
open a group, use the Right Arrow key. To close a group, use the Left Arrow key.
When using a screen reader, press the Enter key to enter Forms mode. This
enables the user to open and close nodes of the Tree control. Use the Up and
Down Arrow keys to move between items in a Tree control. To open a group, use
the Right Arrow key. To close a group, use the Left Arrow key.

Component/
Manager

Notes
Creating tab order and reading order 589

For properties that apply to a specific object, you can use the syntax instancename._accProps.
The value of _accProps is an object that can include any of the following properties:

Modifying the _accProps variable has no effect by itself. You must also use the
Accessibility.updateProperties() method to inform screen reader users of Flash Player
content changes. Calling the method causes Flash Player to re-examine all accessibility properties,
update property descriptions for the screen reader, and, if necessary, send events to the screen
reader that indicate changes have occurred.

When updating the accessibility properties of multiple objects at once, you have to include only a
single call to the Accessiblity.updateProperties() method. (Excessive updates to the screen
reader can cause some screen readers to become too verbose.)

Implementing screen reader detection with the
Accessibility.isActive() method

To create content that behaves in a specific way if a screen reader is active, you can use the
ActionScript Accessibility.isActive() method, which returns a value of true if a screen
reader is present, and false otherwise. You can then design your content to perform in a way that
is compatible with screen reader use, such as by hiding child elements from the screen reader.

For more information on the Accessibility class, see Flex ActionScript Language Reference.

For example, you could use the Accessibility.isActive() method to decide whether to
include unsolicited animation. Unsolicited animation means animation that happens without the
screen reader doing anything. This can be very confusing for screen readers.

The Accessibility.isActive() method provides asynchronous communication between
the Flex application and Flash Player, which means that a slight real-time delay could occur
between the time the method is called and the time in which Flash Player becomes active,
returning an incorrect value of false. To ensure that the method is called correctly, you can
do one of the following:

Property Type Description

.silent Boolean Hides a component from a screen reader when set to true. The default
value is false.

.forceSimple Boolean Hides the children of a component from a screen reader when set to
true. The default value is false.

.name String Specifies a description of the component that is read by the screen
reader. When accessible objects do not have a specified name, a screen
reader uses a generic word, such as Button.

.description String Specifies a description for the component that is read by the screen
reader.

.shortcut String Specifies a description of a keyboard shortcut for the component that is
read by the screen reader. Entering the description here does not create
a keyboard shortcut. To create a keyboard shortcut, see the Key class in
Flex ActionScript Language Reference.
590 Chapter 27: Creating Accessible Applications

• Instead of using the Accessibility.isActive() method when your application first plays,
call the method whenever you need to make a decision about accessibility.

• Introduce a short delay of one or two seconds at the beginning of your document to give the
application enough time to contact Flash Player.
For example, you can attach this method with an onFocus event to a button. This generally
gives the SWF file enough time to load and you can safely assume that a screen reader user will
tab to the first button or object on the Stage.

Accessibility for hearing-impaired users

To provide accessibility for hearing-impaired users, you can include captions for audio content
that is integral to the comprehension of the material presented. A video of a speech, for example,
would probably require captions for accessibility, but a quick sound associated with a button
probably would not require a caption.

Testing accessible content

When you test your accessible applications, follow these recommendations:

• Make sure you have enabled accessibility. For more information, see “Configuring Flex
applications for accessibility” on page 585.

• If you are creating interactive content, test it and verify that users can navigate your content
effectively using only the keyboard. This can be an especially challenging requirement, because
different screen readers work in different ways when processing input from the keyboard,
which means that your content might not receive keystrokes as you intended. Ensure that you
test all keyboard shortcuts.
Testing accessible content 591

592 Chapter 27: Creating Accessible Applications

CHAPTER 28
Managing Data in Flex
This chapter introduces Macromedia Flex data management. Data management is a combination
of features that provide a powerful way to validate, format, and pass data between Flex
applications and external data sources.

Contents

About Flex data management. 593

Comparing Flex data management to other technologies . 597

About Flex data management

Flex provides the following set of features for working with data in your applications: data
services, binding, validation, and formatting. These features let you perform the following tasks
using MXML tags:

• Send data to server-side data sources
• Receive data from server-side data sources
• Pass data between client-side objects
• Store data in client-side objects
• Validate data before using it
• Format data before displaying it in the user interface

Flex provides tags for connecting to server-side data sources. It also includes a simple syntax for
providing input to data source requests and using the data returned from a data source within the
client-side components that make up the application.

The following steps describe a simple scenario in which a user provides input data and requests
information in a Flex application. A matching figure follows the steps.

1. User enters data in input fields and submits request by clicking a Button control.

2. (Optional) Data binding passes data to a data model object, which provides intermediate data
storage. This allows data to be manipulated and passed to other objects in the application.

3. (Optional) One or more data validator objects validate the request data. Validator objects check
whether data meets specific criteria.
593

4. Data is eventually passed to a data service request object.

5. The data service passes the request data to the appropriate method on a server-side object.

6. The server-side object processes the request and returns a result that is converted to a data service
result object or a fault object if a valid result cannot be returned.

7. (Optional) Data binding passes data to a data model object, which provides intermediate data
storage. This allows data to be manipulated and passed to other objects in the application.

8. (Optional) One or more data formatter objects format result data for display in the user
interface.

9. Data binding passes data into user interface controls for display.

Resource tier

Data service implementations:
Web service, Java object, other

User interface

Data validators
ex. Check if ZIP code is valid.

Data services
Request

Client tier

Server tier

UI controls
display result data

Ex: Display current Celsius
temperature.

Ex: Retrieve temperature.

1

Data model
Intermediate data storage.

Data transport: SOAP, AMF, or HTTP

Data bindings
Copy data between objects.

Data bindings
Copy data between objects.

Data bindings
Copy data between objects.

Data model
Intermediate data storage.

Data formatters
ex. Convert temp. to Celsius.

Data bindings
Copy data between objects.

Result

2

3 7

8

9

6

5

4

UI controls
input data/send request

Ex: Enter & send ZIP code.

Data bindings
Copy data between objects.
594 Chapter 28: Managing Data in Flex

Data services

The data service feature lets you interact with server-side data sources. You can work with data
sources that are accessible using SOAP-compliant web services, Java objects, or HTTP GET or
POST requests. Flex is based on a service-oriented architecture (SOA). In a typical Flex
application, data is sent as input to one or more external data services. When a data service
executes, it returns its results data to the Flex application.

The following example shows MXML code that connects to a data service (a web service in this
case), sends a request to the data source in the click event of a Button control, and displays the
result data in the text property of a TextArea control. The value in the curly braces ({ }) in the
TextArea control is a binding expression that copies data service results data into the text
property of the TextArea control.
...
<!-- Connect to a data service. -->
<mx:WebService id="myService" wsdl="service.wsdl"/>

<!-- Provide input data for calling the web service. -->
<mx:TextInput id="inputText">

<!-- Call the web service, use the text in a TextInput control as input data.
-->
<mx:Button click="myService.getData(inputText.text)>

<!-- Display results data in the user interface. -->
<mx:TextArea text="{myService.getData.result.prop1}"
...

For more information, see Chapter 32, “Using Data Services,” on page 655.

Data binding

The data-binding feature provides a syntax for automatically copying the value of a property of
one client-side object to a property of another object at runtime. Data binding is usually triggered
when the source property value changes. You can use data binding to pass user input data from
user interface controls in a Form container to a data service request. You can also use data binding
to pass results returned from a data service into user interface controls.

The following example shows a Text control that gets its data from Slider control’s value
property. The property name inside the curly braces ({ }) is a binding expression that copies the
value of the source property, mySlider.value, into the Text control’s text property.
<mx:Slider id="mySlider"/>
<mx:Text text="{mySlider.value}"/>

For more information, see Chapter 29, “Binding and Storing Data in Flex,” on page 601.
About Flex data management 595

Data models

The data-model feature lets you store data in client-side objects. A data model is an ActionScript
object that contains properties for storing data, and optionally contains methods for additional
functionality. Data models are useful for partitioning the user interface, data, and data services in
an application. You can use the data-binding feature to bind user interface data into a data model;
this is particularly useful for validating user input data. You can also use the data-binding feature
to bind data service results to a data model.

You can define a simple data model in an MXML tag. When you require functionality beyond
storage of untyped data, you can use an ActionScript class as a data model.

The following example shows an MXML-based data model with properties of TextInput controls
bound into its fields:
...
<mx:Model id="registration">

<name>{name.text}</name>
<email>{email.text}</email>
<phone>{phone.text}</phone>
<zip>{zip.text}</zip>
<ssn>{ssn.text}</ssn>

</mx:Model>
...
<mx:TextInput id="name"/>
<mx:TextInput id="email"/>
<mx:TextInput id="phone"/>
<mx:TextInput id="zip"/>
<mx:TextInput id="ssn"/>
...

For more information about data models, see Chapter 29, “Binding and Storing Data in Flex,” on
page 601. For information about partitioning an application, see Chapter 4, “Developing
Applications,” on page 57.

Data validation

The data-validation feature lets you ensure that data meets specific criteria before the application
uses the data. Data validators are ActionScript objects that check whether data is formatted
correctly. Validators validate data that is bound to data model fields. For example, you can use a
validator to check whether the value that a user enters in a TextInput control is a valid ZIP code
before sending it to a data service that expects a ZIP code.

You can apply a data validator to a model declared in a data service declaration, a model declared
in an <mx:Model> tag, or a model defined in ActionScript. For models in a data service
declaration, properties to which a validator component is applied are validated just before the
request is sent to a data service, and only valid requests are sent.

The following example shows MXML code that uses the standard ZipCodeValidator component,
represented by the <mx:ZipCodeValidator> tag, to validate the format of the ZIP code that a
user enters. The field property of the ZipCodeValidator validator indicates the property that it
validates. When the data binding on the property executes, the validator checks whether the
property’s value is a valid ZIP code.
596 Chapter 28: Managing Data in Flex

...
<mx:TextInput id="input" text="enter zip" width="80"/>

<mx:Model id="zipModel">
<zip>{input.text}</zip>

</mx:Model>

<mx:ZipCodeValidator field="zipModel.zip" />
...

For more information about validator components, see Chapter 30, “Validating Data in Flex,” on
page 619.

Data formatting

The data-formatting feature lets you change the format of data before displaying it in a user
interface control. For example, when a data service returns a string that you want to display in the
(xxx)xxx-xxxx phone number format, you can use a formatter component to ensure that the string
is reformatted before it is displayed.

A data formatter component is an object that formats raw data into a customized string. You can
use data formatter components with data binding to reformat data returned from a data service.

The following example declares a DateFormatter component with an MM/DD/YYYY date
format, and binds the formatted version of a Date object returned by a web service to the text
property of a TextInput control:
...

<!-- Declare a formatter and specify formatting properties. -->
<mx:DateFormatter id="StandardDateFormat" formatString="MM/DD/YYYY" />

<!-- Trigger the formatter while populating a string with data. -->
<mx:TextInput text="Your order shipped on
{StandardDateFormat.format(myService.purchase.result.date)}" />

</mx:Application>

For more information about data formatters, see Chapter 31, “Formatting Data,” on page 639.

Comparing Flex data management to other technologies

The way that Flex works with data sources and data is different from other web application
environments, such as JSP, ASP, and ColdFusion. Data access in Flex applications also differs
significantly from data access in applications created in Flash MX 2004. This section describes
some of the differences.

Client-side processing and server-side processing

Unlike a set HTML templates created using JSPs and servlets, ASP, or CFML, the files in a Flex
application are compiled on the server into a binary SWF file that is sent to the client. When a
Flex application makes a request to an external data service, the SWF file is not recompiled and
no page refresh is required.
Comparing Flex data management to other technologies 597

The following example shows MXML code for calling a web service. When a user clicks the
Button control, client-side code calls the web service and result data is returned into the binary
SWF file without a page refresh. The result data is then available to use as dynamic content
within the application.
...

<!-- Define the web service connection (the specified WSDL URL is not
functional). -->
<mx:WebService id="WeatherService" wsdl="/ws/WeatherService?wsdl">

...
<mx:Button label="Get Weather"

click="WeatherService.GetWeather(input.text);"/>
...

The following example shows JSP code for calling a web service using a JSP custom tag. When a
user requests this JSP, the web service request is made on the server instead of on the client, and
the result is used to generate content in the HTML page. The application server regenerates the
entire HTML page before sending it back to the user’s web browser.
<%@ taglib prefix="web" uri="webservicetag" %>

<% String str1="BRL";
String str2="USD";%>

<!-- Call the web service. -->
<web:invoke

url="http://www.itfinity.net:8008/soap/exrates/default.asp"
namespace="http://www.itfinity.net/soap/exrates/exrates.xsd"
operation="GetRate"
resulttype="double"
result="myresult">
<web:param name="fromCurr" value="<%=str1%>"/>
<web:param name="ToCurr" value="<%=str2%>"/>

</web:invoke>

<!-- Display the web service result. -->
<%= pageContext.getAttribute("myresult") %>

Data source access

Another difference between Flex and other web application technologies is that you never
communicate directly with a data source in Flex. You use a Flex data service component to
connect to a server-side service that interacts with the data source.

The following example shows one way to access a data source directly in a ColdFusion page:
...
<CFQUERY DATASOURCE="Dsn"

NAME="myQuery">
SELECT * FROM table

</CFQUERY>
...

To get similar functionality in Flex, you use an HTTP service, a web service, or a remote object
service to call a server-side object that returns results from a data source.
598 Chapter 28: Managing Data in Flex

Flash MX data management

Flash MX 2004 and Flex provide different data management architectures. These architectures
were developed to meet the needs of the respective authoring environments and user
communities. Flash MX 2004 provides a set of data components, which includes
XMLConnector, WebServices Connector, DataSet, DataHolder, RDMBSResolver, and
XUpdateResolver. These components are designed for use in the Flash MX 2004 authoring
environment. Although some of the functionality of these components overlaps with features
found in Flex, they are not based on the same architecture.

Flash MX 2004 also has its own data-binding feature that works in conjunction with the Flash
MX data components, and is a completely different feature than Flex data binding.

In Flash MX 2004, you can also use Macromedia Flash Remoting MX to connect to server-side
data sources. You use the NetServices ActionScript API to work with Flash Remoting MX in
Flash MX 2004. When working with the Flex remote object services, you can choose to use the
AMF binary transport protocol instead of SOAP. AMF is the protocol used in Flash Remoting
MX, but AMF support in remote object services does not include all the features of the Flash
Remoting MX product. AMF support in remote object services gives you the choice of a binary
protocol when accessing Java objects.
Comparing Flex data management to other technologies 599

600 Chapter 28: Managing Data in Flex

CHAPTER 29
Binding and Storing Data in Flex
This chapter describes the Macromedia Flex data binding and data model features. These features
are key components of Flex data management, which let you pass data between objects and store
data.

Contents

Binding data . 601

Using data models . 610

Binding data

Data binding is the process of tying the data in one object to another object. It provides a
convenient way to pass data around in an application. Flex provides two ways to specify data
binding: the curly braces ({}) syntax and the <mx:Binding> tag.

Common uses of data binding include the following:

• Properties of user interface controls bound directly to web service requests
• Web service results bound directly to properties of user interface controls
• Web service results bound to a middle-tier data model, and that data model’s fields bound to

user interface controls; for more information about data models, see “Using data models”
on page 610.

• Properties of user interface controls bound to a middle-tier data model, and that data model’s
fields bound to a web service request (a three-tier system)

• Individual parts of complex properties bound to properties of user interface controls; for
example, a master-detail scenario in which clicking an item in a List control displays data in
several other controls

While binding is a powerful mechanism, it is not appropriate for all situations. For example, for a
complex user interface in which individual pieces must be updated based on strict timing, you
could use a method that assigns properties in order. Also, since binding executes every time a
property changes, it is not the best solution when you only want changes to be noticed some of
the time.
601

Data binding requires a source property, a destination property, and a trigger that indicates when
to copy the data from the source to the destination. The following example shows a Text control
that gets its data from Slider control’s value property. The property name inside the curly braces
({}) is a binding expression that copies the value of the source property, mySlider.value, into the
Text control’s text property.
<mx:Slider id="mySlider"/>

<mx:Text text="{mySlider.value}"/>

You can bind to all types of properties, including properties of type Function. Binding occurs
under the following circumstances:

• The object that is the binding source broadcasts an event
• Application code calls a data service

Binding data with the curly braces syntax

Using the curly braces syntax is the simplest way to pass data between objects in an application.
When using this syntax, you use curly braces ({}) around a source property name as the value of a
destination property.

In the following example, a set of properties of user interface controls is bound to the registration
data model. For more information about data models, see “Using data models” on page 610.

Note: This example is from the Flex Explorer application, which is included in the samples.war file.
You can extract the samples.war file to your application server.

<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<!-- Data model stores registration data that user enters. -->
 <mx:Model id="registration">
 <name>{name.text}</name>
 <email>{email.text}</email>
 <phone>{phone.text}</phone>
 <zip>{zip.text}</zip>
 <ssn>{ssn.text}</ssn>
 </mx:Model>

<!-- Form contains user input controls. -->
<mx:Form>

<mx:FormItem label="Name" required="true">
<mx:TextInput id="name" width="200"/>

 </mx:FormItem>

 <mx:FormItem label="Email" required="true">
 <mx:TextInput id="email" width="200"/>
 </mx:FormItem>

 <mx:FormItem label="Phone" required="true">
 <mx:TextInput id="phone" width="200"/>
 </mx:FormItem>

 <mx:FormItem label="Zip" required="true">
602 Chapter 29: Binding and Storing Data in Flex

 <mx:TextInput id="zip" width="60"/>
 </mx:FormItem>

 <mx:FormItem label="Social Security" required="true">
 <mx:TextInput id="ssn" width="200"/>
 </mx:FormItem>

 <mx:FormItem>

<!-- User clicks Button to place order. -->
 <mx:Button label="Place Order"

click="mx.validators.Validator.
isStructureValid(this,'registration');"/>

 </mx:FormItem>
 </mx:Form>
</mx:Application>

Flex supports ActionScript expressions in bindings. Binding expressions in curly braces can
contain an ActionScript expression that returns a value. For example, you can use the curly braces
syntax for the following types of binding:

• A single bindable property inside curly braces
• String concatenation that includes a bindable property inside curly braces
• Calculations on a bindable property inside curly braces
• Conditional operations that evaluate a bindable property value

The following example shows a data model that uses each type of binding expression:
<mx:Model id="myModel">

<!-- Perform simple property binding. -->
<a>{name.text}
<!-- Perform string concatenation. -->
This is {name.text}
<!-- Perform a calculation. -->
<c>{baz * 6 / 7}</c>
<!-- Perform a conditional operation using a ternary operator;

the person object contains a Boolean variable called isMale. -->
<d>{(person.isMale) ? "Mr." : "Ms."} {person.lastName}</d>

</mx:Model>

Binding data with the <mx:binding> tag

You can use the <mx:Binding> tag as an alternative to the curly braces syntax. When you use the
<mx:Binding> tag, you provide a source property in the <mx:Binding> tag’s source property
and a destination property in its destination property. This is equivalent to using the curly
braces syntax.

Unlike the curly braces syntax, you can use the <mx:Binding> tag to completely separate the view
(user interface) from the model. The <mx:Binding> tag also lets you bind different source
properties to the same destination property.

In the following example, the properties of user interface controls are bound to the myEmployee
data model using <mx:Binding> tags:
Binding data 603

<?xml version="1.0"?>
<mx:Application xmlns:mx="http://macromedia.com/2003/mxml">
...
<!-- Form contains user input controls. -->

<mx:Form label="Employee Information">
<mx:FormItem label="First Name">

<mx:TextInput id="firstName" />
</mx:FormItem>
<mx:FormItem label="Last Name">

<mx:TextInput id="lastName" />
</mx:FormItem>
<mx:FormItem label="Department">

<mx:TextInput id="department" />
</mx:FormItem>
<mx:FormItem label="Email Address">

<mx:TextInput id="email" />
</mx:FormItem>

</mx:Form>

<!-- The myEmployee data model. -->
<mx:Model id="myEmployee">

<name>
<first />
<last />

</name>
<department />
<email />

</mx:Model>
...
<!-- Properties of user interface controls are bound to the
myEmployee data model using <mx:Binding> tags. -->

<mx:Binding source="firstName.text" destination="myEmployee.name.first" />
<mx:Binding source="lastName.text" destination="myEmployee.name.last" />
<mx:Binding source="department.text" destination="myEmployee.department" />
<mx:Binding source="email.text" destination="myEmployee.email" />
</mx:Application>

Binding more than one source property to a destination property

You can bind more than one source property to the same destination property by using multiple
<mx:Binding> tags that specify the same destination but different sources, or by using the
combination of binding expressions in curly braces and <mx:Binding> tags. You cannot do this
with just the curly braces syntax.

In the following example, the data model field thing1.part is the destination, and both
input1.text and input2.text are its sources. If input1.text or input2.text is updated,
thing1.part contains the updated value.
<mx:Model id="thing1">
 <part>{input1.text}</part>
</mx:Model>

<mx:Binding source="input2.text" destination="thing1.part" />
604 Chapter 29: Binding and Storing Data in Flex

Using ActionScript expressions in Binding tags

The source property of an <mx:Binding> tag can contain curly braces. When there are no curly
braces in the source property, the value is treated as a single ActionScript expression. When there
are curly braces in the source property, the value is treated as a concatenated ActionScript
expression. The <mx:Binding> tags in the following example are valid and equivalent to each
other:
<mx:Binding source="'The dog ate my '+ dog.whatDogAte()"

destination="field1.text" />

<mx:Binding source="{'The dog ate my '+ dog.whatDogAte()}"
destination="field1.text" />

<mx:Binding source="The dog ate my {dog.whatDogAte()}"
destination="field1.text" />

The source property in the following example is not valid because it is not an ActionScript
expression:
<mx:Binding source="The dog ate my homework" destination="field1.text" />

About the binding mechanism

Binding expressions must be on fields of typed objects. At compile time, ActionScript Watcher
and Binding objects are declared. At runtime, Watcher objects trigger Binding objects to execute
bindings. Binding works best with typed variables. For an untyped variable, such as var foo;,
the binding mechanism cannot detect change events on properties, and it raises a warning. When
a field is typed as Object, such as var foo:Object;, the binding mechanism makes assumptions;
for example, it assumes that any property on foo is not a getter/setter property. If the property is
a getter/setter, unexpected results can occur.

To ensure the best possible binding results, you should always strongly type your variables. When
you use one of the standard Flex classes, such as any of the List or DataProvider classes, you
should know that the selectedItem property is typed as Object. If your selectedItem is a real
custom class, not a model or data service result, you should cast it, as the binding expression in
the following example shows:
{MyClass(myList.selectedItem).someProp}

Working with bindable property chains

When you specify a property as the source of a data binding, Flex monitors not only that property
for changes, but also the chain of properties leading up to it. The entire chain of properties,
including the destination property, is called a bindable property chain. In the following example,
firstName.text is a bindable property chain that includes both firstName component and its
text property:
<first>{firstName.text}</first>
Binding data 605

You should raise an event when any named property in a bindable property chain changes. If the
property is a normal object property, the Flex compiler generates the event for you. If the property
uses a getter/setter pair, you must specify [ChangeEvent] metadata that indicates what event is
raised when the property changes. Otherwise, the compiler issues a warning and does not trigger
a binding for that property. The following example shows how to specify [ChangeEvent]
metadata:
[ChangeEvent("textChanged")]
public function get text() : String

{
 return myText;
}

public function set text(t : String) : Void
{
 myText = t;

 dispatchEvent({type: "textChanged"});
}

You can also provide the compiler with better information about an object by casting the object to
a known type. In the following example, the myList List control contains Customer objects, so
the selectedItem property is cast to a Customer object:
<mx:Model id="selectedCustomer">

<name>{Customer(myList.selectedItem).name}</name>
<address>{Customer(myList.selectedItem).address}</address>
...

</mx:Model>

There are some situations in which binding does not execute automatically as expected. Binding
does not execute automatically when you change an entire item of a dataProvider property, as
the following example shows:
dataProvider[i] = newItem

Binding also does not execute automatically when you are binding data to a property that
Macromedia Flash Player updates automatically, such as the mouseX property.

The executeBindings() method of the UIObject and Repeater classes executes all the bindings
into a UIObject component or Repeater object. All containers and controls extend the UIObject
class. The executeChildBindings() method of the Container and Repeater classes executes all
of the bindings into all the child UIObject components of a Container or Repeater class. All
containers extend the Container class. These methods give you a way to execute bindings that do
not occur as expected. By adding one line of code, such as a call to executeChildBindings()
method, you can update the user interface after making a change that does not cause bindings to
execute. However, you should only use the executeBindings() method when you are sure that
bindings will not execute automatically.

Binding data to and from arrays

You can bind data to and from arrays. For example, you can have a data model that contains a
repeated element (an Array) and bind that element to another object that accepts Arrays. You can
also bind data from an Array into a single element of a data model.
606 Chapter 29: Binding and Storing Data in Flex

The following example shows the two-way nature of Array binding. A repeated data model
element, <third>, is bound to the dataProvider property of a List control; this displays the
content of that Array in the List control.

The content of the List control is then bound to an element called <array> in another data
model; this stores the Array in that single data model element. The <array> element is then
bound to the dataProvider property of a second List control. This displays the echoed Array in
the second List control.
<?xml version="1.0"?>

<mx:Application width='700' height='600'
xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Model id="mod">
<first>Label 1</first>
<second>Label 2</second>
<third>Label 3.1</third>
<third>Label 3.2</third>
<third>{t1.text}</third>

</mx:Model>

<mx:Model id="mod2">
<array>{list1.dataProvider}</array>

</mx:Model>

<mx:TextInput id="t1" text="Label 3.3"/>
<mx:List id="list1">

<mx:dataProvider>{mod.third}</mx:dataProvider>
</mx:List>

<mx:List id="list2">
<mx:dataProvider>{mod2.array}</mx:dataProvider>
</mx:List>

</mx:Application>

You can also store an Array in an ActionScript variable, and then bind that variable into a data
model element, as the following example shows:
<?xml version="1.0"?>
<mx:Application width='700' height='600'
xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:Script>
<![CDATA[

var someArray = ["hi", "there"];
]]>

</mx:Script>
<mx:Model id="mod">

<array>{someArray}</array>
</mx:Model>

</mx:Application>
Binding data 607

Note: Array elements do not trigger ChangeEvents and, therefore, cannot function as binding
sources at runtime. Binding copies initial values during instantiation after variables are declared in an
<mx:Script> tag, but before handlers are executed. Arrays that are bound do not stay updated if
individual fields of a source Array change.

Using binding to pass data between objects

Many applications require a messaging strategy for moving related data between objects. You can
use binding with messaging objects, whose sole purpose is to move related data around an
application.

For example, suppose you are building a library card catalog system, and you want to let users
search a library database. The first thing you do is provide the users with a search form. At the
same time, you create a simple Query object in an ActionScript class. The Query object has fields
for author, title, and subject. Because the Query object only holds typed data, it does not need a
lot of additional functionality.

The user is only going to create one query at a time, so you declare the Query object as a custom
ActionScript component inside an MXML component. You then bind the search form elements
into the properties of the Query object, as the following example shows:
<?xml version="1.0"?>
<!-- QueryForm.mxml -->

<mx:VBox xmlns:mx="http://www.macromedia.com/2003/mxml" xmlns:library="*">
<library:Query id="myQuery">

<library:author>{authorInput.text}</library:author>
<library:title>{titleInput.text}</library:title>
<library:subject>{subjectInput.text}</library:subject>

</library:Query>

<mx:Form>
<mx:FormItem label="Author">

<mx:TextInput id="authorInput" />
</mx:FormItem>

 ...
</mx:Form>

<mx:Button label="Submit Query"
click="queryBizDelegate.sendQuery(myQuery)" />

</mx:VBox>

You could also include validators and any other user interface logic that you require in this form.
The main idea is that instead of having to know the parameters of the sendQuery() method, you
can pass a Query object, which can be filled in using binding, to the form.

Going in the other direction, suppose the library query service returns a result that contains a
collection of books. Some separate logic can navigate to the results page, and that page might have
a DataGrid control to display all of the books that are returned. The service can simply drop off
the books at a known location. It does not need to know that there is a view that cares about the
result. The following example shows the service result handler:
function queryResult(event) : Void
{

608 Chapter 29: Binding and Storing Data in Flex

 queryBizDelegate.acceptResult(event.result);
}

The queryBizDelegate.acceptResult() method stores the result in a well-known location,
such as a queryResults property. You can bind the queryResults property to a DataGrid
control’s dataProvider property so that the view automatically updates whenever new results
arrive, as the following example shows:
<mx:DataGrid dataProvider="{queryBizDelegate.queryResults}" />

Considerations

Consider the following when using the binding feature:

• When bindings contain errors, the Flex compiler emits identical warnings about unknown
properties multiple times. This happens because the compiler places the binding code in two
functions, so errors show up in two contexts. One of those contexts is removed later during the
compilation process.

• Because the SharedObject object is built into Flash Player, its behavior cannot be modified by
the binding mechanism. To use binding with a SharedObject, you must write a wrapper object
that uses a SharedObject object internally, but has getter/setter properties that the rest of your
application can use. If you do not use a wrapper object, a SharedObject appears to lose data,
specifically data that might have been used in a binding expression.

• Validators and effects are not accessible by an id property, and binding is not allowed on them.
• You must use casting when binding to an object in which a variable is typed as Object if the

object has a getter/setter property. This affects Repeater objects and other objects with a
dataProvider property. For more information about casting, see “Working with bindable
property chains” on page 605.

• The selectedItem property of the List class and the currentItem property of Repeater class
are typed explicitly as Object. Binding works correctly when the property is a simple object
with name-value pairs. However, binding fails if the property is a typed object in which a
bound property is a getter/setter property. Because the variable is explicitly typed to Object, no
warnings are raised. When binding to the selectedItem or currentItem property, and the
property you are binding to is implemented as a getter/setter, cast to the appropriate class, as
the following example shows:
{MyGetterClass(theList.selectedItem).myGetterProp}

• When you use a binding expression with a string concatenation, binding does not execute
when the string concatenation contains the word undefined. If you want the word undefined to
appear in the text, you must use something like "{'undefined is some text' + myValue}"
instead of "undefined is some text {myValue}".

• If a component uses binding expressions, the bindings execute before the component’s event
executes, and destinations are updated before their component’s event is executed. However,
you could bind a component to an object that you haven’t created yet. If you must rely on all
bindings having run before your code fragment executes, you can use the root tag’s event.
Binding data 609

• The Flex compiler cannot detect dynamic properties created using the
Object.addProperty() method. Using these properties with bindings may cause incorrect
behavior. Consider whether you can use getter/setter functionality along with [ChangeEvent]
metadata instead. For more information, see “Working with bindable property chains”
on page 605.

• You cannot bind to styles.

Debugging data binding

In some situations, data binding might not appear to function correctly. The following list
contains suggestions for resolving data binding issues:

• Pay attention to warnings.
It is easy to see a warning and think that it doesn’t matter, especially if binding appears to work
at startup, but warnings are important.
If a warning is about a missing [ChangeEvent] on a getter/setter property, even if the binding
works at startup, subsequent changes to the property are not noticed.
If a warning is about a static variable or a built-in property, changes aren’t noticed.
Finally, if you are sure that the property should be bindable but the compiler is complaining
about an unknown type, you might need to cast an object in your binding expression so that
the compiler can find the appropriate type information, including [ChangeEvent] metadata.
For more information about casting, see “Working with bindable property chains”
on page 605.

• Make sure that the source of the binding actually changed.
When your source is part of a larger procedure, it is easy to miss the fact that you never
assigned the source.

• Make sure that the ChangeEvent event is being dispatched.
You can use the Flex debugger, fdb, or another debugger to make sure that the
dispatchEvent() method is called. Also, you can add a normal event listener to that class to
make sure it gets called. If you want to add the event listener as a tag attribute, you must place
the [Event('myEvent')] metadata at the top of your class definition or in an <mx:Metadata>
tag in your MXML.

• Create a setter function and use a <mx:Binding> tag to assign into it.
You can then put a trace or an alert or some other debugging code in the setter with the value
that is being assigned. This technique ensures that the binding itself is working. If the setter is
called with the right information, you now know that it’s your destination that is failing and
you can start debugging in there.

Using data models

A Flex data model is an ActionScript object that contains properties that you use to store
application-specific data. You can use a data model for data validation, and it can contain client-
side business logic. You can define a data model in MXML or ActionScript. In the model-view-
controller (MVC) design pattern, the data model represents the model tier.
610 Chapter 29: Binding and Storing Data in Flex

When you plan an application, you determine the kinds of data that the application must store
and how that data must be manipulated. This helps you decide what types of data models you
need. For example, suppose you decide that your application must store data about employees. A
simple employee model might contain name, department, and e-mail address properties.

Defining a data model

You can define a data model in an MXML tag, ActionScript function, or an ActionScript class. In
general, you should use MXML-based models for simple data structures and use ActionScript for
more complex structures and client-side business logic.

Note: The <mx:Model> and <mx:XML> tags are Flex compiler tags and do not correspond directly to
ActionScript classes. The Flex ActionScript and MXML API Reference documentation, included in the
documentation.zip file, contains information about these tags and other compiler tags; click MXML
Tags at the top of the main Flex ActionScript and MXML API Reference page.

You can place an <mx:Model> tag or an <mx:XML> tag in a Flex application file or in an MXML
component file. The tag should have an id value, and it cannot be the root tag of an MXML
component.

Model tag

The most common type of MXML-based model is the <mx:Model> tag, which is compiled into
an object that contains a tree of ActionScript objects. The leaves of the tree are scalar values. The
following example shows an employee model declared in an <mx:Model> tag:
<mx:Model id="employee">

<name>
<first />
<last />

</name>
<department />
<email />

</mx:Model>

An <mx:Model> child tag with no value is considered null. If you want an empty string instead,
you can use a binding expression as the value of the tag, as the following example shows:
<mx:Model id="employee">
 <name>

<!--Fill the first property with empty string.-->
<first>{""}</first>
<!--Fill the last property with empty string.-->
<last>{""}</last>

</name>
 <!--department is null-->

<department />
 <!--email is null-->

<email />
</mx:Model>
Using data models 611

If you supply one instance of a child tag in an <mx:Model> tag, there is no way for Flex to know if
you intend it to be an array or a single property instance. You can work around this limitation by
using an <mx:Object> tag instead of an <mx:Model> tag and declaring an <mx:Array> tag inside
the <mx:Object> tag, as the following example shows. The <mx:Object> tag and <mx:Array>
tag declare standard ActionScript Object and Array objects, respectively. You could also use an
ActionScript class to work around the same limitation of the <mx:Model> tag.
<mx:Object id="model1">
 <employees>
 <mx:Array>
 <mx:Object>
 <name>
 <mx:Object>
 <first>
 <mx:String></mx:String>
 </first>
 <last>
 <mx:String></mx:String>
 </last>
 </mx:Object>
 </name>
 <department>
 <mx:String></mx:String>
 </department>
 <email>
 <mx:String></mx:String>
 </email>
 </mx:Object>
 </mx:Array>
 </employees>
</mx:Object>

XML tag

An <mx:XML> tag represents literal XML data in an ActionScript XMLNode object. It is currently
easier to declare a model in an <mx:Model> tag and manipulate it as a tree of ActionScript objects
instead of an XMLNode object. For more information about the XMLNode class, see the
actionscriptdictionary.pdf file in the documentation.zip file.

Script-based models

As an alternative to using an MXML-based model, you can define a model as a variable in an
<mx:Script> tag. The following example shows a very simple model defined in an ActionScript
script block. It would be easier to declare this model in an <mx:Model> tag.
<mx:Script>

var myEmployee={
name:{

first:undefined,
last:undefined
},

department:undefined,
emai:undefined
612 Chapter 29: Binding and Storing Data in Flex

};
</mx:Script>

Class-based models

Using an ActionScript class as a model is a good option when you want to store complex data
structures or you want to execute client-side logic using application data. The following example
shows a model defined in an ActionScript class. This model is used to store shopping cart items in
an e-commerce application. It also provides methods for adding and removing items, getting an
item count, and getting the total price. For more information on ActionScript components, see
Chapter 17, “Creating ActionScript Components,” on page 437.

Note: This example is from the Flex Store application included in the samples.war file. You can
extract the samples.war file to your application server.

class ShoppingCart {

 var items : Array;
 var total : Number = 0;

 function ShoppingCart() {
 items=new Array();
 }

 function addItem(item : Object, qty : Number, index: Number) : Void {
 qty=qty==null?1:qty;
 index=index==null?0:index;
 items.addItemAt(index, {id: item.id, name: item.name,

description: item.description, image: item.image, price: item.price,
qty: qty==null?1:qty});

 total+=parseFloat(item.price)*qty;
 }

 function removeItemAt(index) {
 total-=parseFloat(items[index].price)*items[index].qty;
 items.removeItemAt(index);
 }

 function getItemCount() : Number {
 return items.length;
 }

 function getTotal() : Number {
 return total;
 }

}

You declare a class-based model as an ActionScript component tag in an MXML file, as the
following example shows:
<local:ShoppingCart id="cart" xmlns:local="*"/>
Using data models 613

This component that is in the same directory as the MXML file, as indicated by the XML
namespace value *. For more information about specifying the location of components, see
Chapter 17, “Creating ActionScript Components,” on page 437.

Specifying an external source

You specify an external source for a data model in a source property. The external source can
contain static data and data binding expressions, just like a model defined in the body of the
<mx:Model> or <mx:XML> tag. The file referenced in a source property resides on the server and
not on the client machine. The compiler reads the source value and compiles the source into the
application; the source value is not read at runtime. To retrieve XML data at runtime, you can
use the <mx:HTTPService> tag; for more information, see Chapter 32, “Using Data Services,” on
page 655.

Using <mx:Model> and <mx:XML> tags with external sources is an easy way to reuse data model
structures and data binding expressions. You can also use them to prepopulate user interface
controls with static data by binding data from the model elements into the user interface controls.

The source property accepts the names of files relative to the current web application directory,
as well as URLs with HTTP:// and file:// prefixes. In the following example, the content of the
myEmployee1 data model is an XML file named content.xml in the local web application
directory. The content of the myEmployee2 data model is a fictional HTTP URL that returns
XML:
<mx:Model source="employees.xml" id="employee1"/>

<mx:Model source="http://www.somesitel.com/employees.xml" id="employee2"/>

The source file must be a valid XML document with a single root node. Flex renders everything
inside the first node, so it is equivalent to the contents being in the tag without the first node. The
following example shows an XML file that could be used as the source of the <mx:Model
source="employees.xml" id="Model1"/> tag. The root node, <employees>, is ignored and its
contents are copied into the data model.

Note: This example is from the Flex Explorer application included in the samples.war file. You can
extract the samples.war file to your application server.

<?xml version="1.0"?>
<employees>

 <employee>
 <name>Christina Coenraets</name>
 <phone>555-219-2270</phone>
 <email>ccoenraets@fictitious.com</email>
 <active>true</active>
 </employee>
 <employee>
 <name>Louis Freligh</name>
 <phone>555-219-2100</phone>
 <email>lfreligh@fictitious.com</email>
 <active>true</active>
 </employee>
 <employee>
614 Chapter 29: Binding and Storing Data in Flex

 <name>Ronnie Hodgman</name>
 <phone>555-219-2030</phone>
 <email>rhodgman@fictitious.com</email>
 <active>false</active>
 </employee>
 <employee>
 <name>Joanne Wall</name>
 <phone>555-219-2012</phone>
 <email>jwall@fictitious.com</email>
 <active>true</active>
 </employee>
 <employee>
 <name>Maurice Smith</name>
 <phone>555-219-2012</phone>
 <email>maurice@fictitious.com</email>
 <active>false</active>
 </employee>
 <employee>
 <name>Mary Jones</name>
 <phone>555-219-2000</phone>
 <email>mjones@fictitious.com</email>
 <active>true</active>
 </employee>

</employees>

Using validators with a data model

To validate the data stored in a data model, you use validators. Binding data from user input
controls into a data model provides an easy way to validate the data. For more information about
validators, see Chapter 30, “Validating Data in Flex,” on page 619.

In the following example, the <mx:EmailValidator>, <mx:PhoneNumberValidator>,
<mx:ZipCodeValidator>, and <mx:SocialSecurityValidator> tags declare validators that
validate the email, phone, zip, and ssn fields of the registration data model. The validators generate
error messages when a user enters incorrect data in TextInput controls that are bound to the data
model fields.

Note: This example is from the Flex Explorer application included in the samples.war file. You can
extract the samples.war file to your application server.

<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<!-- Data model stores registration data that user enters. -->
<mx:Model id="registration">
 <name>{name.text}</name>
 <email>{email.text}</email>
 <phone>{phone.text}</phone>
 <zip>{zip.text}</zip>
 <ssn>{ssn.text}</ssn>
 </mx:Model>

 <mx:EmailValidator field="registration.email"/>
Using data models 615

 <mx:PhoneNumberValidator field="registration.phone"/>
 <mx:ZipCodeValidator field="registration.zip"/>
 <mx:SocialSecurityValidator field="registration.ssn"/>

<!-- Form contains user input controls. -->
<mx:Form>
 <mx:FormItem label="Name" required="true">
 <mx:TextInput id="name" width="200"/>
 </mx:FormItem>

 <mx:FormItem label="Email" required="true">
 <mx:TextInput id="email" width="200"/>
 </mx:FormItem>

 <mx:FormItem label="Phone" required="true">
 <mx:TextInput id="phone" width="200"/>
 </mx:FormItem>

 <mx:FormItem label="Zip" required="true">
 <mx:TextInput id="zip" width="60"/>
 </mx:FormItem>

 <mx:FormItem label="Social Security" required="true">
 <mx:TextInput id="ssn" width="200"/>
 </mx:FormItem>

 <mx:FormItem>
<!-- User clicks Button to place order. -->

<mx:Button label="Place Order"
click="mx.validators.Validator.
isStructureValid(this,'registration');" />

 </mx:FormItem>
 </mx:Form>
</mx:Application>

This example cleanly separates the user interface and application-specific data. You could easily
extend it to create a three-tier architecture by bind data from the registration data model into a
data service request. You could also bind user input data directly into a data service request, which
itself is a data model, as described in Chapter 32, “Using Data Services,” on page 655.

Using a data model as a value object

You can use a data model as a value object, which acts as a central repository for a set of data
returned from method calls on one or more objects. This makes it easier for you to manage data
and move it around an application.

Note: The following examples are from the Data Model application included in the samples.war file.
You can extract the samples.war file to your application server.

In the following example, the tentModel data model stores the results of a web service operation.
The TentDetail component is a custom MXML component that gets its data from the tentModel
data model and displays details for the currently selected tent.
...
616 Chapter 29: Binding and Storing Data in Flex

<!-- Data model stores data from selected tent. -->
<mx:Model id="tentModel">
 <name>{selectedTent.name}</name>
 <sku>{selectedTent.sku}</sku>
 <capacity>{selectedTent.capacity}</capacity>
 <season>{selectedTent.seasonStr}</season>
 <type>{selectedTent.typeStr}</type>
 <floorarea>{selectedTent.floorArea}</floorarea>
 <waterproof>{getWaterProof(selectedTent.waterProof)}</waterproof>
 <weight>{getWeight(selectedTent)}</weight>
 <price>{selectedTent.price}</price>
 </mx:Model>
...

<TentDetail id="detail" tent="{tentModel}"/>
...

The following example shows the MXML source code for the TentDetail component. References
to the tent property, which contains the tentModel data model, and the corresponding
tentModel properties are highlighted.
<?xml version="1.0" encoding="utf-8"?>
<mx:Panel xmlns:mx="http://www.macromedia.com/2003/mxml" title="Tent Details">

 <mx:Script>
 var tent:Object;
 </mx:Script>

 <mx:Style>
.title{fontFamily:Arial;fontWeight:bold;color:#3D3D3D;fontSize:16pt;}
.flabelColor

{fontFamily:Arial;fontWeight:bold;color:#3D3D3D;fontSize:11pt}
.productSpec{fontFamily:Arial;color:#5B5B5B;fontSize:10pt}

 </mx:Style>

<mx:VBox marginLeft="10" marginTop="10" marginRight="10">

<mx:Form verticalGap="0" marginLeft="10" marginTop="10"
marginRight="10" marginBottom="0">

<mx:VBox width="209" height="213">
<mx:Image width="207" height="211"

source="./images/{tent.sku}_detail.jpg"/>
</mx:VBox>

<mx:FormHeading label="{tent.name}" verticalGap="1"
styleName="title"/>

<mx:HRule width="209"/>

<mx:FormItem label="Capacity" styleName="flabelColor">
 <mx:Label text="{tent.capacity} person"

styleName="productSpec"/>
 </mx:FormItem>
 <mx:FormItem label="Season"

styleName="flabelColor">
Using data models 617

 <mx:Label text="{tent.season}"
styleName="productSpec"/>

 </mx:FormItem>
 <mx:FormItem label="Type" styleName="flabelColor">
 <mx:Label text="{tent.type}"

styleName="productSpec"/>
 </mx:FormItem>
 <mx:FormItem label="Floor Area" styleName="flabelColor">
 <mx:Label text="{tent.floorarea}

square feet" styleName="productSpec"/>
 </mx:FormItem>
 <mx:FormItem label="Weather" styleName="flabelColor">
 <mx:Label text="{tent.waterproof}"

styleName="productSpec"/>
 </mx:FormItem>
 <mx:FormItem label="Weight" styleName="flabelColor">
 <mx:Label text="{tent.weight}"

styleName="productSpec"/>
 </mx:FormItem>
 </mx:Form>

</mx:VBox>
</mx:Panel>

Binding data into an XML document

Flex compiles the <mx:XML> tag into literal XML data in an ActionScript XMLNode object. This
is different from the <mx:Model> tag, which Flex compiles into an Action object that contains a
tree of ActionScript objects. To bind data into an <mx:XML> data model, you can use the curly
braces syntax the same way you do with other data models. However, you cannot use a node
within the data model as a binding source. Macromedia does not recommend using the
<mx:Binding> tag for this type of binding because that requires you to write an appropriate
ActionScript XML command as the destination property of the <mx:Binding> tag. For more
information about the <mx:XML> tag, see “Defining a data model” on page 611.

The following example shows an <mx:XML> data model with binding destinations in curly braces:
...
<mx:XML id="myEmployee">

<name>
<first>{firstName.text}</first>
<last>{lastName.text}</last>

</name>
<department>{department.text}</department>
<email>{email.text}</email>

</mx:XML>
...

Note: You cannot bind one piece of XML into another.
618 Chapter 29: Binding and Storing Data in Flex

CHAPTER 30
Validating Data in Flex
This chapter describes the Macromedia Flex data validation feature. Data validators let you
validate the fields of an object. For more information about data models, see Chapter 29,
“Binding and Storing Data in Flex,” on page 601.

Contents

Validating data . 619

Using standard validators . 628

Validating data

The data that a user enters in a user interface might or might not be appropriate to the
application. In Flex, you use a validator to ensure the values in the fields of an object meet certain
criteria. For example, you can use a validator to ensure that a user enters a valid phone number
value in a TextInput control. You can assign each field of an object to a single validator. The
mx.validators.Validator class is an ActionScript class that you can extend to add your own
validation logic.

You can call validation logic through ActionScript or by using an MXML tag. Flex includes a set
of mx.validators.Validator subclasses for common types of user input data, such as ZIP codes,
phone numbers, and credit cards. Validator subclass tags have one required property, the field to
validate. The <mx:Validator> tag and Validator subclass tags must always be immediate children
of the root tag of an MXML file.

You declare a validator in MXML using the <mx:Validator> tag or the tag for the appropriate
Validator subclass. For example, to declare the standard PhoneNumberValidator validator, you
use the <mx:PhoneNumberValidator> tag. To validate data that is bound to a data model, you
should declare the appropriate validator in the same file as the bindings you make to the data
model. If the validator and bindings aren’t in the same file, the validator is not triggered when
data is copied into the model; however, you could trigger validation in an ActionScript function.
You do not have to declare the validator in the same file as the data model. For more information,
see “Triggering validation programmatically” on page 620.
619

The following example shows an <mx:PhoneNumberValidator> tag that validates data entered in
the phone field of a data model called person. The validation occurs when an event triggers a
binding of data into the data model, or when you trigger validation in ActionScript.
<mx:PhoneNumberValidator field="person.phone" />

Validating multiple fields with one validator

The <mx:PhoneNumberValidator> tag validates a single data model field, but a validator can
validate more than one field.

For example, you could create a custom validator called NameValidator to validate three data
model fields that represent a person’s first, middle, and last names. In dot notation, these fields
would be represented as person.name.first, person.name.middle, and person.name.last.

To declare a validator called NameValidator, you use the following tag in MXML; because you are
interested in all three children of the name field, you specify the parent field, person.name, in the
field property:
<NameValidator field="person.name" />

The corresponding NameValidator class might look like the following class:
class NameValidator extends mx.validators.Validator
{
public function doValidation(value) : Void
 {
 if (value.first == "")
 {
 validationError("noFirstName", "No First Name", "first"); }
 if (value.middle == "")
 {
 validationError("noMiddleName", "No Middle Name", "middle");
 }
 if (value.last == "")
 {
 validationError("noLastName", "No Last Name", "last");
 }
 }

The three parameters of the validationError() method are errorCode, defaultString, and
subField. For a custom validator on a single field, you do not need the third parameter,
subField. If you do not set the subField parameter, the default value is null.

For more information about using custom ActionScript components, see Chapter 17, “Creating
ActionScript Components,” on page 437.

Triggering validation programmatically

Validation is triggered automatically when a data binding executes, as the following example
shows:
...
<mx:Model id="date">
 <month>{monthInput.text}</month>
 <day>{dayInput.text}</day>
620 Chapter 30: Validating Data in Flex

 <year>{yearInput.text}</year>
</mx:Model>

<mx:TextInput id="monthInput"/>
<mx:TextInput id="dayInput"/>
<mx:TextInput id="yearInput"/>

<mx:DateValidator field="date"/>
...

Automatic validation only works when binding and validators are defined at the same level in the
application. They must be defined in the same file.

You can also trigger validation programmatically in ActionScript. This is particularly useful when
you want to validate something that cannot be set directly using binding. To trigger validation in
ActionScript, you call the following static method of the Validator class either in your own
function or as part of an event handler property:
mx.validators.Validator.isValid(objectContainingField, "field")

The objectContainingField parameter is usually the MXML document, which is represented
as the this keyword. The "field" parameter is a String that represents the ID of the field to
validate; this is often a nested property that requires dot notation. To determine the appropriate
validator, Flex matches the field value in the isValid() method to the field value of a
validator. For example, you use the code to execute the PhoneNumberValidator for the
person.phone field:
mx.validators.Validator.isValid(this, "person.phone");

The mx.validators.Validator class also contains another static method called
isStructureValid() that calls all validators assigned to the fields of an object. This is
particularly useful for validating a form that has fields bound to a data model. For more
information about the isStructureValid() method, see “Validating a form” on page 623.

Working with validation events and error messages

When validation fails, a validator raises a validationFailed event intended for objects that are
registered to be notified that a field is invalid. A validator raises a validationSucceeded event
when a field is valid. UIComponent subclasses, which include the majority of Flex components,
generally handle events by changing border color, displaying an error message, or hiding an error
message.

Validators generate error messages as part of the validationFailed event. For example, a
PhoneNumberValidator might contain an error message that indicates a number has the wrong
number of digits. You can override an error message by assigning a new one as a property of the
validator tag; for example:
<mx:PhoneNumberValidator field="person.phone" wrongNumError="Phone numbers

have 7 or 10 digits" />

You can use the same technique to set any configuration parameters that a validator requires.
Validating data 621

All validator tags support a listener property that points to an object that can handle
validationFailed and validationSucceeded events. All UIComponents can handle these
events. The listener property is optional. If you do not specify a listener, the compiler attempts
to determine if the component that is the source of a data binding is an appropriate listener. If the
compiler does not find an appropriate listener, errors occur in the Application object at the top
level of the application. In the following validator tag, a Form container called personForm is
assigned as the event listener:
<NameValidator field="person.name" listener="personForm" />

The listener is invoked after a validator has finished gathering all its errors. The
validationSucceeded event has a field property, and the validationFailed event has field and
errors properties. The errors property is an Array of error messages. The message property of
the validationFailed event consolidates all errors property messages into one string.

Validating data in a custom validation function

You can place validation logic in a function in an <mx:Script> tag instead of in a validator class
when you validate data in a limited scope, or you make one function call to invoke validation
logic on a set of validator classes. You assign the validation logic contained in the function by
placing a code snippet in the <mx:Validator> tag’s validate property.

The <mx:Validator> tag in the following example calls the myValidateName() function
contained in the <mx:Script> tag. This is a simple validation that validates a person’s first,
middle, and last names. The event is passed to the code snippet where validator is the
Validator instance and value is the value to validate, which in this example is person.name. The
validator’s validationError() method takes three arguments that specify the error name, the
error message, and the subfield of the value to which the error message applies.
...
<mx:Validator field="person.name"

validate="myValidateName(event.validator, event.value)" />
<mx:Script>

<![CDATA[

function myValidateName(validator, value)
{

if (value.first == "")
{
validator.validationError("noFirstName", "First name is required",

"first");
 }

if (value.middle == "")
{
validator.validationError("noMiddleName", "Middle name is

required", "middle");
}

if (value.last == "")
{
validator.validationError("noLastName", "Last name is required",

"last");
}

}

622 Chapter 30: Validating Data in Flex

]]>
</mx:Script>
...

Validating a form

Flex provides two very useful ways to validate the multiple fields of data that make up a form.
One way to validate multiple fields is by using the static validation methods of the standard
validators; these methods let you reuse and extend the validators in another validator class or
validator function. Another way to validate multiple fields is by using the validator’s
isStructureValid() method. This static method lets you validate all or part of a object with
one method call when there are validators assigned to the object’s fields.

Calling standard validators from another validator

You can use a custom validator function as a single validator that calls standard validators. The
customValidate() function in the following example calls the ZipCodeValidator and the
PhoneNumberValidator to validate the zipCode and phoneNumber fields of the formmodel
data model.
<!-- Here is the data model. -->
<mx:Model id="formmodel">
 <zipCode>{zip.text}</zipCode>
 <phoneNumber>{phone.text}</phoneNumber>
</mx:Model>

<!-- Here is the validator tag. -->
<mx:Validator field="formmodel" validate="customValidate(event.validator,

event.value);" listener="this" />

<!-- Here is the validation function that uses both the ZipCodeValidator and
PhoneNumberValidator to validate the form. -->

<mx:Script>
< ![CDATA[

function customValidate(validator, value) : Void
 {

mx.validators.ZipCodeValidator.validateZipCode(validator,
value.zipCode, null, "zipCode");

mx.validators.PhoneNumberValidator.validatePhoneNumber(validator,
value.phoneNumber, null, "phoneNumber");

// If either of the fields validated above is invalid, don’t move on
// to the next field.
if (validator.hasErrors()) return;

 // Now check if the phone number and ZIP code work together.
// Use areaCodeMap, which was declared elsewhere.

 if
(!areaCodeMap.get(parseAreaCode(value.phoneNumber)).
contains(value.zipCode))
{

 // This is a form-level error, so there is no subfield.
validator.validationError("areaZipMismatch", "The zip code cannot
Validating data 623

have this phone number", null);
 }
 }

]]>
</mx:Script>

In the previous example, you trigger validation programmatically, as described in “Triggering
validation programmatically” on page 620. In the following example, validation is triggered in the
click property of a Button control:
<mx:Button click="mx.validators.Validator.isValid(this, 'formmodel');

MyStockService.GetQuotes.send();"/>

The customValidate() function in the previous example calls two static convenience methods,
the validateZipCode() and validatePhoneNumber() methods of the standard
ZipCodeValidator and PhoneNumberValidator validators. These static methods validate the
zipCode and phoneNumber fields of the formmodel data model. These methods, and
corresponding methods on the other standard validators, take the following four arguments:

• Argument one, validator, is the Validator instance.
• Argument two is value.subfield, where subfield is a subfield of the value specified in the field

property of the <mx:Validator> tag.
• Argument three is an object containing parameter information, such as error messages or

minimum to maximum values. This argument is optional, but if you specify argument four,
you should pass null.

• Argument four is a text representation of the subfield specified in argument two. For example,
if argument two is value.zipCode, argument four is "zipCode". If argument two is
value.creditCard.cardType, argument three is "creditCard.cardType". This is to assist in
error message creation.

The three parameters of the validationError() method are errorCode, defaultString, and
subField. For a custom validator on a single field, you do not need the third parameter,
subField. If you do not set the subField parameter, the default value is null.

When you call multiple validators at the same time, as in the customValidate() function, the
errors accumulate. When a validation error is detected, you can call the validator.hasErrors()
method and return the errors to stop processing. The customValidate() function calls
validator.hasErrors() after validating the zipCode and phoneNumber fields.

The customValidate() function also contains a custom validation error specified in a call to the
validator.validationError() method. The first and second arguments of the method specify
the error code and error message, respectively. The third argument indicates the subfield relative
to the object being validated that caused the error. When the validator is executing, it knows its
own assigned field and all validation errors are based on that string. If there is a listener on the
validator for the field, the error goes to that listener. If you pass null as the third argument of the
validationError() method, as in the customValidate() function, the function uses the
validator’s field. The listener for the formmodel data model is set to this, which is the application
object. If you specify a subfield in the third argument, the function uses the validator’s field plus
whatever you pass in.
624 Chapter 30: Validating Data in Flex

In the static validation methods, you pass in the validator that knows its own base. Then you
pass in a baseField, which is appended to that base before the static validator method adds its
own subfield.

For more information about the standard validators included with Flex, see “Using standard
validators” on page 628.

Using the isStructureValid method to validate an object

The Validator.isStructureValid() method is very useful for validating the fields of a form
that are bound to a particular object. You can use this method to call all validators assigned to the
fields of a specified object.

One way to use the isStructureValid() method is to declare an <mx:Validator> tag that
specifies the field to validate and uses the isStructureValid() method as the value of its
validate property. For example, the <mx:Validator> tag in the following code validates the foo
data model and runs the individual validators assigned to foo’s fields:
<mx:Model id="foo">
 <bar>{inp1.text}</bar>
 <baz>{inp2.text}</baz>
</mx:Model>

<mx:ZipCodeValidator field="foo.bar" />
<mx:PhoneNumberValidator field="foo.baz" />
<mx:Validator field="foo" validate="Validator.isStructureValid(this, 'foo');"

/>
<mx:Button id="myButton" click="mx.validators.Validator.isStructureValid(this,

'foo');"/>

For this example, the ZipCodeValidator and PhoneNumberValidator validators could be called in
any of the following ways:

• Whenever the bindings in the <bar> and <baz> elements execute, the validators execute.
• When myButton is clicked and the isStructureValid() method is called on the foo data

model, the validators execute.
• If the isValid() method is called on the foo data model, it calls the isStructureValid()

method, and the validators execute.

The isStructureValid() method is also called automatically before sending requests to web
services and Java objects. Any validators assigned to parameters of web service requests or
arguments of Java object methods are automatically called.

In the following example, the ZipCodeValidator validator assigned to a web service request
parameter and a Java object (RemoteObject) method argument are called before the requests
are sent:
<!-- Web service object handles web service requests and results

(the specified WSDL URl is not functional). -->
<mx:WebService id="WeatherService" wsdl="/ws/WeatherService?wsdl">

<mx:operation name="GetWeather"
<mx:request>

<ZipCode>{myZipField.text}</ZipCode>
Validating data 625

</mx:request>
</mx:operation>

</mx:WebService>

<mx:ZipCodeValidator field="WeatherService.GetWeather.request.ZipCode"/>

<mx:RemoteObject id="Weather"
src="weatherpackage.Weather">

<mx:method name="getWeather">
<mx:arguments>

<zipCode>{inp.text}</zipCode>
</mx:arguments>

</mx:method>
</mx:RemoteObject>

<mx:ZipCodeValidator field="Weather.getWeather.arguments.zipCode" />

Another way to use the isStructureValid() method is from within a function that is called just
before a web service request or Java object request is sent. The code in the following example calls
the isStructureValid() method in the validateWebService() function. If errors are detected
on any of the fields in the myModel data model, the request is not submitted to the web service,
and the validation error message “There are invalid inputs to the web service.” is generated.
<mx:WebService id="WeatherService" …>
 <mx:operation name="getTemp">
 <mx:request>
 <zipCode>{myModel.zipCode}</zipCode>
 </mx:request>
 </mx:operation>
</mx:WebService>

<mx:Model id="myModel">
 <zipCode>{zipInput.text}</zipCode>
</mx:Model>

<mx:ZipCodeValidator field="myModel.zipCode" />

<!-Link up the web service request validation to the model. -->
<mx:Validator field="WeatherService.getTemp.request"

validate="validateWebService(event.validator);" />

<mx:TextInput id="zipInput" />

<mx:Script>
<![CDATA[
function validateWebService(validator) {
 if (!mx.validators.Validator.isStructureValid(this, "myModel")) {

validator.validationError("modelInvalid", "There are invalid inputs to
the web service.", null);

 }
 }
]]>
</mx:Script>
626 Chapter 30: Validating Data in Flex

Validating complex objects

When you validate an object that contains multiple properties that are set independently, there is
no way to automatically determine when to trigger the validator because no field is directly bound
to the object. For example, the CreditCardValidator takes a complex object that contains two
properties, cardType and cardNumber, which are set independently.

One way to validate a complex object is by adding an event handler that triggers the validator
based on some type of user interaction. In the following example, the focusOut event handler on
the cardNumber TextArea control is a call to the Validator.isValid() method. The credit card
type and credit card number are both validated when focus leaves the cardNumber TextArea
control.
<mx:CreditCardValidator field="myModel.creditCard" />
<mx:Model id="myModel">

<creditCard>
<cardType>{cardTypeRadio.selectedData}</cardType>
<cardNumber>{cardNumber.text}</cardNumber>

</creditCard>
</mx:Model>
<mx:Form>

<mx:FormItem label="Credit Card">
<mx:RadioButtonGroup id="cardTypeRadio" />
<mx:RadioButton id="radioVisa" label="Visa" groupName="cardTypeRadio"/>
<mx:RadioButton id="radioMC" label="MasterCard"

groupName="cardTypeRadio"/>
<mx:TextInput id="cardNumber" widthFlex="1"

focusOut="mx.validators.Validator.isValid(this,
'myModel.creditCard');"/>

</mx:FormItem>
</mx:Form>

Disabling and enabling a validator

The Validator.disable(document, objName) method lets you disable a validator. The
Validator.enable(document, objName) method lets you enable a validator. These methods
are useful when you want to reset a field that is a source for binding, and you want to clear the
validator so it starts over. The following example uses both these methods to reset validation on a
the text property of a TextInput control:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" height="600">

 <mx:Model id="model">
 <zipCode>{input.text}</zipCode>
 </mx:Model>

 <mx:ZipCodeValidator field="model.zipCode" />

 <mx:TextInput id="input" />

<!-- Validation will execute, marking the field invalid. -->

<!-- Validation will clear. -->
Validating data 627

<mx:Button label="reset without" click="resetWithout()" />
 <mx:Button label="reset with" click="resetWith()" />

 <mx:script>
 import mx.validators.Validator;

 function resetWithout()
 {
 input.text = '';
 }

 function resetWith()
 {
 Validator.disable(this, "model.zipCode");
 resetWithout();
 Validator.enable(this, "model.zipCode");
 }
 </mx:script>
</mx:Application>

Using standard validators

Flex includes the mx.validators.Validator subclasses described in the following sections. You can
use these validators for common types of data, including credit card numbers, dates, e-mail
addresses, numbers, phone numbers, Social Security numbers, strings, and ZIP codes. This
section describes these validators.

CreditCardValidator

The CreditCardValidator class validates that a credit card number is the correct length for the
specified card type:

• Visa: 13 or 16 digits
• MasterCard: 16 digits
• Discover: 16 digits
• American Express: 15 digits
• DinersClub: 14 digits

The <mx:CreditCardValidator> tag has the following properties:

Property Description Req/Opt

field The field to be validated. Always starts at the application level. Required

listener The validation listener. Usually a UIComponent. Optional

allowedFormatChars The formatting characters allowed. The default value is " -". Optional

invalidCharError An error message. The default is “Invalid characters in your
credit card number. (Only enter numbers.)”

Optional

invalidFormatCharsError An error message. The default is “The allowedFormatChars
parameter is invalid. It cannot contain any digits.”

Optional
628 Chapter 30: Validating Data in Flex

You can indicate the type of credit card number to validate by assigning constants. The following
example assigns the available constants to the data properties of RadioButton controls:
• CreditCardValidator.kMasterCard
• CreditCardValidator.kVisa
• CreditCardValidator.kAmericanExpress
• CreditCardValidator.kDiscover
• CreditCardValidator.kDinersClub

The CreditCardValidator class contains a static method called validateCreditCard() that you
can use to validate a credit card within a validation function that validates a whole form. For more
information, see “Validating a form” on page 623.

Example

<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="600"

height="600">
 <mx:Model id="creditcard">
 <cardType>{cardTypeCombo.selectedItem.data}</cardType>
 <cardNumber>{cardNumberInput.text}</cardNumber>
 </mx:Model>

<mx:Script>
<![CDATA[

function initCredit()
{

cardTypeCombo.addItem("American
Express",mx.validators.CreditCardValidator.kAmericanExpress);

cardTypeCombo.addItem("DinersClub",
mx.validators.CreditCardValidator.kDinersClub);

cardTypeCombo.addItem("Discover",mx.validators.
CreditCardValidator.kDiscover);

cardTypeCombo.addItem("MasterCard",
mx.validators.CreditCardValidator.kMasterCard);

cardTypeCombo.addItem("Visa",mx.validators.
CreditCardValidator.kVisa);

}
]]>

invalidNumberError An error message. The default is “The credit card number is
invalid.”

Optional

noNumError An error message. The default is “No credit card number
specified.”

Optional

noTypeError An error message. The default is “No credit card type
specified or the type is not valid.”

Optional

wrongLengthError An error message. The default is “Your credit card number
contains the wrong number of digits.”

Optional

wrongTypeError An error message. The default is “Incorrect card type
specified.”

Optional

Property Description Req/Opt
Using standard validators 629

 </mx:Script>

 <mx:CreditCardValidator field="creditcard" listener="this"/>

<mx:Form id="creditCardForm">
<mx:FormItem label="Card Type">

<mx:ComboBox id="cardTypeCombo" initialize="initCredit()"/>
</mx:FormItem>
<mx:FormItem label="Credit Card Number">

<mx:TextInput id="cardNumberInput"/>
</mx:FormItem>
<mx:FormItem>

<mx:Button label="Check Credit"
click="mx.validators.Validator.isValid(this,'creditcard');"/>

</mx:FormItem>
</mx:Form>

</mx:Application>

DateValidator

The DateValidator subclass validates that a string or object is a proper date and matches a
specified format. Users can enter a single digit or two digits for month and day.

The <mx:DateValidator> tag has the following properties:

Property Description Req/Opt

allowedFormatChars The formatting characters allowed for separating the month,
day, and year values. The default value is “/\-. ”.

Optional

field The field to be validated. Always starts at the application level. Required

formatError An error message. The default is “Configuration error:
Incorrect formatting string.”

Optional

inputFormat The date format to validate the value against. The default is
“mm/dd/yyyy”; “mm” is the month, “dd” is the day, and “yyyy”
is the year. This string is case-sensitive.

Optional

invalidCharError An error message. The default is “Invalid characters in your
date.”

Optional

invalidFormatCharsError An error message. The default is “The allowedFormatChars
parameter is invalid. It cannot contain any digits.”

Optional

listener The validation listener. Usually a UIComponent. Optional

wrongDayError An error message. The default is “Please enter a valid day for
the month.”

Optional

wrongLengthError An error message. The default is “Please type the date in the
format ValidInputFormat.”

Optional

wrongMonthError An error message. The default is “Please enter a month
between 1 and 12.”

Optional
630 Chapter 30: Validating Data in Flex

The DateValidator class contains a static method called validateDate() that you can use to
validate a date within a validation function that validates a whole form. For more information, see
“Validating a form” on page 623.

Example

<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="600"

height="600">
 <mx:Model id="date">
 <month>{monthInput.text}</month>
 <day>{dayInput.text}</day>
 <year>{yearInput.text}</year>
 </mx:Model>

 <mx:DateValidator field="date" listener="this"/>

 <mx:Form width="140" >
 <mx:FormItem label="Month">
 <mx:TextInput id="monthInput"/>
 </mx:FormItem>
 <mx:FormItem label="Day">
 <mx:TextInput id="dayInput"/>
 </mx:FormItem>
 <mx:FormItem label="Year">
 <mx:TextInput id="yearInput"/>
 </mx:FormItem>

<mx:Button label="Check Date"
click="mx.validators.Validator.isValid(this,'date');"/>

 </mx:Form>

<!-- Alternate method -->

<mx:Model id="alternateDate">
<date>{dateInput.text}</date>

</mx:Model>

<mx:Form id="dateForm">
<mx:FormItem id="dateItem" label="Date of Birth (dd*mm*yyyy)">

<mx:TextInput id="dateInput"/>
</mx:FormItem>

</mx:Form>

<mx:DateValidator field="alternateDate.date" inputFormat="dd/mm/yyyy"

wrongYearError An error message. The default is “Please enter a year
between 0 and 9999.”

Optional

validateAsString A Boolean value whose default value is true. If you set the
value to true, it evaluates the value as a string, unless the
value has a month, day, or year property. In most cases, you do
not need to set this parameter.

Optional

Property Description Req/Opt
Using standard validators 631

allowedFormatChars="*#~"/>

</mx:Application>

EmailValidator

The EmailValidator class validates that a string has an at sign character (@) and a period character
(.) in the domain. You can use IP domain names if they are enclosed in square brackets; for
example, myname@[206.132.22.1]. You can use individual IP numbers from 0 to 255.

The <mx:EmailValidator> tag has the following properties:

The EmailValidator class contains a static method called validateEmail() that you can use to
validate an e-mail address within a validation function that validates a whole form. For more
information, see “Validating a form” on page 623.

Example

<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="600"

height="600">
<mx:Model id="contact">

 <homePhone>{homePhoneInput.text}</homePhone>
 <cellPhone>{cellPhoneInput.text}</cellPhone>
 <email>{emailInput.text}</email>

</mx:Model>

Property Description Req/Opt

field The field to be validated. Always starts at the application
level.

Required

listener The validation listener. Usually a UIComponent. Optional

invalidCharError An error message. The default is “Invalid characters in
your email address.”

Optional

invalidDomainError An error message. The default is “The domain in your
email address is incorrectly formatted.”

Optional

invalidIPDomainError An error message. The default is “The IP domain in your
email address is incorrectly formatted.”

Optional

invalidPeriodsInDomainError An error message. The default is “The domain in your
email address has continuous periods.”

Optional

missingAtSignError An error message. The default is “Missing an @
character in your email address.”

Optional

missingPeriodInDomainError An error message. The default is “The domain in your
email address is missing a period.”

Optional

missingUsernameError An error message. The default is “The username in your
email address is missing.”

Optional

tooManyAtSignsError An error message. The default is “Too many @
characters in your email address.”

Optional
632 Chapter 30: Validating Data in Flex

<mx:Form id="contactForm">
 <mx:FormItem id="homePhoneItem" label="Home Phone">
 <mx:TextInput id="homePhoneInput"/>
 </mx:FormItem>
 <mx:FormItem id="cellPhoneItem" label="Cell Phone">
 <mx:TextInput id="cellPhoneInput"/>
 </mx:FormItem>
 <mx:FormItem id="emailItem" label="Email">

<mx:TextInput id="emailInput"/>
</mx:FormItem>

</mx:Form>

<mx:PhoneNumberValidator field="contact.homePhone"
listener="homePhoneInput"/>
<mx:PhoneNumberValidator field="contact.cellPhone"
listener="cellPhoneInput"/>
<mx:EmailValidator field="contact.email" listener="emailInput"/>

</mx:Application>

NumberValidator

The NumberValidator class validates that a string is a valid number between the minimum and
maximum values, and can also check whether the value is an integer.

The <mx:NumberValidator> tag has the following properties:

The NumberValidator class contains a static method called validateNumber() that you can use
to validate a number within a validation function that validates a whole form. For more
information, see “Validating a form” on page 623.

Example

<?xml version="1.0"?>

Property Description Req/Opt

domain The type of number to be validated. Permitted values are real and
int. The default value is real.

Optional

exceedsMaxError An error message. The default is “This number exceeds the
maximum allowed value.”

Optional

field The field to be validated. Always starts at the application level. Required

integerError An error message. The default is “This number must be an
integer.”

Optional

listener The validation listener. Usually a UIComponent. Optional

lowerThanMinError An error message. The default is “This number is lower than the
minimum allowed value.”

Optional

minValue The minimum value for a valid number. Not used by default. Optional

maxValue The maximum value for a valid number. Not used by default. Optional

notANumberError An error message. The default is “The value is not a number.” Optional
Using standard validators 633

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="600"
height="600">
<mx:Model id="product">

<quantity>{quantityInput.text}</quantity>
</mx:Model>

<mx:Form id="productForm">
<mx:FormItem id="quantityItem" label="Number of Widgets (max 10 per

customer)">
<mx:TextInput id="quantityInput"/>

</mx:FormItem>
</mx:Form>

<mx:NumberValidator field="product.quantity" listener="quantityInput"
minValue="1" maxValue="10" domain="int"/>

</mx:Application>

PhoneNumberValidator

The PhoneNumberValidator class validates that a string is a valid phone number.

The <mx:PhoneNumberValidator> tag has the following properties:

The PhoneNumberValidator class contains a static method called validatePhoneNumber() that
you can use to validate a phone number within a validation function that validates a whole form.
For more information, see “Validating a form” on page 623.

Example

<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="600"

height="600">
<mx:Model id="contact">

<homePhone>{homePhoneInput.text}</homePhone>
<cellPhone>{cellPhoneInput.text}</cellPhone>
<email>{emailInput.text}</email>

</mx:Model>

<mx:Form id="contactForm">

Property Description Req/Opt

field The field to be validated. Always starts at the application
level.

Required

listener The validation listener. Usually a UIComponent. Optional

allowedFormatChars Formatting characters allowed. The default value is “()- .+”. Optional

invalidCharError An error message. The default is “Invalid characters in your
phone number.”

Optional

invalidFormatCharsError An error message. The default is “The allowedFormatChars
parameter is invalid. It cannot contain any digits.”

Optional

wrongLengthError An error message. The default is “Your telephone number
must be at least 10 digits long.”

Optional
634 Chapter 30: Validating Data in Flex

<mx:FormItem id="homePhoneItem" label="Home Phone">
<mx:TextInput id="homePhoneInput"/>

</mx:FormItem>
<mx:FormItem id="cellPhoneItem" label="Cell Phone">

<mx:TextInput id="cellPhoneInput"/>
</mx:FormItem>
<mx:FormItem id="emailItem" label="Email">

<mx:TextInput id="emailInput"/>
</mx:FormItem>

</mx:Form>

<mx:PhoneNumberValidator field="contact.homePhone"
listener="homePhoneInput"/>
<mx:PhoneNumberValidator field="contact.cellPhone"
listener="cellPhoneInput"/>
<mx:EmailValidator field="contact.email" listener="emailInput"/>

</mx:Application>

SocialSecurityValidator

The SocialSecurityValidator class validates that a string is a valid United States Social Security
number.

The <mx:SocialSecurityValidator> tag has the following properties:

The SocialSecurityValidator class contains a static method called validateSocialSecurity()
that you can use to validate a Social Security number within a validation function that validates a
whole form. For more information, see “Validating a form” on page 623.

Example

<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="600"

height="600">
<mx:Model id="identity">

<socialSecurity>{ssnField.text}</socialSecurity>
<driverslicense>{licenseInput.text}</driverslicense>

Property Description Req/Opt

field The field to be validated. Always starts at the application level. Required

listener The validation listener. Usually a UIComponent. Optional

allowedFormatChars The formatting characters allowed. The default value is “ -”. Optional

invalidCharError An error message. The default is “Invalid characters in your
Social Security number.”

Optional

invalidFormatCharsError An error message. The default is “The allowedFormatChars
parameter is invalid. It can not contain any digits.”

Optional

wrongFormatError An error message. The default is “Social Security number
must be 9 digits or in the form NNN-NN-NNNN.”

Optional

zeroStartError An error message. The default is “Invalid SSN: SSN's can't
start with 000.”

Optional
Using standard validators 635

</mx:Model>

<mx:Form id="identityForm">
<mx:FormItem id="ssnItem" label="Social Security Number">

<mx:TextInput id="ssnField"/>
</mx:FormItem>
<mx:FormItem id="licenseItem" label="Driver's License Number">

<mx:TextInput id="licenseInput"/> <!-- Not validated -->
</mx:FormItem>

</mx:Form>

<mx:SocialSecurityValidator field="identity.socialSecurity"
listener="ssnField"/>

</mx:Application>

StringValidator

The StringValidator class validates that a string length is within a specified range. The
<mx:StringValidator> tag has the following properties:

The StringValidator class contains a static method called validateString() that you can use to
validate a string within a validation function that validates a whole form. For more information,
see “Validating a form” on page 623.

Example

<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="600"

height="600">
<mx:Model id="membership">

<username>{userNameInput.text}</username>
<fullname>{fullNameInput.text}</fullname>

</mx:Model>

<mx:Form id="membershipForm">
<mx:FormItem id="fullNameItem" label="Full Name">
<!-- Not validated -->

<mx:TextInput id="fullNameInput"/>
</mx:FormItem>
<mx:FormItem id="userNameItem" label="Username">

Property Description Req/Opt

field The field to be validated. Always starts at the application level. Required

listener The validation listener. Usually a UIComponent. Optional

minLength The minimum length for a valid string. Not used by default. Optional

maxLength The maximum length for a valid string. Not used by default. Optional

tooLongError An error message. The default is “This string is longer than the
maximum allowed length.”

Optional

tooShortError An error message. The default is "This string is shorter than the
minimum allowed length."

Optional
636 Chapter 30: Validating Data in Flex

<mx:TextInput id="userNameInput"/>
</mx:FormItem>

</mx:Form>

<mx:StringValidator field="membership.username" listener="userNameInput"
minLength="6" maxLength="12"/>

</mx:Application>

ZipCodeValidator

The ZipCodeValidator class validates that a string has the correct length for a five-digit ZIP code
or a five-digit+four-digit United States ZIP code or Canadian postal code.

The <mx:ZipCodeValidator> tag has the following properties:

The ZipCodeValidator class contains a static method called validateZipCode() that you can
use to validate a ZIP code within a validation function that validates a whole form. For more
information, see “Validating a form” on page 623.

Example

<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="600"

height="600">
<mx:Model id="address">

<zipCode>{zipInput.text}</zipCode>
</mx:Model>

<mx:Form id="addressForm">

Property Description Req/Opt

field The field to be validated. Always starts at the application level. Required

listener The validation listener. Usually a UIComponent. Optional

allowedFormatChars The formatting characters allowed. The default value is “ -”. Optional

domain The type of ZIP codes to check. Permitted values are US Only
and US or Canada. The default value is US Only.

Optional

invalidCharError An error message. The default is “Invalid characters in your zip
code.”

Optional

invalidDomainError An error message. The default is “The domain parameter is
invalid. It must be either 'US Only' or 'US or Canada'.”

Optional

invalidFormatCharsError An error message. The default is “The allowedFormatChars
parameter is invalid. It cannot contain any digits or letters.”

Optional

wrongCAFormatError An error message. The default is “The Canadian zip code must
be formatted like 'A1B 2C3'.”

Optional

wrongLengthError An error message. The default is “Zip code must be 5 digits or
5+4 digits.”

Optional

wrongUSFormatError An error message. The default is “The zip+4 extension must be
formatted like '12345-6789'.”

Optional
Using standard validators 637

<mx:FormItem id="zipCodeItem" label="Zip Code">
<mx:TextInput id="zipInput"/>

</mx:FormItem>
</mx:Form>

<mx:ZipCodeValidator field="address.zipCode" domain="US or Canada"
listener="zipInput"/>

</mx:Application>
638 Chapter 30: Validating Data in Flex

CHAPTER 31
Formatting Data
This chapter describes how to use data formatters, user-configurable objects that format raw data
into a customized string. You often use formatters with data binding to create a meaningful
display of the raw data bound to a component. This can save you time by automating data
formatting tasks and by letting you easily change the formatting of fields within your
applications.

Contents

Using formatters . 639

Writing an error handler function . 640

Using the standard formatters . 640

Creating a custom formatter . 651

Using formatters

Macromedia Flex formatters are ActionScript components that you use to format data into
strings. Formatters perform a one-way conversion of raw data to a formatted string. They are
triggered just before data is displayed in a text field. Flex includes standard formatters that let you
format currency, dates, numbers, phone numbers, and ZIP codes.

All Flex formatters are subclasses of the mx.formatters.Formatter class. The Formatter class
declares a format() method that takes a value and returns a String.

For all formatters, when an error occurs, an empty string is returned and a description is saved to
an error property. The error property is inherited from the Formatter superclass.

The following procedure describes the general process for using a formatter:

1. Declare a formatter in your MXML code, specifying the appropriate formatting properties.

2. Call the formatter’s format() method within the curly braces ({ }) syntax for binding data, and
specify the value to be formatted as an argument to the format() method.

The following example declares a DateFormatter with an MM/DD/YYYY date format, and binds
the formatted version of a Date object returned by a web service to the text property of a
TextInput control:
639

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">
...

<!-- Declare a formatter and specify formatting properties. -->
<mx:DateFormatter id="StandardDateFormat" formatString="MM/DD/YYYY"/>

<!-- Trigger the formatter while populating a string with data. -->
<mx:TextInput text="Your order shipped on
{StandardDateFormat.format(ws.result.date)}"/>

</mx:Application>

Writing an error handler function

When you use a formatter, you can write an error handler function so that the user does not see
error messages by default. You also might want to use an error function for debugging, but not in
production because you should guarantee that valid values are passed to the formatter before an
application goes into production. The following example shows a simple error handler function:
// This function would be in an MXML file.
function formatWithError(value) : String
{
 var formatted = myFormatter.format(value);
 if (formatted == "")
 {
 if (myFormatter.error != undefined)
 {
 if (myFormatter.error == "Invalid value")
 {
 formatted = "The value used in the format function is not a valid

value."
 }
 else
 {
 formatted = "The formatString provided is not a valid formatString.";
 }
 }
 }
 return formatted;
}

Using the standard formatters

This section describes the standard formatters included with Flex:

• CurrencyFormatter
• DateFormatter
• NumberFormatter
• PhoneFormatter
• ZipCodeFormatter
640 Chapter 31: Formatting Data

Using the CurrencyFormatter

The CurrencyFormatter class provides the same features as the NumberFormatter, plus a currency
symbol. It has two additional properties, currencySymbol and alignSymbol. For more
information about the NumberFormatter class, see “Using the NumberFormatter” on page 646.

The CurrencyFormatter class provides basic formatting options for numeric data, including
decimal formatting, thousands separator formatting, and negative sign formatting. The format()
method accepts a Number or a number formatted as a String and formats the resulting string.

When a number formatted as a String is passed to the format() method, the function parses the
string from left to right and attempts to extract the first sequence of numbers it encounters.
Thousands separators and decimal separators are included along with their trailing numbers. The
parser searches for a comma (,) for the thousands separator unless a different character is set in the
thousandsSeparatorFrom property. The parser searches for a period (.) for the decimal separator
unless a different character is defined in the decimalSeparator property.

Note: When a number is provided to the format() method as a String, a negative sign is recognized if
it is a dash (-') immediately preceding the first number in the sequence. A dash, space, and then a first
number is not interpreted as a negative sign.

The following table describes the formatting options available as properties of the
<mx:CurrencyFormatter> tag; all of these properties are optional:

Property Type Default value Description

alignSymbol String left Aligns currency symbol to the left side or the
right side of the formatted number. Permitted
values are left and right.

currencySymbol String $ User-definable character to use as a currency
symbol for a formatted number. You can use
one or more characters to represent the
currency symbol; for example, £ or YEN. You
can also use empty spaces to add space
between the currency character and the
formatted number.
When the number is a negative value, the
currency symbol appears between the number
and the minus sign or parentheses.

decimalSeparatorFrom String . (period) The user-definable separator character used
when parsing a number string during input.

decimalSeparatorTo String . (period) The user-definable separator character to use
when outputting formatted decimal numbers.
The decimalSeparatorTo value is also set when
precision is adjusted.

precision Number 2 The number of decimal places to include in the
formatting. You can disable precision by
setting it to 0.

rounding String none Rounds a number. Permitted values are none,
up, down, and nearest.
Using the standard formatters 641

Example

The following example shows the CurrencyFormatter class in an MXML file:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<!-- Declare a CurrencyFormatter and define parameters. -->
<mx:CurrencyFormatter id="Price" precision="2"

rounding="none"
decimalSeparatorTo="."
thousandsSeparatorTo=","
useThousandsSeparator="true"
useNegativeSign="true"
currencySymbol="$"
alignSymbol="left" />

<mx:Script>
<![CDATA[

var todaysPrice=4025;
]]>

</mx:Script>

<!-- Trigger the formatter while populating a string with data. -->
<mx:TextInput text="Today's price is {Price.format(todaysPrice)}." />

</mx:Application>

At runtime, the following text is displayed:

Today’s price is $4,025.00.

thousandsSeparatorFrom String , (comma) The user-definable character to use as a
thousands separator while parsing a number
string.

thousandsSeparatorTo String , (comma) The user-definable character to use as a
thousands separator when formatting the
output string.

useNegativeSign Boolean true If true, uses a negative sign for negative
numbers. If false, renders a negative value in
parenthesis; for example, (400).

useThousandsSeparator Boolean true The useThousandsSeparator visually splits a
number into thousands increments using a
separator character. If true, the
NumberFormatter class uses a thousands
separator.

Property Type Default value Description
642 Chapter 31: Formatting Data

Error handling

If an error occurs, an empty string is returned and a description of the error is saved to the error
property. An error points to a problem with the value being submitted or the format string
containing the user settings, as described in the following table:

Using the DateFormatter

The DateFormatter class gives you a wide range of combinations for displaying date and time
information. The format() method accepts a Date object, which it renders to a string based on
a user-defined pattern. The format() method can also accept a string-formatted date, which it
attempts to parse into a valid Date object prior to formatting.

The DateFormatter class has a parseDateString() method that accepts a date formatted as a
string. The parseDateString() method examines sections of numbers and letters in the string
to build a Date object. The parser is capable of interpreting long or abbreviated (three-character)
month names, time, am and pm, and various representations of the date. If the
parseDateString() method is unable to parse the string into a Date object, it returns null.

The following examples show some of the ways strings can be parsed:
"12/31/98" or "12-31-98" or "1998-12-31" or "12/31/1998"
"Friday, December 26, 2003 8:35 am"
"Jan. 23, 1989 11:32:25"

The DataFormatter parses strings from left to right. Dates should appear first and must be
included. Time is optional. A time signature of 0:0:0 is the Date object’s default for dates that are
defined without a time. Days of the week and timezone offsets are not parsed.

Pattern strings

You provide the DateFormatter class with a string of pattern letters, which it parses to determine
the appropriate formatting. You must understand how to compose the string of pattern letters to
control the formatting options and the format of the string that is returned.

You compose a pattern string using specific uppercase letters; for example, YYYY/MM. The
DateFormatter pattern string can contain other text in addition to pattern letters, but it must end
with a pattern letter. Text following the last pattern letter is truncated. It is usually best to use a
format that starts and ends with a pattern letter. To form a valid pattern string, you need only one
pattern letter.

Error type When error occurs

Invalid value An invalid numeric value is passed to the format() method. The value
should be a valid number in the form of a Number or a String.

Invalid format Any of the parameters contain an unusable setting.
Using the standard formatters 643

Pattern letters are usually repeated. The number of repeated letters determines the presentation.
For numeric values, the number of pattern letters is the minimum number of digits; shorter
numbers are zero-padded to this amount. In cases where there is a corresponding mapping of a
text description, if the number of pattern letters is four or more, the full form is used; otherwise, a
short or abbreviated form is used if available. For example, if you specify MMMM for month, the
full month name is used instead of the abbreviated month name.

For time values, a single pattern letter is interpreted in one or two digits. Two pattern letters are
interpreted as two digits.

The following table describes each of the available pattern letters:

Pattern letter Description

Y Year. If the number of pattern letters is two, the year is truncated to two digits;
otherwise, it appears as four digits. The year can be zero-padded, as the third
example shows in the following set of examples:
Examples:
YY = 03
YYYY = 2003
YYYYY = 02003

M Month in year. The format depends on the following criteria:
• If the number of pattern letters is one, the format is interpreted as numeric in one or

two digits.
• If the number of pattern letters is two, the format is interpreted as numeric in two

digits.
• If the number of pattern letters is three, the format is interpreted as short text.
• If the number of pattern letters is four, the format is interpreted as full text.
Examples:
M = 7
MM= 07
MMM=Jul
MMMM= July

D Day in month.
Examples:
D=4
DD=04
DD=10
644 Chapter 31: Formatting Data

The following table shows sample pattern strings and the resulting presentation:

Example

The following example shows the DateFormatter class in an MXML file:

E Day in week. The format depends on the following criteria:
• If the number of pattern letters is one, the format is interpreted as numeric in one or

two digits.
• If the number of pattern letters is two, the format is interpreted as numeric in two

digits.
• If the number of pattern letters is three, the format is interpreted as short text.
• If the number of pattern letters is four, the format is interpreted as full text.
Examples:
E = 1
EE = 01
EEE = Mon
EEEE = Monday

A AM/PM indicator.

J Hour in day (0-23).

H Hour in day (1-24).

K Hour in am/pm (0-11).

L Hour in am/pm (1-12).

N Minute in hour.
Examples:
N = 3
NN = 03

S Second in minute.

Other text You can add other text into the pattern string to further format the string. You can
use punctuation, numbers, and all lowercase letters. You should avoid uppercase
letters because they may be interpreted as pattern letters.
Example:
EEEE, MMM. D, YYYY at H:NN A = Tuesday, Sept. 8, 2003 at 1:26 PM

Pattern Result

YYYY.MM.DD at HH:NN:SS 2003.07.04 at 12:08:56

EEE, MMM D, 'YY Wed, Jul 4, '03

H:NN A 12:08 PM

HH o'clock A 12 o'clock PM

K:NN A 0:08 PM

YYYYY.MMMM.DD. JJ:NN A 02003.July.04. 12:08 PM

EEE, D MMM YYYY HH:NN:SS Wed, 4 Jul 2003 12:08:56

Pattern letter Description
Using the standard formatters 645

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<!-- Declare a DateFormatter and define parameters. -->
<mx:DateFormatter id="DateDisplay" formatString="MMMM D, YYYY" />

<!-- Call the format() method with an empty parameter to assign today's
date. -->
<mx:TextInput text="Today's date is {DateDisplay.format()}." />

</mx:Application>

At runtime, the following text is displayed:

Today's date is September 17, 2003.

Error handling

If an error occurs, an empty string is returned and a description of the error is saved to the error
property. An error points to a problem with the value being submitted or the format string
containing the user settings, as described in the following table:

Using the NumberFormatter

The NumberFormatter class provides basic formatting options for numeric data, including
decimal formatting, thousands separator formatting, and negative sign formatting. The format()
method accepts a Number or a number formatted as a String, and formats the resulting string.

When a number formatted as a String is passed to the format() method, the function parses the
string from left to right and attempts to extract the first sequence of numbers it encounters.
Thousands separators and decimal separators are included along with their trailing numbers. The
parser searches for a comma (,) for the thousands separator unless a different character is set in the
thousandsSeparatorFrom property. The parser searches for a period (.) for the decimal separator
unless a different character is defined in the decimalSeparator property.

Note: When a number is provided to the format() method as a string, a negative sign is recognized if
it is a dash (-') immediately preceding the first number in the sequence. A dash, space, and then a first
number is not interpreted as a negative sign.

Error type When error occurs

Invalid value A value that is not a Date object is passed to the format() method. (An empty
argument is allowed.)

Invalid format • The formatString property is set to empty ("").
• There is less than one pattern letter in the formatString property.
646 Chapter 31: Formatting Data

The following table describes the formatting options available as properties of the
<mx:NumberFormatter> tag; all of these properties are optional:

The rounding and precision values affect the formatting of the decimal in a number. If you use
both rounding and precision properties, rounding is applied first, and then the decimal length
is set using the specified precision value. This lets you round a number and still have a trailing
decimal; for example, 303.99 = 304.00.

Example

The following example shows the NumberFormatter class in an MXML file:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<!-- Declare and define parameters for the NumberFormatter. -->
<mx:NumberFormatter id="PrepForDisplay"

precision="0"
rounding="up"
decimalSeparatorTo="."
thousandsSeparatorTo=","
useThousandsSeparator="true"
useNegativeSign="true" />

Property Type Default value Description

decimalSeparatorFrom String . (period) The user-definable separator character used
when parsing a number string during input.

decimalSeparatorTo String , (period) The user-definable character to use as a
decimal separator when formatting the output
string.

precision Number 2 The number of decimal places to include in the
formatting. If the precision value is set, numbers
are all formatted at that precision. If the
precision value is not set, a number’s precision
is unchanged during formatting.

rounding String none Rounds a number. Permitted values are none,
up, down, and nearest.

thousandsSeparatorFrom String , (comma) The user-definable character to use as a
thousands separator while parsing a number
string during input.

thousandsSeparatorTo String , (comma) The user-definable character to use as a
thousands separator when formatting the
output string.

useNegativeSign Boolean true If true, uses a negative sign for negative
numbers. If false, renders a negative value in
parentheses; for example, (400).

useThousandsSeparator Boolean true Visually splits a number into thousands
increments using a separator character. If true,
the NumberFormatter class uses a thousands
separator.
Using the standard formatters 647

<mx:Script>
<![CDATA[

var bigNumber = 6000000000.65;
]]>

</mx:Script>
<!-- Trigger the formatter while populating a string with data. -->
<mx:TextInput text="{PrepForDisplay.format(bigNumber)}" />

</mx:Application>

At runtime, the following text is displayed:

6,000,000,001

Error handling

If an error occurs, an empty string is returned and a description of the error is saved to the error
property. An error refers to a problem with the value being submitted or the format string that
contains the user settings, as described in the following table:

Using the PhoneFormatter

The PhoneFormatter lets you format a phone number by adjusting the format of the area code
and the subscriber code. You can also adjust the country code and configuration for international
formats. The value passed into the PhoneFormatter must be a Number object or a String with
only digits.

The PhoneFormatter formatString property accepts a formatted string as a definition of the
format pattern. The following table shows common options for formatString values. The
PhoneFormatter’s format() method accepts a sequence of numbers. The numbers correspond to
the number of placeholder (#) symbols in the formatString value. The number of placeholder
symbols in the formatString and the number of digits in the format() method value must
match.

Error type When error occurs

Invalid value An invalid numeric value is passed to the format() method. The value should be a
valid number in the form of a Number or a String.

Invalid format Any of the parameters contain an unusable setting.

formatString value Input Output

###-#### 1234567 (xxx) 456-7890

(###) ### #### 1234567890 (123) 456-7890

###-###-#### 11234567890 123-456-7890

#(###) ### #### 11234567890 1(123) 456 7890

#-###-###-#### 11234567890 1-123-456-7890

+###-###-###-#### 1231234567890 +123-123-456-7890
648 Chapter 31: Formatting Data

In this table, dashes (-) are used as separator elements where applicable. You can substitute the
dash characters with period (.) characters or blank spaces. You can change the default allowable
character set as needed using the validPatternChars property. You can change the default
character that represents a numeric placeholder by using the numberSymbol property (for
example, to change from # to $).

Note: A shortcut is provided for the United States seven-digit format. If the areaCode property
contains a value and you use the seven-digit format string, a seven-digit format entry automatically
adds the area code to the string returned. The default format for the area code is (###). You can
change this using the areaCodeFormat property. You can format the area code any way you want as
long as it contains three number placeholders.

The following table describes the formatting options available as properties of the
<mx:PhoneFormatter> tag; all of these properties are optional:

Example

The following example shows the PhoneFormatter class in an MXML file:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<!-- Declare a PhoneFormatter and define formatting parameters. -->
<mx:PhoneFormatter id="PhoneDisplay" areaCode="415" formatString="###-####"

/>

<mx:Script>
<![CDATA[

var newNumber=1234567;
]]>

</mx:Script>

<!-- Trigger the formatter while populating a string with data -->
<mx:TextInput text="{PhoneDisplay.format(newNumber)}" />

</mx:Application>

Property Type Default value Description

areaCode Number No default Area code number added to a seven-digit
United States format phone number to form a
10-digit phone number.

areaCodeFormat String (###) Default format for the area code when the
areaCode property is rendered by a seven-digit
format.

formatString String (###) ###-#### String containing mask characters representing
a specified phone number format.

numberSymbol String # Character to use as the number placeholder in
the formatString property.

validPatternChars String +,(,),#,-,., Comma-separated list of valid characters that
you can use in the formatString property. This
property is used during validation of the
formatString.
Using the standard formatters 649

At runtime, the following text is displayed:

(415) 123-4567

Error handling

If an error occurs, an empty string is returned and a description of the error is saved to the error
property. An error points to a problem with the value being submitted or the format string
containing the user settings, as described in the following table:

Using the ZipCodeFormatter

The ZipCodeFormatter class lets you format five-digit or nine-digit United States ZIP codes and
six-character Canadian postal codes. The ZipCodeFormatter class’s formatString property
accepts a formatted string as a definition of the format pattern. The formatString property is
optional. If it is omitted, the default value of ##### is used.

The number of digits in the value to be formatted and the value of the formatString property
must be five or nine for United States ZIP codes, and six for Canadian postal codes.

The following table shows common formatString values, input values, and output values:

For United States ZIP codes, if a nine-digit format is requested and a five-digit value is supplied,
-0000 is appended to the value to make it compliant with the nine-digit format. Inversely, if a
nine-digit value is supplied for a five-digit format, the number is truncated to five digits.

For Canadian postal codes, only a six-digit value is allowed for either the formatString or the
input value.

Note: For United States ZIP codes, only numeric characters are valid. For Canadian postal codes,
alphanumeric characters are allowed. Alphabetic characters must be in uppercase.

Error type When error occurs

Invalid value • An invalid numeric value is passed to the format method. The value should be a
valid number in the form of a Number or a String.

• The value contains a different number of digits than what is specified in the
format string.

Invalid format • Any of the characters in the format string do not match the allowed characters
specified in the validPatternChars property.

• The areaCodeFormat property is specified but does not contain exactly three
numeric placeholders.

formatString value Input Output Format

94117, 941171234 94117, 94117 Five-digit U.S. ZIP code

#####-#### 941171234, 94117 94117-1234, 94117-0000 Nine-digit U.S. ZIP code

A1B2C3 A1B 2C3 Six-character Canadian
postal code
650 Chapter 31: Formatting Data

Example

The following example shows the ZipCodeFormatter class in an MXML file:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<!-- Declare a ZipCodeFormatter and define parameters. -->
<mx:ZipCodeFormatter id="ZipCodeDisplay" formatString="#####-####" />

<mx:Script>
<![CDATA[

var storedZipCode=123456789;
]]>

</mx:Script>

<!-- Trigger the formatter while populating a string with data -->
<mx:TextInput text="{ZipCodeDisplay.format(storedZipCode)}" />

</mx:Application>

At runtime, the following text is displayed:

12345-6789

Error handling

If an error occurs, an empty string is returned and a description of the error is saved to the error
property. An error refers to a problem with the value being submitted or the format string
containing the user settings, as described in the following table:

Creating a custom formatter

You can create a custom formatter by creating a class that extends the mx.formatters.Formatter
class or one of the standard formatters, which all extend mx.formatters.Formatter. Like the
standard formatters, a custom formatter contains a public format() method that takes a value
and returns a String. It might also contain a formatString property, depending on the type of
value you want to format. For example, the NumberFormatter and CurrencyFormatter classes do
not have formatString properties, but the ZipCodeFormatter class does, because it formats a
value based on a pattern string.

For all formatters, when an error occurs, an empty string is returned and a description is saved to
an error property. The error property is inherited from the Formatter superclass.

Error type When error occurs

Invalid value • An invalid numeric value is passed to the format() method. The value should be a
valid number in the form of a Number or a String, except for Canadian postal
code, which allows alphanumeric values.

• The number of digits does not match the allowed digits from the formatString
property.

Invalid format • Any of the characters in the format string do not match the allowed characters
specified in the validFormatChars property.

• If the number of numeric placeholders does not equal 9, 5, or 6.
Creating a custom formatter 651

To use a custom formatter component in an application, the component must be in the
ActionScript classpath. For more information, see Chapter 17, “Creating ActionScript
Components,” on page 437.

Both of the examples in the following sections use the SwitchSymbolFormatter, which is a utility
that creates a formatted string by parsing through a pattern and rendering the pattern character or
a number from a second source, if the pattern character is a number placeholder. The character
used to represent the number placeholder is defined through the object`s constructor. If the
character is not defined, a # symbol becomes the default. The number of digits supplied in the
source value must match the number of digits defined in the pattern string. This is the
responsibility of the script calling the SwitchSymbolFormatter object.

Extending Formatter with a simple formatter

The custom formatter component in the following example formats nine-digit Social Security
numbers:
import mx.formatters.Formatter
import mx.formatters.SwitchSymbolFormatter

class CustomFormatter extends Formatter
{

private var defaultFormatString : String = "###-##-####";

// Public Properties

[Inspectable(defaultValue="###-##-####")]
public var formatString : String;

// Methods

public function format(value):String
{

// 1. Validate value - must be a 9-digit number.

if(isNaN(value) || value.toString().length != 9)
return defaultInvalidValueError;

// 2. Validate format - must contain 9 number placeholders.

var numCharCnt = 0;
for(var i=0; i<formatString.length; i++)

if(formatString.charAt(i) == "#")
numCharCnt++;

if(numCharCnt != 9)
return defaultInvalidFormatError;

// 3. If the formatString and value are valid, format the number.

formatString = getParameter("formatString", defaultFormatString);
var dataFormatter = new SwitchSymbolFormatter();
return dataFormatter.formatValue(formatString, value);
652 Chapter 31: Formatting Data

}
}

Note: This example, unlike the other formatters, returns the value Invalid Value or Invalid Format
rather than setting an error property on the formatter and returning "".

Extending another formatter with Formatter

The custom formatter component in the following example extends the ZipCodeFormatter class
by allowing an extra format pattern (#####*####):
import mx.formatters.Formatter
import mx.formatters.ZipCodeFormatter
import mx.formatters.SwitchSymbolFormatter

class ExtendedFormatter extends ZipCodeFormatter
{

private var extendedFormatString : String = "#####*####";

// Public Properties

[Inspectable(defaultValue="#####*####")]
public var formatString : String;

// Methods

public function format(value):String
{

formatString = getParameter("formatString", extendedFormatString);

// 1. If the formatString is our new pattern, then validate and format it.

if(formatString == extendedFormatString){

if(String(value).length == 5)
value = String(value).concat("0000");

if(String(value).length == 9){
var dataFormatter = new SwitchSymbolFormatter();
return dataFormatter.formatValue(formatString, value);

}else{
return defaultInvalidValueError;

}
}

// 2. Or call super and validate and format as usual.

return super.format(value);
}

}

Note: This example unlike the other formatters returns the value Invalid Value or Invalid Format
rather than setting an error property on the formatter and returning "".
Creating a custom formatter 653

654 Chapter 31: Formatting Data

CHAPTER 32
Using Data Services
Macromedia Flex is based on a service-oriented architecture in which you use data services to
interact with server-side data sources. You can work with data sources that are accessible using
Simple Object Access Protocol (SOAP)-compliant web services, Java objects, or Hypertext
Transfer Protocol (HTTP) GET or POST requests. In a typical Flex application, client-side data
service objects send requests external data services, which return result data to the client-side
objects.

Contents

About data services. 656

Declaring a data service . 658

Calling a data service . 659

Handling data service results . 666

Using a service with binding, validation, and event handlers . 669

Handling asynchronous calls to data services . 671

Using callback URLs . 673

Generating debugging information for data services. 674

Securing data services . 675

Working with web services . 682

Working with remote object services . 688

Data service tag properties . 695

Data service whitelist tags . 700
655

About data services

You can use MXML tags to work with three types of data services: web services, remote object
services, and HTTP services. This section briefly describes the different types of data services and
when to use them. The following figure provides a simplified view of how Flex interacts with
server-side data sources:

The following list describes some of the key things to consider when you are creating an
application that must access server-side data:

1. What is the best type of data service to use? For more information, see “Web services”
on page 657, “Remote object services” on page 657, and “HTTP services” on page 657.

2. Do you want to use a named or unnamed service? For more information, see “Declaring a data
service” on page 658.

3. What is the best way to pass data to the service? For more information, see “Calling a data
service” on page 659.

4. How do you want to handle data results from the service? For more information, see “Handling
data service results” on page 666.

5. How can you debug your data services code? For more information, see “Generating debugging
information for data services” on page 674.

6. What security measures should you implement? For more information, see “Securing data
services” on page 675.

Resource tier

Data service implementations:
Web service, Java object, other

User interface

Data service objects:

Request

Client tier

Server tier

Data transport: SOAP, AMF, or HTTP

Result

<mx:WebService> - Interact with web services using SOAP

<mx:RemoteObject> - Interact with Java objects using AMF or SOAP

<mx:HTTPService> - Send and receive data using HTTP GET or POST
656 Chapter 32: Using Data Services

Web services

Web services are software modules with methods, commonly referred to as operations; their
interfaces are defined using XML. Web services provide a standards-compliant way for software
modules running on a variety of platforms to interact with each other. For more information
about web services, see the web services section of the World Wide Web Consortium’s website at
www.w3.org/2002/ws/.

Use the <mx:WebService> tag to connect to a remote object published as a SOAP-compliant web
service, or a local object on the server published as a SOAP-compliant web service when web
services is an established standard in your environment. The <mx:WebService> tag is also useful for
objects that are within an enterprise environment, but not necessarily available to the Flex web
application’s classpath.

Flex applications can interact with web services that define their interfaces in a Web Services
Description Language (WSDL) document, which is available as a URL. WSDL is a standard
format for describing the messages that a web service understands, the format of its responses to
those messages, the protocols that the web service supports, and where to send messages.

Flex applications support web service requests and results that are formatted as SOAP messages
and are transported over HTTP. SOAP provides the definition of the XML-based format that you
can use for exchanging structured and typed information between a web service client, such as a
Flex application, and a web service.

For specific information about using web services, see “Working with web services” on page 682.

Remote object services

Remote object services let you access the methods of server-side Java objects, such as plain old Java
objects (POJOs) and JavaBeans, without manually configuring the objects as web services. Use
the <mx:RemoteObject> tag to connect to a local Java object that is in the Flex web application’s
classpath. You can use a remote object service instead of a web service when objects are not
already published as web services, web services are not used in your environment, or you would
rather use Java objects than web services.

You can use the <mx:RemoteObject> tag to interact with Java objects using SOAP or the Action
Message Format (AMF) encoding. AMF is the default protocol. When you use AMF, Flex sends
messages in a binary format. When you use SOAP, Flex dynamically creates a web service that
transports text-based SOAP messages.

For specific information about using remote object services, see “Working with remote object
services” on page 688.

HTTP services

HTTP services let you send HTTP GET and POST requests, and include data from HTTP
responses in a Flex application. Use the <mx:HTTPService> tag for CGI-like interaction in which
you use HTTP GET or POST to send a request to a specified URL.
About data services 657

http://www.w3.org/2002/ws/

HTTP services are a good option when you cannot expose the same functionality as a SOAP web
service or a remote object service. For example, you can use HTTP services to interact with
JavaServer Pages (JSPs), servlets, and ASP pages that are not available as web services or remote
object services.

When you call the HTTPService object’s send() method, it makes an HTTP GET or POST
request to the specified URL, and an HTTP response is returned. Optionally, you can pass
parameters to the specified URL.

Declaring a data service

Depending on the type of data service that you want to use, you declare the service entirely in a
data service tag. Flex applications access data services as named or unnamed services. You define
an unnamed service entirely in the <mx:WebService>, <mx:RemoteObject>, or
<mx:HTTPService> tag in an MXML application. A named service relies on explicit server
configuration.

For descriptions of data service tag properties, see “Data service tag properties” on page 695.

Unnamed services

You define an unnamed service entirely in an <mx:WebService>, <mx:RemoteObject>, or
<mx:HTTPService> tag The following example shows an unnamed web service declaration. It
specifies the service’s identifier and WSDL document in the <mx:WebService> tag:
<mx:WebService id="foo" wsdl="http://somewhere.com/my.wsdl"/>

You can use a relative or absolute URL in the wsdl property to access an unnamed web service.
You can specify a relative URL in the following ways:

• Just the WSDL filename specifies a location relative to the directory that contains the
application MXML file

• The WSDL filename preceded by a forward slash (/) specifies a location relative to the web
root of the server from which the Flex application is served

• A URL that begins with @ContextRoot()/ specifies a location relative to the context root of
the web application from which the Flex application is served

Unnamed remote object and HTTP service declarations are similar to unnamed web service
declarations. In place of the wsdl property, they have a source or url property, respectively. The
value of a source property is the fully qualified name of a Java class in the classpath. The value of
the url property can be a relative or absolute URL. A relative URL is relative to the context root
of the web application and must begin with @ContextRoot(), as the following example shows:
<mx:HTTPService id="getfile" url="@ContextRoot()/directory/myfile.xml"/>
658 Chapter 32: Using Data Services

Named services

Named service declarations for web services and HTTP services use the serviceName property
instead of the wsdl or url property. Named service declarations for remote object services use the
named property instead of the source property. The following example shows a named web
service declaration:
<mx:WebService id="foo" serviceName="myService"/>

You define named services in <whitelist> tags in the flex-config.xml file. The <web-service-
proxy>, <remote-objects>, and <http-service-proxy> tags in the flex-config.xml file each
contain a <whitelist> tag that contains a <named> tag. For web services and HTTP services,
the <named> tag contains child <service> tags for each named service. For remote object
services, the <named> tag contains child <object> tags for each named service.

The following example sets up a named web service called myService with no authentication
settings:
<web-service-proxy>
...

<whitelist>
<named>

<service name="myService">
<wsdl>http://somewhere.com/webservice.wsdl</wsdl>
<endpoints>

<endpoint>http://somewhere.com/myservice</endpoint>
</endpoints>

</service>
</named>

</whitelist>
...
</web-service-proxy>

For more information about whitelists for each type of data service, see “Data service whitelist
tags” on page 700.

Calling a data service

Regardless of the source of input data, calling a data service requires an ActionScript function,
called an event handler, which makes a data service request when an ActionScript event occurs.
The two general categories of events are user events and system events. User events occur as a result
of user interaction with the application; for example, a click on a Button control is a user event.
System events occur as a result of systematic code execution.

Flex provides two ways to call a data service: explicit parameter passing and parameter binding.
When you use explicit parameter passing, you provide input to service operations or methods in
the form of arguments to an ActionScript function. This is a common way to work with remote
object services because it closely resembles the way you call methods in Java. You can also use
explicit parameter passing with web services and HTTP services. Unlike web services and remote
object services, when you use explicit parameter passing with HTTP services, you specify
arguments in a send() method. You cannot use the Flex data validation feature in combination
with explicit parameter passing.
Calling a data service 659

When you use parameter binding, you declare web service operations, remote object service
methods, or HTTP service request parameters in <mx:operation> tags, <mx:method> tags, or
<mx:request> tags, respectively. You call a send() method to send the request.

You can use web service <mx:operation> tags and remote object service <mx:method> tags with
either explicit parameter passing or parameter binding to set the properties described in the
following table. The name property is the only property that is required.

Explicit parameter passing

When you use explicit parameter passing, you provide input to a service in the form of arguments
to an ActionScript function. The following example passes the data of a selected ComboBox item
to the employeeRO.getList() method when the user clicks a Button control:
<?xml version="1.0"?>

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"
verticalGap="10">

<mx:Script>
<![CDATA[

var empList;
]]>

</mx:Script>

Property Description

concurrency Value that indicates how to handle multiple calls to the same method. By default,
making a new request to an operation or method that is already executing does not
cancel the existing request.
The following values are permitted:
• multiple Existing requests are not cancelled, and the developer is responsible for

ensuring the consistency of returned data by carefully managing the event stream.
This is the default value.

• single Making only one request at a time is allowed on the method; multiple
requests generate a fault.

• last Making a request cancels any existing request.
When using AMF encoding for remote object services, concurrency is always
equivalent to multiple, and the concurrency property has no effect.
The request referred to here is not the HTTP request. It is the client action request, or
the pendingCall object. HTTP requests are sent to the server and get processed on
the server side. However, the result is ignored when a request is cancelled; requests
are cancelled when you use the single or last value described above. The last
request is not necessarily the last one that the server receives over HTTP.
For information about handling concurrent data service requests, see “Developing
Applications” on page 57.

fault ActionScript code that runs when an error occurs.

name (Required) The name of the operation or method to call.

result ActionScript code that runs when a result object is available. The result object is
passed in as an event parameter.
660 Chapter 32: Using Data Services

 <mx:RemoteObject id="employeeRO" encoding="AMF"
source="samples.explorer.EmployeeManager" result="empList=event.result"
fault="alert(event.fault.faultstring, 'Error')">

</mx:RemoteObject>

 <mx:HBox>

 <mx:Label text="Select a department:"/>

 <mx:ComboBox id="dept" width="150">
 <mx:dataProvider>
 <mx:Array>
 <mx:Object label="Engineering" data="ENG"/>
 <mx:Object label="Product Management" data="PM"/>
 <mx:Object label="Marketing" data="MKT"/>
 </mx:Array>
 </mx:dataProvider>
 </mx:ComboBox>

 <mx:Button label="Get Employee List"
click="employeeRO.getList(dept.selectedItem.data)"/>

 </mx:HBox>

 <mx:DataGrid dataProvider="{empList}" widthFlex="1">
 <mx:columns>
 <mx:Array>
 <mx:DataGridColumn columnName="name" headerText="Name"/>
 <mx:DataGridColumn columnName="phone" headerText="Phone"/>
 <mx:DataGridColumn columnName="email" headerText="Email"/>
 </mx:Array>
 </mx:columns>
 </mx:DataGrid>

</mx:Application>

Note: The Flex Samples Explorer application included in the samples.war file contains this example.
You can extract the samples.war file to your application server.

Explicit parameter passing with web services and remote object services

An <mx:WebService> tag or <mx:RemoteObject> tag can contain <mx:operation> tags or
<mx:method> tags, respectively, in which you can specify concurrency, fault, and result
properties. You can also specify default values for concurrency, fault, and result in the
<mx:WebService> tag or <mx:RemoteObject> tag and use no method tags at all. For more
information, see “Handling asynchronous calls to data services” on page 671.
Calling a data service 661

Explicit parameter passing with HTTP services

You use an HTTPService object’s send() method to call an HTTP service with either explicit
parameter passing or parameter binding. When using explicit parameter passing, you can specify
an object that contains name-value pairs as a send() method parameter. A send() method
parameter must be a simple base type; you cannot use complex nested objects because there is no
generic way to convert them to name-value pairs.

If you do not specify a parameter to the send() method, the HTTPService object uses any query
parameters specified in an <mx:request> tag.

The following examples show two ways to call an HTTP service using the send() method with a
parameter. It also shows how to call the cancel() method to cancel HTTP service calls.
<!-- HTTP service call with an object as a send() method argument that provides

query parameters. -->
<mx:Button click="myService.send({foo: 'bar'});

<!-- HTTP service call with a send() method that takes a variable as its
argument. The value of the variable is an Object. -->

<mx:Script>
<![CDATA[

myFunction(){
var params = new Object();
params.foo = 'bar';
myService.send(params);

// Cancel all existing service calls.
myService.cancel();

}

]]>

</mx:Script>

Parameter binding

When you use parameter binding, you provide request parameters in child tags of an
<mx:WebService>, <mx:RemoteObject>, or <mx:HTTPService> tag. Parameter binding lets you
copy data from user interface controls or models to request parameters. Because request parameter
tags represent a data model, you can apply validators to parameter values before submitting
requests to data services. When you apply a validator, Flex validates the request just before
sending it, and only sends valid requests. For more information about data binding and data
models, see Chapter 29, “Binding and Storing Data in Flex,” on page 601. For more information
about data validation, see and Chapter 30, “Validating Data in Flex,” on page 619.
662 Chapter 32: Using Data Services

Parameter binding with web services and remote object services

When you use parameter binding with web services or remote object services, you always declare
operations or methods in a web service <mx:operation> tag or a remote object service
<mx:method> tag. An <mx:operation> tag can contain an <mx:request> tag that contains the
XML nodes that the operation expects. An <mx:method> tag can contain an <mx:arguments> tag
that contains child tags for the method arguments. The name property of an <mx:operation> tag
or <mx:method> tag must match one of the web service operation names or one of the remote
object service method names, respectively.

For remote object services, the order of the argument tags must match the order of the Java
method arguments. You can name argument tags to match the actual names of the corresponding
Java method arguments as closely as possible, but this is not necessary.

If argument tags inside an <mx:arguments> tag have the same name, service calls fail if the
remote method is not expecting an Array as the only input source. There is no warning about this
when the application is compiled.

You can bind data to web service operation arguments or remote object service method
arguments. You use the tag names of the arguments for data binding and validation. The
following example shows a remote object service method with two arguments bound to the text
properties of TextInput controls. A PhoneNumberValidator validator is assigned to arg1, which is
the name of the first argument tag.
...
<mx:RemoteObject id="ro"..>

<mx:method name="setData">
<mx:arguments>

<arg1>{text1.text}</arg1>
<arg2>{text2.text}</arg2>

</mx:arguments>
</mx:method>

<mx:RemoteObject>
...
<mx:PhoneNumberValidator field="ro.setData.arg1"/>
...

Flex sends the remote object service argument values to the service method in the order specified
in the MXML tags.

The following example uses parameter binding in a web service <mx:operation> tag to bind the
data of a selected ComboBox item to the employeeWS.getList operation when the user clicks a
Button control. When using parameter binding, you call a service using the send() method with
no arguments. For a remote object service, you would use an <mx:method> tag and
<mx:arguments> tag in place of the <mx:operation> tag and <mx:request> tag.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

verticalGap="10">

 <mx:WebService id="employeeWS"
wsdl="@ContextRoot()/services/EmployeeWS?wsdl"
showBusyCursor="true"
Calling a data service 663

fault="alert(event.fault.faultstring)">
 <mx:operation name="getList">
 <mx:request>
 <deptId>{dept.selectedItem.data}</deptId>
 </mx:request>
 </mx:operation>
 </mx:WebService>

 <mx:HBox>

 <mx:Label text="Select a department:"/>

 <mx:ComboBox id="dept" width="150">
 <mx:dataProvider>
 <mx:Array>
 <mx:Object label="Engineering" data="ENG"/>
 <mx:Object label="Product Management" data="PM"/>
 <mx:Object label="Marketing" data="MKT"/>
 </mx:Array>
 </mx:dataProvider>
 </mx:ComboBox>

<mx:Button label="Get Employee List" click="employeeWS.getList.send()"/
>

 </mx:HBox>

 <mx:DataGrid dataProvider="{employeeWS.getList.result}" widthFlex="1">
 <mx:columns>
 <mx:Array>
 <mx:DataGridColumn columnName="name" headerText="Name"/>
 <mx:DataGridColumn columnName="phone" headerText="Phone"/>
 <mx:DataGridColumn columnName="email" headerText="Email"/>
 </mx:Array>
 </mx:columns>
 </mx:DataGrid>

</mx:Application>

Note: The Flex Samples Explorer application included in the samples.war file contains this example.
You can extract the samples.war file to your application server.

Parameter binding with HTTP services

When a service takes query parameters, you can declare them as child tags of an <mx:request>
tag. The names of the tags must match the names of the query parameters that the service expects.

The following example uses parameter binding in the <mx:request> tag of an
<mx:HTTPService> tag to bind the data of a selected ComboBox item to the employeeSrv
request when the user clicks a Button control. When using parameter binding, you call a service
using the send() method with no arguments.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

verticalGap="20">
664 Chapter 32: Using Data Services

 <mx:HTTPService id="employeeSrv" url="employees.jsp">
 <mx:request>
 <deptId>{dept.selectedItem.data}</deptId>
 </mx:request>
 </mx:HTTPService>

 <mx:HBox>

 <mx:Label text="Select a department:"/>

 <mx:ComboBox id="dept" width="150">
 <mx:dataProvider>
 <mx:Array>
 <mx:Object label="Engineering" data="ENG"/>
 <mx:Object label="Product Management" data="PM"/>
 <mx:Object label="Marketing" data="MKT"/>
 </mx:Array>
 </mx:dataProvider>
 </mx:ComboBox>

 <mx:Button label="Get Employee List" click="employeeSrv.send();"/>

 </mx:HBox>

 <mx:DataGrid dataProvider="{employeeSrv.result.employees.employee}"
widthFlex="1">

 <mx:columns>
 <mx:Array>
 <mx:DataGridColumn columnName="name" headerText="Name"/>
 <mx:DataGridColumn columnName="phone" headerText="Phone"/>
 <mx:DataGridColumn columnName="email" headerText="Email"/>
 </mx:Array>
 </mx:columns>
 </mx:DataGrid>

</mx:Application>

Note: The Flex Samples Explorer application included in the samples.war file contains this example.
You can extract the samples.war file to your application server.

Using the Flex proxy

By default, web service requests and HTTP service requests go through the Flex proxy. The Flex
proxy provides functionality that lets you access URLs on different domains and manage security.
For named services, the proxy generates a URL and appends the service name to the end, as the
following example shows:
http://{flex_server}/flex/flashproxy/myService
Calling a data service 665

When you do not require the functionality provided by the proxy, you may want to bypass it. You
can bypass the proxy by setting the useProxy property to false in an <mx:WebService> tag or
<mx:HTTPService> tag, depending on the value of the corresponding <proxy-use-policy> tag
in the <web-service-proxy> tag or <http-service-proxy> tag in the flex-config.xml file. The
<proxy-use-policy> tag accepts the following values:

Handling data service results

After a service operation executes, the data that the service returns is placed in a result object. By
default, the data returned is represented as a simple tree of ActionScript objects; Flex interprets
XML data to appropriately represent base types, such as String, Number, Boolean, and Date. To
work with more complex objects, you must populate those objects using the object tree that Flex
creates.

For web services, much of the total round-trip time for a complex service call comes from
decoding the returned XML into ActionScript objects, and many complex results involve large
data sets, so each element is only decoded when it is requested. For example, in a situation where
a DataGrid control displays 10 items of a 1000 item recordset, only the first 10 items of the XML
are decoded into ActionScript. This reduces the total perceived time to draw the initial DataGrid
to almost nothing. There is no perceived performance gain if the whole data set must be decoded
for an operation such as sorting the data set.

Note: Because ColdFusion is case insensitive, it internally uppercases all of its data. Keep this in
mind when consuming a ColdFusion web service.

Binding a service result object to other objects

You can bind properties of the service result object to the properties of other objects, including
user-interface components and data models. Whenever a service request executes, the result object
is updated and any associated bindings are also updated.

In the following example, two properties of the result object, CityShortName and CurrentTemp,
are bound to the text properties of two TextArea controls. The CityShortName and
CurrentTemp properties are returned when a user makes a request to the
myService.GetWeather() operation and provides a ZIP code as an operation request parameter.
<mx:TextArea text="{myService.GetWeather.result.CityShortName}"/>
<mx:TextArea text="{myService.GetWeather.result.CurrentTemp}"/>

Value Description

client (Default) The value of the useProxy property determines if the proxy is used. If you do not
specify the useProxy property in the <mx:WebService> tag or <mx:HTTPService> tag, Flex
uses the proxy.

always Flex always uses the proxy. When you set the useProxy property to false in the
<mx:WebService> tag or <mx:HTTPService> tag, Flex generates a warning.

never Flex never uses the proxy. When you set the useProxy property to true in the
<mx:WebService> tag or <mx:HTTPService> tag, Flex generates a warning.
666 Chapter 32: Using Data Services

You can bind an Array contained in a service result object to a complex property of a user
interface component, such as a List, ComboBox, or DataGrid control. In the following example,
an Array of objects, employeeWS.getList.result, is bound to the dataProvider property of a
DataGrid control to display employee names, phone numbers, and e-mail addresses in the
DataGrid control.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

verticalGap="10">

 <mx:WebService id="employeeWS" wsdl="@ContextRoot()/services/
EmployeeWS?wsdl"

 showBusyCursor="true"
 fault="alert(event.fault.faultstring)">
 <mx:operation name="getList">
 <mx:request>
 <deptId>{dept.selectedItem.data}</deptId>
 </mx:request>
 </mx:operation>
 </mx:WebService>

 <mx:HBox>

 <mx:Label text="Select a department:"/>

 <mx:ComboBox id="dept" width="150">
 <mx:dataProvider>
 <mx:Array>
 <mx:Object label="Engineering" data="ENG"/>
 <mx:Object label="Product Management" data="PM"/>
 <mx:Object label="Marketing" data="MKT"/>
 </mx:Array>
 </mx:dataProvider>
 </mx:ComboBox>

<mx:Button label="Get Employee List" click="employeeWS.getList.send()"/>

 </mx:HBox>

 <mx:DataGrid dataProvider="{employeeWS.getList.result}" widthFlex="1">
 <mx:columns>
 <mx:Array>
 <mx:DataGridColumn columnName="name" headerText="Name"/>
 <mx:DataGridColumn columnName="phone" headerText="Phone"/>
 <mx:DataGridColumn columnName="email" headerText="Email"/>
 </mx:Array>
 </mx:columns>
 </mx:DataGrid>

</mx:Application>
Handling data service results 667

Binding a complex result object to a data model

To create a clean separation between data services and the user interface, you can bind a service
result object to a data model, and then bind that data model to user-interface components. This
lets you create a clean separation between services and the user interface, which gives you the
opportunity to filter or massage data before displaying it, or use data for multiple purposes.

The following code sample is from an application displays a tent image for each tent object that a
web service returns. When the user clicks a tent image, its properties are bound to the tentModel
data model. Using data binding, the TentDetail control gets data from the tentModel data model,
and displays details for the currently selected tent.

Note: The Data Model application included in the samples.war file contains this example. You can
extract the samples.war file to your application server.

<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

xmlns="*" pageTitle="Tents">
...

 <mx:Model id="tentModel">
 <name>{selectedTent.name}</name>
 <sku>{selectedTent.sku}</sku>
 <capacity>{selectedTent.capacity}</capacity>
 <season>{selectedTent.seasonStr}</season>
 <type>{selectedTent.typeStr}</type>
 <floorarea>{selectedTent.floorArea}</floorarea>
 <waterproof>{getWaterProof(selectedTent.waterProof)}</waterproof>
 <weight>{getWeight(selectedTent)}</weight>
 <price>{selectedTent.price}</price>
 </mx:Model>

 <mx:Array id="allTentsArray">{ws.getAllTents.result}</mx:Array>

<mx:VBox widthFlex="0">
 <mx:Label text="Tents" styleName="appTitle"/>
 <mx:HBox>
 <mx:Panel title="Tent Collection" id="allTentsPanel" width="570"

height="490">
 <mx:Canvas>
 <mx:Tile id="tentTile" marginLeft="20" marginTop="10"

verticalGap="10" horizontalGap="20"
 marginRight="55" marginBottom="90">
 <mx:Repeater id="allTents" count="20"

‘ dataProvider="{allTentsArray}">
 <TentComp id="tc"

index="{allTents.currentIndex}"
imageName="{allTents.currentItem.sku}"
mouseOver="showHover(event.target.index)"
mouseDown="setDetail(event.target.index)"/>

 </mx:Repeater>
 </mx:Tile>

<TentComp id="dark" visible="false"
mouseOver="showHover(event.target.index)"/>

 <TentHover id="hover" visible="false"
668 Chapter 32: Using Data Services

mouseDown="setDetail(event.target.index)"
mouseOut="hideHover();" tentTile="{tentTile}"/>

 </mx:Canvas>
 </mx:Panel>
 <TentDetail id="detail" tent="{tentModel}"

height='{allTentsPanel.height}'/>
 </mx:HBox>
...
</mx:Application>

Handling request-level events

When a service call is completed, the WebService, RemoteObject, or HTTPService object raises a
result event or a fault event. A result event indicates that the result is available. A fault event
indicates that an error occurred. The result event acts as a trigger to update properties bound to
the result object. You can handle fault and result events explicitly by attaching functions to a
web service <mx:operation> tag or remote object service <mx:method> tag. For an HTTP
service, you specify fault and result event handlers on the <mx:HTTPService> tag itself
because an HTTP service cannot have multiple operations or methods.

When no event handler is specified for result or fault events at the request level, the events are
passed to the top level of the service; for web services and remote object services, you can specify
service-level result and fault event handlers in the <mx:WebService> tag or <mx:RemoteObject>
tag, respectively. When no event handlers are specified at the service level, Flex dispatches an error
event with a message that the Application object can handle; by default, the Application object
displays an error message in an Alert pop-up dialog box.

In the following example, the result and fault properties or an <mx:operation> tag specify
event handlers:

<mx:WebService id="WeatherService" wsdl="/ws/WeatherService?wsdl">
<mx:operation name="GetWeather"

fault="showErrorDialog(event.fault.faultstring)"
result="log()">
<mx:request>

<ZipCode>{myZipField.text}</ZipCode>
</mx:request>

</mx:operation>
</mx:WebService>

Alternatively, you can specify event handlers for result and fault events in an <mx:Script>
tag. You can also place a result handler at the individual call level, as described in “Handling
asynchronous calls to data services” on page 671.

For information about scoping in ActionScript, see Chapter 15, “Working with ActionScript in
Flex,” on page 393.

Using a service with binding, validation, and event handlers

You can validate data before passing it to a data service and broadcast an event when the data
service returns a result or a fault. The following example shows an application that validates
service request data and assigns an event handler to result and fault events.
Using a service with binding, validation, and event handlers 669

This two-tier application does the following:

1. Declares a web service.

2. Binds user interface data to a web service request.

3. Validates a ZIP code.

4. Binds data from a web service result to a user interface control.

5. Specifies result and fault event handlers for a web service operation.

You can also create three-tier applications that use an additional data-model layer between the
user interface and the web service. For more information about data models and data binding, see
Chapter 28, “Managing Data in Flex,” on page 593.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

width="600" height="400">

<!-- Web service object handles web service requests and results
(the specified WSDL URL is not functional). -->

<mx:WebService id="WeatherService" wsdl="/ws/WeatherService?wsdl">
<mx:operation name="GetWeather"

fault="showErrorDialog(event.faultstring)" result="log();">

<!-- The mx:request data model stores web service request data. -->
<mx:request>

<ZipCode>{myZipField.text}</ZipCode>
</mx:request>

</mx:operation>
</mx:WebService>

<!--Validator validates ZIP code using the standard mx:ZipCode validator.-->
<mx:ZipCodeValidator field="WeatherService.GetWeather.request.ZipCode"/>
<mx:VBox>
<mx:TextInput id="myZipField" text="enter zip" width="80"/>

<!-- Button triggers web service request. -->
<mx:Button id="mybutton" label="Get Weather"

click="WeatherService.getWeather.send();"/>

<!-- TextArea control displays the results the web service returns. -->
<mx:TextArea id="temp" text="The current temperature in
{WeatherService.GetWeather.result.CityShortName} is
{WeatherService.GetWeather.result.CurrentTemp}."
height="30" width="200"/>

</mx:VBox>
<mx:Script>

<![CDATA[
function log() {

// function implementation

}

670 Chapter 32: Using Data Services

function showErrorDialog(error){

// function implementation

}
]]>

</mx:Script>

</mx:Application>

Handling asynchronous calls to data services

Because ActionScript code executes asynchronously, if you allow concurrent calls to a data service,
you must ensure that your code handles the results appropriately based on the context in which
the service is called. By default, making a request to a web service operation that is already
executing does not cancel the existing request. In a Flex application in which a service can be
called from multiple locations, the service might respond differently in different contexts.

When you design a Flex application, consider whether the application requires disparate data
sources and the number of types of services that the application requires. The answers to these
questions help determine the level of abstraction that you provide in the data layer of the
application.

In a very simple application, user-interface components might call data services directly. In
applications that are slightly larger, business objects might call data services. In still larger
applications, business objects might interact with service broker objects that call data services.

To understand the results of asynchronous service calls to objects in an application, you need a
good understanding of scoping in ActionScript. For more information, see Chapter 15, “Working
with ActionScript in Flex,” on page 393.

Using the Asynchronous Completion Token

Because Flex is a service-oriented framework in which code executes asynchronously, it lends itself
well to the Asynchronous Completion Token (ACT) design pattern. This design pattern
efficiently dispatches processing within a client in response to the completion of asynchronous
operations that the client invokes. For more information, see www.cs.wustl.edu/~schmidt/PDF/
ACT.pdf.

When using the ACT design pattern, you associate application-specific actions and state with
responses that indicate the completion of asynchronous operations. For each asynchronous
operation, you create an ACT that identifies the actions and state that are required to process the
results of the operation. When the result is returned, you can use its ACT to distinguish it from
the results of other asynchronous operations. The client uses the ACT to identify the state
required to handle the result.

An ACT for a particular asynchronous operation is created before the operation is called. While
the operation is executing, the client continues executing. When the service sends a response, the
client uses the ACT associated with the response to perform the appropriate actions.
Handling asynchronous calls to data services 671

http://www.cs.wustl.edu/~schmidt/PDF/ACT.pdf
http://www.cs.wustl.edu/~schmidt/PDF/ACT.pdf

When you call a Flex web service, HTTP service, or remote object service, Flex returns an
instance of the data service call. When using the default concurrency value, multiple, you can
use the call object returned by the data service’s send() method to handle the specific results of
each concurrent call to the same service. You can add information to this call object when it is
returned, and then in a result event handler you can pass back the call object as event.call. This is
an implementation of the ACT design pattern that uses the call object of each data service call as
an ACT. How you use the ACT design pattern in your own code depends on your requirements.
For example, you might attach simple identifiers to individual calls, more complex objects that
perform their own set of functionality, or functions that a central handler calls.

The following example shows a simple implementation of the ACT design pattern. This example
uses an HTTP service and attaches a simple variable to the call object.
...
<mx:HTTPService id="foo" url="..." result="myHandler(event)" />
...
<mx:Script>

<![CDATA[
...
function storeCall()
{

// Create a variable called call to store the instance
// of the service call that is returned.
var call = foo.send();

// Add a variable to the call object that is returned.
// You can name this variable whatever you want.
call.marker = "option1";
...

}

// In a result event handler, execute conditional
//logic based on the value of call.marker.
function myHandler(event)
{

var call = event.call
if (call.marker == "option1") {
//do option 1
}
else
...

}
]]>

</mx:Script>
...

Making a service call when another call is completed

Another common requirement when using data services is the dependency of one service call on
the result of another. Your code must not make the second call until the result of the first call is
available. You must make the second web service call in the result handler of the first, as the
following example shows:
672 Chapter 32: Using Data Services

...
<mx:WebService id="ws"...>
 <mx:operation name="getCurrentSales" result="myResultHandler(event.result)"

/>
 <mx:operation name="getForecastWithSalesInput" />
</mx:WebService>
<mx:Script>

<![CDATA[
// Call the getBarWithFoolInput operation with the result of the getFoo
// operation.
function myResultHandler(currentsales) {
ws.getForecastWithSalesInput(currentsales);
//Or some variation that uses data binding.

}
]]>

</mx:Script>
...

Using callback URLs

Callback URLs are the URLs that are embedded in a SWF file to specify how to communicate
with Flex on the server side for service objects. You only need to manually specify callback URLs
if you precompile an application or want to use a custom location for the callback URLs because
you are accessing data services from a machine other than the one serving the Flex application. By
default, Flex bases callback URLs on the MXML request URL and almost always handles them
automatically. When necessary, you can manually specify a callback URL in the flex-config.xml
file, by using flashVars, or on the command line. The flashVars property of Macromedia Flash
Player lets you import variables into the top level of an application when it is instantiated.

Callback URLs for web services and HTTP services

For web services and HTTP services, you can specify callback URLs in the flex-config.xml file in
<url> and <https-url> tags in the <web-service-proxy> tag or <http-service-proxy>,
respectively. The <url> and <https-url> tags are for HTTP proxy calls and HTTPS proxy calls.
The following example shows a <url> tag set to a specific URL:
<web-service-proxy>
...

<url>http://somesite.com/directory</url>
...
</web-service-proxy>

You can also specify a callback URL using flashVars variables. This technique is most useful
during development for testing different proxy servers, but it is rarely needed in a production
environment where setting up callback URLs in the flex-config.xml file is usually a better
approach. Flex looks for flashVars variables named proxyURL or proxyHttpsURL. The flashVars
technique works only when the <allow-url-override> is set to true in the flex-config.xml file.
For information about using flashVars variables, see Chapter 38, “Deploying Applications,” on
page 785.
Using callback URLs 673

When you are using the command-line compiler, you can specify a callback URL using the
proxyurl and proxyhttpsurl options. For more information about the command-line
compiler, see Chapter 36, “Administering Flex,” on page 753.

Callback URLs for remote object services

When using AMF encoding with remote object services, you specify callback URLs in the <amf-
gateway> and <amf-https-gateway> tags in the <remote-objects> tag. The following
example shows a <amf-gateway> tag set to a specific URL:
<remote-objects>
...

<amf-gateway>{context.root}/amfgateway</amf-gateway>
...
</remote-objects>

You can also specify a callback URL using flashVars variables. This technique is most useful
during development for testing different proxy servers, but it is rarely needed in a production
environment where setting up callback URLs in the flex-config.xml file is usually a better
approach. When using SOAP encoding, Flex looks for flashVars named remoteURL or
remoteHttpsURL. When using AMF encoding, Flex looks for flashVars variables named
gatewayUrl or gatewayHttpsUrl. The flashVars technique works only when the <allow-url-
override> is true for the <remote-objects> tag in the flex-config.xml file.

When using the command-line compiler, you can specify a callback URL for a SOAP-based
remote object service using the remoteurl and remotehttpsurl command line options for
HTTP calls and HTTPS calls, respectively. For an AMF-based service, you specify a callback
URL using the gatewayurl or gatewayhttpsurl options. For more information about the
command-line compiler, see Chapter 36, “Administering Flex,” on page 753.

Generating debugging information for data services

During development, you can generate debug information that can help you work with data
services. The <debug> tag in the flex-config.xml file contains <web-service-proxy-debug>,
<remote-object-debug>, and <http-service-proxy-debug> tags. When the value of one of
these tags is true, debugging information is generated for that service type.

For web services, SOAP-based remote object services, and HTTP services, debug information is
added to logs on the client side in the flashlog.txt file and the server side in the console, and in the
Flex log files in the WEB-INF/flex/logs directory of your Flex web application. On the server
side, the request and response for these service types are printed out for easier debugging. This is
very useful when you need to know the structure of a result object to correctly bind from it.

For remote object services that use the AMF protocol, when you set the <remote-objects-
debug> value to true, you can use the Net Connection Debugger to view information about
AMF service calls and determine the structure of result objects. The Net Connection Debugger is
in the extras/netConnectionDebugger directory of your Flex installation; to use it, open the
NetConnectionDebugger.html file in a web browser.

The following example shows a <web-service-proxy-debug> tag:
<debugging>
674 Chapter 32: Using Data Services

...
<web-service-proxy-debug>false</web-service-proxy-debug>

...
</debugging>

Another useful tool for debugging data services is the XMLObjectOutput class, which lets you
dump the content of objects so you can understand their structure. For information about the
XMLObjectOutput class, see the Flex TechNote “Flex 1.0: Using XMLObjectOutput to dump
the content of Objects” on the Macromedia website.

Securing data services

This section describes how to configure data service access and authentication.

The Flex proxy intercepts requests to remote web services and HTTP services, redirects the
requests, and then returns the response to the client. The proxy also lets you include
authentication information for named web services. For remote object services that use the AMF
protocol, an AMF gateway provides similar functionality. Remote object services that use the
SOAP protocol do not go through the Flex proxy unless they are configured for custom
authentication; for more information, see “Configuring access to remote object services”
on page 676.

Configuring access to services

To prevent the Flex proxy and AMF gateway from being used to stage denial of service (DOS)
attacks or allow unauthorized access to services, Flex uses whitelists. A whitelist is a list of URLs to
which the administrator explicitly gives access to the Flex proxy. For both named and unnamed
services, only the URLs explicitly allowed by the Flex administrator are accessible.

When you define a named service, the MXML author only needs to know the name of the service
and not the service details when accessing services from the MXML application.

Configuring access to web services and HTTP services

For unnamed web services or HTTP services, you add allowed URLs to the <whitelist> child
tag of the <web-service-proxy> tag or <http-service-proxy> tag in the flex-config.xml file,
as the following example shows:
<web-service-proxy>
...

<whitelist>
....

<unnamed>
<url>http://xmethods.net/services/service1</url>
<url>http://myServer.com/services/*</url>

</unnamed>
...
</whitelist>

...
</web-service-proxy>

The URLs in the whitelist apply to all unnamed services.
Securing data services 675

You can use wildcards in unnamed whitelists. For example, adding the following URL allows
access to all URLs that start with http://:
<url>http://*</url>

Note: This type of configuration is useful for development, but you should always limit access to
specific URLs when in production. By default, access to all URLs is denied, and you must explicitly
specify access.

To add approved URLs for a named services, you define the services using a <service> child tag
of the <web-service-proxy> tag or the <http-service-proxy> tag, respectively. Flex adds the
URLs to the whitelist for you.

Configuring access to remote object services

You configure a Flex application’s access to the Java classes used with unnamed remote object
services in a <remote-objects> tag in the flex-config.xml file.

You specify access to Java classes in <source> tags. Specify the fully qualified class name or a
wildcard pattern; the <source> tag is case-sensitive. For example, you can use a wildcard asterisk
(*) by itself, which indicates that all Flex classes and system classes are accessible.

Note: This type of configuration is useful for development, but you should always limit access to
specific classes when in production. By default, access to all classes is denied, and you must explicitly
specify access.

The following example shows the <remote-objects> tag of a flex-config.xml file that uses
wildcards and explicit names to control access:
<remote-objects>
...

<whitelist>
...

<unnamed>
<source>foobar.*</source>
<source>zoo.MyClass</source>

 </unnamed>
...
</whitelist>

...
</remote-objects>

To add approved classes for named service, you define the services using an <object> child tag of
the <remote-objects> tag. Flex adds the classes to the whitelist for you.

To use different access settings for different MXML files, you must deploy the MXML files in
different web applications.

You should use standard servlet security to secure access to the MXML files and the services
directory.
676 Chapter 32: Using Data Services

Configuring authentication

The Flex proxy and AMF gateway provide mechanisms for using web services, HTTP services,
and remote object services that require the client to be authenticated. This section describes these
mechanisms. The Flex Samples Explorer application, included in the samples.war file, contains
examples of basic and custom authentication. You can extract the samples.war file to your
application server.

Configuring authentication for web service and HTTP services

When your application uses web services or HTTP services that require a user name and
password, you can configure authentication for named web services and HTTP services in the
<web-service-proxy> tag and <http-service-proxy> tag and in the flex-config.xml file. You
can also secure the Flex proxy itself using standard J2EE security.

Passing a user name and password to a secure service

By default, Flex uses basic authentication, in which the web browser displays a login dialog box. If
a service request generates an HTTP 401 error (authentication required), that error is returned,
untouched, to the client. Browsers represent this error to the user by displaying a user name and
password dialog box. To use a custom login dialog box, you must set the <use-custom-
authentication> tag to true.

The <use-custom-authentication> tag instructs the proxy to intercept authentication errors
and return them to the client as faults. For web services, the fault value is the well-known fault
code Client.Authentication. For HTTP services, the fault code is 401. The client code can
use this fault code to display a more attractive or informative dialog box that is consistent with
your MXML application’s user interface. After you obtain user name and password credentials,
you can attach them to all SOAP requests for the service that is using the
setUsernamePassword() method, as the following example shows:
service.setUsernamePassword("username", "password");

This causes a SOAP header to be sent along with the request, which the proxy reads and uses to
generate the appropriate HTTP authentication response when accessing the remote service.

Note: The user name and password data is not sent using the standard Authorization header; instead,
it is sent to the proxy, which creates the header. For HTTP services, you must use the HTTP POST
method with the setUsernamePassword() method.

You can clear credentials using the clearUsernamePassword() method call, as the following
example shows:
service.clearUsernamePassword();

When the user name and password values are cleared, the user is still authorized to view the page
even if you call the service.clearUsernamePassword() method. This is because of the way
that servlet security works. Users are tracked by their jsessionid, and they do not need to re-
authenticate themselves as long as that jsessionid is valid. Clearing the user name and password is
useful if you have session access turned off from the service that you are contacting, or you log off
the user on the server in a manner specific to the application server.
Securing data services 677

Note: You cannot use an unsecured WSDL URL with a secured web service when using basic
authentication. Instead, you must secure the WSDL URL or use custom authentication.

To automatically authenticate users without displaying a login dialog box, you can specify a user
name and password in a <run-as> tag, as the following example shows:
<web-service-proxy>
...

<whitelist>
...

<named>
<service name="myService">

<wsdl>http://somewhere.com/webservice.wsdl</wsdl>
<endpoint>http://somewhere.com/myservice</endpoint>
<run-as user="user1" password="opensaysme"/>

</service>
</named>
...
</whitelist>

...
</web-service-proxy>

Flex applies the specified user name and password to service requests. If these credentials result in
an HTTP 401 error (authentication required), the application uses default or custom
authentication. The run-as information resides on the server and is never passed to the client.
The run-as information overrides whatever you send from the client using the
setUsernamePassword() and clearUsernamePassword() methods.

Securing the Flex proxy URL

In addition to setting up authentication for secure services, you can secure the Flex proxy URL
itself using standard J2EE security. You set up <security-constraint> and <login-config>
sections in the web.xml file for your web application to protect the /flashproxy/myService URL
pattern, as the following example shows:
<web-app>
...

<security-constraint>
<web-resource-collection>

<web-resource-name>Protected Page</web-resource-name>
<url-pattern>/flashproxy/myService</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>manager</role-name>
</auth-constraint>

</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>

</login-config>
...
</web-app>
678 Chapter 32: Using Data Services

Configuring authentication for remote object services

To use user name and password authentication for a remote object service, you must configure
authentication in the <remote-objects> tag in the flex-config.xml file, and you must secure the
service’s URL using standard J2EE security.

Passing a user name and password to a secure service

By default, Flex uses basic authentication, in which the web browser displays a login dialog box.
As an alternative when using SOAP encoding, you can create a custom login form in MXML to
match the appearance of your application. When using a custom login form, you set the <use-
custom-authentication> tag to true and set the <allow-unnamed-access> tag to false. The
settings for each object are in an <object> tag, which can contain <allow-unnamed-access>,
<encoding>, <source>, <type>, and <use-custom-authentication> tags, as this example
shows:
<remote-objects>
...

<whitelist>
...

<named>
<object name="myService">

<allow-unnamed-access>false</allow-unnamed-access>
<encoding>AMF</encoding>
<source>credit.CreditCardAuth</source>
<type>stateful-class</type>
<use-custom-authentication>false</use-custom-authentication>

</object>
</named>

...
<whitelist>

...
</remote-objects>

Note: If you specify encoding or type values in the flex-config.xml file, you do not need to specify
them in the <mx:RemoteObject> tag. If you specify encoding or type in both places, the values must
match.

Securing a remote object service URL

To authenticate against a remote object service, you must secure the service’s URL. For named
services, the Java objects that you access with AMF encoding use the following URL pattern:

/amfgateway/myService

The myService part of the URL contains the name specified in the name property of the <object>
tag. It lets you restrict the URL for a specific object.

The Java objects that you access with SOAP encoding use a local web service called the
RemoteObjectService, and you can provide basic authentication for the individual Java objects
that use the RemoteObjectService. For named services, you call the FlexRemoteObjectService
using the following URL pattern:

/flex-ws/FlexRemoteObjectService/remoteObject_namedService
Securing data services 679

The remoteObject_namedService section contains the name of the named service in the <object>
tag. It lets you restrict the URL for a specific object that uses the RemoteObjectService.

You use these settings in conjunction with standard Java web application security. You set up
security-constraint and login-config sections in the web.xml file for your web application.
When using AMF encoding, you protect the /amfgateway/myService URL pattern (see the
following example). When using SOAP encoding, you protect the /flex-ws/
FlexRemoteObjectService/remoteObject_namedService URL pattern (see the following example).

Note: If you do not set the encoding property in the flex-config.xml file, you must protect both the
AMF and SOAP URL patterns.

<!-- Within the web-app tag: -->
<web-app>
...

<security-constraint>
<web-resource-collection>

<web-resource-name>Protected Page</web-resource-name>

<!-- Use this URL pattern for RemoteObject with AMF encoding. -->
<url-pattern>

/amfgateway/myService
</url-pattern>

<!-- Use this URL pattern for RemoteObject with SOAP encoding. -->
<url-pattern>

/flex-ws/FlexRemoteObjectService/remoteObject_namedService
</url-pattern>

<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>manager</role-name>
</auth-constraint>

</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>

</login-config>
...
</web-app>

You also must link the specified role references to roles defined for your application server. How
you define users and roles is specific to your application server. For example, by default, you
define Macromedia JRun 4 users and roles in the jrun-users.xml file. For more information, see
your application server documentation.

When you use a named service in an <mx:RemoteObject> tag, you specify the name of the service
in a name property, as the following example shows:
<mx:RemoteObject id="foo" name="myService"/>
680 Chapter 32: Using Data Services

By default, if a SOAP request generates an HTTP 401 error (authentication required), the error is
returned, untouched, to the client. Web browsers represent this error to the user by displaying a
user name and password dialog box. This works fine for basic authentication, but not when you
use a custom login dialog box. To use a custom login dialog, you must set the
<use-custom-authentication> property in the flex-config.xml file to true, as the following
example shows:
<remote-objects>
...

<whitelist>
...

<named>
<object name="myService">

<use-custom-authentication>true</use-custom-authentication>
<source>credit.CreditCardAuth</source>
<type>stateful-class</type>
<allow-unnamed-access>false</allow-unnamed-access>
<encoding>SOAP</encoding>

</object>
</named>

...
<whitelist>

...
</remote-objects>

If you set the <use-custom-authentication> tag to true, you call the proxy using the
following URL:

/flex-ws/FlexRemoteObjectService/remoteObject_namedService

The <use-custom-authentication> tag instructs the proxy to intercept authentication errors
and return them to the client as SOAP faults. The returned fault has the well-known fault code
Client.Authentication, which the client code can use to display a more attractive or informative
dialog box that is consistent with your MXML application’s user interface. After you obtain user
name and password credentials, you can attach them to all SOAP requests for the service using
the setUsernamePassword() method, as the following example shows:
service.setUsernamePassword("username", "password");

This causes a SOAP header to be sent along with the request, which the proxy reads and uses to
generate the appropriate HTTP authentication response when accessing the remote service.

You can clear credentials using the clearUsernamePassword() method call, as the following
example shows:
service.clearUsernamePassword();

Note: When the user name and password values are cleared, the user is still authorized to view the
page. This is because of the way that servlet security works. Users are tracked by their jsessionid, and
they do not need to re-authenticate themselves as long as that jsessionid is valid.

Using HTTPS

Clients can access the Flex proxy using HTTP or HTTPS. The Flex proxy can connect to HTTP
and HTTPS URLs.
Securing data services 681

To access a data service over HTTPS from a Flex application that is served over HTTP, you must
set the protocol property of the <mx:WebService> tag, <mx:RemoteObject> tag, or
<mx:HTTPService> tag to https. In the flex-config.xml file, you must set the <https-url> tag
in the <web-service-proxy> tag or <http-service-proxy> tag to the absolute HTTPS URL
of the proxy. Also in the flex-config.xml file, you must set the <useProxy> tag to true.

In the crossdomain.xml file, you must set the secure property of the <cross-domain-policy>
tag to false, as the following example shows:
<cross-domain-policy>
 <allow-access-from domain="*" secure="false" />
</cross-domain-policy>

By default, Flash Player does not allow an application loaded through HTTP to make requests
through HTTPS, even for the same domain, unless the secure property is set to false. The
crossdomain.xml file lets you override the default behavior of the Flash security sandbox.

Note: The crossdomain.xml file must be in the web root of the server that the Flex application is
contacting. If a service does not go through the proxy (the <useProxy> tag in the flex-config.xml file is
set to false), the crossdomain.xml file must be on the endpoint server. For more information about
the crossdomain.xml file, see Chapter 37, “Applying Flex Security,” on page 773.

If a Flex application is served over HTTPS, it can access HTTP or HTTPS services. No special
configuration is required for accessing HTTPS services. However, if you want to use the HTTP
proxy, you must set the protocol property to http in your data service tag.

Working with web services

Flex applications can interact with web services that define their interfaces in a Web Services
Description Language (WSDL) document, which is available as a URL. WSDL is a standard
format for describing the messages that a web service understands, the format of its responses to
those messages, the protocols that the web service supports, and where to send messages.

Flex applications support web service requests and results that are formatted as Simple Object
Access Protocol (SOAP) messages and are transported over Hypertext Transfer Protocol (HTTP).
SOAP provides the definition of the XML-based format that you can use for exchanging
structured and typed information between a web service client, such as a Flex application, and a
web service.

Macromedia Flash Player operates within a security sandbox that limits what Flex applications
and other Macromedia Flash applications can access over HTTP. Flash applications are only
allowed HTTP access to resources on the same domain and by the same protocol from which
they were served. This presents a problem for web services, because they are typically accessed
from remote locations. The Flex proxy intercepts requests to remote web services, redirects the
requests, and then returns the responses to the client.

Reading WSDL documents

You can view a WSDL document in a web browser, a simple text editor, an XML editor, or a
development environment such as Macromedia Dreamweaver MX, which contains a built-in
utility for displaying WSDL documents in an easy-to-read format.
682 Chapter 32: Using Data Services

A WSDL document contains the tags described in the following table:

RPC-oriented operations and document-oriented operations

A WSDL file can specify either remote procedure call (RPC) oriented or document-oriented
(document/literal) operations. Flex supports both operation styles.

When calling an RPC-oriented operation, a Flex application sends a SOAP message that specifies
an operation and its arguments. When calling a document-oriented operation, a Flex application
sends a SOAP message that contains an XML document. It is important that you know how to
identify these operation styles in a WSDL document, because they can affect the tags that you use
in a Flex application.

In a WSDL document, each <port> tag has a binding property that specifies the name of a
particular <soap:binding> tags, as the following example shows:
<binding name="InstantMessageAlertSoap" type="s0:InstantMessageAlertSoap">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />

The style property of the associated <soap:binding> tag determines the operation style. In this
example, the style is document.

Any operation in a service can specify the same style or override the style specified for the port
associated with the service, as the following example shows:
<operation name="SendMSN">

<soap:operation soapAction="http://www.bindingpoint.com/ws/imalert/SendMSN"
style="document"/>

Tag Description

<binding> Specifies the protocol clients, such as Flex applications, use to communicate with a
web service. Bindings exist for SOAP, HTTP GET, HTTP POST, and MIME. Flex
supports the SOAP binding only.

<fault> Specifies an error value returned as a result of a problem processing a message.

<input> Specifies a message that a client, such as a Flex application, sends to a web service.

<message> Defines the data that a web service operation transfers.

<operation> Defines a combination of <input>, <output>, and <fault> tags.

<output> Specifies a message that the web service sends to a web service client, such as a Flex
application.

<port> Specifies a web service endpoint, which specifies an association between a binding
and a network address.

<portType> Defines one or more operations that a web service provides.

<service> Defines a collection of <port> tags. Each service maps to one <portType> tag and
specifies different ways to access the operations in that <portType> tag.

<types> Defines data types that a web service’s messages use.
Working with web services 683

Stateful web services

Flex uses Java server sessions to maintain the state of web service endpoints that use cookies to
store session information. This feature acts as an intermediary between Flex applications and web
services. It adds an endpoint’s identity to whatever the endpoint passes to a Flex application. If the
endpoint sends session information, the Flex application receives it. This feature requires no
configuration.

The server session feature depends on session cookies. The session cookie is sent automatically. If
you are using remote web services, you cannot use stateful web service calls for non-cookie-
handling clients. However, if you want to ensure that non-cookie-handling clients have stateful
access to local web services, you can append the jsessionid to the URL. You typically do this in a
JSP using the response.encodeURL() method.

The server session feature is available on Windows, Linux, and UNIX versions of the stand-alone
Flash Player, but is not available on the stand-alone Flash Player for the Macintosh platform.

Working with SOAP headers

A SOAP header is an optional tag in a SOAP envelope that usually contains application-specific
information, such as authentication information or payment information. This section describes
how to add SOAP headers to web service requests, clear SOAP headers, and get SOAP headers
contained in web service results.

Adding SOAP headers to web service requests

Some web services require that you pass along a SOAP header when you call an operation.

To add a SOAP header to web service calls, you can use a WebService object’s addHeader()
method or addSimpleHeader() method in an event handler function.

When you use the addHeader() method, you first must create SOAPHeader and QName objects
separately. The addHeader() method has the following signature:
public function addHeader(header : mx.services.SOAPHeader) : Void

To create a SOAPHeader object, you use the following method signature:
public function SOAPHeader(qname : mx.services.QName, content)

To create the QName object in the first parameter of the SOAPHeader() method, you use the
following method signature:
public function QName(localPart, namespaceURI)

The content parameter of SOAPHeader() method is a set of name-value pairs based on the
following format:
{name: value, name2: value2}

The addSimpleHeader() method is a shortcut for a single name/value SOAP header. When you
use the addSimpleHeader() method, you create SOAPHeader and QName objects in parameters
of the method. The addSimpleHeader() method has the following signature:
public function addSimpleHeader(qnameLocal : String, qnameNamespace : String,

headerName : String, headerValue) : Void
684 Chapter 32: Using Data Services

The addSimpleHeader() method takes the following parameters:

• qnameLocal is the local name for the header QName.
• qnameNamespace is the namespace for header QName.
• headerName is the name of the header.
• headerValue is the value of the header. This can be a String if it is a simple value, an Object

that will undergo basic XML encoding, or XML if you want to specify the header XML
yourself.

The code in the following example shows how to use the addHeader() method and the
addSimpleHeader() method to add a SOAP header. The methods are called in an event handler
function called headers, and the event handler is assigned in the load property of an
<mx:WebService> tag:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" height="600" >

<!-- The value of the wsdl property is for demonstration only and is not a
valid WSDL document. -->

<mx:WebService id="ws" wsdl="@ContextRoot()/test.wsdl" load="headers();" />
...
<mx:Script>

<![CDATA[
var header1;

function headers() {

/* Create QName and SOAPHeader objects. */
var q1=new mx.services.QName("Header1", "http://soapinterop.org/xsd");
header1=new mx.services.SOAPHeader(q1, {string:"bologna",int:"123"});

/* Add the header1 SOAP Header to web service requests. */
ws.addHeader(header1);

/* Within the addSimpleHeader method, which adds a SOAP header to web
service requests, create SOAPHeader and QName objects. */

ws.addSimpleHeader("Header2", "http://soapinterop.org/xsd", "foo",
"bar");

}
]]>

</mx:Script>
...

</mx:Application>

Clearing SOAP headers

You use a WebService object’s clearHeaders() method to remove SOAP headers that you added
to a WebService object, as the following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" height="600" >
Working with web services 685

<!-- The value of the wsdl property is for demonstration only and is not a
real WSDL document. -->

<mx:WebService id="ws" wsdl="@ContextRoot()/test.wsdl" load="headers();" />
...
<mx:Script>

<![CDATA[
var header1;

function headers() {

/* Create QName and SOAPHeader objects. */
var q1=new mx.services.QName("Header1", "http://soapinterop.org/xsd");
header1=new mx.services.SOAPHeader(q1, {string:"bologna",int:"123"});
/* Add the header1 SOAP Header to web service requests. */
ws.addHeader(header1);

/* Within the addSimpleHeader method, which adds a SOAP header to web
service requests, create SOAPHeader and QName objects. */

ws.addSimpleHeader("Header2",
"http://soapinterop.org/xsd", "foo", "bar");

}

/* Clear SOAP headers. */
function clear(){
ws.clearHeaders();
}

]]>
</mx:Script>
...
<mx:HBox>

<mx:Button label="Clear headers and run again"
click="clearAndRetry();"/>
</mx:HBox>

...
</mx:Application>

Handling SOAP headers returned in SOAP responses

To handle custom SOAP headers that are returned on the SOAP response, you attach an
onHeaders() function to the PendingCall object. You create a function to handle the headers,
such as the handleHeaders() function in the following example:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" height="600" >
 <mx:WebService id="ws"

wsdl="http://www.whitemesa.net/wsdl/r3/interoptestheaders.wsdl"
load="postLoad()">
<mx:operation name="echoString"

result="call=event.call;echoStringResult(event.result);"
fault="echoStringFault(event.fault);" />
686 Chapter 32: Using Data Services

 </mx:WebService>

 <mx:Script>
 <![CDATA[
 function echoStringResult(result) {
 trace(result);
 }
 function echoStringFault(fault) {
 trace(fault.faultstring);
 }

 function handleHeaders(responseHeaders, wholeResponse) {
 trace("*" + responseHeaders);
 var i = 0;
 viewHeaders.text = responseHeaders;
 }
 function postLoad() {
 var qName=new mx.services.QName("Header1",

"http://soapinterop.org/xsd");
 var header1=new mx.services.SOAPHeader(qName,

{string:"bologna",int:"123"});
 ws.addHeader(header1);
 ws.addSimpleHeader("Header2",

"http://soapinterop.org/xsd", "foo", "bar");
 var call = ws.echoString("foo");
 call.onHeaders = mx.utils.Delegate.create(this, handleHeaders);
 }
]]>
 </mx:Script>
 <mx:TextArea id="viewHeaders" height="300" width="300"/>
</mx:Application>

The handleHeaders() function takes two arguments, responseHeaders and wholeResponse.
The responseHeaders argument is an XML object that contains just the SOAP headers. The
wholeResponse argument is an XML object that contains the whole response. The
handleHeaders() function is called when the response comes back from the web service. You
then must manually parse the XML in the responseHeaders object and do any custom handling
of the SOAP headers.

When the application calls a web service operation, it returns a PendingCall object. In this
example, this object is assigned to a variable called call, and the onHeaders() function is
assigned to that variable. The call variable references the handleHeaders() function. To avoid
scoping issues, the handleheaders() function is wrapped in a call to the
mx.utils.Delegate.create() method.
Working with web services 687

Redirecting a web service to a different URL

Some web services require that you change to a different endpoint URL after you process the
WSDL and make an initial call the web service. For example, suppose you want to use a web
service that requires you to pass security credentials. After you call the web service to send login
credentials, it accepts the credentials and returns the actual endpoint URL required to use the
service’s business operations. Before calling the business operations, you must change the
endpointURI property of your WebService instance.

The following example shows a result event handler that stores the endpoint URL that a web
service returns in a variable, and then passes that variable into a function to change the endpoint
URL for subsequent requests:
function onLoginResult(event){

// Extract the new service endpoint from the login result.
 var newServiceURL = event.result.serverUrl;

// Redirect all service operations to the URL received in the login result.
serviceName.setEndPointURI(newServiceURL);

}

A web service that requires you to pass security credentials, might also return an identifier that
you must attach in a SOAP header for subsequent requests; for more information, see “Working
with SOAP headers” on page 684.

Working with remote object services

You can use the <mx:RemoteObject> tag to call methods on Java objects that reside on the Java
application server on which Flex is running. You can call methods on the types of Java objects
listed in the following table. The SOAP and AMF columns indicate whether properties are
available when you use SOAP or AMF encoding.

AMF is the encoding used in Macromedia Flash Remoting. AMF transport is faster and uses less
network bandwidth than SOAP transport. You must use AMF encoding to access session
variables with the session servlet.

SOAP is more standard that AMF, and you can use custom authentication with SOAP encoding.
You cannot use custom authentication with AMF encoding.

Object type SOAP AMF (default)

Java objects in the Flex Flexweb application’s classpath Yes Yes

session servlet (used to access session variables) No Yes
688 Chapter 32: Using Data Services

Java objects in the classpath

The <mx:RemoteObject> tag lets you access POJOs and JavaBeans that are in the web
application’s classpath. You can place stand-alone class files in the web application’s WEB-INF/
classes directory to add them to the classpath. You can place classes contained in Java Archive
(JAR) files in the web application’s WEB-INF/lib directory to add them to the classpath. You
must specify the fully qualified class name in the source property. The class also must have a no-
argument constructor.

Stateless objects

You use the stateless-class type, which is the default type, to create a new object for each
method call instead of calling methods on the same object.

In the following example, each method call would be invoked on a new instance of the
credit.CreditCardAuth class:
<mx:RemoteObject id="creditclass" type="stateless-class"

source="credit.CreditCardAuth"/>

Stateful objects

When you use the <mx:RemoteObject> tag, you use the stateful-class type to call methods
on a class on the server. When you access a Java object using this syntax, the class is loaded on the
server and Flex maintains state between method calls. Use the stateless-class type if storing
the object in the session causes memory problems.

For the following example, each method call is invoked on the same instance of the
credit.CreditCardAuth class:
<mx:RemoteObject type="stateful-class" id="creditclass"

source="credit.CreditCardAuth"/>

Flex uses J2EE server sessions to maintain the state of stateful Java objects. The server session
feature depends on session cookies. The session cookie is sent automatically. If you want to ensure
that non-cookie-handling clients have stateful access to Java objects, you can append the
jsessionid to the URL. You typically do this in a JavaServer Pages (JSP) file using the
response.encodeURL() method.

The server session feature is available on Windows, Linux, and UNIX versions of the stand-alone
Flash Player, but is not available on the stand-alone Flash Player for the Macintosh platform.

Enterprise JavaBeans and other objects in JNDI

When you use AMF encoding or SOAP encoding, you can access Enterprise JavaBeans and other
objects stored in JNDI by using a service facade class that looks up an object in JNDI and calls its
methods.
Working with remote object services 689

Using a service facade class

When you use the <mx:RemoteObject> tag, you can use the stateless-class or stateful-
class type to call the methods of Enterprise JavaBeans (EJBs) and other objects that use JNDI.
For an EJB, you specify the source value as a service facade class that returns the EJB object from
JNDI and contains a method that calls a method on the EJB.

In your Java class, you use the standard Java coding pattern, in which you create a new initial
context and perform a JNDI lookup. For an EJB, you also use the standard coding pattern in
which your class contains methods that call the EJB home object’s create() method and the
resulting EJB’s business methods.

The following example uses a method called getHelloData() on a facade class called
HelloServiceClass:
<mx:RemoteObject id="Hello" source="mypackage.HelloServiceClass">
 <mx:method name="getHelloData"/>
</mx:RemoteObject>

On the Java side, the getHelloData() method could easily encapsulate everything necessary to
call a business method on an EJB. The Java method in the following example does the following
things:

• Creates new initial context for calling the EJB
• Performs a JNDI lookup that gets an EJB home object
• Calls the EJB home object’s create() method
• Calls the EJB’s sayHello() method
...
getHelloData{

try{
InitialContext ctx = new InitialContext();

Object obj = ctx.lookup("/Hello");

HelloHome ejbHome = (HelloHome)

PortableRemoteObject.narrow(obj, HelloHome.class);

HelloObject ejbObject = ejbHome.create();

String message = ejbObject.sayHello();
}

catch (Exception e);
}

...

Converting data from ActionScript to Java

Data sent in method arguments from a Flex application to a Java object is automatically
converted from an ActionScript data type to a Java data type.
690 Chapter 32: Using Data Services

Flex handles the following ActionScript data types implicitly when you use SOAP or AMF
encoding:

When an ActionScript type is not handled implicitly, you can map it to a typed Java class of the
same name on the server. To do so, specify the fully qualified name of a Java class in a public
property called _remoteClass in the constructor of the corresponding ActionScript class. Use the
same package and class names for the ActionScript class and Java class. If a class with the same
name is found, Flex uses public variables and JavaBean-like setters to set values on the object.
When you use AMF encoding, your ActionScript class cannot use properties that are declared as
getter/setter properties using the get and set keywords; the properties must be real variables.

Note: Give the AS class and the Java class the same package/class name so that it doesn't matter if
one gets overwritten.

Before setting these values, Flex also tries to convert these objects to their implicit or class
matching types. The following example shows a simple ActionScript class that uses the
_remoteClass variable to create a mapping to a Java class:
class MyObject
{
 public function MyObject()
 {
 _remoteClass = "MyClass";
 }

public var _remoteClass:String;
public var prop1:String;

 public var prop2:String;
}

The following example shows the source code for a matching Java class called MyClass on the
server:
public class MyClass
{
 private String prop1;
 private String prop2;

ActionScript AMF to Java SOAP to Java

Number Number (primitive or class) Number (primitive or class)

null null null

Boolean boolean, Boolean boolean, Boolean

String String String

Array List Array

Untyped object flashgateway.io.ASObject java.util.HashMap

Associative Array flashgateway.io.ASObject java.util.HashMap

Date Date Date

XML object org.w3c.dom.Document String
Working with remote object services 691

 public MyClass()
 {
 }

 public String getProp1() { return prop1; }
 public void setProp1(String p) { prop1 = p; }
 public String getProp2() { return prop2; }
 public void setProp2(String p) { prop2 = p; }
}

If you do not specify a matching class on the server, Flex uses a HashMap as the corresponding
server-side object. Before setting these values, Flex attempts to convert objects to their implicit or
class matching type.

Flex sends private variables from complex ActionScript objects to the server side. To hide a
variable, add the following code to your object’s constructor, substituting your property’s name
for propertyname:
_global.ASSetPropFlags(this,"propertyname",1);

When you use AMF encoding, you can optionally use the Object.registerClass() method
that you also use with Flash Remoting. The _remoteClass property takes precedence over the
Object.registerClass() method.

Converting data from Java to ActionScript

An object returned from a Java method is converted from Java to ActionScript. Flex also handles
objects found within objects. Flex handles the following Java data types implicitly when using
SOAP and AMF encoding:

For Java objects that Flex does not handle implicitly, values found in JavaBean-like getter methods
and public variables are passed to the client as properties on an object.

Java AMF to ActionScript SOAP to ActionScript

Number Number (primitive or class) Number (primitive or class)

null null null

Boolean, boolean boolean, Boolean boolean, Boolean

String String String

Array, ArrayList Array Array

HashMap Object Object

Date Date Date

org.w3c.dom.Document XML object XML object
692 Chapter 32: Using Data Services

You can also use a public variable called _remoteClass on your Java class to specify the remote
class name. If you do not do this, Flex automatically looks for an ActionScript class based on your
Java class name. The ActionScript class to which data is to be converted must be used or
referenced in the MXML file. A good way to do this is by casting the result object, as the
following example shows:
var result:MyClass = MyClass(event.result);

When you use AMF encoding, your ActionScript class cannot use properties that are declared as
getter/setter properties using the get and set keywords; the properties must be real variables.

Note: For AMF encoding, the _remoteClass property is removed when data is converted from Java
to ActionScript.

When you use AMF encoding, you can optionally use the Object.registerClass() method
that you also use with Flash Remoting. The Object.registerClass() method takes precedence
over the _remoteClass property.

Note: When registering a class, the NetConnection Debugger does not understand the data type
and reports arguments of this type as undefined. You can ignore this. Data is still sent and received
correctly.

Accessing session variables from a Flex application

You can use the <mx:RemoteObject> tag to access servlet session variables from a Flex application
by using a Flex servlet called session that is specifically designed for this purpose.

The session servlet is preconfigured in the web.xml file, as the following example shows:
 <servlet>
 <servlet-name>session</servlet-name>

<display-name>Provides access to the current session;
for use with RemoteObject

</display-name>
 <servlet-class>flex.bootstrap.BootstrapServlet</servlet-class>
 <init-param>
 <param-name>servlet.class</param-name>
 <param-value>flex.remote.Session</param-value>
 </init-param>
 </servlet>

Declaring the session service

To use the session servlet, in the <mx:RemoteObject> tag, you specify the source as servlet or
@ContextRoot(), as the following example shows:
<mx:RemoteObject source="servlet" id="sessionObject” />
<mx:RemoteObject source="@ContextRoot()" id="sessionObject" />

Using a source value of servlet or @ContextRoot() indicates that the service name is the
context root of the web application. You must use AMF encoding (the default encoding) with the
session servlet. You can specify handlers for the result and fault events just as you do with any
other <mx:RemoteObject> tag.
Working with remote object services 693

Calling the session servlet

You specify the servlet name as the method name when you call the servlet. By default, the servlet
name is session. You can change the servlet name in the web.xml file.

The session servlet accept two arguments. The first argument represents the action to take, and
the second represents the arguments.

In the following example, set is the action, foo is the key, and 3 is the value of the key:
sessionObject.session("set", "foo", 3);

This call sets the value of foo to 3.

To retrieve the value of foo from the session, you would make the following call:
sessionObject.session("get", "foo");

To remove the value of foo from the session, you would make the following call:
sessionObject.session("remove", "foo");

To provide faster operation, you can use a single call to set multiple value pairs to a server session.
In Version 2 in the following example, only one call is made to set the same values that are set in
Version 1. You can apply the same concept to retrieving and removing the values of session
variables.
Version 1:
sessionObject.session("set", "foo", 3);
sessionObject.session("set", "bar", 4);
sessionObject.session("set", "kar", 5);

Version 2:
var asObj:Object;
asObj = new Object();
asObj.foo = 3;
asObj.bar = 4;
asObj.kar = 5;
sessionObject session("set", asObj);

You can apply the same concept to retrieving session variables, as the following example shows:
Version 1:
sessionObject.session("get", "foo");
sessionObject.session("get", "bar");
sessionObject.session("get", "kar");

Version 2:
sessionObject session("get", ["foo", "bar", "kar"]);

You can use the following code to access the values that are returned:
event.result.foo, event.result.bar, event.result.kar

Optionally, you can use the following code to access the values that are returned:
sessionObject.session.result.foo, sessionObject.session.result.bar,

sessionObject.session.result.kar
694 Chapter 32: Using Data Services

You can also apply the same concept to removing the values of session variables, as the following
example shows:
Version 1:
sessionObject.session("remove", "foo");
sessionObject.session("remove", "bar");
sessionObject.session("remove", "kar");

Version 2:
sessionObject session("remove", ["foo", "bar", "kar"]);

Data service tag properties

This section describes the properties that are common to the <mx:WebService>,
<mx:RemoteObject>, and <mx:HTTPService> tags, and the properties that are specific to each
tag.

Common data service properties

The <mx:WebService>, <mx:RemoteObject>, and <mx:HTTPService> tags have the following
properties in common:

Property Description

concurrency The default value for the concurrency property. This property indicates how to
handle multiple calls to the same method. The following values are permitted:
• single Only a single request is allowed on the operation; multiple requests

generate a fault.
• last Making a request cancels any existing request.
• multiple Existing requests are not cancelled, and the developer is responsible

for ensuring the consistency of returned data by carefully managing the event
stream. This is the default value.

fault The default value for the handler for the fault event. This property specifies
ActionScript code that runs when an error occurs.
When no event handler is specified for faults at the web service operation level or
remote object service method level, the faults are passed to the fault event at the
service level; for more information, see “Handling asynchronous calls to data
services” on page 671.
The following example tag specifies a handler for the fault event of a web service:
<!-- The specified WSDL URl is not functional. -->
<mx:WebService id="myWebService"

wsdl="/ws/WeatherService?wsdl"
fault="showErrorDialog(event.fault.faultstring)"/>

id The instance name that you use to refer to the web services, HTTP service, or
remote object service in ActionScript code.

protocol Specifies the protocol to use for service requests. The value is either http or https.

The default value is the protocol over which the user loads the application.
To access a service over HTTPS from a Flex application that is served over HTTP,
you must set the protocol property to https.

result The default value for the handler for the result event. This property specifies
ActionScript code that runs when a result object is available.
Data service tag properties 695

Note: When the encoding property is set to SOAP, the <mx:RemoteObject> tag depends on the
RemoteObjectService, a web service defined in the flex-config.wsdd file in your Flex web application.
Do not delete the RemoteObjectService section of the flex-config.wsdd file.

Web-service-specific properties

The <mx:WebService> tag contains the following properties in addition to those described in
“Common data service properties” on page 695::

Note: The capitalization of WSDL URLs and the names of operations, parameters, services, and
ports must match those defined for the web service.

serviceName
(WebService,
HTTPService)

A named service that is specified in the flex-config.xml file. If you use the
serviceName property, you cannot use the wsdl, or url property for a web service or
HTTP service, respectively.

named
(RemoteObject)

A named service that is specified in the flex-config.xml file. If you use the named
property, you cannot use the source property for a remote object service.

showBusyCursor When set to true, a busy cursor is displayed while a service is executing. The
default value is false. You cannot control showBusyCursor for individual operations
or methods. As a workaround, you can use different services for the same WSDL
document or class.

useProxy For web services and HTTP services, you can bypass the Flex proxy by setting the
useProxy property to false in an <mx:WebService> tag or <mx:HTTPService> tag,
depending on the value of the corresponding <proxy-use-policy> tag in the <web-
service-proxy> tag or <http-service-proxy> tag in the flex-config.xml file.

Property Description

load The value of the event handler for successful web service initialization.

service A specific service name. Use when a WSDL document contains more than one
service definition.

port A specific port name. Use when a WSDL document contains more than one port
definition. You only need to use a port property when a WSDL <service> tag
contains more than one <port> tag that uses SOAP. Many web services contain
ports that use HTTP Get and HTTP Post in addition to SOAP. For example, you
would not need to specify a port for the following service because only one port
uses SOAP:
<service name="Shakespeare">

<port name="ShakespeareSoap" binding="s0:ShakespeareSoap">
<soap:address location="http://www.xmlme.com/WSShakespeare.asmx" />

</port>
<port name="ShakespeareHttpGet" binding="s0:ShakespeareHttpGet">

<http:address location="http://www.xmlme.com/WSShakespeare.asmx" />
</port>
<port name="ShakespeareHttpPost" binding="s0:ShakespeareHttpPost">

<http:address location="http://www.xmlme.com/WSShakespeare.asmx" />
</port>

</service>

wsdl The WSDL document for a web service.

Property Description
696 Chapter 32: Using Data Services

Remote-object-specific properties

The <mx:RemoteObject> tag contains the following properties in addition to those described in
“Common data service properties” on page 695:

Note: When the encoding property is set to SOAP, the <mx:RemoteObject> tag depends on the
RemoteObjectService, a web service defined in the flex-config.wsdd file in your Flex web application.
Do not delete the RemoteObjectService section of the flex-config.wsdd file.

Property Description

encoding The messaging encoding to use. The following values are permitted:
• AMF AMF transport encoding is used. This is the default value.
• SOAP The Java object is wrapped in a SOAP-based web service.
For named services, you can specify encoding in the flex-config.xml file. If you
specify encoding in both places, the values must match.
When using authentication, you should specify encoding in the flex-config.xml file.
Otherwise, you must protect both SOAP and AMF URL patterns. For more
information, see “Configuring authentication” on page 677.

endpoint Specifies an alternative gateway endpoint when using AMF encoding. This
property overrides the default (global) gateway endpoint in the <amf-gateway> tag
of the <remote-objects> tag in the flex-config.xml file.
You cannot use the type property if you change the endpoint to a non-Flex AMF
gateway.
The endpoint value can be a fully qualified path or a relative path. For a path that
starts with @ContextRoot(), the endpoint is relative to the web application’s context
root. For a path that starts with a slash (/), the endpoint is prepended to the
protocol, host, and port of the Flex application.

id The instance name that you use to refer to the Java object in ActionScript code.

source Required for unnamed services; the source of the object.

type The type of object access. The default type is stateless-class. The following
values are permitted:
• stateless-class A plain old Java object (POJO) or JavaBean; each method

call creates a new object instance. This is the default value.
• stateful-class A POJO or JavaBean; the object state is maintained and each

method call is made on the same object instance.
• servlet A Java servlet. The servlet type is used with the session servlet; for

more information, see “Using a service with binding, validation, and event
handlers” on page 669.

When using AMF encoding, the type property is only supported for the Flex AMF
gateway, and cannot be used for legacy endpoints (gateways).
For named services, you can specify type in the flex-config.xml file. If you specify
type in both places, the values must match.
Data service tag properties 697

HTTP-service-specific properties

The <mx:HTTPService> tag contains the following properties in addition to those described in
“Common data service properties” on page 695:

Property Description

contentType The type of content for service requests. The following values are permitted:
• application/x-www-form-urlencoded (default) Sends requests like a normal

HTTP POST with name-value pairs.
• application/xml Send requests as XML.

method The HTTP method for sending the request. Permitted values are GET and POST;
lowercase values are converted to uppercase. The default value is GET.

resultFormat The value that indicates how you want to deserialize the result returned by the
HTTP call. The value for this is based on the following:
• Whether you are returning XML or name-value pairs.
• How you want to access the results; you can access results as an object, text, or

XML.
The following values are permitted:
• object The value returned is XML and is parsed as a tree of ActionScript

objects. This is the default value.
• xml The value returned is XML, and it is returned as literal XML in an

ActionScript XMLnode object.
• flashVars The value returned is text that contains name-value pairs, which is

parsed into an ActionScript object.
• text The value returned is text, and it is left raw.

url The location of the service.
The specified URL should not contain any query parameters (question mark
character (?) followed by name-value pairs).
698 Chapter 32: Using Data Services

xmlDecode ActionScript function used to decode a service result from XML.
When resultFormat is object and if the xmlDecode property is set, Flex uses the
XML that the HTTPService object returns to create an object as specified in the
xmlDecode function. If it is not defined, Flex uses the default XMLDecoder to create
an object.
The xmlDecode property takes an XMLNode object and should return an object. It
can return any type of object, but it must return something. Returning null or
undefined causes a fault.

The following example shows an <mx:HTTPService> tag that specifies an xmlDecode
function:
<mx:HTTPService id="hs" xmlDecode="xmlDecoder" url="myURL"

resultFormat="object" contentType="application/xml">
<mx:request><source/>

<obj>{RequestObject}</obj>
</mx:request>

</mx:HTTPService>

The following example shows an xmlDecoder function:
function xmlDecoder (myXML) {

 // Simplified decoding logic.

 var myObj = new Object();

 myObj.name = myXML.firstChild.nodeValue;

 myObj.honorific = myXML.firstChild.attributes.honorific;

 return myObj;

}

Property Description
Data service tag properties 699

Data service whitelist tags

This section describes the child tags that are common to the <whitelist> tags in the flex-
config.xml file for web services, remote object services, and HTTP services, and the child tags
that are specific to each type of service.

For information about whitelists, see “Named services” on page 659 and “Securing data services”
on page 675.

Common whitelist tags

All <service> and <object> tags can contain the following child tags:

xmlEncode ActionScript function used to encode a service request as XML.
When the contentType of a request is application/xml and the request object
passed in is an object, Flex attempts to use the function specified in the xmlEncode
property to turn it into XML. If the xmlEncode property is not set, Flex uses the
default XMLEncoder to turn the object graph into XML.
The xmlEncode property takes an object (you may have specified
httpService.request = new MyClass()) and should return an XMLNode. In this
example, the XMLNode object can be an XML object, which is a subclass of
XMLNode, or the first child of the XML object, which is what you get from an
<mx:XML> tag. Returning the wrong type of object causes a fault.

The following example shows an <mx:HTTPService> tag that specifies an xmlEncode
function:
<mx:HTTPService id="hs" xmlEncode="xmlEncoder" url="myURL"

resultFormat="object" contentType="application/xml">
<mx:request><source/>

<obj>{RequestObject}</obj>
</mx:request>

</mx:HTTPService>

The following example shows an xmlEncoder function:
function xmlEncoder (myObj) {

return new XML("<userencoded><attrib0>MyObj.test</attrib0>
<attrib1>MyObj.anotherTest</attrib1></userencoded>");

}

Tag Description

<allow-unnamed-
access>

Adds the service URL to the unnamed whitelist. If you set this property to
false, you cannot access the service using the wsdl, source, or url,
property of the <mx:WebService>, <mx:RemoteObject>, <mx:HTTPService>
tag, respectively.

<use-custom-
authentication>

(Optional) Specifies that the service uses custom authentication instead
of basic authentication. Use this when you provide a user name and
password from the Flex application instead of a web browser dialog box.
For remote object services, you can only use this property if you are using
SOAP encoding. The default encoding is AMF.

Property Description
700 Chapter 32: Using Data Services

Web-service-specific whitelist tags

Web service <service> tags can contain the following child tags in addition to those described in
“Common whitelist tags” on page 700:

Remote-object-specific whitelist tags

Remote object service <object> tags can contain the following child tags in addition to those
described in “Common whitelist tags” on page 700:

HTTP-service-specific whitelist tags

HTTP service <service> tags can contain the following child tags in addition to those described
in “Common whitelist tags” on page 700:

Tag Description

<endpoint> Endpoint URLs allowed when using the service.

<run-as> The user name and password to use when accessing the service.

<wsdl> WSDL URL for the service.

Tag Description

<encoding> The messaging encoding to use. The following values are permitted:
• AMF AMF transport encoding is used.
• SOAP The Java object is wrapped in a SOAP-based web service.
You can also specify encoding in the <mx:RemoteObject> tag. If you
specify encoding in both places, the values must match.

<source> The Java class to use for the service.

<type> The type of class. Can be stateless-class, stateful-class, or
servlet. The default type is stateless-class. The servlet type is
used with the session servlet; for more information, see “Using a
service with binding, validation, and event handlers” on page 669.
You can also specify type in the <mx:RemoteObject> tag. If you specify
type in both places, the values must match.

Tag Description

<url> The service URL.

<run-as> The user name and password to use when accessing the service.
Data service whitelist tags 701

702 Chapter 32: Using Data Services

P
A

R
T

 V
PART V
Advanced Application Development and

Debugging
This part describes how to debug and profile your Macromedia Flex applications, add MXML
code to your JSP pages, and create custom HTML wrappers for your Flex applications

The following chapters are included:

Chapter 33: Debugging Flex Applications . 705

Chapter 34: Profiling ActionScript. 729

Chapter 35: Using the Flex JSP Tag Library. 741

CHAPTER 33
Debugging Flex Applications
Debugging applications can be a difficult and time-consuming task during application
development. To assist you in debugging your application, Flex includes support for a debug and
warning messages, an error-reporting mechanism, and a command-line ActionScript debugger.

This chapter describes how to use these tools to debug your application.

Contents

About debugging . 705

Enabling debug and warning messages . 706

Using the error-reporting mechanism. 707

Supported errors . 710

About the debugger . 712

Configuring the debugger . 714

Invoking the debugger . 715

Using the debugger . 717

Debugger example . 727

About debugging

One of the most important aspects of debugging is gathering the necessary diagnostic
information that you need to locate the cause of a problem. Flex includes several different
mechanisms that you use when debugging an application, including the following:

• A warning and debug messaging mechanism that lets you control the types of messages that
Flex generates while you are debugging an application.
For more information, see “Enabling debug and warning messages” on page 706.
705

• An error-reporting mechanism built into Flash Debug Player that lets you direct error messages
to a log file. Flash Debug Player can also capture the output of the trace() function and write
it to the log file. When debugging an application, you can use the trace() function to
determine if your application reaches a particular line of code, write the value of a variable to
the log file, or write other status information to the log file.
For more information, see “Using the error-reporting mechanism” on page 707.

• A command-line ActionScript debugger, fdb, which is supported only on Windows XP and
Windows 2000.
For more information, see “About the debugger” on page 712.

Enabling debug and warning messages

Flex provides you with control over the output of warning and debug messages. When debugging,
you can enable message output to aid you in locating and fixing problems in your application.
The settings that you use to control messages are defined in the flex_app_root/WEB-INF/flex/
flex-config.xml file.

To generate any debug information, Flex must not be running in production mode. By default,
the <production-mode> property in the flex-config.xml file is set to false, which will generate
debugging information. For more information, see Chapter 36, “Administering Flex,” on
page 753.

You can enable data services messages using the following tags:

• <web-service-proxy-debug>
• <http-service-proxy-debug>
• <remote-objects-debug>

If you enable these messages, they are written to the console window of your J2EE server. In
addition, if you use Flash Debug Player and enable reporting so that Flash Debug Player writes
messages to the log file, you can also capture the data services messages in the log file. For more
information on using error reporting, see “Using the error-reporting mechanism” on page 707.

The following table describes the debugging settings in flex-config.xml:

Tag Description

<create-compile-report> Set to true to generate a compiler report. This report contains
the stack tree for all dependent symbols used in the
application. Flex stores it in the same directory as the MXML
file as app_name-report.xml.
The default value is false.

<http-service-proxy-debug> Set to true to display the HTTP proxy request and response
on the server side.
The default value is false.

<remote-objects-debug> Set to true to display the remote object request and response
on the server side as well as debug information in client-side
tracing.
The default value is false.
706 Chapter 33: Debugging Flex Applications

Using the error-reporting mechanism

The error-reporting mechanism of Flash Debug Player helps you locate many types of errors in
your application, including programming errors, corrupt data errors, and network errors. When
Flash Debug Player encounters an error, and you have enabled error reporting, it writes an error
message to the log file.

Note: To use the Flex error-reporting mechanism, you must first install Flash Debug Player. For more
information, see the Flex installation instructions.

By default, the log file is named flashlog.txt and is located in C:\ in Microsoft Windows 2000, or
C:\Documents and Settings\userName in Microsoft Windows XP. Each time you start an
application, the existing log file is deleted and a new one is generated.

The following versions of Flash Debug Player support the error-reporting mechanism:

• Windows versions
• Windows ActiveX control version
• Windows Netscape/Mozilla Plugin versions

<show-all-warnings> Set to true to show all compiler warnings in the browser.
You can override this setting by appending
?showAllWarnings=true|false to the query string.
The default value is true.

<show-binding-warnings> When you set <show-all-warnings> to true, this value
controls whether binding warnings are shown in the browser.
When <show-all-warnings> is false, this value has no effect.
You can override this setting by appending
?showBindingWarnings=true|false to the query string.
The default value is true.

<show-override-warnings> When you set <show-all-warnings> to true, this value
controls whether compiler override warnings are shown in the
browser. When <show-all-warnings> is false, this value has
no effect.
The default value is true.

<show-source-in-compiler-errors> Set to true to display source code context lines in the error
pages. The default value is true.

<show-stacktraces-in-browser> Set to true to display stack traces in the browser error
messages.
The default value is true.

<web-service-proxy-debug> Set to true to display the web service proxy request and
response on the server side as well as debug information in
client-side tracing. The default value is false.

Tag Description
Using the error-reporting mechanism 707

Error reporting example

Flash Debug Player can detect and log several types of errors commonly encountered in
ActionScript. For example, one common ActionScript error is to reference an undefined variable,
shown in the following function, where the variable varX is not defined:
function calculateDiscount(price:Number)

{
 var newPrice = price*varX;

...
}

In Flash Player, this declaration would silently fail. However, if you use Flash Debug Player, and
enable error reporting, Flash Debug Player writes the following error message to the flashlog.txt
log file:
Warning: Reference to undeclared variable, 'varX'

The following example shows an object, g, that attempts to call an undefined function, h():
var g = new Object;
g.h();

In this example, Flash Debug Player writes the following message to the log file:
Warning: h is not a function

For a list of supported ActionScript errors, see “ActionScript errors” on page 710.

Using the trace() function

You can use Flash Debug Player to capture output from the trace() function and write that
output to the log file. Often, you use the trace() function when debugging applications to write
a checkpoint message to signal that your application reached a specific line of code, or to output
the value of a variable. In the following example, the trace() function writes a message to the log
file when your application enters the initDataGrid() function:
function initDataGrid(numColumns:Number)

{
trace("Made it to initDataGrid");

trace(“In initDataGrid, numColumns = “ + numColumns);
...

}

Error types

All versions of Flash Debug Player support ActionScript errors. These errors are typically
associated with programming errors in ActionScript. For a complete list of these errors, see
“ActionScript errors” on page 710.

All versions of Flash Debug Player also support a collection of miscellaneous errors, such as a
depth conflict. For a list of these errors, see “Other errors” on page 710.
708 Chapter 33: Debugging Flex Applications

The ActiveX player and Netscape/Mozilla versions of Flash Debug Player delegate many network
tasks to the browser; that is, Microsoft Internet Explorer and Netscape handle the HTTP
requests, FTP requests, and socket connections for the Player. The browsers do not report back to
the Player or inform the user of any HTTP status codes, network errors, and so on. These error
types will not be reported by the ActiveX player and Netscape/Mozilla versions of Flash Debug
Player.

The stand-alone Flash Debug Player implements the HTTP, FTP, and socket functionality.
Therefore, these errors will be reported in the stand-alone Flash Debug Player. For more
information on these errors, see the following sections:

• “HTTP errors” on page 711
• “FTP errors” on page 711
• “Network errors” on page 712

Configuring Flash Debug Player

You configure the error-reporting mechanism of Flash Debug Player using the mm.cfg text file.
This file is typically located in the same directory as the flashlog.txt file.

Two Microsoft Windows environment variables define the location of this directory:

HOMEDRIVE Specifies the drive letter of the path to the home directory. In most Microsoft
Windows systems, the default value is C:, the primary hard drive.

HOMEPATH Specifies the path to the home directory, relative to HOMEDRIVE. On
Microsoft Windows 2000, the default is \. In Microsoft Windows XP, the default is \Documents
and Settings\user_name where user_name is your system user name.

Therefore, the default home directory is C:\ in Microsoft Windows 2000 and C:\Documents and
Settings\user_name in Microsoft Windows XP.

For information on setting these two environment variables, see the Flex installation instructions.

The following mm.cfg file enables error reporting and configures Flash Debug Player to write
error messages to the flashlog.txt, where flashlog.txt is in the same directory as mm.cfg:
ErrorReportingEnable=1
TraceOutputFileEnable=1

The following table lists the properties that you can set in the mm.cfg file:

Property Description

ErrorReportingEnable Set ErrorReportingEnable to 1 to enable error reporting. Disable it by
setting it to 0. Error reporting is disabled by default.

MaxWarnings Set MaxWarnings to override the default message limit. For example, you
can set it to 500 to capture 500 error messages.
By default, Flash Debug Player logs 100 error messages to the log file.
After 100 messages, Flash Debug Player writes a message to the file
stating that further error messages will be suppressed.
Set the MaxWarnings to 0 to remove the limit so that all error messages are
recorded.
Using the error-reporting mechanism 709

Supported errors

The following sections list the error types supported by Flash Debug Player. Some error types are
supported by all versions of Flash Debug Player, while others are supported by the Windows
Standalone Flash Debug Player.

ActionScript errors

The following ActionScript errors are supported by all versions of the Flash Debug Player:

Other errors

The following table lists errors supported by all versions of Flash Debug Player:

TraceOutputFileEnable Set TraceOutputFileEnable to 1 to enable Flash Player to write error
messages to the log file. Disable it by setting TraceOutputFileEnable to 0.

TraceOutputFileName Set TraceOutputFileName to override the default name and location of the
log file by specifying a new location and name in the form:
TraceOutputFileName=<fully qualified path/filename>

By default, Flash Player writes error messages to a file named flashlog.txt
located in the directory specified by the environment variables
HOMEDRIVE and HOMEPATH.

Symbolic name Message string Code snippet Note

NOT_DEFINED {0} is not defined

where {0} is the name of
the object causing the
error

varX; Assigning a value to
varX implicitly defines it
so that is not an error.
Also, accessing a
member that is not
defined for an object is
not an error.

NO_PROPERTIES {0} has no properties var varX;
varX.varY;

The following is not an
error:
var varX = new Object;
varX.varY;

NOT_FUNCTION {0} is not a function var varX = new Object;
varX.funcY();

UNCAUGHT_EXCEPTION uncaught exception: {0} throw new Error;

STACK_OVERFLOW stack overflow

Symbolic name Message string

DepthConflict Failed to place object at depth.

CorruptData Failed to parse corrupt data.

DownloadIsUnknown Not a known player download type: %s

Property Description
710 Chapter 33: Debugging Flex Applications

HTTP errors

The following HTTP errors are supported by the Windows Flash Debug Player. For more
information on these errors, see www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

FTP errors

The following FTP errors are supported by the Windows Standalone Debug Player:

Symbolic name Message string Build/configuration

400 Bad Request Windows Standalone Flash Debug Player

401 Unauthorized Windows Standalone Flash Debug Player

402 Payment required Windows Standalone Flash Debug Player

403 Forbidden Windows Standalone Flash Debug Player

404 Not found Windows Standalone Flash Debug Player

405 Method Not Allowed,
Invalid MIME type

Windows Standalone Flash Debug Player

406 Not Acceptable Windows Standalone Flash Debug Player

500 Server Error Windows Standalone Flash Debug Player

501 Not Implemented Windows Standalone Flash Debug Player

502 Bad Gateway Windows Standalone Flash Debug Player

503 Out of Resources Windows Standalone Flash Debug Player

504 Gateway Time-Out Windows Standalone Flash Debug Player

505 HTTP Version not supported Windows Standalone Flash Debug Player

 Internet Open error Windows Standalone Flash Debug Player

 Internet Connect error: %s Windows Standalone Flash Debug Player

 No URL Path Windows Standalone Flash Debug Player

 HTTP Open Request error: %s Windows Standalone Flash Debug Player

 HTTP Send Request error %d: %s Windows Standalone Flash Debug Player

 HTTP Query Info error: %s Windows Standalone Flash Debug Player

Message string Build/configuration

FTP open File error: %s Windows Standalone Flash Debug Player
Supported errors 711

Network errors

The following network errors are supported by the Windows Standalone Flash Debug Player:

About the debugger

The Flex ActionScript command-line debugger, fdb, lets you step through and debug
ActionScript files used by your Flex applications. Some of these ActionScript files are external
class files, and some are generated by the Flex server when it compiles the application.

There can be any number of files per application, but in general Flex generates a single file
containing ActionScript statements used in <mx:Script> blocks within the MXML file, and an
additional file for each ActionScript class file used by that application.

You can use fdb in any gdb-compatible debugging environment. For example, you can use M-x
gdb inside Emacs and specify fdb.exe as the gdb command.

For an overview of the fdb debugger, use the following tutorial command:
(fdb) tutorial

Working with ActionScript files

ActionScript is the foundation of Flex components. During compilation, Flex links code from
system classes (contained within SWC files), your code (contained within AS files), third-party
SWC files, and generated code (the result of compiling your MXML files into ActionScript
statements). The debugger uses these files to step through the application.

Two generated files are produced for each compiled MXML file; these files are not visible on disk
and can only be viewed within the debugger.

The first file, compiled_mxml_file_name.1 (where compiled_mxml_file_name is the name of the
MXML file that was compiled), contains the class definition of the class associated with the
compiled MXML. In addition, it contains an init() function, event handler, and any other code
required to implement the MXML. You can set breakpoints on most functions in this file; the
exception is event handlers. You can set breakpoints for the event handlers only in the original
MXML file.

The second file, compiled_mxml_file_name.2, contains the deferred instantiation entry for the
MXML mapped class, if any.

Note: These files are not the same as the compiled_mxml_file_name-generated.as file that is
optionally written to disk during compilation.

Symbolic name Message string Build/configuration

ConnectError Cannot resolve address: %s Windows Standalone Flash Debug Player

ConnectError Could not connect: %s:%d Windows Standalone Flash Debug Player

SocketError Unable to resolve host: %s Windows Standalone Flash Debug Player

SocketError Socket Error: %s:%d Windows Standalone Flash Debug Player

SocketError Could not connect: %s:%d Windows Standalone Flash Debug Player
712 Chapter 33: Debugging Flex Applications

In fdb, you can list the files using the info command. For more information, see “Getting status”
on page 724.

The main MXML file for the application appears in the list first, with the others following in
Unicode order (mixing ActionScript and MXML files). File numbers begin at 1 and are
sequential. The application includes the following files:

• ActionScript files for Frameworks and system class files
• ActionScript files for generated files
• ActionScript files for authored files such as external custom classes

About SWD files

To debug a Flex application, you must generate a SWD (Flash Debug) file. SWD files are similar
to SWF files, except that they contain debugging-specific information that the debugger and
Flash Debug Player watch for.

When Flex generates a SWD file from the MXML file, it stores the SWD file in the same
directory as the SWF file (the MXML file’s current directory). These files must remain in the
same directory for debugging. If the SWD file does not exist or does not match the SWF file, the
debugger returns an error.

The debugger generates a SWD file for you when it invokes the default browser. To debug in the
stand-alone Flash Player, you must first pregenerate the SWD file using either the mxmlc
compiler or by requesting the MXML file in a browser. If you request the file in a browser, you
must either append ?debug=true to the query string or set the <generate-debug-swfs> option
to true in the flex-config.xml file.

To debug a custom component, you can add a SWD file to the component’s SWC file when you
export it from the Flash MX 2004 development environment.

Debugger limitations

The debugger supports only ActionScript-level debugging and does not support the Flash
Timeline concept. The debugger also does not allow debugging MXML tags, with the exception
of setting breakpoints on event handlers defined on MXML tags.

In a Flex environment, Macromedia Flash Player may interact with the server. The debugger does
not assist in debugging the server-side portion of the application, nor does it offer support for
inspecting any of the IP transactions that take place from Flash Player to the server, and vice versa.

Debugger shortcuts

You can invoke commands within the fdb debugger using the fewest number of nonambiguous
keystrokes. For example, to use the print command, you can type p, because no other command
begins with that letter.
About the debugger 713

Configuring the debugger

You can run the ActionScript debugger with the debug version of Macromedia Flash Player
registered with your default browser (Windows only) or in the stand-alone Flash Player
(Windows and UNIX).

The fdb debugger is installed in the flex_install_dir/bin directory. To start fdb, navigate to this
directory and type fdb at the command line.

For more information on installing Flash Debug Player or installing the stand-alone Flash Player,
see the installation documentation.

Changing global debugger settings

You configure the debugger using child tags of the <debugging> tag in the flex-config.xml file.
Settings in the configuration file affect all debugging sessions. You can override settings in the
flex-config.xml file with a query string parameter unless <production-mode> is true.

The following table describes the fdb-related debugging tags in the flex-config.xml file:

You cannot use the debugger when Flex is running in production mode. In the flex-config.xml
configuration file, set the value of the top-level <production-mode> tag to false; for example:
<production-mode>false</production-mode>

For more information on editing the flex-config.xml file, see “Editing the flex-config.xml file”
on page 757.

Using the debugger in Windows

In Windows, you can run your Flex applications in a browser or in the stand-alone Flash Player.

When debugging an application in a web browser, fdb uses only the default browser. The default
browser is the browser that opens when you open a web-specific file without specifying an
application. You must also have Flash Debug Player installed with this browser. If you do not have
the correct version of Flash Debug Player, Flash displays an error indicating that your Flash Player
does not support all fdb commands.

Property Description

production-mode Set to true to disable all debugging options, regardless of individual
settings. They cannot be overridden with query string parameters.
Set to false to allow debugging options.

process-debug-query-params Allows override of values in debugging section using query
parameter strings on a per-request basis.

generate-debug-swfs Generate SWF and SWD files for debugging. You can override this
setting using ?debug=true or ?debug=false on the request string.
If you invoke the debugger in the default browser, the debugger
generates the SWF and SWD files for you.

keep-generated-as Writes the generated ActionScript files to the disk.

keep-generated-swfs Writes the generated SWF and SWD files to the disk.
714 Chapter 33: Debugging Flex Applications

Your default browser might not be the first browser that you installed on your computer. For
example, if you installed another web browser after installing Internet Explorer, Internet Explorer
might not be your default browser.

To determine what browser is your default browser:

1. From the Windows ToolBar, select Start.

2. Select Run.

3. Enter a URL in the Run dialog box; for example:
http://www.macromedia.com

4. Click OK.

Windows opens the default browser or displays an error message indicating that there is no
application configured to handle your request.

To set Internet Explorer as your default browser:

1. Open the Internet Explorer application.

2. Select Tools > Internet Options.

3. Select the Programs tab.

4. Click the Reset Web Settings button.

To set Netscape 7.x as your default browser:

1. Open the Netscape application.

2. Select Edit > Preferences.

3. Click the Set Default Browser button.

Invoking the debugger

This section describes how to start a debugging session with fdb on Windows and UNIX systems.
For information on what commands are available after you start a debugging session, see “Using
the debugger” on page 717.

For more information on editing the flex-config.xml file, see “Editing the flex-config.xml file”
on page 757.

Starting a session with the default browser (Windows only)

The easiest way to start a debugging session is to use fdb to invoke the SWD file in the default
browser. To start a debug session in the default browser, you use the fdb command from the
command line.

To start the debugger:

1. Open a console window.

2. Find the Flex_install/bin directory. You installed the Flex application files to this directory. It is
not the same directory as the Flex deployment directory.

The default Flex_install directory on Windows is C:/Program Files/Macromedia/Flex/.
Invoking the debugger 715

3. Type fdb from the command line, followed by the path to the MXML file; for example:
fdb http://localhost:8100/flex/MyApp.mxml

The fdb debugger starts the Flex application in your default browser and appends ?debug=true
to the query string. This generates a SWD file if one is not already present. The (fdb)
command prompt appears in the console window, as the following example shows:
Attempting to launch and connect to Player using URI
http://localhost:8100/flex/wrapper/file1.mxml
Player connected; session starting.
Set breakpoints and then type 'continue' to resume the session.
(fdb)

If fdb does not connect to the player, you might not be running the Flash Debug Player. For
information on installing the Flash Debug Player, see the installation instructions.

You can also start a debugging session by running a SWF file or MXML file that has an
accompanying SWD file in Flash Debug Player. Or, you can start a debugging session by
requesting a SWF file or MXML file in Flash Debug Player and appending ?debug=true to the
query string. In these cases, you are prompted to supply a location for the debugger utility, as the
following figure shows:

If you are running fdb and the Flex server on the same computer, select Localhost. If you are
running the debugger remotely, select Other Machine and enter the other computer’s IP address
(and server port number) in the Enter IP Address field.

Debugging with the stand-alone Flash Debug Player (Windows and UNIX)

Stand-alone Flash Debug Player runs as an independent application. It does not run within a web
browser or other shell. Stand-alone Flash Debug Player does not support any server requests such
as web services and dynamic SWF loading, so not all applications can be properly debugged
inside the stand-alone Flash Debug Player.

To start a debug session with stand-alone Flash Debug Player, you must generate a SWD file
(Flash Debug file) and SWF file for the application.

To debug with the stand-alone Flash Debug Player:

1. Generate the Flex application’s SWD and SWF files in one of the following ways:

■ Request the MXML file in a browser and append ?debug=true to the query string.
716 Chapter 33: Debugging Flex Applications

■ Use the following mxmlc command-line compiler with the -g option:
mxmlc -g myApp.mxml

For more information on using mxmlc, see “Using the command-line compiler” on page 754.
2. Find the Flex_install_dir/bin directory. You installed the Flex application files to this directory.

It is not the same directory as the Flex deployment directory.

The default Flex_install_dir directory in Windows is C:\Program Files\Macromedia\Flex\.
3. Type fdb from the command line, followed by the path to the SWF file; for example:
fdb c:/jrun4/servers/flex_server/flex/MyApp.swf

The fdb debugger starts the Flex application in the stand-alone Flash Debug Player, and the
(fdb) command prompt appears.

Using the debugger

This section describes commands that you use to debug and navigate your Flex application using
the fdb debugger.

Running the debugger

The fdb debugger provides several commands for stepping through the debugged file. The
following table summarizes these commands:

When you start a session, the debugger stops execution before Flex renders the application on the
screen. Use the continue command to get to the application’s starting screen.

The following example shows a sample application after it starts:
(fdb) continue
[trace] ComboBase: y = undefined text_mc.bl = undefined
[trace] ComboBase: y = undefined text_mc.bl = undefined
[trace] ComboBase: y = undefined text_mc.bl = undefined
[trace] ComboBase: y = undefined text_mc.bl = undefined

Command Description

continue Continues running the application.

file [file] Specifies an application to be debugged, without starting it. This command does not
cause the application to start; use the run command with no argument to start
debugging the application.

finish Continues until the function exits.

next [N] Continues to the next source line in the application. Optional argument N, means do
this N times or until the program stops for some other reason.

quit Exits from the debug session.

run [file] Starts a debugging session by running the specified file. Execute the run command
without any options to run the application previously specified by the file command.
The run command starts the application in a browser or stand-alone Flash Player.

step [N] Steps into the application. Optional argument N, means do this N times or until the
program stops for some other reason.
Using the debugger 717

[trace] ComboBase: y = undefined text_mc.bl = undefined
[trace] ComboBase: y = undefined text_mc.bl = undefined
[trace] ComboBase: y = undefined text_mc.bl = undefined
[trace] RadioButtonGroup.addInstance: instance =

_level0._VBox0._Accordion0._For
m2._FormItem3._RadioButton1 data = undefined label = 2003
[trace] RadioButtonGroup.addInstance: instance =

_level0._VBox0._Accordion0._For
m2._FormItem3._RadioButton2 data = undefined label = 2004
[trace] RadioButtonGroup.addInstance: instance =

_level0._VBox0._Accordion0._For
m2._FormItem3._RadioButton3 data = undefined label = 2005
[trace] RadioButtonGroup.addInstance: instance =

_level0._VBox0._Accordion0._For
m2._FormItem3._RadioButton4 data = undefined label = 2006
[trace] ComboBase: y = 0 text_mc.bl = 12
[trace] ComboBase: y = 0 text_mc.bl = 12
[trace] ComboBase: y = 0 text_mc.bl = 12
[trace] ComboBase: y = 0 text_mc.bl = 14

You interact with the application in the Flash Debug Player. For example, if you select an item
from the drop-down list, the debugger continues to output information to the command
window:
[trace] SSL : ConfigureScrolling
[trace] SSP : 5 51 true 47
[trace] ComboBase: y = 0 text_mc.bl = 14
[trace] layoutChildren : bRowHeightChanged
[trace] >>SSL:layoutChildren
[trace] deltaRows 5
[trace] rowCount 5
[trace] <<SSL:layoutChildren
[trace] >>SSL:draw
[trace] bScrollChanged
[trace] SSL : ConfigureScrolling
[trace] SSP : 5 51 false 46
[trace] SSL Drawing Rows in UpdateControl 5
[trace] <<SSL:draw

You can store commonly used commands in a source file and then load that file using the source
command. For more information, see “Using the source command” on page 720.

Using breakpoints

Setting breakpoints is a critical aspect of debugging any application. You can set breakpoints on
any ActionScript code in your Flex application. You can set breakpoints on statements in any
external ActionScript file, on ActionScript statements in an <mx:Script> tag, or on MXML tags
that have event handler properties. In the following MXML code, click is an event handler
property:
<mx:Button click=”ws.getWeather.send();” />

You cannot use breakpoints in event handlers of the web service results.
718 Chapter 33: Debugging Flex Applications

Breakpoints are maintained from session to session. However, when you change the target file or
quit fdb, breakpoints are lost.

The following table summarizes the commands for manipulating breakpoints with the
ActionScript debugger:

The following example sets a breakpoint on the myFunc() method, which is triggered when the
user clicks a button:

Command Description

break [args] Sets breakpoint at the specified line or function. The argument can
be a line number or function name. With no arguments, the break
command sets a breakpoint at the currently stopped line (not the
currently listed line).
If you specify a line number, fdb breaks at the start of code for that
line. If you specify a function name, fdb breaks at the start of code for
that function.

clear [args] Clears breakpoint at specified line or function. The argument can be
a line number or function name.
If you specify a line number, fdb clears a breakpoint in that line. If you
specify a function name, fdb clears a breakpoint at the beginning of
that function.
With no argument, fdb clears a breakpoint in the line that the
selected frame is executing in.
See the delete command, which clears breakpoints by number.

commands [breakpoint] Sets commands to execute when the specified breakpoint is
encountered. If you do not specify a breakpoint, the commands are
applied to the first breakpoint.

condition bnum [expression] Specifies a condition that must be met to stop at the given
breakpoint. The fdb debugger evaluates expression when the bnum
breakpoint is reached. If the value is true or nonzero, fdb stops at the
breakpoint. Otherwise, fdb ignores the breakpoint and continues
execution.
To remove the condition from the breakpoint, do not specify an
expression.
You can use conditional breakpoints to stop on all events of a
particular type. For example, to stop on every initialize event, use the
following commands:
(fdb) break UIEvent:dispatch
Breakpoint 18 at 0x16cb3: file UIEventDispatcher.as, line 190
(fdb) condition 18 (eventObj.type == 'initialize')

delete [args] Deletes breakpoints. Specify one or more comma- or space-
separated breakpoint numbers to delete those breakpoints. To
delete all breakpoints, give no argument.

disable breakpoints
[bp_num]

Disables breakpoints. Specify one or more space-separated
numbers as options to disable only those breakpoints.

enable breakpoints [bp_num] Enables breakpoints that were previously disabled. Specify one or
more space-separated numbers as options to enable only those
breakpoints.
Using the debugger 719

(fdb) break myFunc
Breakpoint 1 at 0x401ef: file file1.mxml, line 5
(fdb) continue
Breakpoint 1, myFunc() at file1.mxml:5
 5 ta1.text = "Clicked";
(fdb)

To see all breakpoints and their numbers, use the info breakpoints command.

You can use the commands command to periodically print out values of objects and variables
whenever fdb encounters a particular breakpoint. The following example prints out the value of
ta1.text (referred to as $1), executes the where command, and then continues when it encounters
the button’s click handler breakpoint:
(fdb) commands 1
Type commands for when breakpoint 1 is hit, one per line.
End with a line saying just 'end'.
>print ta1.text
>where
>continue
>end
(fdb) cont
Breakpoint 1, myFunc() at file1.mxml:5
 5 ta1.text = "Clicked";
$1 = ""
#0 [MovieClip 1].myFunc(event=undefined) at file1.mxml:5
#1 [MovieClip 1].handler(event=[Object 18127]) at file1.mxml:15

Using watchpoints

Watchpoints identify variables that trigger the fdb debugger to stop when those variables are
accessed. You can set watchpoints to trigger when the variables are read, written to, or both read
and written to.

The watch command has the following syntax:
(fdb) watch [expression]

The expression is any variable or property. The following example stops fdb when the color
property of the myButton object changes:
(fdb) watch myButton.color

Use the awatch command to stop fdb when the variable is written to or read from. Use the
rwatch command to stop fdb when the variable is read.

Watchpoints are a variant of breakpoints and can be manipulated with a subset of breakpoints
commands. Use info breakpoints to list all watchpoints (in addition to breakpoints). To delete
all watchpoints, use the delete command.

Using the source command

You can use the source command to read fdb commands from a file and execute them. This lets
you write commands such as breakpoints once and use them repeatedly when debugging the same
application in different sessions or across different applications.
720 Chapter 33: Debugging Flex Applications

The source command has the following syntax:
(fdb) source file

The value of file can be a filename for a file in the current working directory or an absolute path
to a remote file. To determine the current working directory, use the pwd command.

The following examples read in the mycommands.txt file from different locations:
(fdb) source mycommands.txt
(fdb) source mydir\mycommands.txt
(fdb) source c:\mydir\mycommands.txt

Examining data values

The print command displays values of variables, objects, and properties. To view the context of
the variable, use the what command. You can save a list of common variables that you want fdb to
display using the display command.

The print command uses the following syntax:
print [variable_name | object_name[.] | property]

The print command prints the value of the specified variable, object, or property. You can
specify the name or name.property to narrow the results. If fdb can determine the type of the
entity, fdb displays the type.

If print is performed on an object, fdb displays a numeric identifier for the object.

Note: The print command does not support expressions.

To list all the properties of an object, use trailing dot-notation syntax. The following example
prints all the properties of the object myButton:
(fdb) print myButton.

To print the value of a single variable, use dot-notation syntax, as the following example shows:
(fdb) print myButton.color

Use the what command to view the context of a variable. The what command has the following
syntax:
(fdb) what variable

Use the display command to add an expression to the auto-display list. Every time debugging
stops, fdb prints the list of expressions in the auto-display list. The display command has the
following syntax:
(fdb) display [expression]

The expression is the same as the arguments for the print command; for example:
(fdb) display myButton.color

To view all expressions on the auto-display list, use the info display command.

To remove an expression from the auto-display list, use the undisplay command. The
undisplay command has the following syntax:
(fdb) undisplay [list_num]
Using the debugger 721

Use the undisplay command without an argument to remove all entries on the auto-display list.
Specify one or more list_num options separated by spaces to remove numbered entries from the
auto-display list.

You can temporarily disable auto-display expressions using the disable display command. The
disable command has the following syntax:
(fdb) disable display [display_num]

Specify one or more space-separated numbers as options to disable only those entries in the auto-
display list.

To re-enable the display list, use the enable display command, which has the same syntax as
the disable display command.

Changing data values

You can use the set command to set the value of a variable or a convenience variable. The set
command has the following syntax:
set [expression]

Depending on the variable type, you use different syntax for the expression. The following
example sets the variable i to the number 3:
(fdb) set i = 3

The following example sets the variable employee.name to the string Susan:
(fdb) set employee.name = "Susan"

The following example sets the convenience variable $myVar to the number 20:
(fdb) set $myVar = 20

Convenience variables are variables that exist entirely within fdb; they are not part of your
application. Convenience variables are prefixed with $ and can have any name that does not
conflict with any existing variable.

The following table describes pre-existing convenience variables used by fdb:

Variable Description

$listsize Sets the number of lines to display with the list command. The default value
is 10.

$columnwrap Sets the column number on which output wraps in the display. The default
is value undefined.

$infostackshowthis Set to 0 to suppress this in stack backtraces. The default value is 1.

$invokegetters Set to 0 to prevent fdb from firing getter functions. The default value is 1
(enabled).

$bpnum Displays the last defined breakpoint number.
722 Chapter 33: Debugging Flex Applications

Viewing file contents

Use the list command to view lines of code in the ActionScript files. The list command uses
the following syntax:
list [- | line_num[,line_num] | [file_name:]line_num | file_name[:line_num] |

[file_name:]function_name]

The list command prints the lines around the specified function or line of the current file. If
you do not specify an argument, list prints 10 lines after or around the previous listing. If you
specify a filename, but not a line number, list assumes line 1.

To set the list location to where the execution is currently stopped, use the home comand.

If you specify a single numeric argument, the list command lists 10 lines around that line. If
you specify more than one comma-separated numeric argument, the list command displays
lines between and including those line numbers.

The following example lists code from line 10 to line 15:
(fdb) list 10, 15

If you specify a hyphen (-) in the previous example, the list command displays the 10 lines
before a previous 10-line listing.

Specify a line number to list around that line in the current file; for example:
(fdb) list 10

Specify a filename followed by a line number to list around that line in that file; for example:
(fdb) list effects.mxml:10

Specify a function name to list the lines around the beginning of that function; for example:
(fdb) list myFunction

Specify a filename followed by a function name to list the lines around the beginning of that
function. This lets you distinguish among like-named static functions; for example:
(fdb) list effects.mxml:myFunction

You can resolve ambiguous matches by extending the value of the function name or filename, as
the following examples show:

Filenames:
(fdb) list UIOb
Ambiguous matching file names:
UIObject.as#66
UIObjectDescriptor.as#67
UIObjectExtensions.as#68
(fdb) list UIObject.

Function names:
(fdb) list init
Ambiguous matching function names:
init
initFromClipParameters
(fdb) list init(
Using the debugger 723

Viewing and changing the current file

The list command acts on the current file by default. To change to a different file, use the cf
command. The cf command has the following syntax:
(fdb) cf [file_name|file_number]

For example, to change the file to MyApp.mxml, use the following command:
(fdb) cf MyApp.mxml

If you do not specify a filename, the cf command lists the name and file number of the current
file.

You can also use the viewswfs command to all files associated with the current SWF file. For
more information, see the online help.

Viewing the current working directory

Use the pwd command to view the file system’s current working directory. This is the directory
from which fdb was run; for example:
(fdb) pwd
c:/Program Files/Macromedia/Flex/bin/

Using truncated file and function names

The fdb debugger supports truncated file and function names. You can specify file_name and
function_name arguments with partial names, as long as the names are unambiguous.

If you use truncated file and function names, fdb tries to map the argument to an unambiguous
function name first, then a filename. For example, list foo first tries to find a function
unambiguously starting with "foo" in the current file. If this fails, it tries to find a file
unambiguously starting with "foo".

Printing stack traces

Use the bt command to display a back trace of all stack frames. The bt command has the
following syntax:
(fdb) bt

Getting status

Use the info command to get general information about the application. The info command
has the following syntax:
info [arguments|breakpoints|files|functions|locals|sources|swfs|targets|

variables] [args]
724 Chapter 33: Debugging Flex Applications

The info command displays generic information about the program being debugged. The
following table describes the options of the info command:

Handling faults

Use the handle command to specify how fdb should react to Flash Player errors during execution.
You can specify that fdb reacts differently depending on the type of fault.

The handle command has the following syntax:
(fdb) handle [fault_type|all] [action]

Option Description

arguments Displays the argument variables of the current stack frame.

breakpoints Displays the status of user-settable breakpoints.

display Displays the list of autodisplay expressions.

files [arg] Displays the names of all files used by the target application. This includes
authored files and system files, plus generated files. Also indicates the file number
for each file.
You can use wildcards and literals to select and sort the output. The info files
command supports the following:
info files character Alphabetically lists files with names that start with the
specified character. The following example lists all files starting with the letter V:
info files V
info files *.extension Alphabetically lists all files with the given extension. The
following example lists all files with the as extension:
info files *.as
info files *string* Alphabetically lists all files with names that include string.

functions [arg] Displays all function names used in this application. The info functions
command optionally takes an argument; for example:
info functions Lists all functions in all files.
info functions Lists all functions in the current file.
info functions MyApp.mxml Lists all functions in the MyApp.mxml file.

handle Displays settings for fault handling in the debugger.

locals Displays the local variables of the current stack frame.

sources Displays authored source files used by the target application.

stack Displays the backtrace of the stack.

swfs Displays all current SWF files.

targets Displays the HTTP or file URL of the target application.

variables Displays all global and static variable names.
Using the debugger 725

The fault_type is the category of fault that fdb handles. The action is what fdb does in
response to that fault. To assign a single action to all fault types, use all for the fault_type. The
following table describes the fault types:

The possible actions are print, noprint, stop, and nostop. The following table describes these
actions:

To view the current settings, use the info command, as the following example shows:
(fdb) info handle

Getting help

Use the help command to get information on particular topics. The help command has the
following syntax:
help [topic]

The help command provides a relatively terse description of each command and its usage. The
following example invokes the help command:
(fdb) help

Type help followed by the command name to get the full help information, as the following
example shows:
(fdb) help delete

Fault type Description

exception The application threw a user exception.

invalid_target The application’s ActionSetTarget instruction had a bad target name.

invalid_url The application failed to open a URL.

invalid_with The target of a with statement in the application is not an object.

proto_limit The application’s search up a prototype chain reached the limit.

recursion_limit The application reached the upper bound of the recursion limit.

script_timeout The ActionScript inside the application stopped running and the upper limit of wait
time was exceeded.

stack_underflow A stack underflow occurred.

zero_divide The application encountered a divide-by-zero error.

Action Description

print Prints a message if this type of fault occurs.

noprint Does not print a message if this type of fault occurs.

stop Stops execution of the debugger if this type of fault occurs.

nostop Does not stop execution of the debugger if this type of fault occurs.
726 Chapter 33: Debugging Flex Applications

Terminating the session

Use the kill and exit commands to end the current debugging session and exit from the fdb
application. The kill and exit commands take no arguments. If fdb invoked the default
browser, you can also terminate the fdb session by closing the browser window.

To stop the current session, use the kill command; for example:
(fdb) kill

Using the kill command does not quit the fdb application. You can immediately start another
session. To exit from fdb, use the exit command; for example:
(fdb) exit

Debugger example

The example in this section shows the following commands:

• Using the print command to traverse the proto chain and identify the MXML id of the
object and to probe static functions such as _global.mx.events.

• Using the what command to see how a variable reference was resolved.
• Using the display command to display common information every time you encounter a

breakpoint.
• Creating a trace-like effect using breakpoints and the commands command.
(fdb) w
#0 [Movieclip 5279].addEventListener(event="click", handler=[Object 3058])

at UIEventDispatcher.as:176
#1 [Movieclip 1].doFoo() at buttonClickHandler.mxml:21
#2 [Movieclip 1].handler(event=[Object 6187]) at buttonClickHandler.mxml:28
(fdb) print this
$14 = [Movieclip 5279]
(fdb) print id
$11 = "myBtn2"
(fdb) what id
this.__proto__.__proto__.__proto__.__proto__.id
(fdb) print className
$12 = "Button"
(fdb) what className
this.__proto__.className
(fdb) print label
$13 = "click me"
(fdb) print mx.events.
$16 = events = [Object 662]
EventDispatcher = [Function 664, name='_dependsOnEventDispatcher_']
EventProxy = [Function 1757]
LowLevelEvents = [Function 715, name='LowLevelEventDependency']
UIEventDispatcher = [Function 682, name='UIEventDispatcherDependency']
__constructor__ = [Function 10, name='Object']
__proto__ = [Object 11]
(fdb) what mx.events
_global.mx
(fdb) display this
(fdb) display className
Debugger example 727

(fdb) continue
Breakpoint 2, __addEventListener() at UIEventDispatcher.as:176
176 __origAddEventListener(event, handler);
4: this = [Movieclip 1]
5: this.className = "buttonClickHandler"

The following example sets commands on a breakpoint to create a trace-like ability. You must be
sure to set additional breakpoints (possibly conditional ones) so that the application stops at some
point.
(fdb) b UIE:dis
Breakpoint 1 at 0x401ef: file UIEventDispatcher.as, line 118
(fdb) commands
Type commands for when breakpoint 1 is hit, one per line.
End with a line saying just 'end'.
silent
p eventObj.type
p this
p this.className
c
end
(fdb) continue
$3 = "initialize"
$4 = [Movieclip 4198]
$5 = "RectBorder"

$6 = "initialize"
$7 = [Movieclip 4598]
$8 = "RectBorder"

$9 = "labelChanged"
$10 = [Movieclip 4868]
$11 = "Button"

$12 = "initialize"
$13 = [Movieclip 4868]
$14 = "Button"

$15 = "childCreated"
$16 = [Movieclip 4425]

...
728 Chapter 33: Debugging Flex Applications

CHAPTER 34
Profiling ActionScript
The Macromedia Flex ActionScript Profiler helps identify performance bottlenecks in your
applications. It can show you where too many calls to a particular method might be occurring, or
where an object’s instantiation might be taking too long. The Flex ActionScript Profiler analyzes
and logs information about your ActionScript calls and frame statistics in all your SWF files and
MXML applications.

Contents

About profiling . 729

About the Profiler . 730

Using the Profiler . 730

Analyzing data . 736

Troubleshooting. 739

About profiling

A code profiler is most commonly used to measure the effects of object instantiation and method
calls. To best take advantage of a profiler, you should also have a good understanding of your
application’s architecture, as well as the way your application interacts with external resources.

The ActionScript Profiler can examine the ActionScript in your Flex or Macromedia Flash
applications so that you can identify bottlenecks. Although the Profiler cannot directly drill down
into external resources such as Enterprise JavaBeans (EJBs), you can wrap calls to these resources
in ActionScript functions and profile them to gauge the total time.

Before using the Profiler, you should define the most common use cases of your application and
target the code paths of those use cases with the Profiler.

Macromedia recommends that you do not run the Profiler against your entire application. Rather,
you should isolate sections of ActionScript code in your application and profile each section
separately in the form of unit tests. If you try to profile an entire enterprise application, the
Profiler might produce too much data.
729

About the Profiler

The ActionScript Profiler records the time that Flash Player takes to perform tasks in
ActionScript. Most commonly, you use the Profiler to determine how long an ActionScript
function or method takes to execute, how often it is called, and how much time is spent executing
in its descendants. The Profiler can also show you the length of time ActionScript uses to
instantiate objects.

In addition, the Profiler records frame data, which shows you how long Flash Player takes to
render a frame for the client. This helps identify which objects might be taking too long to
initialize, or whether there are bottlenecks due to heavy graphics use or poor coding.

The Profiler relies on the Flash Debug Player to collect profiler data and store the data in files on
the client in a binary format.

Flex stores the Profiler’s output data in the Profiler web application’s
/profiler_web_root/WEB-INF/ProfilerData directory. The default location is /profiler/WEB-INF/
ProfilerData.

Using the Profiler

The Profiler web application runs on any operating system and application server that supports
Flex. However, to generate statistics for your application, you must use a Windows client to
request your application.

To use the Profiler:

1. Install the profiler.war application on your application server.

2. Configure the ActionScript Profiler in the client’s mm.cfg file.

3. (Optional) Add profile() method calls to profile ActionScript blocks in MXML or limit the
profiling in FLA files (for components). If you want to profile the entire application, do not add
profile() methods.

4. Request your application and generate the SWD file. In most cases, you can request the
application in a browser and append ?asprofile=true to your request string. For example:
http://localhost:8101/flex/myApplication.mxml?asprofile=true

5. Request the ActionScript Profiler application to examine the results; for example:
http://localhost:8101/profiler

The following sections describe these steps in detail.

Installing profiler.war

When you install Flex, you usually create a directory to act as the context root for the Flex
application on your Java application server. For example, on JRun, you create the following
directory:
jrun_root/servers/server_name/flex
730 Chapter 34: Profiling ActionScript

The default directory name is /flex. To use the Profiler, you create a profiler directory at the same
level as the /flex directory in the root of your application server. The Profiler runs as a separate
application from Flex. For example, on JRun, you create the following directory:
jrun_root/servers/server_name/profiler

The application directory structure should look similar to the following:
/app_server_root

/flex/
/flex/META-INF/..
/flex/WEB-INF/..
/profiler/
/profiler/META-INF/..
/profiler/WEB-INF/..

To install the Profiler:

1. Create the profiler’s application root directory.

2. Find the profiler.war file that was installed by Flex. It is located in the Flex install folder. The
default install folder in Windows is C:/Program Files/Macromedia/Flex.

3. Use WinZip, jar, or other archiving utility to extract the contents of the profiler.war file to the
profiler application root that you created in step 1; for example, from the profiler’s application
root directory, type the following command:
c:/jrun4/servers/server1/profiler> jar -xvf "c:/Program Files/Macromedia/

flex/profiler.war"

Note: Macromedia recommends that you expand the contents of WAR files when you deploy
them, rather than copy the entire WAR file itself into the application server’s directory. By
expanding the contents, you have greater visibility into the directory structure and contents of the
WAR file.

4. (Optional) Start or restart your application server. After you deploy a new application, you
might be required to restart your application server. For more information, see your web
application server’s documentation.

Configuring the Profiler

You configure the ActionScript Profiler by adding parameters to the mm.cfg text file. The default
location of the mm.cfg file in Windows is in the C:/Documents and Settings/username directory.
When you install Flex, Flex creates a file in the flex_install_dir/bin directory. For information on
the location and syntax of the mm.cfg file, see the Flex installation instructions.

The following example shows the default ActionScript Profiler settings from the mm.cfg file:
ProfilingOutputFileEnable=1
ProfilingOutputDirectory=c:\jrun4\servers\flex_server\profiler\WEB-

INF\ProfilerData
FrameProfilingEnable=0
ProfileFunctionEnable=0
Using the Profiler 731

The following table describes the Profiler settings in the mm.cfg file:

The Profiler settings in the mm.cfg file combine to provide a highly customizable environment
for profiling your application. Two common settings are as follows:

• To turn off profiling, set ProfilingOutputFileEnable to 0.
• To generate the greatest amount of profiling data, set ProfilingFileEnable and

FrameProfilingEnable to 1, and ProfileFunctionEnable to 0.

The following table describes the possible combinations of Profiling settings in the mm.cfg file:

Parameter Description

ProfilingOutputFileEnable Set to 1 to enable profiling. Set to 0 to disable profiling.
The default value is 0 (disabled).

ProfilingOutputDirectory The full system path to the output directory for the Profiler *.dat file.
Flex sets this path during installation. You must have write permission
on this directory.

FrameProfilingEnable Set to 1 to turn on frame-based profiling. Set to 0 to turn it off. The
default value is 0.

Caution: Frame-based profiling can generate a large amount of
data if run continuously against a movie with many frames.

When using the Profiler with an MXML application, frame-based
profiling should be off, since the application is typically run in a single
frame.
For more information about frame-based profiling, see “Analyzing
frame statistics” on page 739.

ProfileFunctionEnable Set to 1 to profile only ActionScript that is wrapped in the profile
functions in your MXML applications. Set to 0 to profile all
ActionScript calls in SWF files and MXML applications. The default
value is 1.
For more information about using profile functions to profile
ActionScript, see “Adding profile methods to your ActionScript
blocks” on page 733.

Description ProfilingOutput
FileEnable

FrameProfiling
Enable

ProfileFunction
Enable

Generates no output. In all cases, if you
set ProfilingOutputFileEnable to
0, no profiling data is generated.

0 N/A N/A

Profiles only ActionScript wrapped in
profile method calls (in either MXML
applications or FLA files).

1 0 1

Profiles frame data and script blocks
wrapped in profile method calls. These
settings profile frame data for all SWF
files and MXML applications, and profile
ActionScript for MXML applications
only.

1 1 1
732 Chapter 34: Profiling ActionScript

Adding profile methods to your ActionScript blocks

To profile ActionScript blocks in your MXML and FLA files, you can wrap the contents of
individual ActionScript functions in the profile method. To limit your profiling to just these
methods, set the value of the ProfileFunctionEnable property to 1 in the mm.cfg file.

The profile method has the following signature:
profile(boolean);

To turn on profiling for the current function, call profile(true) inside the function or method
definition. To turn off profiling, call profile(false) before the end of the function or method.

The following example of an MXML file ActionScript code block profiles the setTime method,
but not the getTime method:
<mx:Script><![CDATA[

function setTime() {
profile(true);
...
profile(false);

}

function getTime() {
...

}
]]></mx:Script>

If you do not close the profile block, the Profiler continues data collection until one of the
following occurs:

• You call profile(false).
• Flash Player stops.

Generating SWD files

SWD files contain debugging and profiling information. When you generate a SWD file, Flash
Player stores the SWD file in the same directory as the source file and the SWF file, with the same
name as the SWF file (but a different file extension).

To profile MXML applications, you must generate a SWD file (Flash debug file) so that the
profiler can access the appropriate hooks in your application. The SWD file and the SWF file
must be synchronized. If you generate a new SWF file, you must generate a new SWD before
running the profiler against your application.

Profiles frame data and all ActionScript
for all SWF files and MXML
applications.

1 1 0

Profiles all ActionScript for all SWF files
and MXML applications. Does not
generate frame data.

1 0 0

Description ProfilingOutput
FileEnable

FrameProfiling
Enable

ProfileFunction
Enable
Using the Profiler 733

You can generate a SWD file for an MXML file using the Debug version of the ActiveX Flash
Player, the mxmlc command-line compiler, or using the Debug version of the stand-alone Flash
Player. The client must be a Windows machine, but the server can be running on any supported
platform. To profile a component SWC file that you wrote using the Flash authoring
environment, you must export the file with debug settings enabled.

Regardless of how you want to generate profiling data, you must ensure that <production-mode>
is set to false in the flex-config.xml file. If it is set to true, Flex does not generate a SWD file.
The default value is false.

This section describes how to generate SWD files for MXML applications and for FLA files. For
more information on using the mxmlc compiler, see “Using the command-line compiler”
on page 754.

Generating SWD files with the ActiveX Flash Player

You must be running Internet Explorer and have the latest Flash.ocx file installed to generate a
SWD file using your browser. The latest version of this ActiveX control is installed in the
flex_install_dir/bin directory during the Flex installation. Use the installation instructions
included with Flex to install the ActiveX control.

To generate profiling data for an MXML application, perform one of the following tasks:

• Set the value of the <generate-profile-swfs> tag in the flex-config.xml file to true, and
then request the MXML application in your browser; for example:
http://localhost:8100/flex/myApp.mxml

For more information on configuring Flex with the flex-config.xml file, see “Editing compiler
settings” on page 764.

• Request the MXML file in your web browser and append the ?asprofile=true query string
to the MXML application’s URL in your browser; for example:
http://localhost:8100/flex/myApp.mxml?asprofile=true

Appending ?asprofile=true to your query string overrides the <generate-profile-swfs>
setting in the flex-config.xml file and lets you selectively generate profiling data.

Note: Set <production-mode> to false to generate profiling data. You cannot generate a SWD file if
<production-mode> is set to true in the flex-config.xml file. Furthermore, if production mode is
enabled, you cannot override the <generate-profile-swfs> setting by appending ?asprofile=true to
your request string.

Once generated, the SWD file remains in memory. To save it on disk, set <keep-generated-
swfs> to true in the flex-config.xml file. This is not required, but by writing the SWD file to
disk, you can be sure that Flex is generating it properly.

Generating SWD files with the stand-alone Player

To generate a SWD file in Windows or on UNIX using the stand-alone Flash Debug Player, open
the SWF file using Flash Debug Player. This requires that first you generate a SWF file using
either the mxmlc compiler or by requesting the MXML file in a browser. The stand-alone Flash
Debug Player supports debugging and profiling.
734 Chapter 34: Profiling ActionScript

Flash Debug Player is located in Flex_install_dir/bin/SAFlashPlayer.exe.

For more information on using the mxmlc compiler, see “Using the command-line compiler”
on page 754.

To open a SWF file in Flash Debug Player:

1. Select File > Open.

The Open dialog box appears:

2. Enter the path to the SWF file in the Location field.

3. Click OK.
Using the Profiler 735

Generating SWD files in the Flash authoring environment

To analyze SWF files generated from the Flash authoring environment, you must publish the
Flash content with the Debugging Permitted setting selected in the Publish Settings dialog box, as
the following figure shows:

When you generate a SWF file with Debugging Permitted selected, Flash generates a SWD file.
Without the SWD file, Flash Debug Player runs the SWF file but does not collect performance
data from the SWF file.

The SWF and SWD files share the same name with different extensions; you must store them in
the same directory at runtime. If the SWD file is not found, Flash Debug Player throws a 404
(Not Found) error.

Analyzing data

After you generate a SWD file for your application, run the ActionScript Profiler by opening the
following URL:
http://hostname:port/profiler

For example:
http://localhost:8101/profiler
736 Chapter 34: Profiling ActionScript

The Profiler main page appears:

The following table describes fields on the Profiler the main page:

To drill down into individual SWF file or MXML application profiling data, select the name of
the application. You can sort most table data in the Profiler by clicking on the column header.

If the Profiler main page appears, but there are no performance snapshots, check the value of the
ProfilingOutputDirectory setting in the mm.cfg file and ensure that it points to the proper
directory. For more information about the mm.cfg settings, see “Configuring the Profiler”
on page 731.

The following sections describe the reports available in the ActionScript profiler.

Analyzing user-defined methods, functions, and modules

The User-Defined Methods report summarizes the calls to each custom ActionScript method,
function, and module in your application.

You can view the source code for user-defined functions. If there are no custom functions called
by the current application or method, the following message appears in place of the table:
“There are no user-defined methods, functions or modules”

When you drill down to a dependent function to see its self-time, the Profiler displays the time
spent in that dependent function only.

The following table describes the fields on the User-Defined Methods report:

Field Description

File Name The name of the SWF file or MXML application that you ran the ActionScript Profiler
against. Click a filename to view that application’s Profiler data.

Date The date that the Profiler ran against this file.

Field Description

Name The names of the methods called during this Profiler run. Select the
method name to see the Method Summary table for methods that were
called by this method.

Calls The number of times each method was called during this Profiler run.
Analyzing data 737

Analyzing built-in functions

The Built-in Functions report shows statistics for ActionScript methods, functions, and modules
called by your ActionScript code. You cannot view the source code for built-in functions. If there
are no built-in functions called by the current application or method, the following message
appears in place of the table:
“There are no built-in functions”

The following table describes the fields on the Built-in Functions report:

Analyzing source code

The Source Code report shows the ActionScript source code for the SWF file. The following table
describes the fields in the Source Code report:

Cumulative Time The total amount of time it took to run this method, and all methods
invoked within this method, excluding recursive calls to those child
methods.

Cumulative Time
(Average)

The average amount of cumulative time it took to run this method and all
the methods invoked within this method.

Self Time The amount of time just this method took to run.

Self Time (Average) The average time this method took to run. Self Time (Average) is equal to
the Self Time divided by the number of Calls.

Field Description

Name The name of the built-in function.

Calls The number of times each function was called during this Profiler run.

Cumulative Time The total amount of time it took to run this function and all functions
invoked within this function, excluding recursive calls to those child
functions.

Cumulative Time
(Average)

The average amount of cumulative time it took to run this function. The
Cumulative Time (Average) is the Cumulative Time divided by the number
of Calls.

Field Description

Line The line number of the ActionScript source code.

Calls The number of times this line was executed.

Cumulative Time The total time all calls took to execute this line.

Average Time The average amount of time it took to execute this line. Average Time is equal
to Cumulative Time divided by Calls.

Source The ActionScript source code.

Field Description
738 Chapter 34: Profiling ActionScript

Analyzing asynchronous function latencies

Asynchronous functions are functions that usually make network calls or calls to other functions
that do not immediately return results. For example, calls to web services or Flash Remoting
objects, or calls that use callback handlers are asynchronous function calls. In these examples,
Flash Player continues to execute the next statement without waiting for the result of the
asynchronous function call, so the Profiler separates out the data.

The Asynchronous Function Latency Summary shows the wait time (or “lag” time) before the
client executes the function. The Profiler only displays function calls with registered handlers.

The following table describes the fields in the Asynchronous Function Latency Summary:

Analyzing frame statistics

The Frame Statistics report shows profiling data for each frame rendered by Flash Player.

The following table describes the fields in the Frame Statistics report:

Troubleshooting

If Flex does not generate a SWD file or there is no *.dat file in the Profiler directory, check for the
following:

• The flex_app_root/WEB-INF/flex/frameworks_debug/mx_debug.swc file must be present.
• The <debug-lib-path> setting in flex-config.xml file must point to flex_app_root/WEB-INF/

flex/frameworks_debug/.

Field Description

Name The name of the function.

Calls The number of calls made to this function during the data collection period.

Average Latency The average amount of time the Flash client takes before it begins executing
the function.

Field Description

Frame The frame number that Flash Player renders for the current
timing data. This is not the frame number in the FLA file of a
multiframe SWF file.

Script Time Before Frame Start The latency experienced before Flash Player renders the
frame. Typically, Flash Player executes some ActionScript,
such as initialization or determining the position and size of
objects, before it renders a frame.

Script Time Between Frame Start
and Frame End

The amount of time it takes to execute only the ActionScript
while Flash Player is rendering this frame.

Frame Delay (Frame End — Frame
Start)

The total amount of time it takes for Flash Player to render
this frame. Frame Delay is the result of Frame End minus
Frame Start.
Troubleshooting 739

• The <production-mode> setting in the flex-config.xml file must be set to false to generate
profiling data.

• The value of the ProfilingOutputFileEnable property is set to 1 in the mm.cfg file on the
client requesting the application.

• Check that Flex is writing data files to the server_root/profiler/WEB-INF/ProfilerData
directory. If the application to be profiled is small and you have minimal profiling information,
Flex might not initially write a *.dat file. Close the browser running the application before
running the profiler application. This flushes the buffer and forces Flex to write the data to
disk.
740 Chapter 34: Profiling ActionScript

CHAPTER 35
Using the Flex JSP Tag Library
Macromedia Flex includes a JSP tag library that you use to add MXML code to your JavaServer
Pages (JSPs) or create custom HTML wrappers for your Flex applications. This chapter describes
how to use the tag library.

Contents

Introduction to the Flex JSP tag library . 741

Using the Flex JSP tag library. 742

About the Flex tags . 742

Using the <mxml> tag . 745

Using the <flash> tag . 748

Using the <param> tag . 748

Introduction to the Flex JSP tag library

Flex includes a tag library that you can use with JavaServer Pages (JSPs). The Flex JSP tag library
does the following:

• Supports inlined, dynamically generated MXML
• Generates an HTML wrapper for compiled MXML applications
• Generates an HTML wrapper for static SWF files

When you use the Flex JSP tag library, you have access to all of the objects on JSPs to dynamically
generate the MXML from a combination of MXML and JSP tags.

For example, suppose you run a weather service that stores a ZIP code or geocode in your user’s
session object. Based on this geocode, you dynamically invoke a regional weather web service.
Because you can write a Flex application in a JSP, you can access the session data and assign the
proper web service before the MXML is compiled.

The Flex JSP tags are integrated with the following Flex features:

• Caching
• History management
741

• Accessibility
• Player deployment
• Player version detection

The Flex JSP tag library also generates the HTML wrapper around your Flex applications. As a
result, you can use it to set flashVars or other properties of the <object> and <embed> tags.

Using the Flex JSP tag library

To use the Flex tag library, you add a taglib directive in your JSP that points to the FlexTagLib
URI, as the following example shows:
<%@ taglib uri="FlexTagLib" prefix="mm" %>

As with any JSP taglib directive, this line must appear before you use any tags in the Flex JSP tag
library.

The Flex JSP tag library is stored in the flex-bootstrap.jar file. This location is defined by the
taglib declaration in the flex_app_root/WEB-INF/web.xml file. The default taglib declaration
from the web.xml file is as follows:
<taglib>

<taglib-uri>FlexTagLib</taglib-uri>
<taglib-location>/WEB-INF/lib/flex-bootstrap.jar</taglib-location>

</taglib>

About the Flex tags

The Flex JSP tag library includes the following tags:

• <mxml> References an external MXML file or adds MXML tags inline in your JSP page.
• <flash> References a precompiled SWF file.
• <param> Passes flashVars variables to the SWF file.

The <mxml> and <flash> tags support HTML parameters as tag properties that define the
appearance of the Flex application on the page.

When Flex receives a request for a JSP page that uses the <mxml> tag, it compiles the MXML file
and dependent files into a SWF file, and then generates an HTML wrapper that references the
new SWF file. For a JSP page that uses the <flash> tag, Flex generates the HTML wrapper and
returns the precompiled SWF file.

About tag properties

The <mxml> and <flash> tags support a set of properties that define the presentation of the SWF
file on the generated HTML page. These properties are defined by the HTTP specification.
When you set a property, Flex adds that property to the <object> and <embed> tags within the
HTML wrapper. In some cases, the properties are only supported by the <object> or the
<embed> tag, but not both.
742 Chapter 35: Using the Flex JSP Tag Library

The following properties are supported by the <mxml> and <flash> JSP tags:

For descriptions of these tags, see “About the <object> and <embed> tag properties” on page 800.

For example, you can add a border to your SWF file by setting the value of the border property,
as the following example shows:
<mm:mxml border="5" >

...
</mm:mxml>

Flex writes tag properties as parameters on the resulting HTML wrapper.

The <mxml> and <flash> JSP tags also take a set of intrinsic JavaScript events as properties.
These events let the generated Flex application interact with the Document Object Model for the
HTML page that contains it.

The following table describes the JavaScript events that the <mxml> and <flash> JSP tags
support:

align archive base bgcolor border

classid codetype data declare dir

height hspace id lang name

pluginspage quality salign scale source

standby style supportembed
(<flash> tag only)

tabindex title

type usemap vspace width wmode

Attribute Description

onclick Occurs when the user clicks the mouse button over the Flex application’s SWF
file. The onclick event takes a value that is a script. The script executes
whenever this event occurs for that SWF file.

ondblclick Occurs when the user double-clicks the mouse button over the Flex application’s
SWF file. The ondblclick event takes a value that is a script. The script executes
whenever this event occurs for that SWF file.

onkeydown Occurs when the user presses a key down over the Flex application’s SWF file.
The onkeydown event takes a value that is a script. The script executes whenever
this event occurs for that SWF file.

onkeypress Occurs when the user presses and releases a key over the Flex application’s
SWF file. The onkeypress event takes a value that is a script. The script executes
whenever this event occurs for that SWF file.

onkeyup Occurs when the user releases a key over the Flex application’s SWF file. The
onkeyup event takes a value that is a script. The script executes whenever this
event occurs for that SWF file.

onmousedown Occurs when the user presses the mouse button over the Flex application’s
SWF file. The onmousedown event takes a value that is a script. The script
executes whenever this event occurs for that SWF file.
About the Flex tags 743

The following example defines a pair of JavaScript functions, and instructs the generated Flex
application’s SWF file to react to the user’s mouse movements. When the user moves their mouse
over the SWF file or off of the SWF file, the message field is updated, as in the following
example:
<%@ taglib uri="FlexTagLib" prefix="mm" %>
<SCRIPT LANGUAGE="JavaScript">
 function showMessage() {
 message.value = "Use this application wisely";
 }

 function hideMessage() {
 message.value = "";
 }
</SCRIPT>

<mm:mxml border="5" onmouseover="showMessage();" onmouseout="hideMessage();">
...
</mm:mxml>
<TABLE>
 <TR>
 <TD><input type="text" name="message" size="50"></TD>
 </TR>
</TABLE>

About caching

When you use MXML inline on a JSP page, Flex returns a cached SWF file each time the JSP
page is invoked if the MXML or the JSP has not changed. Otherwise, Flex recompiles a new SWF
file and returns that. Even when you dynamically generate MXML in a CFM or JSP page, the
generated source is cached in addition to the output SWF file. Flex caches the dynamically
generated fragment of MXML, and associates the SWF file with this fragment.

Note: Compilation performance depends on the number of unique MXML fragments in your source
JSP. Thus, you should use dynamic MXML sparingly.

onmousemove Occurs when the user moves the mouse while the mouse pointer is over the Flex
application’s SWF file. The onmousemove event takes a value that is a script. The
script executes whenever this event occurs for that SWF file.

onmouseout Occurs when the user moves the mouse pointer away from the Flex application’s
SWF file. The onmouseout event takes a value that is a script. The script executes
whenever this event occurs for that SWF file.

onmouseover Occurs when the user moves the mouse pointer onto the Flex application’s SWF
file. The onmouseover event takes a value that is a script. The script executes
whenever this event occurs for that SWF file.

onmouseup Occurs when the user releases the mouse button over the Flex application’s
SWF file. The onmouseup event takes a value that is a script. The script executes
whenever this event occurs for that SWF file.

Attribute Description
744 Chapter 35: Using the Flex JSP Tag Library

If you are continuously generating new, unique pieces of MXML source code with the JSP, the
cache might not be effective and might result in excessive recompilation. When the MXML
source is in its own file, the source is not dynamic and, therefore, only the output SWF file is
cached. In general, you should only use dynamic MXML if you can assure yourself that the
number of unique pieces of MXML source is finite and roughly less than the size of the MXML
source cache.

You can set the number of fragments that Flex caches in the flex-config.xml file. For more
information, see “Configuring caching” on page 759.

Using the <mxml> tag

You use the <mxml> JSP tag to write Flex applications inside a JSP. This tag supports adding
MXML content in the JSP itself, or refers to external MXML files that Flex compiles and embeds
in the JSP.

The syntax for the <mxml> tag is as follows:
<prefix:mxml [source=source_file] [properties]>

[MXML]

</prefix:mxml>

The <mxml> tag creates the <object> and <embed> tags that act as an HTML wrapper for the
Flex application. This wrapper is the same as the wrapper generated when you request a *.mxml
file.

You can define attributes of the <mxml> tag that become properties of the <object> and <embed>
tags in the HTML wrapper. These properties define how the SWF file appears and interacts with
the web page. For information about using the <mxml> tag to define the values in the HTML
wrapper, see “About the <object> and <embed> tags” on page 799.

The <mxml> tag has an optional child tag: <param>. You use this tag to pass variables to the Flex
application in the form of a variable. For more information, see “Using the <param> tag”
on page 748.

The following sections describe how to use the <mxml> JSP tag to write MXML directly in a JSP
and how to use it to refer to an external MXML document.

Writing MXML in JSPs

You use the <mxml> tag without a source property to enclose a set of MXML tags in a JSP page.
You can set any number of properties that define the presentation of the SWF file on the page in
the <mxml> tag. The syntax for writing MXML inline in a JSP is as follows:
<prefix:mxml [properties]>

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">
//MXML tags

</mx:Application>
</prefix:mxml>

When you write MXML directly in a JSP, you set the prefix in the <mx:Application> tag just as
you would when writing any Flex application.
Using the <mxml> tag 745

The following example creates a Flex application with a simple Accordion container in the JSP
file:
<%@ taglib uri="FlexTagLib" prefix="mm" %>
<html><body>
<h3>Introduction</h3>
<p>This is an example of writing MXML in a JSP.</p>
<h3>My App</h3>
<mm:mxml border="1">

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">
<mx:Accordion width="500" height="300">

<mx:VBox label="panel1" width="500" height="200" />
</mx:Accordion>

</mx:Application>
</mm:mxml>
</body></html>

You can write multiple Flex applications in a single JSP. The Flex applications do not share the
same namespace and run independently of one another. Thus, you can use the same variable
names and control IDs across applications without causing conflicts.

The following example shows two identical applications defined inline in a JSP:
<%@ taglib uri="FlexTagLib" prefix="mm" %>
<html><body>
<h3>Introduction</h3>
<p>This is an example of writing multiple MXML apps in a single JSP.</p>
<h3>My App 1</h3>
<mm:mxml border="1">

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">
<mx:Accordion width="500" height="300">

<mx:VBox label="panel1" width="500" height="200" />
</mx:Accordion>

</mx:Application>
</mm:mxml>
<HR>
<h3>My App 2</h3>
<mm:mxml border="1">

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">
<mx:Accordion width="500" height="300">

<mx:VBox label="panel1" width="500" height="200" />
</mx:Accordion>

</mx:Application>
</mm:mxml>
</body></html>

Mixing JSP expressions with MXML

When you write MXML code in a JSP, you can mix JSP expressions with MXML code to
dynamically generate Flex applications. The following simple example uses a call to
session.getProperty() to get the user’s name out of the JSP’s session object, and uses that
name as the value of the label’s text property in the MXML:
<%@ taglib uri="FlexTagLib" prefix="mm" %>
<mm:mxml>
746 Chapter 35: Using the Flex JSP Tag Library

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="200"
height="240">

<mx:Label id="label0" text="Hi <%= session.getAttribute("username") %> "/>
</mx:Application>

</mm:mxml>

Macromedia recommends that you do not use per-request data in the MXML, because every time
the data changes, Flex recompiles the MXML tags into a new SWF file. In the previous example,
Flex recompiles whenever a new user requests the page, but does not recompile if the same user
requests the page multiple times. If the fragment does not change, recompilation is not necessary.

You can use any JSP expression within the MXML code, as long as it evaluates to a String. The
following example gets a current counter and loads a picture indexed by the counter when
running the SWF file. If the user clicks the Refresh button in the browser, the counter is
incremented and the next image in the array is displayed, as the following example shows:
<%@ taglib uri="FlexTagLib" prefix="mm" %>
<%

int counter=0;
try {

counter=Integer.parseInt((String)application.getAttribute("counter"));
} catch (Exception e) {
}
String jpgs[]={"mike.jpg","steve.jpg","matt.jpg"};
String names[]={"Mike","Steve","Matt"};

%>
<mm:mxml>

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="300"
height="200" >

<mx:Label text="<%=names[counter]%>" />
<mx:Image width="150" height="75" source="<%=jpgs[counter]%>"/>

</mx:Application>
</mm:mxml>
<%

counter=(counter+1)%4;
application.setAttribute("counter",""+counter);

%>

Including external MXML files in JSPs

You use the <mxml> tag with the source property to include external MXML files in your JSPs.
You can include multiple Flex applications on a single page and dynamically select which MXML
application to run on the page. Flex generates a new SWF file for each source file, and it is a
separate MXML application.

The syntax for including an external MXML file with the <mxml> tag is as follows:
<prefix:mxml source="path_to_MXML_file"/>

The source property is relative to the location of the JSP.

When you point to external MXML files, the custom tag only recompiles the MXML application
into a SWF file if the source files have changed.
Using the <mxml> tag 747

You can include any number of applications in a single JSP using the <mxml> tag. The following
example embeds two applications in a JSP:
<%@ taglib uri="FlexTagLib" prefix="mm" %>
<h3>First App</h3>
<mm:mxml source="../FlexApps/MyApp.mxml" />

<h3>Second App</h3>
<mm:mxml source="../FlexApps/MyApp2.mxml" />

Using the <flash> tag

You use the <flash> tag to include pregenerated SWF files in your JSPs. The <flash> tag
generates the HTML wrapper that defines the application on the page. You can set tag attributes
on the <flash> tag that Flex converts to properties that define the appearance and interaction of
the SWF file on the page.

To use the <flash> tag, you must first generate the SWF file by requesting it with Macromedia
Flash Player or browser, or the mxmlc precompiler.

The syntax of the <flash> tag is as follows:
<prefix:flash source=source.swf [attributes] />

For example:
<%@ taglib uri="FlexTagLib" prefix="mm" %>
<mm:flash source="myApp.swf" border="5" />

The <flash> tag creates the <object> and <embed> tags that act as an HTML wrapper for the
Flex application and adds them to the resulting HTML output stream.

The <flash> tag has an optional child tag: <param>. You use this tag to pass variables to the Flex
application in the form of a variable. For more information, see “Using the <param> tag”
on page 748.

You can define attributes of the <flash> tag that become properties of the <object> and
<embed> tags in the HTML wrapper. These properties define how the SWF file appears and
interacts with the web page. For information on using the <flash> tag to define the values in the
HTML wrapper, see “About the <object> and <embed> tags” on page 799.

When you use the <flash> JSP tag, Flex generates a new HTML wrapper every time the JSP is
requested. There is no noticeable performance penalty for regenerating this wrapper, however,
because the underlying SWF file is not recompiled. After the JSP page is generated, it is probably
cached by your JSP engine as a servlet, as any JSP page would be cached. For more information,
see your application server’s documentation.

Using the <param> tag

You can pass variables to Flex applications using the <param> JSP tag.

The syntax for the <param> tag is as follows:
<prefix:mxml|flash>

...
748 Chapter 35: Using the Flex JSP Tag Library

<prefix:param name="param_name" value="param_value" />
...

</prefix:mxml|flash>

The <param> tag is a child tag of either the <flash> or <mxml> tag, but its usage is different
depending on which tag you are using it with. When you use the <param> tag as a child tag of the
<mxml> tag, you can use any number of <param> tags and give the name of the parameter any
value you want. Flex converts the <param> tags to a single flashVars variable in the HTML
wrapper and URL encodes values where necessary. For example, Flex converts the following JSP
tags:
<mm:mxml>

<mm:param name="userID" value="2405" />
<mm:param name="firstname" value="fred" />
...

</mm:mxml>

These tags become the following flashVars variable in the HTML wrapper:
<param name='flashVars' value='userID=2405&firstname=fred'>
<param name='src' value='/flex/jsps/1604541403.mxml.swf'>
 <embed pluginspage='http://www.macromedia.com/go/getflashplayer' width='400'

height='200'
flashVars='userID=2405&firstname=fred'
src='/flex/jsps/1604541403.mxml.swf'
 />

For more information about flashVars, see “Using flashVars” on page 807.

When you pass a value into a Flex application with a <param> tag, you can then use the value of
that variable in the Flex application, as long as the variable is declared inside an MXML script
block.

To use the variable in your Flex application, declare the variable name but do not initialize it. Flex
can then access the value in its global scope. The following JSP fragment sets the value of a
userID in the body of the JSP, declares the variable name in the Flex application, and then uses it
in a function:
<%@ taglib uri="FlexTagLib" prefix="mm" %>
<% String userID = "2405"; %>

<mm:mxml>

<mm:param name="userID" value="<%= userID %>" />
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script>
var userID:String;
function getUserID() {

vb1.label = vb1.label + userID;
}

</mx:Script>

<mx:Accordion>
Using the <param> tag 749

<mx:VBox id="vb1" label="Panel 1: ">
<mx:Button label="Get User ID" click="getUserID();" />

</mx:VBox>
</mx:Accordion>

</mx:Application>

</mm:mxml>

The value of a <param> tag does not have to be static. It can be any JSP expression that can be
evaluated to a String, as the following example shows:
<mm:param name="userId" value="<%= x.toString(); %>" />

You can bind the value of a parameter using the { } shorthand, just as you would use curly braces
in other instances. The following example prints the value that a parameter passes in a <param>
tag in the label:
<%@ taglib uri="FlexTagLib" prefix="mm" %>
<html><body>
<%

session.setAttribute("username", "nick");
String s = (String) session.getAttribute("username");

%>
<h3>Introduction</h3>
<p>This is an example of passing variables to an MXML application in a JSP.</p>
<h3>My App 2</h3>

<mm:mxml border="1">
<mm:param name="param1" value="<%=s%>" />
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">

<mx:Script>
var param1;

</mx:Script>

<mx:Label text="Hello {param1}" />

</mx:Application>
</mm:mxml>
</body></html>

Since the value of <param> is not part of the MXML fragment itself, Flex does not recompile the
application when the value changes (although the application server may recompile the JSP page).
This is a more efficient way of passing dynamic data to the Flex application than mixing JSP
expressions inside the MXML code, but it restricts you to String values of a relatively short length.
Also, your MXML code must declare a variable for each passed <param> that you access inside the
application.
750 Chapter 35: Using the Flex JSP Tag Library

P
A

R
T

 V
I

PART VI
Administrating Applications
This part describes how to administrate Macromedia Flex applications.

The following chapters are included:

Chapter 36: Administering Flex . 753

Chapter 37: Applying Flex Security . 773

Chapter 38: Deploying Applications . 785

CHAPTER 36
Administering Flex
This chapter describes how to use the command-line MXML compiler and the Macromedia Flex
application logger. It also discusses how to configure the Flex application settings using the
flex-config.xml and web.xml files.

Contents

Overview . 753

Using the command-line compiler . 754

Editing the flex-config.xml file . 757

Changing application server settings . 767

Configuring logging. 768

Overview

You administer Flex with a combination of configuration file settings and application server
settings. Flex runs as an application on your J2EE server, therefore, many settings such as security,
access control, and virtual directory mapping are done using the web application server’s
configuration utilities rather than using the Flex configuration files.
753

The following table describes the most common configuration files that you use to configure the
Flex environment:

This chapter includes the following topics:

• Performing off-line compilation using the command line compiler. This mxmlc utility
compiles MXML files into SWF files.

• Setting configuration options in the flex-config.xml file. You use this file to define compiler,
debugging, proxy, and other settings for Flex.

• Configuring Flex logging.

Using the command-line compiler

You can use the mxmlc tool included with Flex to compile your MXML files into SWF files
without requesting them from a browser or Macromedia Flash Player. To use mxmlc, you must
have a Java runtime in your system path.

Note: If you precompile a Flex SWF file, you can deploy it only on a server that is running a licensed
copy of Flex.

The syntax of the mxmlc tool is as follows:
mxmlc [options] filename.mxml

To use the mxmlc utility:

1. Open a console window.

2. Change to the Flex_install_dir/bin; for example, C:/Program Files/Macromedia/Flex/bin.

3. Invoke mxmlc with the appropriate arguments.

In Windows systems, you can invoke the mxmlc.exe. On all systems, you can invoke the
mxmlc batch file. In both situations, the syntax is the same; for example:
mxmlc -configuration WEB-INF/flex/flex-config.xml myApp.mxml

File Description

flex_app_root/WEB-INF/web.xml Configures your Flex application to run on the J2EE web
application server. You use this file to define context
parameters, filters, servlet mappings, JSP tag libraries, error
handling, and other settings for your web application.
You should not edit the web.xml file unless you are adding
additional functionality to your web application or you are
configuring Flex to run on a Macromedia ColdFusion server.
For more information, see the Flex installation instructions.

flex_app_root/WEB-INF/flex/flex-
config.xml

Configures Flex. You use this file to define debugging,
compiler, cache, proxy, logging, font and other settings for
Flex. This is the file that you most often edit to change the
behavior of the Flex application running on your application
server.

flex_app_root/WEB-INF/flex/
gateway-config.xml

Configures the Macromedia Flash Remoting gateway. You
can configure service adapters, security, logging, and other
settings for Flash Remoting using this file.
754 Chapter 36: Administering Flex

Specify the configuration option to use the settings in the flex-config.xml file for compiling. If
you do not specify the configuration option, you can specify most options on the command
line. If you specify both a configuration option and use other command-line options, the
command-line options override the configuration file values where possible. For more
information on using the flex-config.xml file, see “Editing the flex-config.xml file” on page 757.

The following table describes the mxmlc options:

Option Description

-accessible Enables accessibility features when compiling the Flex application. The
default value is disabled.
For more information about creating accessible Flex applications, see
“Enabling accessibility” on page 766.

-aspath path Adds additional directories or files to the ActionScript classpath. You
can use wildcards to include all files and subdirectories of a directory.
The default value is flex_app_root/WEB-INF/flex/user_classes.
For more information on the ActionScript classpath, see “Editing the
ActionScript classpath” on page 765.

-batch file1.mxml [...] Compiles multiple MXML files. Separate each filename with a space.
When you use the batch option, mxmlc outputs error and informational
messages to filename.err and filename.out for each MXML file, rather
than the console. These files are in addition to the manager.err and
manager.out files.

-configuration path Designates a full path or a path relative to web application root that
points to the configuration file. Flex includes a default configuration file,
flex-config.xml, in the flex_app_root/WEB-INF/flex directory. If you
specify a configuration file, you can override individual options by setting
them on the command line.

-debugpassword password Lets you engage in remote debugging sessions with the Flash IDE. For
more information, see “About the debugger” on page 712.

-flexlib path Specifies a directory containing frameworks and system_classes.

-g Generates a SWD file for use by the ActionScript debugger. By default,
mxmlc does not generate debugger information.

-gatewayurl url Specifies the callback URL for the Flash Remoting gateway to use when
using AMF encoding over HTTP.
This value is the equivalent of the <amf-gateway> element in the <remote-
objects> block in the flex-config.xml file.
For more information, see “Declaring a data service” on page 658.

-gatewayhttpsurl url Specifies the callback URL for the Flash Remoting gateway to use when
using AMF encoding over HTTPS.
This value is the equivalent of the <amf-https-gateway> element in the
<remote-objects> block in the flex-config.xml file.
For more information, see “Declaring a data service” on page 658.

-globalCssUrl path Specifies a global CSS file. The default setting in the flex-config.xml file
is flex_app_root/WEB-INF/flex/global.css.
Using the command-line compiler 755

-headless Enables the headless implementation of the Flex compiler. This sets the
following:
System.setProperty("java.awt.headless", "true")
The headless setting (java.awt.headless=true) is required to use fonts
and SVG on UNIX systems without X Windows.

-libpath path The path to the base Flex classes and SWC files. The default is
flex_app_root/WEB-INF/flex/frameworks. For more information, see
“Changing the Flash classpath” on page 822.

-namespace uri
manifestfile

Specifies a namespace for the MXML file. You must include a URI and
the location of the manifest file. This path is relative to the MXML file.

-o location Specifies the output path and filename for the resulting SWF file. By
default, mxmlc uses mxml_filename.swf in the current directory. This
option has no equivalent compiler setting in the flex-config.xml file.

-O[0] Enables the ActionScript optimizer. Add the 0 (zero) to disable the
ActionScript optimizer. The default is enabled.
For more information about the ActionScript optimizer, see “Using the
ActionScript optimizer” on page 764.

-profile Generates a SWD file for use by the ActionScript Profiler. By default,
mxmlc does not generate Profiler information.

-proxyurl url Specifies the callback URL for the Flex proxy over HTTP.
This value is the equivalent of the <url> elements in the <web-service-
proxy> and <http-service-proxy> blocks in the flex-config.xml file. If you
specify the proxyurl option on the command line, mxmlc overrides both
of these settings.
For more information, see “Declaring a data service” on page 658.

-proxyhttpsurl url Specifies the callback URL for the Flex proxy over HTTPS.
This value is the equivalent of the <https-url> elements in the <web-
service-proxy> and <http-service-proxy> blocks in the flex-config.xml
file. If you specify the proxyhttpsurl option on the command line, mxmlc
overrides both of these settings.
For more information, see “Declaring a data service” on page 658.

-proxyallowurloverride Lets users override the proxyurl option by using a proxy specified with a
flashVars variable or by appending the query string parameter
?proxyURL=url to the query string.
The default is disabled. For more information, see “Declaring a data
service” on page 658.

-remoteurl url Specifies the RemoteObject endpoint to use when using SOAP
encoding over HTTP.
This value is the equivalent of the <url> element in the <remote-objects>
block in the flex-config.xml file.
For more information, see “Declaring a data service” on page 658.

Option Description
756 Chapter 36: Administering Flex

The mxmlc compiler creates manager.err and manager.out files with error and informational
messages about the file you compiled. If you compile more than one MXML file, these messages
apply to all compiled files.

Editing the flex-config.xml file

Flex includes several configuration files to administer the behavior of your applications. Settings
specific to the Flex application are defined in the flex_app_root/WEB-INF/flex/flex-config.xml
file. Application server settings are located in the flex_app_root/WEB-INF/web.xml file.

The XML configuration files are easy to read and edit. In the case of the flex-config.xml file, you
can use the flex-config.xsd schema file to validate your flex-config.xml settings. For web.xml file
settings, consult your application server documentation.

You can change the location of the flex-config.xml file by editing the web.xml file and changing
the value of the flex.configuration.file parameter. The following example shows the default
settings:
<context-param>

<param-name>flex.configuration.file</param-name>
<param-value>/WEB-INF/flex/flex-config.xml</param-value>
<description>configuration file</description>

</context-param>

You must restart the server after making changes to the flex-config.xml and web.xml files.

-remotehttpsurl url Specifies the RemoteObject endpoint to use when using SOAP
encoding over HTTPS.
This value is the equivalent of the <https-url> element in the <remote-
objects> block in the flex-config.xml file.
For more information, see “Declaring a data service” on page 658.

-remoteallowurloverride Lets users override the remoteurl setting by using a proxy specified with
a flashVars variable or by appending the query string parameter
?remoteURL=url to the query string.
The default is disabled. For more information, see “Declaring a data
service” on page 658.

-report Generates the filename-report.xml file that lists configuration options and
symbols used in the compilation. The file is located in the same directory
as the source files.

-systemclasses path Path to the native (intrinsic) ActionScript classes. The default is
flex_app_root/WEB-INF/flex/system_classes.

-version Returns the version number of the MXML compiler. If you are using a
trial or Beta version of Flex, the version option also returns the number of
days remaining in the trial period and the expiration date.

-webroot directory Specifies the root of the web application. If you do not specify a webroot,
mxmlc searches for a WEB-INF directory relative to the MXML
document.

Option Description
Editing the flex-config.xml file 757

If you specify a URL beginning with a slash, it is relative to the web root ("/"). You can also use
the {context.root} token in the URL to point to the context root of the application. This is
defined by your application server.

Some tags in flex-config.xml use a <path-element> child tag to define values. These tags support
relative paths and full URLs. The following example adds a URL to the SWC file to the <lib-
path>:
<lib-path>

<path-element>http://mydomain.com/foobar.swc</path-element>
</lib-path>

The following tags can take file system paths or URLs as values:

• <lib-path>
• <debug-lib-path>
• <actionscript-classpath>
• <system-classes>
• <global-css-url>

Setting production mode

Production mode is a state of the Flex application that you use when the application is running live
on a public-facing server. It prevents the Flex application from generating profiling and
debugging data.

The default value of <production-mode> is false. To enable production mode, change the value
of the <production-mode> tag to true, as the following example shows:
<production-mode>true</production-mode>

When <production-mode> is true, all features in the <debugging> block are disabled. Flex also
ignores query string parameter overrides such as ?debug=true and ?asprofile=true. When
<production-mode> is false, individual features can be overridden on a per-request basis
according to the settings in the <debugging> block.

Disabling production mode lets you override the following settings in the flex-config.xml file with
query string parameters:

• asprofile
• debug
• showAllWarnings
• showBindingWarnings

In addition, when production mode is enabled, Flex only watches for changed files when the
server starts up. Flex does not use the <file-watcher-interval> setting to continuously poll
cached files in production mode.
758 Chapter 36: Administering Flex

Configuring caching

The Flex caching mechanism reduces compile-time delays by storing compiled SWF files in a
content cache and responding to requests with the cached files when possible. In addition, Flex
caches dependent files. Dependent files include components (SWC files, MXML, and
ActionScript), CSS style sheets, images use in the <mx:Image> tag, and ActionScript files
included with the <mx:Script> tag. If any of the dependent files changes, Flex recompiles
the application.

The first time an MXML file is requested it will be compiled and cached. All subsequent requests
return the cached item. The caching mechanism polls the MXML file and dependent files to
determine if a new SWF file should be compiled.

SWF files are cached in memory and not on disk. Dependent files such as SWC files and
ActionScript classes are cached on disk. Compiled custom components are cached as SWO files.

Caching is enabled by default. The default cache settings in flex-config.xml are as follows:
<cache>

<cache-mxml>true</cache-mxml>
<cache-swos>true</cache-swos>
<content-size>500</content-size>
<mxml-size>500</mxml-size>
<http-maximum-age>1</http-maximum-age>
<file-watcher-interval>1</file-watcher-interval>

</cache>

To disable MXML file caching, set the <cache-mxml> child tag to false. When caching is
disabled, Flex recompiles a SWF file from the MXML file every time a client requests that file.

The following table describes the child tags of <cache>:

Child tag Description

<cache-mxml> Set to true to enable caching. Set to false to disable caching. The default
value is true. When set to false, Flex recompiles the SWF file on every
*.mxml request. Requests for *.mxml.swf do not trigger a recompilation.

<cache-swos> Set to true to enable caching of SWO files. A SWO file is a component
file generated by Flex when you use custom MXML or ActionScript
components. You can override this setting by appending
?swos=true|false to your query string.

<content-size> The maximum number of cached SWF, SWD, and HTML files. The default
value is 500. When the maximum number of files reaches the size limit,
Flex removes the least-recently used files from the cache.

<mxml-size> The maximum number of cached SWF files dynamically generated with
the <mxml> tag in a JSP. The default value is 500. When the maximum
number of files reaches the size limit, Flex removes the least-recently used
files from the cache.
Editing the flex-config.xml file 759

You can force Flex to recompile SWF files every time an MXML file is requested by adding the
following child tag to the <cache> tag:
<cache-mxml>false</cache-mxml>

The default value is true. You cannot force Flex to recompile SWF files that are already compiled
before the request.

You can also specify the number of embedded font faces to cache. For more information, see
“Editing font settings” on page 760.

Editing the global style sheet

You can specify the application’s global style sheet using the <global-css-url> tag in the flex-
config.xml file. The style settings in the global style sheet are applied to all Flex components, but
are overridden by local CSS settings.

The default value of <global-css-url> is as follows:
<global-css-url>/WEB-INF/flex/global.css</global-css-url>

The default global.css file is empty. You can specify a full path or a path that is relative to the
application root or a full URL. In addition, you can use the {context.root} token in the value
to reference the context root of the application.

For more information on using CSS in Flex applications, see Chapter 19, “Using Styles, Fonts,
and Themes,” on page 455.

Editing font settings

You can specify caching, language and character ranges for embedded fonts in the flex-config.xml
file using the <fonts> tag and its child tags. The default fonts settings are as follows:
<fonts>

<max-cached-fonts>20</max-cached-fonts>
<max-glyphs-per-face>1000</max-glyphs-per-face>
<language-range>

<lang>en</lang>
<range>U+0020-U+007E</range>

</language-range>
</fonts>

<http-maximum-age> The maximum amount of time, in seconds, during which a cache may
return its copy of content without checking for freshness of the document.
The default value is 1 second.

<file-watcher-
interval>

The amount of time Flex waits before polling files for changes to MXML
and dependent files (such as MXML component files, SWC files, images,
included *.as files, and ActionScript class files). When Flex finds that a file
has changed, Flex recompiles the SWF file and replaces the cached SWF
file with the new one.
The default value is 1 second.

Child tag Description
760 Chapter 36: Administering Flex

The following table describes the child tags of the <fonts> tag:

Flex supports three default font faces, _serif, _sans, and _typewriter. For more information
on using fonts in Flex, see Chapter 19, “Using Styles, Fonts, and Themes,” on page 455.

Editing debugging settings

To use debugging, you must set <production-mode> to false. If <production-mode> is set to
false, you can override some of the <debugging> settings with query string parameters as long
as <process-debug-query-param> is set to true. If <production-mode> is set to true, you
cannot override any of the <debugging>.

Use the child tags of the <debugging> tag to configure debugging for all applications running on
the Flex server. The <debugging> tag defines debug-related settings for the command-line
debugger utility and compiler warnings.

Child tag Description

<max-cached-fonts> Sets the number of embedded font faces that Flex stores in its cache
before rotating out older font faces. Each cached font uses up memory
related to the size of the TrueType font (TTF) file.
The default value is 20. When the number of embedded font faces
exceeds max-cached-fonts, Flex removes the least-recently used from
the cache.

<max-glyphs-per-face> Defines the maximum number of character glyph outlines to cache for
each font face.

<language-range> You can add one or more language-range blocks to your <fonts> tag.
Each language-range block defines the language code and the range of
characters available in that embedded font.
The <lang> child tag specifies the reference name of the embedded font
range.
The <range> child tag defines the set of characters that are available in
this embedded font’s face.
The following example creates an englishRange and an otherRange in the
flex-config.xml file:
<fonts>
 <language-range>

<lang>englishRange</lang>
<range>U+0020-U+007E</range>

 </language-range>
 <language-range>

<lang>otherRange</lang>
<range>U+00??</range>

 </language-range>
</fonts>
Editing the flex-config.xml file 761

The following table describes the debugging settings in flex-config.xml:

Child tag Description

<process-debug-query-param> Set to true to allow query string parameters to override debugging
settings. This setting does not supersede production mode. If
production mode is enabled, this setting has no effect.
The default value is true. If the tag is not specified, the default value
is false.

<generate-debug-swfs> Set to true to generate SWD files for use with the command-line
debugger. You can override this setting by appending
?debug=true|false to the query string.
The default value is false.
For more information on using the command-line debugger, see
Chapter 33, “Debugging Flex Applications,” on page 705.

<generate-profile-swfs> Set to true to generate SWF and SWD files for use with the Flex
profiling tool. You can override this setting by appending
?asprofile=true|false to the query string.
The default value is false.
For more information on using the Flex profiling application, see
Chapter 34, “Profiling ActionScript,” on page 729.

<keep-generated-as> Set to true to write filename-generated.as file to disk when Flex
compiles the SWF file from an MXML application.
The default value is false.

<keep-generated-swfs> Set to true to write the generated SWF and SWD files to disk when
Flex compiles the application.
The default value is false.

<show-all-warnings> Set to true to show all compiler warnings.
You can override this setting by appending
?showAllWarnings=true|false to the query string.
The default value is true.

<show-binding-warnings> When <show-all-warnings> is true, this value controls whether or
not binding warnings are shown. When <show-all-warnings> is
false, this value has no effect.
You can override this setting by appending
?showBindingWarnings=true|false to the query string.
The default value is true.

<show-override-warnings> When <show-all-warnings> is true, this value controls whether
compiler override warnings are shown. When <show-all-warnings>
is false, this value has no effect.
The default value is true.

<web-service-proxy-debug> Set to true to display the web service proxy request and response
on the server side as well as debug information in client-side tracing.
When set to true, Flex logs the messages according to the settings
in the <logging> section.
The default value is false.
For more information about logging, see “Configuring logging”
on page 768.
762 Chapter 36: Administering Flex

The Flex debugging settings also support a configurable password, which lets you perform remote
debugging tasks in the Flash IDE. Flex encrypts this password during remote debugging sessions.

The following example sets the value of the <debug-swf-password> child tag:
<compiler>

...
<debug-swf-password>oU812</debug-swf-password>
...

<compiler>

The default value of <debug-swf-password> is an empty string. Removing the <debug-swf-
password> child tag or setting <debug-swf-password> to any number of spaces are equivalent
to an empty string (""). The default value of the password is an empty string.

For more information on using the ActionScript debugger utility, see Chapter 33, “Debugging
Flex Applications,” on page 705.

Keeping generated files

Flex generates temporary files when compiling an MXML application into a SWF file. When you
are developing Flex applications, examining this file can help in the debugging process. These
include ActionScript class file, the SWF file itself, and, in some cases, the debug SWF/SWD file.
By default, these files are not stored on disk, so they cannot be viewed.

<http-service-proxy-debug> Set to true to display the HTTP proxy request and response on the
server side.
When set to true, Flex logs the messages according to the settings
in the <logging> section.
The default value is false.
For more information about logging, see “Configuring logging”
on page 768.

<remote-objects-debug> Set to true to display the remote object request and response on
the server side as well as debug information in client side tracing.
The default value is false.

<show-stacktraces-in-
browser>

Set to true to display stack traces in the browser error messages.
The default value is true.

<show-source-in-compiler-
errors>

Set to true to display source code context lines in the error pages.
The default value is true.

<log-compiler-errors> Set to true to log compiler errors to the Logger as errors.
The default value is true.

<create-compile-report> Set to true to generate a compiler report. This report contains the
stack tree for all dependent symbols used in the application. Flex
stores it in the same directory as the MXML file as app_name-
report.xml.
The default value is false.

Child tag Description
Editing the flex-config.xml file 763

The name of the temporary ActionScript class file is as follows:
mxml_filename-generated.as

For example, if your MXML file is named myApp.mxml, Flex generates a file called myApp-
generated.as in addition to the application’s SWF file.

You can enable or disable the storing of these files on disk with the <keep-generated-as> and
<keep-generated-swfs> tags. Set the value to true to save the files, as the following example
shows:
<keep-generated-as>true</keep-generated-as>
<keep-generated-swfs>true</keep-generated-swfs>

By default, the compiler writes these files into the same directory as the MXML file.

If you set <keep-generated-swfs> to true, Flex saves both the SWF and SWD files, if one
was generated.

Editing compiler settings

You change MXML compiler settings in the flex-config.xml file with the <compiler> child tags.
You must restart your Java application server for changes to flex-config.xml to take effect.

Using the ActionScript optimizer

The ActionScript optimizer reduces the size of the Flex application’s SWF file by 10-15%. It
changes the generated ActionScript code prior to compilation, and can make debugging less
reliable. As a result, you should disable optimization when you are debugging your MXML
applications.

The optimizer removes trace statements entirely, including the side-effects of trace statements
such as assignments. For example, suppose you have the following code:
x=1;
trace(x=2);

If optimization is enabled, x equals 1 because the trace statement is removed. If optimization is
disabled, x equals 2 because the trace statement remains.

Use the <optimize> tag to enable or disable ActionScript optimization. The default value of the
<optimize> tag is true. Set the <optimize> tag to false to disable optimization, as the
following example shows:
<compiler>

...
<optimize>false</optimize>
...

</compiler>

Flex ignores the optimize setting if it generates a SWF file for debugging or profiling.
764 Chapter 36: Administering Flex

Using profiling

When profiling is enabled, Flex generates profiler data for Flex applications. Use the <generate-
profile-swfs> tag to enable or disable ActionScript profiling for all applications running on the
Flex server. The default value of the <generate-profile-swfs> tag is false.

To use profiling, you must set <production-mode> to false. If production mode is enabled,
Flex does not generate profiling information and you cannot override it with query string
parameters.

Set the <generate-profile-swfs> tag to true to generate data for the Flex ActionScript
Profiler, as the following example shows:
<compiler>

...
<generate-profile-swfs>true</generate-profile-swfs>
...

</compiler>

You can override the MXML compiler setting for an individual application by appending
?asprofile=true|false to the end of the query string, as the following example shows:
http://localhost:8101/MyApp.mxml?asprofile=true

In this case, Flex generates profiling data only for the specified application.

If you set <process-debug-query-param> to false, you cannot override the <generate-
profile-swfs> setting.

For more information on using the Profiler, see Chapter 34, “Profiling ActionScript,” on
page 729.

Editing the ActionScript classpath

Flex searches directories in the ActionScript compiler’s classpath for classes that are used in your
Flex applications. You can edit the ActionScript classpath using the <actionscript-classpath>
child tag of the <compiler> tag in flex-config.xml. They are searched in the order in which they
appear in the flex-config.xml file.

Add a new <path-element> entry for each additional directory that you want to add to the
ActionScript classpath. The value of <path-element> can be a full path or a path that is relative
to the application root.

The default ActionScript compiler settings in flex-config.xml are as follows:
<compiler>

<actionscript-classpath>
<path-element>/WEB-INF/flex/frameworks</path-element>
<path-element>/WEB-INF/flex/user_classes</path-element>

</actionscript-classpath>
</compiler>

For more information on the ActionScript classpath, see “About the ActionScript classpath”
on page 53.
Editing the flex-config.xml file 765

You can also add a child tag that points to a new location for the system classes. This can be useful
if you have several individual Flex-enabled applications that point to a central location for
common resources.

Note: The default system classpath is flex_app_root/WEB-INF/flex/system_classes. Do not add your
custom classes to the directories specified in the <system-classes> child tag.

Changing the <system-classes> setting is for advanced users.

The following example adds a new <system-classes> setting:
<compiler>

...
<system-classes>/flex-framework/system_classes</system-classes>
...

</compiler>

The <compiler> tag also defines <lib-path> elements, which are where you store custom
components (or SWC files). For more information, see “Importing SWC files into the Flash
IDE” on page 833.

Setting the <lib-path>

Use the <lib-path> child tag of the <compiler> tag to specify path locations of component
libraries, including SWC files, MXML components, and ActionScript components.

The default <lib-path> settings are as follows:
<lib-path>

<path-element>/WEB-INF/flex/frameworks</path-element>
<path-element>/WEB-INF/flex/user_classes</path-element>

</lib-path>

To add an additional directory to the <lib-path>, add a <path-element> tag that points to the
new directory relative to the application root.

Note: Do not store custom SWC files in the WEB-INF/flex/frameworks directory. This is for internal
use only.

During compilation, Flex merges all assets found in SWC files together and resolves which
symbols in those files to use with a priority and version algorithm. The order of the SWC files in
the <lib-path> tag or user_classes directory is ignored.

If two files are of the same priority, Flex chooses the one with the most recent timestamp.

Enabling accessibility

The Flex accessibility option extends support for accessible Flash components to Flex
applications. Enabling accessibility in Flex provides the same functionality as adding the
following ActionScript statements in a SWF file:
mx.accessibility.WindowAccImpl.enableAccessibility();
mx.accessibility.SimpleButtonAccImpl.enableAccessibility();
766 Chapter 36: Administering Flex

You can enable and disable the accessibility features of Flex components using the <accessible>
tag in the flex-config.xml file. The default value of the <accessible> tag is false. This tag is a
child tag of the <compiler> tag.

Set the <accessible> tag to true to enable accessibility features, as the following example shows:
<accessible>true</accessible>

You can override this setting by appending ?accessible=true/false to the request’s query
string, as the following example shows:
http://mydomain.com/flex/myApp.mxml?accessibility=false

This override applies to the request, regardless of whether production mode is enabled.

For more information on using the accessibility classes, see Flex ActionScript Language Reference.

Configuring headless servers

A headless server is one that is running on UNIX or Linux and often does not have a monitor,
keyboard, mouse, or even a graphics card. Headless servers are most commonly encountered in
ISPs and ISVs, where available space is at a premium and servers are often mounted in racks.
Enabling headless mode reduces the graphics requirements of the underlying system and can
make for a more efficient use of memory.

To enable headless mode of the Flex application, define the value of the <headless-server> tag
in the flex-config.xml file. Setting this property to true is required to support fonts and SVG
images in a nongraphical environment. The <headless-server> tag is a child tag of
<compiler>. The following example sets <headless-server> to true:
<headless-server>true</headless-server>

The default is commented out.

Setting the value of <headless-server> to true in flex-config.xml sets the system property
java.awt.headless to true.

Changing application server settings

This section describes how to make changes to your application server settings.

Editing the context root

The context root maps requests to the Flex application. In practice, the context root defines the
URL prefix that clients use to request files in your application. For example, the context root in
the following URL is /flex:
http://localhost:8101/flex/myApp.mxml

If you are running Flex on the JRun application server, the context root for Flex is set in the
jrun_root/server_name/WEB-INF/jrun-web.xml file. To change the context root, edit the
<context-root> tag. The following example changes the context root to /:
<context-root>/</context-root>
Changing application server settings 767

The default context root is /flex. You can refer to the context root in the flex-config.xml
configuration file using the {context.root} token.

To change the context root for non-JRun web application servers, consult your application server
documentation.

Using virtual directories

Virtual directories map a request path to a real path in your file system. You can keep your files in
directories outside of the application directory structure, but map them to a path inside the
application directory structure.

For example, you can store files in an images folder at C:/images/production and use those images
in your applications by adding a virtual directory that points to the /flex/images/production
folder.

Note: In Windows systems, use forward-slashes for path separators in XML configuration files.

To add a virtual directory on the JRun application server, add a virtual mapping in the jrun_root/
server_name/WEB-INF/jrun-web.xml file. The following example adds the images virtual
directory:
<virtual-mapping>

<resource-path>/flex/images/*</resource-path>
<system-path>c:/images/production</system-path>

</virtual-mapping>

To add virtual directories for non-JRun web application servers, consult your application server
documentation.

Configuring logging

The Flex logging mechanism displays and records application-level events. These events include
informational, error, warning, and debug events about the MXML applications running on the
current server. They also optionally include low-level runtime compiler error messages.

The logging mechanism outputs to both the console window (System.out) and a log file defined
in the flex-config.xml file. You can disable one or both of these, or change the level of logging.
You can also define what levels of log entries to log, and define the file size and rotation frequency
of the log files.

The default log file is located in flex_app_root/WEB-INF/flex/logs/flex.log.

About logging messages

Flex logs a timestamp, log level, and the log message for each entry in the log file or in the
console. The Flex logging messages take the following form:
{date MM/dd HH:mm:ss} {log.level} {log.message}

For example:
08/19 14:17:12 ERROR The detailed error message.

You cannot change the log file format.
768 Chapter 36: Administering Flex

About logging levels

There are four logging levels in Flex, from highest (or least restrictive) to lowest (or most
restrictive): DEBUG, INFO, WARN, and ERROR. You select one level for each of the loggers
that you use (console and file).

The following figure shows the logging level hierarchy:

If you select the lowest level, ERROR, Flex only logs ERROR messages. If you select the highest
level, DEBUG, Flex logs all messages, including those for DEBUG, INFO, WARN, and
ERROR.

The following table describes the logging levels:

Configuring logging

You configure the Flex logging settings in the flex-config.xml file. You can configure where Flex
writes the log entries, plus determine whether Flex writes compiler errors. The flex-config.xml file
is located in the flex_app_root/WEB-INF/flex directory. The settings apply to all Flex applications
found under the flex_app_root directory.

The following example shows the default logging settings in the flex-config.xml file:
<logging>

<console>

Logging level Description

DEBUG DEBUG messages indicate internal Flex activities, such as bindable property chains.
Select the DEBUG logging level to include DEBUG, INFO, WARN, and ERROR log messages
in your log files.

INFO INFO messages indicate general information to the developer or administrator,
such as a message indicating that the Flex application has started.
Select the INFO logging level to include INFO, WARN, and ERROR log messages in your
log files.

WARN WARN messages indicate that Flex encountered a problem with the application, but
it will not stop running.
Select the WARN logging level to include WARN and ERROR log messages in your log
files.

ERROR ERROR messages indicate when a critical service is not available or a situation has
occurred that restricts use of the application.
Select the ERROR logging level to include only ERROR log messages in your log files.

ERROR

WARN

INFO

DEBUG
Configuring logging 769

<enable>true</enable>
<level>info</level>

</console>
<file>

<enable>true</enable>
<level>info</level>
<file-name>/WEB-INF/flex/logs/flex.log</file-name>
<maximum-size>200KB</maximum-size>
<maximum-backups>3</maximum-backups>

</file>
</logging>

To log compiler errors to the log file or console, you must set <production-mode> to false. If
production mode is enabled, Flex does not generate log entries for compiler errors. Set the <log-
compiler-errors> setting in the <debugging> section to true to log compiler errors to the log
file and/or console.

The following sections describe the settings for the <console> and <file> tags.

For more information on using the flex-config.xml file, see “Editing the flex-config.xml file”
on page 757.

Console settings

Flex writes log entries to the console in which it was launched. You use the <console> tag and its
child tags to define the console logging settings in the flex-config.xml file.

The following table describes the console logging tags in the flex-config.xml file:

File settings

Flex writes log entries to a log file. You use the <file> tag and its child tags to define the file
logging settings in the flex-config.xml file.

Tag Description

<enable> Enables or disables the console logging. Set to true to enable. Set to false to
disable. The default value is true.

<level> Defines the level of detail that Flex logs by specifying one of the following values:
INFO
DEBUG
WARN
ERROR

For more information, see “About logging levels” on page 769.
770 Chapter 36: Administering Flex

The following table describes the file logging tags in the flex-config.xml file:

Tag Description

<enable> Enables or disables file logging. Set to true to enable. Set to false to disable. The
default value is true.

<level> Defines the level of detail that Flex logs by specifying one of the following values:
INFO
DEBUG
WARN
ERROR
For more information, see “About logging levels” on page 769.

<file-name> Specifies the path to the Flex log file. You can set the filename to either an
absolute path or a relative path. A relative path is relative to the Flex application
root. The default is /WEB-INF/flex/logs/flex.log. If you set an absolute path, you
must create the directories in which the file resides before Flex adds log entries to
that file.

<maximum-size> Specifies the size a log file reaches before Flex rotates it. You can specify KB,
MB, or GB for kilobytes, megabytes, and gigabytes.
When the log file reaches this size, Flex renames it to flex.log[n], where n is the
number of the backup on disk. Flex then begins a new log file.
If <maximum-backups> is set to 0, Flex does not rotate log files.
The default log file size is 200 KB.

<maximum-
backups>

Specifies the number of backup log files Flex keeps on disk. The default value is 3.
Flex stores one current log file and up to three backup log files. Set to 0 to disable
log file backups.
Configuring logging 771

772 Chapter 36: Administering Flex

CHAPTER 37
Applying Flex Security
Macromedia Flex security is based on the Macromedia Flash Player security model, which runs
the player within a security sandbox. All Flex applications are sent to the client as a SWF file,
therefore, Flex applications benefit from the robust security sandbox model used by standard
Flash applications.

In addition, the Flex application is a J2EE-compliant web application, and as such, it can use any
security implementation that is appropriate for that environment.

Contents

Flex security features . 773

Flash Player security features . 775

Security concerns of an open format technology . 782

Resources . 783

Flex security features

The Flex security model protects both client and the server. There are two general aspects to
security to consider when deploying Flex applications:

• Authorization and authentication of users accessing a server’s resources
• Flash Player operating in a sandbox on the client

Since Flex is a J2EE application, it supports working with the web application security of any
J2EE application server. You use J2EE authentication and authorization techniques to prevent
users from accessing your applications. The Flex application includes several built-in security
mechanisms that let you control access to web services, HTTP services, and Java classes such
as EJBs.

The Flash Player runs inside a security sandbox that prevents the client from being hijacked by
malicious application code. This sandbox prevents a user from running a Flex application on their
machine that can access system files and perform other tasks.
773

Overview of J2EE security

To handle authentication and authorization of the system, J2EE security covers multiple areas,
each of which is handled by different roles:

• Role definition and programmatic security The application developer defines the roles that
apply at the web application or EJB level. The application developer can optionally implement
programmatic security, as required by the application. Declarative security is recommended
over programmatic security for most J2EE applications.

• Client coding The application developer ensures that web application and EJB clients pass
the required credentials (typically a user ID and password) at the appropriate time. Web
application clients prompt for user ID and password. EJB clients either use credentials from
the calling web application component or pass user ID and password as properties to the
InitialContext constructor.

• Role resolution and declarative security The application assembler resolves and links
programmer-defined roles with system roles. The application assembler also specifies
declarative security in the web and EJB deployment descriptors.

• Security architecture and user-store management The administrator controls the user
store, coordinates global role definition, and customizes security to match the site-specific
security environment.

For information on using J2EE security methods, see your application server’s documentation.

Web services and HTTP services

Flash Player operates within a security sandbox that limits what Flex applications and other Flash
applications can access over HTTP. Flash applications are only allowed HTTP access to resources
on the same domain from which they were served. This presents a problem for using web services
and the <HTTPService> tag, since they typically get data from remote locations. Flex provides a
proxy servlet that relays requests to remote web services and HTTP requests, redirects the
requests, and then returns the responses to the client.

To prevent the proxy servlet from being used to stage denial of service (DOS) attacks or allow
unauthorized access to services, Flex uses a whitelist. The whitelist is a list of URLs that the
administrator explicitly gives the proxy servlet access to. Any URLs that are not included in the
whitelist are not allowed to pass through the proxy servlet.

The default settings in flex-config.xml do not allow access to any URLs or resources using the
proxies. You must explicitly add entries to the whitelists.

For more information, see Chapter 32, “Using Data Services,” on page 655.

You can also assign access restrictions to entire applications or to any resource, such as web
services or HTTP services, using the security-constraint and web-resource-collection
elements in the web.xml file. For more information on using web application authentication, see
your application server’s documentation.
774 Chapter 37: Applying Flex Security

Java classes

You can control access to Java classes by using access settings, basic authentication, and whitelists.
Flex applications can use the <mx:RemoteObject> tag to call methods on Java objects that reside
on the Java application server on which Flex is running. You should secure these objects from
foreign access by using authentication.

For authentication of Java objects, Flex uses Basic Authentication by default, in which the web
browser displays a login dialog. As an alternative, you can create a custom login dialog in MXML
to match the appearance of your application.

For more information, see “Securing Java classes” on page 649.

You can also assign access restrictions to entire applications or to any resource, such as Java classes,
using the security-constraint and web-resource-collection elements in the web.xml file.
For more information on using web application authentication, see your application server’s
documentation.

Flash Player security features

Flash Player has an extensive list of features that ensure Flash content is secure and safe. These
include the following:

• Use the encryption capabilities of SSL in the browser to encrypt all communications between a
Flash application and the server.

• An extensive sandbox security system that limits transfer of information that might pose a risk
to security or privacy.

• Flash Player does not allow web content to read data from the local drive except for
SharedObjects that were created by that domain.

• Flash Player cannot write any data to the disk except for data that is encapsulated in
SharedObjects.

• Flash Player does not allow web content to read any data from a server that is not from the
same domain, unless that content explicitly allows access.

• Flash Player does not allow web content to place more that 100K of data on the local disk from
a single domain. The amount of data is configurable.

• Flash Player enables the user to disable the storage of information for any domain.
• Flash Player does not allow data to be sent from a camera or microphone unless the user gives

permission.

About the security sandbox

The security sandbox defines a limited space in which a Flash application running within Flash
Player is allowed to operate. Its primary purpose is to ensure the integrity and security of the
client’s machine, and as well as security of any Flash applications running in Flash Player.
Flash Player security features 775

The concept of the sandbox is simple. A Flash application executes inside a sandbox. Any
information inside the sandbox can be communicated only to the domain from which the
application was served. Access to information within the sandbox from outside of the sandbox is
severely limited.

A Flash application’s sandbox consists of the following:

• Everything contained in the SWF file
• User actions directed at the Flash application
• Servers in the domain from which the Flash application originated
• Local SharedObjects written by Flash applications from the same domain
• Limited configuration information about the computer on which the Flash application

is running

In order to support local development and testing of Flash applications by developers,
applications accessed as local files (either on the user’s local disk or on LAN servers) have no
sandbox limitations. This is consistent with the added caution users should always take when
running any type of file locally.

About domain-based authentication

SWF files served from different domains cannot access each other’s objects and variables. Nor can
a SWF file served from one domain load data (using loadVariables(), for example) from
another domain.

The reason for the domain limitation is to protect servers behind firewalls from being attacked by
computers outside the firewall. A Flash application from outside.hacker.org must not be able to
read data from any files stored on inside.macromedia.com when the application is running on a
computer behind the Macromedia firewall.

Flash Player sandbox security model applies when loading a SWF file into an existing Flash
application. However, applications loaded from separate domains exist within their own
sandboxes. This isolates them from the other applications currently playing in the player. Content
within an application’s sandbox cannot penetrate outside the sandbox, and content outside the
sandbox cannot access content within the sandbox.

All operations require an exact domain match. Similar domains, such as www.mysite.com and
store.mysite.com, are not considered a match, nor are domains that are accessed with different
port numbers. Identical numeric IP addresses are compatible. However, a domain name is not
compatible with an IP address, even if the domain name resolves to the same IP address.

Content that is loaded through nonsecure (non-HTTPS) protocols cannot access content loaded
through a secure (HTTPS) protocol, even when both are in the same domain, unless the server is
configured to allow access. For example, a SWF file located at http://www.macromedia.com/
main.swf cannot load data from https://www.macromedia.com/data.txt. This HTTPS restriction
is asymmetrical; SWF files served over HTTPS can access other documents served over insecure
protocols.
776 Chapter 37: Applying Flex Security

It is also possible for applications to communicate with each other through the LocalConnection
object. The sandbox security model also applies to cross-application communication using this
method. The key rule to remember is that an application in domain A cannot extract any
information from an application in domain B, unless the application from domain B has given
explicit permission for domain A to have access to it.

As mentioned previously, this rule must be strictly kept to prevent a SWF file on the public
Internet from loading a SWF file from behind a firewall and extracting data.

Local file I/O access

Flash Player allows limited local file storage through the use of SharedObjects. SharedObjects,
which you can think of in terms of web browser cookies, let developers store and retrieve
information to the user’s local file system.

SharedObjects have the following restrictions:

• Data is written to an unpredictable directory. The developer cannot control the location of
that directory.

• The user has control of how much data can be stored, including the ability to disable storage
on a per-domain basis.

• Data stored on the local file system is binary, serialized data controlled by Flash Player. The
files all have a standard header and a *.so filename extension that prevents insertion of
executable code or application data that might be inadvertently launched by the user.

• Data access is restricted by the domain-based authentication rules of Flash Player.

All file exchange through Flash Player is limited to an unpredictable directory on the client’s
machine that is created by Flash Player. The following limitations apply to the directory when
being accessed from a Flash application playing in a web browser:

• The user controls how much information can be stored for a given domain.
• The default amount of data that each domain can store on the user’s machine is 100K. Each

SharedObject is stored in its own file. Each file is always counted as using at least 1000 bytes
of data so that the default 100K limit allows up to 100 different SharedObjects for a single
domain.

These restrictions ensure that the following conditions exist:

• Non-Flash information on the user’s machine cannot be overwritten by a Flash application
running in a browser.

• The threat of Denial of Service attacks, caused by filling the user’s hard drive with data, is
minimized.

• Foreign applications cannot easily find the location of the SharedObject data.
• Flash Player controls the format of the information stored on the file system by Flash Player.

Developers do not have the ability to control the format of the data. The information is a
binary serialization of the data being stored, and thus cannot be used for malicious attacks on
the client machine.
Flash Player security features 777

• Data contained within SharedObjects can only be accessed under the domain-based rules
discussed previously. For example, this means that data in a SharedObject set by an application
from www.domain1.com cannot be accessed by an application from www.domain2.com.

Accessing external resources

Even with the restrictions, SWF files running within Flash Player can access external resources
through the proxies defined in the flex-config.xml file and through other techniques such as
tunneling and policy files. This section describes these techniques.

Using sandbox tunnelling

Code within a sandbox can only access global objects for that sandbox. However, it is sometimes
necessary for two applications to reside in separate domains, yet access each other’s data. For
example, the Macromedia Answers Panel is loaded from the local disk by the Flash authoring tool,
but might update itself by accessing the Macromedia website. In this case, it is necessary to allow
an application loaded from www.macromedia.com to exchange data with the application loaded
from the local disk.

Flex meets this need using the “tunneling” feature of the sandbox. Tunneling is implemented by
the ActionScript method System.security.allowDomain() and has the following syntax:
System.security.allowDomain(domain1, ..., domainN);

This command grants domain1 through domainN access to the sandbox of the SWF file that
executes the command.

For example, the Answers Panel in the Flash MX authoring tool has a SWF file that is loaded as a
local file. The Answers Panel SWF file that is loaded from macromedia.com needs to have access
to the SWF file’s variables. So the SWF file calls:
System.security.allowDomain("macromedia.com");

This command adds macromedia.com to the SWF file’s “friends” list. Any SWF file loaded from
macromedia.com or subdomains, such as sub.macromedia.com, can now access variables in the
SWF file.

Access cannot be revoked once it has been granted and there is no way to retrieve a list of allowed
domains.

The allowDomain() method permits any SWF file in the allowed domain to share data with any
other SWF file in the domain permitting the access.

Using policy files

To make data and assets in runtime shared libraries available to SWF files in different domains,
use a cross-domain policy file. A cross-domain policy file is an XML file that provides a way for the
server to indicate that its data and documents are available to SWF files served from certain
domains, or from all domains. Any SWF file that is served from a domain specified by the server’s
policy file is permitted to access data or assets from that server.

A Flash document can load data from an external source by using one of the following
ActionScript methods:
778 Chapter 37: Applying Flex Security

• loadVariables(), loadVariablesNum(), MovieClip.loadVariables(),
LoadVars.load(), LoadVars.sendAndLoad()

• XML.load(), XML.sendAndLoad()
• XMLSocket.connect()
• Symbol importing from runtime shared libraries
• Flash Remoting (NetServices.createGatewayConnection())

These operations fail under the following conditions:

• When they reference a URL that is outside the exact domain of the SWF file that makes
a request.

• When they reference an HTTPS URL where the SWF file that makes the request is not served
over HTTPS.

When a Flash document attempts to access data from another domain, Flash Player attempts to
load a policy file from that domain. If the domain of the Flash document that is attempting to
access the data is included in the policy file, the data is automatically accessible.

Policy files function only on servers that communicate over HTTP, HTTPS, or FTP. The policy
file is specific to the port and protocol of the server where it resides. For example, a policy file
located at https://www.macromedia.com:8080/crossdomain.xml applies only to data loading calls
made to www.macromedia.com over HTTPS at port 8080.

An exception to this rule is the use of an XMLSocket object to connect to a socket server in
another domain. In that case, an HTTP server running on port 80 in the same domain as the
socket server must provide the policy file for the method call.

The Flash Player ignores any policy file that is served using a cross-domain redirect. For example,
if Flash Player request for http://www.mysite.com/crossdomain.xml redirects to http://
elsewhere.mysite.com/crossdomain.xml, Flash Player ignores that policy file. Ensure that you do
not use cross-domain redirects to serve policy files. (You can use redirects within the same
domain.)

The default policy file is named crossdomain.xml and resides at the root directory of the server
that is serving the data. You can use the loadPolicyFile() method to access a nondefault policy
file.

In J2EE, web applications can have a different context roots, and you are not required to deploy
any application to the default context root (“/”). This means that you cannot use a
crossdomain.xml file in the web root without adding at least one web application at the default
context root.

Using loadPolicyFile()

You can inform Flash Player of the location of a policy file using the loadPolicyFile() method.
This method has the following syntax:
System.security.loadPolicyFile("URL")

The following example loads the policy file pf.xml from a subdirectory on the foo.com domain:
System.security.loadPolicyFile("http://foo.com/sub/dir/pf.xml")
Flash Player security features 779

Permissions granted by the policy file at that location apply to all content at the same level or
below in the virtual directory hierarchy of the server.

You can load any number of policy files using the loadPolicyFile() method. When
considering a request that requires a policy file, Flash Player waits for the completion of any
policy file downloads before denying a request. If no policy file specified with loadPolicyFile()
authorizes a request, Flash Player consults the default location, /crossdomain.xml.

Policy file syntax

The policy file is an XML file that contains a single <cross-domain-policy> tag, which in turn
contains zero or more <allow-access-from> tags. A policy file that contains no <allow-
access-from> tags has the same effect as not having a policy file on a server. The syntax is as
follows:
<cross-domain-policy>

<allow-access-from domain="IP_or_domain">
[...]

</cross-domain-policy>

Each <allow-access-from> tag defines one property, domain, which specifies either an exact IP
address, an exact domain, or a wildcard domain (any domain). Wildcard domains are indicated
by either a single asterisk (*), which matches all domains and IP addresses, or an asterisk followed
by a suffix, which matches only those domains that end with the specified suffix. Suffixes must
begin with a dot. However, wildcard domains with suffixes can match domains that consist of
only the suffix without the leading dot. For example, foo.com is considered to be part of
*.foo.com. Wildcards are not allowed in IP domain specifications.

If you specify an IP address, access is granted only to SWF files loaded from that IP address using
IP syntax (for example, http://65.57.83.12/flashmovie.swf), not those loaded using domain-
name syntax. Flash Player does not perform DNS resolution.

Allowing access to HTTPS resources

By default, Flash applications served over HTTP cannot access HTTPS resources.

Each <allow-access-from> tag in the policy file can specify the secure property, which has two
possible values, true and false. The default value is true. When you specify secure="false",
you allow access by Flash applications served over protocols other than HTTPS to access HTTPS
resources.

Macromedia recommends against using secure="false" because allowing non-HTTPS
documents to access HTTPS data can compromise HTTPS security. Instead, Macromedia
recommends that you serve all SWF files that require access to HTTPS data over HTTPS.
However, if using HTTPS for all of your documents is impractical, secure="false" will
override the Flash Player default HTTPS protection.

Policy file example

The following example policy file permits access to Flash documents that originate from foo.com,
friendOfFoo.com, *.foo.com, and 105.216.0.40:
<?xml version="1.0"?>
780 Chapter 37: Applying Flex Security

<!-- http://www.foo.com/crossdomain.xml -->
<cross-domain-policy>
 <allow-access-from domain="www.friendOfFoo.com" />
 <allow-access-from domain="*.foo.com" />
 <allow-access-from domain="105.216.0.40" />
</cross-domain-policy>

Using web services and HTTP services

Flex applications support web service requests and results that are formatted as Simple Object
Access Protocol (SOAP) messages and are transported over HTTP. HTTP services provide a way
to include data accessed over HTTP in a Flex application.

Both HTTP services and web services require special consideration so that they can execute
requests outside the Flash sandbox of the machine that served the application. Flex provides a
proxy servlet that intercepts requests to remote web services and HTTP services, redirects the
requests, and then returns the responses to the client.

To prevent the proxy servlet from being used to stage Denial Of Service (DOS) attacks or allow
unauthorized access to services, Flex uses whitelists. The whitelist is a list of URLs that the
administrator explicitly gives the proxy servlet access to. URLs that are not included in the
whitelists are not allowed to pass through the proxy servlet. The default settings in flex-config.xml
do not allow access to any URLs or resources using the proxies. For both named and unnamed
services, only the URLs that the Flex administrator explicitly adds can pass through the proxy
servlet.

You can obscure IP addresses used for HTTP services and web services by defining the services in
your flex-config.xml file and using the service names in your MXML code. However, Flex passes
the service name to the proxy servlet, which in turn looks up the WSDL URL in the service entry.
The result is that the WSDL sent to the client still contains the actual endpoint URI in plain text.
So while using named services is a good practice for obfuscating endpoints, it is not a complete
solution.

You configure the web services and HTTP services whitelists in the flex-config.xml file. For more
information on configuring web services and HTTP Services in Flex, see Chapter 32, “Using
Data Services,” on page 655.

Compatibility with older Players

In Flash Player 7 and later, if a version 6 (or earlier) SWF file attempts to load data from a server
that resides in another domain, and that server doesn’t provide a policy file that allows access from
that SWF file’s domain, then the Flash Player Settings dialog box appears. The dialog box asks the
user to allow or deny the cross-domain data access.

If the user clicks the Allow button, the SWF file is permitted to access the requested data; if the
user clicks Deny, the SWF file is not allowed to access the requested data.

To prevent this dialog box from appearing, create a security policy file on the server providing
the data.
Flash Player security features 781

Security of data transport

A SWF file playing in a browser has many of the same security concerns as an HTML page being
displayed in a browser. This includes the security of the SWF file while it is being loaded into the
browser, as well as the security of communication between Flash and the server after the SWF file
has loaded and is playing in the browser. In particular, data communication between the browser
and the server is susceptible to being intercepted by third parties. The solution to this issue in
HTML is to encrypt the communication between the client and server in order to make any data
captured by third parties undecipherable and thus unusable. This is done by using an
SSL-enabled browser and server.

Because a SWF file running within a browser uses the browser for almost all of its communication
with the server, it can take advantage of the browser’s built-in SSL support. This lets
communication between the SWF file and the server be encrypted. Furthermore, the actual bytes
of the SWF file are encrypted while they are being loaded into the browser. Thus, by playing a
SWF file within an SSL-enabled browser through an HTTPS connection with the server, you can
ensure that the communication between Flash Player and the server is encrypted and secure.

The one exception to this is the way Flash uses persistent sockets (through the ActionScript
XMLSocket object), which does not use the browser to communicate with the server. Because of
this, SWF files cannot take advantage of the built-in encryption capabilities of the browser.
However, it is possible to use one-way encryption algorithms written in ActionScript to encrypt
the data being communicated.

MD5 is a one-way encryption algorithm described in RFC 1321. This algorithm has been ported
to ActionScript, which enables developers to secure one-way data using the MD5 algorithm
before it is sent from the SWF file to the server. For more information about RFC 1321, see
www.faqs.org/rfcs/rfc1321.html or www.rsasecurity.com/rsalabs/faq/3-6-6.html.

Security concerns of an open format technology

Flash applications share many of the same concerns and issues as web pages when it comes to
protecting the security of data. Because the SWF file format is an open format, it is possible to
extract data and algorithms contained within a SWF file. This is similar to how HTML and
JavaScript code can be easily viewed by users. However, SWF files make viewing the code more
difficult. A SWF file is compiled and is not human-readable like HTML or JavaScript.

But security is not obtained through obscurity. A number of third-party tools can extract data
from compiled SWF files. As a result, do not consider that any data, variables, or ActionScript
code compiled into a Flash application are secure. There are, however, a number of techniques
you can use to secure sensitive information and still make it available for use in your SWF files.

To help ensure a secure environment, use the following general guidelines:

• Do not hard-code sensitive information, such as user names, passwords, or SQL statements in
SWF files.

• If your SWF file needs access to sensitive information, load the information into the SWF file
from the server at runtime. The data will not be part of the compiled SWF file and thus cannot
be extracted by decompiling the SWF file. Ensure that you use a secure transfer mechanism,
such as SSL, when loading the data.
782 Chapter 37: Applying Flex Security

http://www.faqs.org/rfcs/rfc1321.html
http://www.rsasecurity.com/rsalabs/faq/3-6-6.html

• Implement sensitive algorithms on the server instead of in ActionScript.
• Use SSL.
• Only deploy your web applications from a trusted server. Otherwise, the server-side aspect of

your application could be compromised.

Resources

The following table lists resources that you can use when developing secure applications in Flex:

Name Description Link

Macromedia Security
Topic Center

Contains links to other
security resources.

www.macromedia.com/devnet/security/

Macromedia Security
Zone

Contains security bulletins
and technical briefs about
security issues.

www.macromedia.com/devnet/security/
security_zone/

Macromedia Flex Contains information and
resources for Flex.

www.macromedia.com/software/flex/

Macromedia Flash
Player

Contains information and
resources for Flash Player.

www.macromedia.com/software/
flashplayer/

Macromedia Flash MX Contains information and
resources for the Flash MX
authoring environment.

www.macromedia.com/software/flash/

Macromedia Designer
& Developer Center

Contains articles, tutorials,
and other information on
Macromedia product
development.

www.macromedia.com/desdev/

Macromedia Flash
Player security e-mail
address

This e-mail address can be
used for questions or
comments regarding Flash
Player security.

flashplayer_security@macromedia.com
Resources 783

http://www.macromedia.com/devnet/security/
http://www.macromedia.com/devnet/security/security_zone/
http://www.macromedia.com/devnet/security/security_zone/
http://www.macromedia.com/software/flex/
http://www.macromedia.com/software/flashplayer/
http://www.macromedia.com/software/flashplayer/
http://www.macromedia.com/software/flash/
http://www.macromedia.com/desdev/

784 Chapter 37: Applying Flex Security

CHAPTER 38
Deploying Applications
This chapter describes how to deploy Macromedia Flex applications and write custom HTML
wrappers that display the application in a browser. This chapter also describes how to configure
your environment to support Macromedia Flash Player detection, deployment, and auto-update.

Contents

About deploying . 785

Adding Flex to your application server . 786

Distributing components . 791

Working with Flex files . 793

About the HTML wrapper . 798

Passing request data to Flex applications. 805

Flash Player detection and deployment . 808

Managing Flash Player auto-update . 812

About deploying

J2EE encourages encapsulation of a single web application through its WAR, JAR, and EAR file
packaging. You can install a Flex application as a WAR file or with an open directory structure.
The J2EE Flex application settings are stored in flex/WEB-INF/web.xml and flex-config.xml.
The web.xml file uses Flex-specific naming conventions to avoid collision with other applications
running on the same server. All classes used by Flex are in a package named flex.

There are several considerations when deciding how to deploy a Flex application. When preparing
Flex for deployment, consider the following:

• Target server You can add Flex to an existing web application or build the web application
on top of Flex. When you deploy your application to another machine, it can be as a WAR file,
a ZIP file, or open directory. For more information, see “Adding Flex to your application
server” on page 786.
785

• Components If you create components for others to use in their Flex applications, you can
distribute them as SWC files, ActionScript files, or MXML files. For more information, see
“Distributing components” on page 791.

• File types Your application can consist of pregenerated SWF files, MXML files, JSP pages,
packaged ActionScript class files, or SWC files, or a combination of these plus media files,
external resources, and data files. For more information, see “Working with Flex files”
on page 793.

Adding Flex to your application server

The way you add Flex to your application server often affects how you will deploy your
applications to other servers. There are two primary approaches to adding Flex to an application
server:

• Add Flex to an existing WAR file Merge the Flex configuration settings with your existing
web application. When you prepare to deploy your application on another server, you must
include the expanded contents of the flex.war file underneath your application root.

• Build a new application on top of Flex For clean installations that have no pre-existing web
applications, you expand the flex.war file into your application server. You then add
application files inside the Flex’s directory structure. To deploy your new application on
another server already running Flex, you move your application’s files and not the entire Flex
directory structure.

In some cases, you will have developed applications with a Developer or Trial Edition of Flex, and
want to load-test the application or deploy it on a customer-facing server. Because the Developer
Edition of Flex limits the number of concurrent requests and the Trial Edition times out, you may
be required to update your Flex license before going live. Flex includes a command-line utility for
doing this.

The following sections describe Flex installation and deployment techniques and the syntax for
using Flex’s command-line license tool.

Adding Flex to an existing web application

If you have a pre-existing web application and want to add Flex resources to it, copy the
flex_app_root/WEB-INF/flex directory to your application’s WEB-INF directory. In addition,
you must merge your application’s configuration files with the Flex-specific settings in the
web.xml file from the flex.war file.

Your file structure should match the following:
/application_root

/WEB-INF
web.xml
/flex/frameworks/mx.swc
/flex/frameworks_debug/mx.swc
/flex/jars/*
/flex/system_classes/*
/flex/user_classes/*
/flex/logs/*
/flex/global.css
786 Chapter 38: Deploying Applications

/flex/flex-config.xml
/flex/mxml-manifest.mxml
/flex/gate-config.xml
/lib/flex-bootstrap.jar
server-config.wsdd

To run Flex applications with this structure, you add your MXML files to your application’s
root directory.

To deploy your application on another server, create a WAR file that contains your application
files and the Flex files. You then deploy the new WAR file to the other server. The Flex files must
be expanded into the Flex directory underneath your application’s root, because a WAR file
cannot contain another WAR file. When deploying the WAR file, you might be required to
change the licensing information of the Flex WAR. For more information, see “Changing Flex
license keys” on page 790.

If you have multiple applications on the same server, you must add the Flex files to each of them
to use Flex in that application.

To update the web.xml file:

1. Add the following context parameters:
<context-param>

<param-name>flex.class.path</param-name>
<param-value>./WEB-INF/flex/jars</param-value>

</context-param>
<context-param>

<param-name>flex.configuration.file</param-name>
<param-value>/WEB-INF/flex/flex-config.xml</param-value>
<description>configuration file</description>

</context-param>
<context-param>

<param-name>flex.listener.class</param-name>
<param-value>flex.cache.DependencyCheckerService</param-value>

</context-param>

2. Add the following Flex filters:
<filter>

<filter-name>FlexDetectionFilter</filter-name>
<filter-class>flex.bootstrap.BootstrapFilter</filter-class>
<init-param>

<param-name>filter.class</param-name>
<param-value>flex.detection.DetectionFilter</param-value>

</init-param>
</filter>
<filter>

<filter-name>FlexCacheFilter</filter-name>
<filter-class>flex.bootstrap.BootstrapFilter</filter-class>
<init-param>

<param-name>filter.class</param-name>
<param-value>flex.cache.CacheFilter</param-value>

</init-param>
</filter>

3. Add the following filter mappings:
Adding Flex to your application server 787

Note: The FlexDetectionFilter must appear before the FlexCacheFilter mappings. The order of
the filter mappings is important. The FlexCacheFilter is mapped to two servlets.

<filter-mapping>
<filter-name>FlexDetectionFilter</filter-name>
<servlet-name>FlexMxmlServlet</servlet-name>

</filter-mapping>
<filter-mapping>

<filter-name>FlexCacheFilter</filter-name>
<servlet-name>FlexMxmlServlet</servlet-name>

</filter-mapping>
<filter-mapping>

<filter-name>FlexCacheFilter</filter-name>
<servlet-name>FlexSwfServlet</servlet-name>

</filter-mapping>

4. Add the following listener:
<listener>

<listener-class>flex.bootstrap.BootstrapListener</listener-class>
</listener>

5. Add the following servlet definitions:

■ FlexProxyServlet
■ FlexErrorServlet
■ FlexInternalServlet
■ FlexSwfServlet
■ FlexMxmlServlet
■ FlexAxisServlet
■ AMFGatewayServlet
■ FlexForbiddenServlet
■ session
Copy the servlet definitions from the default Flex web.xml file.

6. Add the following servlet mappings:

Note: The FlexSwfServlet has two mappings.

<!-- Flash Remoting AMF Gateway URL -->
<servlet-mapping>

<servlet-name>AMFGatewayServlet</servlet-name>
<url-pattern>/amfgateway/*</url-pattern>

</servlet-mapping>
<!-- Flash Web Services Proxy URL -->
<servlet-mapping>

<servlet-name>FlexProxyServlet</servlet-name>
<url-pattern>/flashproxy/*</url-pattern>

</servlet-mapping>
<!-- Axis server/proxy URL -->
<servlet-mapping>

<servlet-name>FlexAxisServlet</servlet-name>
<url-pattern>/flex-ws/*</url-pattern>
788 Chapter 38: Deploying Applications

</servlet-mapping>
<servlet-mapping>

<servlet-name>FlexErrorServlet</servlet-name>
<url-pattern>/flex-error</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>FlexInternalServlet</servlet-name>
<url-pattern>/flex-internal/*</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>FlexMxmlServlet</servlet-name>
<url-pattern>*.mxml</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>FlexSwfServlet</servlet-name>
<url-pattern>*.swf</url-pattern>

</servlet-mapping>
<!-- use the same servlet for retrieving SWD debugging files -->
<servlet-mapping>

<servlet-name>FlexSwfServlet</servlet-name>
<url-pattern>*.swd</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>FlexForbiddenServlet</servlet-name>
<url-pattern>*.as</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>FlexForbiddenServlet</servlet-name>
<url-pattern>*.swc</url-pattern>

</servlet-mapping>

7. Add the following tag library definition:
<taglib>

<taglib-uri>FlexTagLib</taglib-uri>
<taglib-location>/WEB-INF/lib/flex-bootstrap.jar</taglib-location>

</taglib>

8. (Optional) Add the following error page mappings:
<error-page>

<error-code>404</error-code>
<location>/flex-error</location>

</error-page>
<error-page>

<error-code>403</error-code>
<location>/flex-error</location>

</error-page>
<error-page>

<error-code>500</error-code>
<location>/flex-error</location>

</error-page>
<error-page>

<exception-type>javax.servlet.jsp.JspException</exception-type>
<location>/flex-error</location>

</error-page>
Adding Flex to your application server 789

<error-page>
<exception-type>javax.servlet.ServletException</exception-type>
<location>/flex-error</location>

</error-page>

Building applications on top of Flex

If you build an application on top of Flex, you can install the Flex application on your server
using the Flex installation instructions. Explode the flex.war file to a new directory called /flex
under your server root. You can change the default name of the Flex root directory using the
installation instructions, and edit the default mappings.

When creating a new Flex application, your file structure should match the following:
app_server_root/

/flex_app_root
/application_root
/WEB-INF

web.xml
/flex/flex-config.wsdd
/flex/frameworks/mx.swc
/flex/frameworks_debug/mx.swc
/flex/jars/*
/flex/system_classes/*
/flex/user_classes/*
/flex/logs/*
/flex/global.css
/flex/flex-config.xml
/flex/mxml-manifest.mxml
/flex/gateway-config.xml
/lib/flex-bootstrap.jar

To add a new Flex application, you add its files to the /flex directory. Create a subdirectory
under/flex for each application, and use your server’s request mappings to hide this structure from
end-users.

When you deploy the application to another server that is running Flex, you need only distribute
your application’s folder under the flex_app_root directory. You are not required to make changes
to the application server configuration files when deploying a Flex applications onto a server that
is already running Flex. Furthermore, you are not required to deploy your application as a WAR
file, although that is a recommended method of distributing archived J2EE applications.

You might be required to change the licensing information of the Flex installation on the target
server. For more information, see “Changing Flex license keys” on page 790.

Changing Flex license keys

Flex includes a command-line utility that you use to change your license key. You can use the
licensetool utility to upgrade an existing Flex installation or update the Flex license key inside
your application’s WAR file.

Note: When preparing a WAR file for sale or deployment, consult your Macromedia licensing
agreement to determine what your options are.
790 Chapter 38: Deploying Applications

You access the licensetool command-line utility in the flex_install_dir/bin directory. The
licensetool utility has the following syntax:
licensetool [-info] [-install licensekey] flex_app_root|web_application_root

Use the install option to change the license key in the given WAR file. The following example
updates the Flex license key in a default JRun installation:
licensetool -install MYNEWKEY c:/jrun4/servers/default/flex

When Flex is deployed into a web application, you point to the application’s root directory to
change the license key. The following example updates the Flex license key when Flex is deployed
as part of MyApplication:
licensetool -install MYNEWKEY c:/dev/MyApplication

The info option returns the current license information for the given WAR file.

Distributing components

Components encapsulate common functionality so that you can use them across applications.
Components can take the form of UI controls created in Flash MX 2004, ActionScript classes, or
MXML files.

Distributing SWC files

Flash MX 2004 exports components as component packages (SWC files). A SWC file contains all
the code, SWF files, images, and metadata associated with the component so you can easily add it
to your Flex environment. When you distribute a component as a SWC file, you only need to
give your users the single file.

Note: Once you create a SWC file, you can rename the file but the tag name you use in your MXML
file must match the Linkage Identifier in the original FLA file.

To use a SWC file in your Flex application, move it to a directory defined by the <lib-path>
child tag in the flex-config.xml file. Macromedia recommends using the flex_app_root/WEB-
INF/flex/user_classes directory to store all custom components and classes.

Even if the SWC file contains classes in packages, do not deploy the SWC file to a directory
structure that matches the package name. Copy the SWC file to the top level of a directory
defined by the <lib-path> settings.

The following shows the default <lib-path> settings in the flex_app_root/WEB-INF/flex/flex-
config.xml file:
<lib-path>

<path-element>/WEB-INF/flex/user_classes</path-element>
<path-element>/WEB-INF/flex/frameworks</path-element>

</lib-path>

Note: Do not store custom components or classes in the flex_app_root/WEB-INF/flex/frameworks
directory. This directory is for Macromedia classes and components.
Distributing components 791

All SWC files found in the <lib-path> are merged together and resolved using the priority and
version number prior to compilation of the final SWF. The order of the <path-elements> is
ignored.

You can include the contents of debug SWC files in your Flex applications by editing the <path-
elements> of the <debug-lib-path> child tag. Debug SWC files are ignored unless the debug
flag is set during compilation. When the debug flag is set, the MXML compiler merges these
libraries with the regular libraries, but at a higher priority level.

The following is the default value of the <debug-lib-path> element:
<debug-lib-path>

<path-element>/WEB-INF/flex/frameworks_debug</path-element>
</debug-lib-path>

For more information on using SWC files, see “Using SWC files” on page 830.

Defining component namespaces

To use components in your Flex applications, you must specify a namespace. The namespace
optionally defines a tag prefix and can point to a package’s subdirectories or a wildcard indicating
that the component is in the same directory as the MXML file.

You store most custom components in the flex_app_root/WEB-INF/flex/user_classes directory. In
the case of custom Flash components, you can store the SWC file in another directory that you
specify in the <lib-path> setting in the flex-config.xml file. For information on editing the flex-
config.xml file to add additional directories to the <lib-path> setting, see “Importing SWC files
into the Flash IDE” on page 833.

Components in the same directory as the application can use a namespace defined as either of the
following:

• xmlns="*"
• xmlns:prefix=”*”

The following example does not define a prefix for the component’s tag:
<mx:Application xmlns:mx=http://www.macromedia.com/2003/mxml xmlns="*">

<MyFirstComponent/>
</mx:Application>

The following example defines the prefix as local and uses that prefix in the component’s tag:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

xmlns:local="*">
<local:MyFirstComponent />

</mx:Application>

ActionScript or MXML components can use a namespace that identifies the subdirectories in
which the component resides. The following example defines a namespace as being in the
/customComponents/objects directory:
<mx:Application xmlns:mx=http://www.macromedia.com/2003/mxml

xmlns:custom="customComponents.objects">
<custom:MyFirstComponent />

</mx:Application>
792 Chapter 38: Deploying Applications

SWC files must reside at the top level of the user_classes or directory specified by the <lib-path>
setting. As a result, their namespace declarations cannot include subdirectories.

Distributing MXML and ActionScript components

You can store MXML and ActionScript components in packages that define their class structure.
When distributing these files, include the package directory structure.

To install MXML and ActionScript components, copy the file structure to flex_app_root/WEB-
INF/flex/user_classes or another directory defined as part of the <lib-path>. The component
can then be accessed by any Flex application.

Working with Flex files

When you request an MXML file directly, Flex returns an HTML wrapper that points to a
generated SWF file. However, there are several other methods to return a Flex application to a
requesting browser. Each method has its own strengths and weaknesses. Your users can access Flex
applications by requesting the SWF file directly, or they can request an HTML or other type of
page that contains a reference to the SWF file. Finally, you can request a JSP page that defines the
MXML dynamically. These methods provide more flexibility for laying out the page that contains
the SWF file.

To decide how you will deploy your Flex application, and how you want your users to access Flex
content, you should familiarize yourself with the following options:

• Passing in request data
• History management support
• Flash Detection and Deployment Kit support
• Customizing the appearance of your Flex application in the browser

Deploying Flex applications as MXML files

You can deploy MXML pages on any Java application server running the Flex application. When
a user requests an MXML file, Flex compiles a SWF file and returns the SWF file and an HTML
wrapper that defines the SWF file to the browser. Clients can also request an MXML file with
“.swf” appended to the query string. In this case, Flex compiles and returns the SWF file, but
without the HTML wrapper.

The default HTML wrapper supports history management and the Flash Detection and
Deployment Kits. To write a custom HTML wrapper, you must precompile your Flex application
into a SWF file or reference the MXML files in a JSP page. For more information, see “Deploying
Flex applications as precompiled SWF files” on page 794 and “Deploying Flex applications as
JSPs” on page 796.

Displaying MXML files

You can change some aspects of the way the SWF file is displayed in the browser by editing the
MXML file’s <mx:Application> tag. These properties include frameRate and pageTitle. For
more information, see “Specifying options to the Application container” on page 269.
Working with Flex files 793

Passing data to MXML files

You can pass data into a Flex application that is deployed as an MXML file by appending query
string parameters to the query string. For more information, see “Using query string parameters”
on page 806.

Suppressing HTML output

If you deploy an MXML file, you can suppress the HTML output by appending .swf to the
requesting URL. This overrides the default HTML wrapper that includes player detection and
deployment settings.

For example, normally the user requests the Flex application using a URL similar to the
following:
http://mydomain:8100/flex/file1.mxml

Use the following URL to return only the SWF file and not the default HTML wrapper:
http://mydomain:8100/flex/file1.mxml.swf

Deploying Flex applications as precompiled SWF files

You can precompile SWF files from your MXML source code using the mxmlc compiler or
requesting them in a browser and saving the generated files. Once you compile the SWF file, you
can create a custom HTML wrapper that returns the SWF file when the user requests that
HTML file. This lets you add Flex applications to existing web pages. With a precompiled SWF,
you can add the SWF file to any dynamic or static web page. You need only add the HTML
wrapper code to that page.

Note: If you precompile a Flex SWF file, you must deploy it on a server running a licensed copy of
Flex.

You can also allow clients to request the SWF file directly in the browser. However, this method
prevents you from writing any HTML wrapper.

For more information on using mxmlc to precompile your SWF files, see “Using the command-
line compiler” on page 754.

Displaying precompiled SWF files

To define a custom page referencing a Flex application, you can use the contents of the default
HTML wrapper generated by Flex as a template. This wrapper includes support for history
management, flashVars properties, and Player detection.

To define your own HTML wrapper that displays precompiled SWF files, you can use any
language that returns HTML, including JSP, ColdFusion, PHP, ASP, or HTML. For more
information on defining a custom HTML wrapper, see “About the HTML wrapper”
on page 798. You can add additional logic for Player detection and deployment to a custom
wrapper as described in “Adding detection and deployment to custom wrappers” on page 810.
794 Chapter 38: Deploying Applications

You can change some aspects of the way the SWF file is displayed in the browser by editing the
MXML file’s <mx:Application> tag. For more information, see “Specifying options to the
Application container” on page 269.

To add the HTML wrapper to your application:

1. Request your MXML file in a browser. Flex returns the default HTML wrapper.

2. Selecting View > Source (in Internet Explorer) or View > Page Source (in Netscape).

The browser displays the HTML source code.
3. Copy the <script> and <noscript> blocks from the source code.

The code that you copy appears similar to the following:
<script language='javascript' charset='utf-8' src='/flex/flex-

internal?action=js'></script>
<noscript>

<object classid='clsid:D27CDB6E-AE6D-11cf-96B8-444553540000'
codebase='http://download.macromedia.com/pub/shockwave/cabs/flash/swflash
.cab#version=7,0,14,0' width='500' height='500'

>
<param name='flashVars' value=''>
<param name='src' value='MyApp.mxml.swf'>
<embed pluginspage='http://www.macromedia.com/go/getflashplayer'

width='500' height='500' flashVars='' src='file1.mxml.swf' />
</object>

</noscript>

<script language='javascript' charset='utf-8'>
document.write("<object classid='clsid:D27CDB6E-AE6D-11cf-96B8-
444553540000'
codebase='http://download.macromedia.com/pub/shockwave/cabs/flash/swflash
.cab#version=7,0,14,0' width='500' height='500'");
document.write(">");
document.write(" <param name='flashVars'
value='historyUrl=%2Fflex%2Fflex-internal%3Faction%3Dhtml&lconid=" +
lc_id +"'>");
document.write(" <param name='src' value='MyApp.mxml.swf'>");
document.write(" <embed
pluginspage='http://www.macromedia.com/go/getflashplayer' width='500'
height='500'");
document.write(" flashVars='historyUrl=%2Fflex%2Fflex-
internal%3Faction%3Dhtml&lconid=" + lc_id +"'");
document.write(" src='MyApp.mxml.swf'");
document.write(" />");
document.write("</object>");

</script>

<script language='javascript' charset='utf-8'>
document.write("
<iframe src='/flex/flex-internal?action=html'
name='_history' frameborder='0' scrolling='no' width='22'
height='0'></iframe></br>");

</script>

4. Paste this code into your HTML page.
Working with Flex files 795

You can create a custom HTML wrapper. For information about creating a custom wrapper, see
“Customizing the HTML wrapper” on page 799.

Passing data to precompiled SWF files

Precompiled SWF files can use runtime request data. To pass request data into a Flex application
running as a precompiled SWF file, you can add custom properties in your HTML wrapper as
flashVars or use query string parameters.

For more information, see “Using query string parameters” on page 806 and “Using flashVars”
on page 807.

Defining Flash MIME types

When your files are accessed from a web server, the server must properly identify them as Flash
content in order to return them with the proper MIME type setting. You may be required to add
the Flash SWF file MIME types to the server’s configuration files and associate the following
MIME types with the SWF file extensions:

• MIME type application/x-shockwave-flash has the .swf file extension.
• MIME type application/futuresplash has the .spl file extension.

Deploying Flex applications as JSPs

You can develop your Flex application using JSPs. This requires that you use the Flex JSP Tag
Library. For more information on using the Flex JSP Tag Library, see Chapter 35, “Using the Flex
JSP Tag Library,” on page 741.

When you write MXML code in a JSP or reference external MXML files or SWF files, Flex adds
the HTML wrapper to the output of the JSP.

There are several methods of deploying Flex applications as JSPs:

• Write MXML in the JSP. The JSP contains dynamic MXML written with the Flex JSP Tag
Library. For example:
<%@ taglib uri="FlexTagLib" prefix="mm" %>
<mm:mxml>

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"
width="200" height="240">

<mx:Label id="label0" text="Hi <%= session.getAttribute("username") %>
"/>
</mx:Application>

</mm:mxml>

• Use the source property of the <mxml> tag to include external MXML files in your JSPs; for
example:
<%@ taglib uri="FlexTagLib" prefix="mm" %>
<mm:mxml source="../FlexApps/MyApp.mxml" />

• Use the source property of the <flash> tag to include a pregenerated SWF in your JSP; for
example:
796 Chapter 38: Deploying Applications

<%@ taglib uri="FlexTagLib" prefix="mm" %>
<mm:flash source="../FlexApps/MyApp.swf" />

Displaying Flex applications in JSP pages

The <flash> and <mxml> tags support a set of properties that define the presentation of the SWF
file on the generated HTML page. Setting a property adds that property to the <object> and
<embed> tags within the HTML wrapper. In some cases, the properties are only used by the
<object> or the <embed> tag, but not both.

The following example sets the background color of the pregenerated SWF file to #FFCCCC:
<mm:flash src="MyApp.swf" bgcolor=”#FFCCCC” />

The available display properties are listed in “About the <object> and <embed> tag properties”
on page 800. For information about using the <flash> and <mxml> tags, see “About the Flex
tags” on page 742.

You can also change some aspects of the way the SWF file is displayed in the browser using the
Flex application’s <mx:Application> tag. For more information, see “Specifying options to the
Application container” on page 269.

Passing data to JSPs

You can use session, GET, POST, or any other method of accessing request data that is supported
by JSPs to pass data to the Flex application. In the case of using either the <flash> or <mxml> tag
to reference an external SWF or MXML file, the data can be appended to the request string or
defined as a flashVars parameter.

To pass request data into a Flex application written as a JSP, you can add attributes in your JSP
page with JSP expression syntax or use query string parameters. You can also take advantage of the
Flex JSP Tag Library and use the <flash> and <mxml> tags to pass flashVars to the Flex
application.

Note: Compilation performance depends on the number of unique MXML fragments in your source
JSP. As a result, dynamic MXML should be used sparingly.

When you pass variables to Flex applications using the <param> tag in the Flex tag library, you
can use the value of that variable in the Flex application, as long as the variable is declared inside
an MXML script block. For more information, see “Using the <param> tag” on page 748.

The <mxml> and <flash> tags also support passing data to the application with flashVars. To
pass flashVars to a Flex application in a JSP, add the flashVars param tag to the <flash> or
<mxml> tag, as the following example shows:
<%@ taglib uri="FlexTagLib" prefix="mm" %>
<h2>FlashVars Parameters</h2>
<mm:flash source="jsptest2.swf" supportembed="false" border="5">

<mm:param name="flashVars" value="firstname=Reiner&lastname=Knizia" />
</mm:flash>

The value can be a JSP expression, as the following example shows:
<mm:flash src="MyApp.swf">
Working with Flex files 797

<mm:param name="flashVars" value="firstname=<%=
session.getAttribute(‘username’)"/>

</mm:flash>

For more information on using flashVars in the Flex JSP Tag Library tags, see “Using the Flex
JSP tag library” on page 742.

Defining display properties with the <mx:Application> tag

The <mx:Application> tag in your MXML file includes several properties that define the way
the SWF file is displayed in the browser. These properties apply to the SWF file, regardless of how
the application is deployed or how it is requested by the user.

You can specify the following properties of the Application container using the
<mx:Application> tag in your main MXML file:

• pageTitle
• height
• width
• frameRate
• scriptRecursionLimit
• scriptTimeLimit
• usePreloader
• preloader
• theme

For more information, see “Specifying options to the Application container” on page 269.

About the HTML wrapper

When you request an MXML file, Flex creates an HTML wrapper. The HTML wrapper is not
written to disk, but is stored in the cache and returned to the browser from the cache on each
request. If the source files change, Flex regenerates the wrapper. Also, if the wrapper’s output
includes content that is based on changing URL parameters, Flex regenerates the wrapper and the
requested MXML file for each unique request.

The HTML wrapper consists of an <object> tag and an <embed> tag that format the SWF file
on the page, define data object locations, and pass runtime variables to the SWF file. In addition,
the HTML wrapper includes tags for history management and Flash Player version detection and
deployment.

Flex also generates an HTML wrapper when you write MXML in your JSP pages. The wrapper
becomes part of the JSP servlet’s output stream. Flex does not generate the HTML wrapper when
you use the mxmlc precompiler.

Flex generates a second HTML wrapper that performs version detection and deployment. This
wrapper is invisible to end-users. For more information, see “Adding detection and deployment to
custom wrappers” on page 810.
798 Chapter 38: Deploying Applications

Customizing the HTML wrapper

You can write your own HTML wrapper for your SWF files rather than use the ones generated by
Flex. Your own wrapper can be any text file that contains the appropriate template variables—
including a plain HTML file, one that includes code for special interpreters such as ColdFusion
or Active Server Pages (ASP).

To write your own HTML wrapper, keep the following guidelines in mind:

• Set the value of the src property of the <object> tag to mxml_filename.mxml.swf.
The following example defines the src property of the <object> tag for an MXML
application called MyApp.mxml:
<param name='src' value='MyApp.mxml.swf'>

The <embed> tag uses the src property to define the source of the SWF file:
src='MyApp.mxml.swf'

• If you use both the <object> and the <embed> tags in your custom wrapper, use identical
values for each attribute to ensure consistent playback across browsers.

• To support history management, copy the script from the Flex-generated HTML wrapper and
paste it into your custom wrapper.

• To support Flash Player detection and deployment, see the instructions in “Adding detection
and deployment to custom wrappers” on page 810.

• You cannot write a custom wrapper when using the <flash> and <mxml> tags to return the
Flex application in a JSP.

• The HTML wrapper uses the context root of the application in several places. If you change
this from the generated wrapper, ensure that you change it in all locations.

About the <object> and <embed> tags

The <object> tag is used by Internet Explorer 3.0 or later on Windows 9x, Windows 2000,
Windows NT, Windows ME, and Windows XP platforms or any browser that supports the use of
the Flash ActiveX control. The <embed> tag is used by Netscape Navigator 2.0 or later, or
browsers that support the use of the Netscape-compatible plug-in version of Flash Player.

To ensure that browsers display Flex applications properly, Flex nests the <embed> tag within the
<object> tag. ActiveX-enabled browsers ignore the <embed> tag inside the <object> tag.
Netscape and Microsoft browsers using the Flash Plug-in do not recognize the <object> tag, and
read only the <embed> tag.

The following example shows the default HTML wrapper generated by Flex for an application
called MyApp (without the history management-specific tags):
<object classid='clsid:D27CDB6E-AE6D-11cf-96B8-444553540000'

codebase='http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.c
ab#version=7,0,14,0' width='200' height='200'>
<param name='flashVars' value=''>
<param name='src' value='MyApp.mxml.swf'>
<embed pluginspage='http://www.macromedia.com/go/getflashplayer'
width='200' height='200' flashVars='' src='MyApp.mxml.swf'/>

</object>
About the HTML wrapper 799

Four settings (height, width, classid, and codebase) are properties that appear within the
<object> tag; all others are attributes that appear are in separate, named param tags, as the
following example shows:
<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000" width="100"

height="100" codebase="http://active.macromedia.com/flash7/cabs/
swflash.cab#version=7,0,14,0">
<param name="movie" value="moviename.swf">
<param name="play" value="true">
<param name="loop" value="true">
<param name="quality" value="high">

</object>

For the <embed> tag, all settings are properties that appear between the angle brackets of the
opening <embed> tag, as the following example shows:
<embed src="moviename.swf" width="100" height="100" play="true" loop="true"

quality="high"
pluginspage="http://www.macromedia.com/shockwave/download/index.cgi?P1_Prod
_Version=ShockwaveFlash">

</embed>

To use both tags together, position the <embed> tag just before the closing <object> tag, as
follows:
<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000" width="100"

height="100" codebase="http://active.macromedia.com/flash7/cabs/
swflash.cab#version=6,0,0,0">
<param name="movie" value="moviename.swf">
<param name="play" value="true">
<param name="loop" value="true">
<param name="quality" value="high">
<embed src="moviename.swf" width="100" height="100" play="true” loop="true"
quality="high"
pluginspage="http://www.macromedia.com/shockwave/download/index.cgi?P1_Prod
_Version=ShockwaveFlash">
</embed>

</object>

About the <object> and <embed> tag properties

When Flex generates an HTML wrapper, it includes a set of properties in the <object> and
<embed> tags by default. If you write a custom HTML wrapper, you can include additional
properties that define the appearance of the SWF in the browser. This section describes the
default properties, and then lists the additional display properties.
800 Chapter 38: Deploying Applications

About the default properties

When Flex generates an HTML wrapper, it includes a subset of properties in the <object> and
<embed> tags by default. The following table describes the default properties included in the
HTML wrapper:

Property Description

classid Defines the classid of Flash Player. This identifies the ActiveX control for the
browser. Internet Explorer 3.0 or later on Windows 9x, Windows 2000, Windows
NT, Windows ME, and Windows XP prompt the user with a dialog asking if they
would like to auto-install the Flash Player if it's not already installed. This process
can occur without the user having to restart the browser.
This property is used for the <object> tag only.

codebase Identifies the location of the Flash Player ActiveX control so that the browser can
automatically download it if it is not already installed.
This property is used for the <object> tag only.

flashVars Sends variables to the application. The format of the string is a set of name-value
pairs, each separated by an ampersand (&).
Browsers support string sizes of up to 64KB (65535 bytes) in length.
For more information on using flashVars to pass variables to Flex applications, see
“Using flashVars” on page 807.

height
width

Defines the height and width, in pixels, of the SWF file. Flex makes a best guess to
determine the height and width of the application if none is provided.
User agents scale an object or image to match the height and width specified by
the author. Lengths expressed as percentages are based on the horizontal or
vertical space currently available, not on the natural size of the object.
You can also set the height and width of a Flex application by setting the height
and width properties of the <flash> or <mxml> JSP tags or by setting the height and
width properties of the <mx:Application> tag in an MXML file.

movie Identifies the location of the SWF file.
If you write a custom wrapper but deploy your application as MXML files and not
pregenerated SWF files, use the following naming convention:
movie_name.mxml.swf
This property is used for the <object> tag only.
This property is not available for use with the <flash> or <mxml> JSP tags.

pluginspage Identifies the location of the Flash Player plug-in so that the user can download it if
it is not already installed.
This property is used for the <embed> tag only.

src Identifies the location of the SWF file.
If you write a custom wrapper but deploy your application as MXML files and not
pregenerated SWF files, use the following naming convention:
movie_name.mxml.swf
This property is used for the <embed> tag only.
If you use this property with the <flash> JSP tag, it points to the SWF file. If you
use it with an <mxml> JSP tag, it points to the MXML file.
About the HTML wrapper 801

Additional display properties

In addition to the default properties generated by Flex for the HTML wrapper, you can add other
properties that define the display of the SWF in the browser. These properties are based on the
HTTP specification for the <object> and <embed> tags. They can also be set as properties in the
<flash> and <mxml> tags in the Flex JSP Tag Library.

The following table describes optional display properties that you can add to your custom HTML
wrapper:

Property Type Description

align String Specifies the position of the object.
The align property supports the following values:
• bottom: Vertically aligns the bottom of the object with the current

baseline. This is the default value.
• middle: Vertically aligns the middle of the object with the current

baseline.
• top: Vertically aligns the top of the object with the top of the current

text line.
• left: Horizontally aligns the object to the left margin.
• right: Horizontally aligns the object to the right margin.

archive String Specifies a space-separated list of URIs for archives containing
resources used by the application, which may include the resources
specified by the classid and data properties.
Preloading archives can result in reduced load times for applications.
Archives specified as relative URIs are interpreted relative to the
codebase property.

base String Specifies the base directory or URL used to resolve all relative path
statements in the application.

bgcolor String Specifies the background color of the application. Use this property to
override the background color setting specified in the Flash file. This
property does not affect the background color of the HTML page.
Valid formats for bgcolor are any #RRGGBB, hexadecimal, or RGB
value.

border int Specifies the width of an object border, in pixels. The default value for
this property depends on the user agent.

codetype String Defines the content type of data expected when downloading the
application specified by the classid.
The codetype property is optional but recommended when the classid
property is specified; it lets the browser avoid loading unsupported
content types.
The default value of the codetype property is the value of the type
property.

data String Specifies the location of the application's data. For example, instance
image data for objects defining images.
If the data property is a relative URI, it is relative to the codebase
property.
802 Chapter 38: Deploying Applications

declare Boolean Makes the current object definition a declaration only. The object must
be instantiated by a subsequent object definition referring to this
declaration.

dir String Specifies the base direction of text in an element's content and
attribute values. It also specifies the directionality of tables. Possible
values are LTR (left-to-right text or table) and RTL (right-to-left text or
table).

hspace int Specifies the amount of white space inserted to the left and right of an
object. The default value is not specified, but is generally a small,
nonzero length.

id String Identifies the SWF to the host environment (a web browser, for
example) so that it can be referenced using a scripting language.
The id property is only used with the <object> tag.

lang String Specifies the base language of an element's property values and text
content.
The default value of this property is unknown. Language information
specified using the lang property may be used by a user agent to
control rendering in a variety of ways.

name String Identifies the SWF to the host environment (a web browser, typically)
so that it can be referenced using a scripting language.
The name property is only used with the <embed> tag.

quality String Defines the quality of playback in Flash Player. Valid values of quality
are low, medium, high, autolow, autohigh, and best. The default value is
best.
The low setting favors playback speed over appearance and never uses
anti-aliasing.
The autolow setting emphasizes speed at first but improves
appearance whenever possible. Playback begins with anti-aliasing
turned off. If the Flash Player detects that the processor can handle it,
anti-aliasing is turned on.
The autohigh setting emphasizes playback speed and appearance
equally at first, but sacrifices appearance for playback speed if
necessary. Playback begins with anti-aliasing turned on. If the actual
frame rate drops below the specified frame rate, anti-aliasing is turned
off to improve playback speed. Use this setting to emulate the View >
Antialias setting in Flash.
The medium setting applies some anti-aliasing and does not smooth
bitmaps.
The high setting favors appearance over playback speed and always
applies anti-aliasing.
The best setting provides the best display quality and does not
consider playback speed. All output is anti-aliased and all bitmaps are
smoothed.

Property Type Description
About the HTML wrapper 803

salign String Positions the SWF file within the browser. Valid values are L, T, R, B, TL,
TR, BL, and BR.
L, R, T, and B align the SWF file along the left, right, top or bottom edge,
respectively, of the browser window and crop the remaining three sides
as needed.
TL and TR align the SWF file to the top left and top right corner,
respectively, of the browser window and crop the bottom and
remaining right or left side as needed.
BL and BR align the SWF file to the bottom left and bottom right corner,
respectively, of the browser window and crop the top and remaining
right or left side as needed.

scale String Defines how the browser fills the screen with the SWF file. The default
value is showall. Valid values of the scale property are showall,
noborder, and exactfit.
Set to showall to make the entire SWF file visible in the specified area
without distortion, while maintaining the original aspect ratio of the
SWF. Borders may appear on two sides of the SWF file.
Set to noborder to scale the SWF file to fill the specified area, without
distortion but possibly with some cropping, while maintaining the
original aspect ratio of the SWF file.
Set to exactfit to make the entire SWF file visible in the specified area
without trying to preserve the original aspect ratio. Distortion may
occur.

standby String Defines a message that the user agent displays while loading the
object’s implementation and data.

style String Specifies style information for the current element.
The syntax of the value of the style property is determined by the
default style sheet language. In CSS, property declarations have the
form "name:value" and are separated by a semi-colon.

supportembed Boolean Determines whether the Netscape-specific <embed> tag is supported.
The supportembed property is optional and the default value is true.
Set to false to suppress the <embed> tag in the generated HTML.

tabindex int Specifies the position of the current element in the tabbing order for the
current document. This value must be a number between 0 and 32767.
User agents should ignore leading zeros.

title String Offers advisory information about the element for which it is set.
Values of the title property can be rendered by user agents in a variety
of ways. For example, visual browsers frequently display the title as a
ToolTip. Audio user agents might speak the title information in a similar
context.

type String Specifies the content type for the data specified by the data property.
The type property is optional but recommended when data is specified;
it prevents the browser from loading unsupported content types.
If the value of this property differs from the HTTP Content-Type
returned by the server, the HTTP Content-Type takes precedence.

Property Type Description
804 Chapter 38: Deploying Applications

Unsupported properties

Flex does not support the following properties in the <object> and <embed> tags:

• loop
• menu
• play
• swliveconnect

Passing request data to Flex applications

Flex provides convenient methods for getting at request data such as a user’s name or the item ID
for a product they want to look up. You can pass variables to the Flex application using a query
string parameter or a flashVars property in the HTML page.

Inside the Flex application, you access these variables exactly the same way, but the way that you
pass them to the Flex application is different. Query string parameters are attached to the URL in
the browser’s target window. The flashVars variables are defined in the HTML wrapper that
points to the Flex application.

Both methods make variables available to the SWF file when it is first launched. Flex does not
recompile the application each time the application is requested, even if the request variables have
changed. As a result, if you dynamically set the values of the flashVars or query string
parameters, you do not force a recompilation.

When using query string parameters or flashVars, the parameter must be URL encoded. The
format of the string is a set of name-value pairs separated by an ampersand (&). You can escape
special and/or nonprintable characters with a percent sign (%) followed by a two-digit
hexadecimal value. You can represent a single blank space using the plus sign (+).

usemap String Associates an image map with an element. The image map is defined
by a map element. The value of usemap must match the value of the name
attribute of the associated map element.

vspace int Specifies the amount of white space inserted above and below an
object. The default value is not specified, but is generally a small,
nonzero length.

wmode String Sets the Window Mode property of the SWF file for transparency,
layering, and positioning in the browser. Valid values of wmode are
window, opaque, and transparent.
Set to window to play the SWF in its own rectangular window on a web
page.
Set to opaque to hide everything on the page behind it.
Set to transparent so that the background of the HTML page shows
through all transparent portions of the SWF file. This may slow
animation performance.
This property is not supported in all browsers and platforms.

Property Type Description
Passing request data to Flex applications 805

The encoding for flashVars and query string parameters is the same as the page containing it.
Internet Explorer provides UTF-16 compliant strings on the Windows platform. Netscape
provides a UTF-8 encoded string to the Flash Player.

Most browsers support a flashVars String or query string up to 64KB (65535 bytes) in length.
They can include any number of name-value pairs. If you pass a query string parameter or
flashVars property to Flex but the MXML file does not declare it as a variable, Flex ignores
the value.

Using query string parameters

You can add query string parameters to the client’s request string, and interpret those parameters
in almost any Flex application. In effect, Flex supports GET request variables passed in as name-
value pairs in the URL.

To use query string parameters inside your MXML file, declare the parameter name at the top of
a script block. You can then access it as you would any variable inside the Flex application. You
can bind its value to a display control or modify the value and return it to another function.

The following application defines a variable named name:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="500"

height="500">

<mx:Script>
<![CDATA[

var name: String = "None"; // Set default value in case no param was set
]]>
</mx:Script>

<mx:TextInput text="Name: {name}" />

</mx:Application>

When a user requests this application with a name variable defined, Flex displays the name in the
TextInput control. The following URL passes the name Reiner to the Flex application:
http://localhost:8100/flex/myApp.mxml?name=Reiner

If no name is specified on the query string, Flex displays none.

The following example defines the name and hometown variables:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" width="500"

height="500">

<mx:Script>
<![CDATA[

var name: String = "None";
var hometown: String = "None";

]]>
</mx:Script>

<mx:TextInput text="Name: {name}" />
<mx:TextInput text="Hometown: {hometown}" />
806 Chapter 38: Deploying Applications

</mx:Application>

When a user requests this application with name and hometown parameters defined, Flex displays
them in the TextInput controls. The following URL passes the name Reiner and the hometown
Berlin to the Flex application:
http://localhost:8100/flex/myApp.mxml?name=Reiner&hometown=Berlin

Flex cannot access data passed in using POST requests.

You cannot pass query string parameters to a Flex application that runs inside a standalone Flash
Player.

Using flashVars

You can pass variables to your Flex applications using the flashVars property in the <object>
and <embed> tags in your HTML wrapper. You do this either when you write your own custom
HTML wrapper or when you use the Flex JSP Tag Library’s <flash> and <mxml> tags to generate
the HTML output that displays the Flex application.

The following example sets the values of the firstname, middlename, and lastname flashVars
properties:
<object classid='clsid:D27CDB6E-AE6D-11cf-96B8-444553540000'

codebase='http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.c
ab#version=7,0,14,0' width='500' height='500'>

<param name='flashVars'
value='firstname=Reiner&middlename=T&lastname=Knizia'>

<param name='src' value='vartest.mxml.swf'>

<embed pluginspage='http://www.macromedia.com/go/getflashplayer'
width='500' height='500' flashVars='' src='vartest.mxml.swf' />

</object>

To use the flashVars property inside your MXML file, declare the property name at the top of a
script block. You can then access it as you would any variable inside the Flex application. You can
bind its value to a display control or modify the value and return it to another function. Inside the
Flex application, you access flashVars variables exactly the same way you would access query
string parameters.

The following example checks if the firstname, middlename, and lastname values were set:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

initialize="setup();" height="500">
<mx:VBox label="first" >

<mx:Label width="300" fontSize="20" height="35" id="lbl0" text="first
name"/>

<mx:Label width="300" fontSize="20" height="30" id="lbl1" text="middle
name"/>

<mx:Label width="300" fontSize="20" height="30" id="lbl2" text="last
name"/>
</mx:VBox>
Passing request data to Flex applications 807

<mx:Script>
<![CDATA[

var firstname;
var middlename;
var lastname;

function setup() {
if (firstname==undefined)

firstname="name is undefined";
lbl0.text=firstname;

if (middlename==undefined)
middlename="middlename is undefined";
lbl1.text=middlename;

if (lastname==undefined)
lastname="name is undefined";
lbl2.text=lastname;

}
]]>
</mx:Script>

</mx:Application>

To pass flashVars to a Flex application in a JSP, add the flashVars param tag to the <flash> or
<mxml> tag, as the following example shows:
<%@ taglib uri="FlexTagLib" prefix="mm" %>
<h2>FlashVars Parameters</h2>
<mm:flash source="jsptest2.swf" supportembed="false" border="5">

<mm:param name="flashVars" value="firstname=Henry&lastname=Miller" />

</mm:flash>

Flash Player detection and deployment

Flex supports Flash Player version detection and deployment. When a user accesses your
application, they are initially directed to a SWF file that detects the Flash Player version. If they
have the specified version or later, the SWF redirects the user to your content file, and your SWF
file plays as designed. This process is transparent to the user.

If users don’t have the specified version, they’re redirected to an alternate location to download an
updated Flash Player. This location is specified in the flex-config.xml file. The actual location
depends on the type of Player they are upgrading.

Note: If the user updates their version of the Flash Player, they must restart their web browser.

The Flash Player detection logic is built into an HTML wrapper that is not visible under normal
circumstances. If you write a custom wrapper for your Flex applications, you must manually add
version detection.

When using the Flex JSP Tag Library to define a Flex application, Flex does not include the
complete Flash Player detection scheme. However, the <object> and <embed> tags do include
minimum version information and download locations.
808 Chapter 38: Deploying Applications

Enterprise users who do not allow access outside of the corporate firewall can trigger Flash Player
to go to a local detection and deployment page. For more information, see “About the Enterprise
Deployment Kit” on page 811.

Configuring detection and deployment

Version detection and deployment settings are defined in the flex-config.xml file. You use this file
to configure version detection and deployment, or you can write your own custom version
detection and deployment into the HTML wrapper.

Configuring version detection

The default minimum version for Flex applications is 7.0.14. This indicates version 7, major
revision 0, minor revision 14. You can change the minimum version required in the <flash-
player> tag of the flex-config.xml configuration file.

The following example shows the default version settings:
<flash-player>

...
<required-version>7</required-version>
<required-major-revision></required-major-revision>
<required-minor-revision>14</required-minor-revision>
...

</flash-player>

Disabling version detection

You can disable Flash Player detection by setting the <enable> child tag to false. In closed
environments where users cannot change their system configurations, disabling Flash Player
detection provides a slight decrease in application start-up time.

The following example enables version detection:
<flash-player>

...
<enable>true</enable>
...

</flash-player>

Configuring deployment settings

You can configure the deployment pages for the stand-alone Flash Player, ActiveX Player, and
Netscape Plug-in in the <flash-player> child tags of the flex-config.xml configuration file.
These tags can take the variable {context.root} as part of their value. This resolves to the root
of the Flex application. Requests to /flex map to this root by default. The actual location of the
context root depends on your application server.

When no Flash Player is installed, Flash uses the values in <activex-download-url> and
<plugin-download-url>. These map directly to values in the <object> and <embed> tags in the
HTML wrapper.
Flash Player detection and deployment 809

The <object> HTML tag supports versioning. When <windows-auto-install> is set to true,
then the <object> tag checks the version information and calls the <activex-download-url>
for an update, if required.

The following table describes the <flash-player> child tags:

The following example shows the default deployment settings in the flex-config.xml file:
<flash-player>

...
<download-url>{context.root}/flex-internal/detection-
kit/upgrade_flash/upgrade_flash.html</download-url>

<activex-download-
url>http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab</do
wnload-url>

<plugin-download-url>http://www.macromedia.com/go/getflashplayer</download-
url>
...

</flash-player>

Each of the <flash-player> settings has a corresponding https setting. If the application server
determines that the request is secure (if the request was made using the HTTPS protocol), then
Flex uses the https URLs in the HTML wrapper instead. You can disable the https settings by
commenting them out in the flex-config.xml file.

Adding detection and deployment to custom wrappers

A Flash Player detection wrapper is sent prior to each MXML request, even before the default
HTML wrapper. If you create a custom HTML wrapper, you must manually add version
detection code if you want to support it.

The following example shows default detection code defined in the initial, invisible HTML
wrapper. To add detection logic to your HTML wrapper, copy and paste this code into your
HTML file.

Tag Description

download-url The <download-url> is encountered when the client has Flash installed but
doesn’t have the correct version. The default location sends users to the
Macromedia web site so they can download the latest version of Flash.
If <windows-auto-install> is set to true, Flash ignores the <download-url> and
directs Windows/IE clients to the <activex-download-url>.
The default page specified by <download-url> is not visible on the file
system but is generated by Flex.

activex-download-url If the user has <windows-auto-install> set to true, Flash directs users to
update the ActiveX version of Flash Player using this value.

plugin-download-url Flex redirects users without the required Netscape Plug-in to this Plug-in
upgrade page.
810 Chapter 38: Deploying Applications

<object id="flashDetection" classid="clsid:D27CDB6E-AE6D-11cf-96B8-
444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.c
ab#version=4,0,0,0" width="80" height="80">

<param name="movie" value="/flex/flex-internal/detection-
kit/flash_detection.swf?flashContentURL=%2Fflex%2Fwrapper%2Ffile1%2Emxml&al
tContentURL=%2Fflex%2Fflex%2Dinternal%2Fdetection%2Dkit%2Fupgrade%5Fflash%2
Fupgrade%5Fflash%2Ehtml&contentVersion=7&contentMajorRevision=0&contentMino
rRevision=14&allowFlashAutoInstall=true">
<param name="quality" value="low">
<param name="profile" value="false">

<embed name="flashDetection" src="/flex/flex-internal/detection-
kit/flash_detection.swf?flashContentURL=%2Fflex%2Fwrapper%2Ffile1%2Emxml&al
tContentURL=%2Fflex%2Fflex%2Dinternal%2Fdetection%2Dkit%2Fupgrade%5Fflash%2
Fupgrade%5Fflash%2Ehtml&contentVersion=7&contentMajorRevision=0&contentMino
rRevision=14&allowFlashAutoInstall=false" quality="low" profile="false"
swliveconnect="true"
pluginspage="http://www.macromedia.com/go/getflashplayer"
type="application/x-shockwave-flash" width="80" height="80">
</embed>

</object>

The version detection SWF file (flash_detection.swf) is located in the flex_app_root/WEB-
INF/lib/flex-bootstrap.jar file. It is defined by the BootstrapServlet entry in the flex-config.xml
file. The detection wrapper passes the version settings in the flex-config.xml file to the version
detection SWF, as well as the deployment URLs if the Player requires an update.

To view the version detection wrapper, you can use a packet sniffer such as TCPMonitor. This
application is included with JRun.

If you set <windows-auto-install> in the flex-config.xml file to true, Flash Player compares its
version with the version defined in the <object> tag of the HTML wrapper rather than send a
request to the version detection SWF. In this case, Flex does not generate a Flash Player detection
wrapper.

About the Enterprise Deployment Kit

When a client detects that Flash Player is not installed or must be upgraded, the deployment
settings in the flex-config.xml file guide the user to the correct location on the web to download a
new Player. If you are serving Flex applications from within a firewall, you can still provide users
with upgrades to Flash Player using the Flex Enterprise Deployment Kit.

To distribute Flash Player you must provide a web page that guides your users to upgrade their
Player without ever going to an external website. In addition, you must store the necessary
versions of the Flash Player in an accessible location.

The Enterprise Deployment Kit includes all versions of Flash Player, plus a Player version
detection and download page. This page performs version, browser, and operating system using
JavaScript. It guides users through the Player upgrade and installation processes.
Flash Player detection and deployment 811

The Enterprise Deployment Kit includes the deployable versions of Flash Player and a Player
download page. The deployment kit requires that you agree to special licensing for Player
distribution. The license, implementation instructions, and download for the Enterprise
Deployment Kit are available from:
http://www.macromedia.com/go/flex_deploy_kit

Optimizing version detection

Flash includes the following methods of short-circuiting version detection so that only the initial
request for a Flex application performs it:

• Internet Explorer (Windows). If you set <windows-auto-install> in the flex-config.xml file
to true, Flash Player compares its version with the version defined in the <object> tag of the
HTML wrapper rather than send a request to the version detection SWF. If the versions do not
match, users are redirected to the appropriate update page. The default value of <windows-
auto-install> is true.

• Netscape. Flash Player appends ?versionChecked=true to the query string after the initial
version detection succeeds. Subsequent requests do not trigger a new round trip request to the
version detection SWF file.

Note: Netscape users who do not initially have any version of Flash Plug-in installed may be
redirected to a Netscape download page rather than the Flash Player upgrade page. To avoid this,
instruct your users to select Edit > Preferences > Navigator > Helper Applications and deselect the
Always Use the Netscape Plug=in Finder Service to Get Plug-ins setting. If this setting is selected,
Netscape ignores download location specified by the <embed> tag in the HTML wrapper.

Managing Flash Player auto-update

Flash Player supports auto-updating itself by periodically checking for new versions of the player
on the macromedia.com site. IT administrators can customize the parameters of this update.

The auto-update settings can be configured in two ways:

• User settings in Flash Player
• mms.cfg file in user’s “home” directory

Users can disable the auto-update process or set the periodicity of the checks via the properties
panel in Flash Player. These user-configured auto-update settings are stored in a local shared
object.

The second method for configuring the auto-update settings is to create a file named mms.cfg.
The mms.cfg file is intended to be configured by an IT administrator and stored on the user’s
machine. The file is not created by Flash Player installation. You might use a third-party
administration tools such as Microsoft System Management Server to replicate the configuration
file to the user’s desktop.

Store the mms.cfg file in the following location, depending on your operating system:

• Windows NT, 2K C:/WINNT/System32
• Windows XP C:/WINDOWS/System32
• Windows 95, 98, or ME C:/Windows/System
812 Chapter 38: Deploying Applications

• Macintosh /Application Support/Macromedia

The format of the mms.cfg file is a series of name=value pairs separated by carriage returns. If a
parameter is not set in the file, Flash Player assumes the default value. When set, values in this file
override the user-configured settings.

The following table describes settings in the mms.cfg file:

To disable the auto-update:

1. Open the mms.cfg file in a text editor.

2. Add the following auto-update setting:
AutoUpdateDisable=1

3. Save the mms.cfg file.

4. Close and restart Flash Player or the browser in which Flash Player is running.

You are not required to remove any other settings so that you can re-enable the auto-update
feature and restore your original settings by removing this line (or setting its value to 0).

Parameter Default Description

AutoUpdateDisable 0 0 allows auto-update based on user settings.
1 disables auto-update.

AutoUpdateInstallerUrl absent String specifies URL as download location for player
update.
If this parameter is not set, the Player uses the Macromedia
server.

AutoUpdateInterval <0 (or absent) <0 (or absent) uses value from Player settings.
0 checks for updates every time the player launches.
>0 specifies the minimum number of days between check
for updates.

AutoUpdateSettingsUrl absent String specifies URL as destination for "Settings..." button
in auto-update dialog.
If this parameter is not set, the Player uses the Macromedia
server.

AutoUpdateVersionUrl absent Specifies the URL to retrieve XML file containing Player
update data.
If this parameter is not set, the Player uses the Macromedia
server.
Managing Flash Player auto-update 813

814 Chapter 38: Deploying Applications

P
A

R
T

 V
II
PART VII
Custom Components
This part describes how to create custom components for Macromedia Flex using the
Flash MX 2004.

The following chapters are included:

Chapter 39: Working with Flash MX 2004 . 817

Chapter 40: Creating Basic Components in Flash MX 2004 . 835

Chapter 41: Creating Advanced Components in Flash MX 2004. 857

CHAPTER 39
Working with Flash MX 2004
This chapter describes how to set up and work in the Macromedia Flash environment when
creating components for Macromedia Flex. It helps familiarize you with setting the classpath in
Flash, working with symbols, and exporting component SWC files.

If you are an experienced Flash developer, you may be able to skip this chapter.

For a set of simple examples that illustrate the basics of component development, see Chapter 40,
“Creating Basic Components in Flash MX 2004,” on page 835. For a more in-depth look at
programming the ActionScript class files for components, see Chapter 41, “Creating Advanced
Components in Flash MX 2004,” on page 857.

Contents

About creating components . 817

Working in the Flash environment. 819

Working with component symbols. 823

Exporting components. 828

About creating components

You can create a new component for Flex in several ways. Depending on what kind of component
you want to create, you use different tools. To extend the class of an existing component and add
a new method, for example, you can write just a single ActionScript class file. To create a new tag
in MXML, you can create a component in MXML using a combination of MXML tags and
ActionScript. Or, to create a new component with new behaviors, graphics and other interactive
elements, you can use Flash MX 2004 Integrated Development Environment (IDE).

This section describes how to create a new component for Flex using the Flash environment. You
do this when you want to accomplish the following tasks:

• Generate SWC files. SWC files are component archive files that you add to your Flex
environment. They provide easy portability among Flash and Flex developers. This chapter
includes instructions on how to create and use a SWC file.
817

• Change the appearance of Flex components. By editing a component’s visual assets on the
Flash Stage, you can change a component’s appearance from styles and skins to the shape
and size.

• Create components that feature complex user interaction, such as the Data Grid. You can make
the component respond to different user inputs, such as adding keyboard event listeners.

• Take advantage of the Flash tools, such as font and drawing tools, to create complex graphics.
Flash comes with a rich set of tools to edit graphics, sounds, and video when building a new
component.

You would not use the instructions in this section to accomplish the following:

• Change the theme of your components or only their appearance and not their behavior.
Although it is possible to re-theme all of your components using the instructions in this
section, the process of theming is designed to be easier than what this section describes.

• Add functionality to code-only or faceless components that have no user interaction. You can
extend existing components more easily by writing an ActionScript class. For more
information, see Chapter 17, “Creating ActionScript Components,” on page 437.

• Create components with fairly simple graphics. You can create a new component that employs
a simple set of graphics using the drawing API available in MXML and ActionScript to output
vector graphics.

Component basics

A component can provide any functionality that its creator can imagine. It lets developers create
functionality that designers can use in applications. Developers can encapsulate frequently used
functionality into components, and designers can customize the look and behavior of
components by adding methods and events to the component.

A component can be a simple user interface control, such as a Radio Button or a CheckBox, or it
can contain content, such as a Canvas or Data Grid; a component can also be nonvisual, like the
FocusManager that lets you control which object receives focus in a Flex application.

Flex components are built on Version 2 of the Macromedia Component Architecture, which lets
you easily and quickly build robust applications with a consistent appearance and behavior. This
architecture includes classes on which all components are based, style and skin mechanisms that
let you customize component appearance, a broadcaster-listener event model, depth and focus
management, and an accessibility implementation.

Components enable the separation of coding and design. All components are subclasses of the
UIObject and UIComponent classes and inherit all properties, methods, and events from those
classes. Components also let you reuse code, either in components you create, or by downloading
and installing components created by other developers.

Many components are also subclasses of other components. All components also use the same
event model, CSS-based styles, and built-in skinning mechanism.

Component classes are written in ActionScript 2.0. Each component is a class and each class is in
an ActionScript package. For example, a Radio Button component is an instance of the
RadioButton class whose package name is mx.controls.
818 Chapter 39: Working with Flash MX 2004

About component types

Understanding the prebuilt components that ship with Flash and Flex provides some insight into
the costs and benefits of the new-school component authoring style.

• UI controls UI controls are visual components that represent discrete elements of a user
interface (Checkbox, ComboBox, TextInput components, and so forth) and are the interface
between application data and the user.

• Containers Containers are shells for different types of content. For example, Panel is a
container. The mx.containers.Container class is the base class for containers. You generally
would not use the instructions in this chapter to create new containers because they are
nonvisual.

• Data components Data components are nonvisual components that connect, contain, and
process content. Use data components with UI controls. The process for connecting them is
data binding, where a change in data in one component forces an event to occur in other
dependant components. Examples of data components are the WebServiceConnector,
DataSet, and the Validator. A typical application contains multiple instances of a data
component. You generally would not use the instructions in this chapter to create new data
components because they are nonvisual.

• Managers Managers are nonvisual components that are responsible for managing some type
of system resource. Examples of managers include the FocusManager and the DepthManager.
A typical application contains only one instance of a manager, and these managers are normally
instantiated if they are needed by components that rely upon them. You generally would not
use the instructions in this chapter to create new managers because they are nonvisual.

Working in the Flash environment

The Macromedia Flash MX 2004 and Flash MX Professional 2004 environments are set up to
make the structure of classes and components logical. You must take the following steps to
prepare your Flash environment for extending or creating new components for Flex:

• Import Flex components into Flash, and make Flex classes available to Flash.
• Set the Flash classpath to point to the Flex classes.

If you have not created a component before, you should also familiarize yourself with the asset
types (such as graphics, symbols, class files, and FLA files) that you will be working with.

The following sections describe these steps and component assets in detail.

About component assets

When creating a new visual component for Flex in Flash MX 2004, you start with a FLA file and
add or change the skins, graphics, ActionScript class files, and other assets. You then export the
files as SWC files, which are then used by Flex as components.

This section describes the types of assets you work with to create your component in Flash.
Working in the Flash environment 819

Symbols and MovieClips

In Flash, most assets are also known as symbols, and each symbol must have a unique name. You
can store symbols anywhere in the FLA file, because Flex accesses the assets by the symbol name
rather than by the Timeline or Stage.

A symbol is a graphic, button, or movie clip that you create in Flash MX 2004. You create the
symbol only once; you can then reuse it throughout your document or in other documents. Any
symbol that you create automatically becomes part of the Library for the current document.

Each symbol has its own Timeline. You can add frames, keyframes, and layers to a symbol
Timeline, just as you can to the main Timeline. Movie clips are symbols that can play animation
in a Flash application. If the symbol is a movie clip or a button, you can control the symbol with
ActionScript. Flex abstracts the idea of the MovieClip, so you may not be familiar with them.
However, they are the foundation of the Flash environment, and you use them when creating
components for Flex in Flash.

Compiled clips

Symbols can be “compiled” in Flash and converted into a compiled clip symbol. The compiled
clip symbol behaves just like the movie clip symbol from which it was compiled, but compiled
clips display and publish much faster than regular movie clip symbols. Compiled clips cannot be
edited, but they do have properties that appear in the Property Inspector and in the Component
Inspector panel and they include a live preview.

The components included with Flash MX 2004 have already been converted to compiled clips.

Classes

The ActionScript class file specifies the properties, methods, and events for the component, and
defines which, if any, classes your component inherits from. It also includes other class files and
packages that your component uses.

You must use the .as file naming convention for ActionScript source code and name the source
code file after the component itself. For example, MyComponent.as contains the source code for
the MyComponent component.

The FLA file includes a reference to the ActionScript class file for the component. This is known
as binding the component to the class file. The binding is also known as a linkage identifier.

Class files can reside at the top level of the directory structure, or you can create a directory
structure that mirrors your ActionScript class file’s package name, and store the ActionScript class
file there.

Adding Flex classes and components to the Flash IDE

The Flex components and the Flash components share the same names and most of the same
functionality. However, Flex has enhanced and upgraded the Flash component set. Therefore, you
must add the Flex components to the Flash environment using the instructions in this section in
order to compile new components for Flex.
820 Chapter 39: Working with Flash MX 2004

To compile a new component’s SWC file in Flash for use in Flex, you must add the Flex SWC
files and ActionScript class files to your local FLA file’s classpath. These files are included in the
FlexforFlash.zip file, which is included in the Flex installation process. After you extract the
contents of the FlexforFlash.zip file, you must add them to your classpath.

To add Flex components to the Flash environment:

1. Close the Flash IDE if it is open.

2. Find the Flex_install_dir/flexforflash/FlexforFlash.zip file. This file was included in the
installation with the other Flex files.

The default location in Windows is C:/Program Files/Macromedia/Flex/flexforflash/
FlexforFlash.zip.

3. Extract the contents of FlexForFlash.zip to the Flash First Run directory.

The default is C:/Program Files/Macromedia/Flash MX 2004/en/First Run. This file creates
the Components/Flex Components directory and copies the Flex SWC files to that directory.
In addition, it creates the Flex Classes directory, which contains the ActionScript source files
for the Flex classes.

4. Open the Flash IDE. The Flex Components list appears in the Components panel with the
other component lists.

5. In each new FLA file that you create, add the following classpath entry to the top of the local
classpath listing:
$(LocalData)/Flex Classes

For more information on editing your FLA file’s classpath settings, see “Changing the Flash
classpath” on page 822.

About the Flash MX 2004 classpath

The classpath is an ordered list of directories that Flash searches for class files when you export a
component as a SWC file. The order of the classpath entries is important because Flash uses the
classes on a first-come, first-served basis. At export time, classes found on the classpath that match
linkage identifiers in the FLA file are imported into the FLA file and registered with their
symbols.

There are two types of classpaths in Flash MX 2004: global and local. The global classpath is used
by all FLA files generated with the Flash IDE. A local classpath applies only to the current FLA
file. When making changes to the classpath, you should change only the local classpath.

Before you can create components for Flex in Flash, you must edit the FLA file’s local classpath
settings to include the /Flex Classes directory and the dot (.).

Relative values in the Flash classpath are relative to the location of the FLA file.

About the default classpath

The default local classpath is empty. The default global classpath consists of the following paths:

• . (the dot)
Working in the Flash environment 821

• $(LocalData)/Classes

The dot (.) indicates the current working directory. Flash searches the FLA file’s current directory
for the ActionScript classes it needs.

The $(LocalData)/Classes path indicates the per-user configuration directory. This directory
points to the following physical locations:

• In Windows 2000 or Windows XP, this directory is c:\Documents and
Settings\username\Application Data\ Macromedia\Flash MX 2004\en\Configuration.

• On the Macintosh, this directory is volume:Users:username:Library:Application Support:
Macromedia:Flash MX 2004:en:configuration.

The user configuration directories mirror the directories located in Flash_root/en/Configuration.
However, the classpath does not directly include those directories.

By default, Flash MX 2004 does not include the Flex classes in its environment. You must
download and install a separate set of files, and then add them to your classpath settings. For
more information, see “Adding Flex classes and components to the Flash IDE” on page 820.

Changing the Flash classpath

This section describes how to change the global and local classpaths. Macromedia recommends
changing only the local classpath and adding the following entries to your local classpath:

• $(LocalData)/Flex Classes
• . (the dot)

The $(LocalData)/Flex Classes classpath entry points to the classes that you extracted in “Adding
Flex classes and components to the Flash IDE” on page 820. The dot (.) indicates the current
working directory in Flash. This is the directory in which you store your FLA file.

Note: To edit the local classpath, you must have a FLA file open.

To change the local classpath:

1. Create a new FLA file or open an existing FLA file in Flash.

2. Select File > Publish Settings.

The Publish Settings dialog box appears.
3. Select the Flash tab.

4. Click the Settings button.

The ActionScript Settings dialog box appears.
5. Add, remove, or edit entries in the Classpath dialog box.

6. Click OK to save your changes.

7. Save the FLA file.

To change the global classpath:

1. Select Edit > Preferences.

The Preferences dialog box appears.
822 Chapter 39: Working with Flash MX 2004

2. Select the ActionScript tab.

3. Click the ActionScript 2.0 Settings button.

4. Add, remove, or edit entries in the Classpath box.

5. Click OK to save your changes.

About importing classes

Flash imports all files referenced in ActionScript classes with import statements.

For example, if your component extends UIObject and makes use of assets found in the
SimpleButton and TextInput controls, you import the following classes in your class file:
import mx.core.UIObject;
import mx.controls.SimpleButton;
import mx.controls.TextInput;

When importing classes, you can use a wildcard to import all classes in a particular package; for
example:
import mx.controls.*;

Flash only imports the necessary classes when compiling the component.

Flash finds classes that you import by searching the directories on the classpath. For most
situations, your local Flash classpath must consist of at least the following entries:

• $(LocalData)/Flex Classes
• . (the dot)

The $(LocalData)/Flex Classes points to the classes that you extracted in “Adding Flex classes and
components to the Flash IDE” on page 820. The dot (.) indicates the current working directory
in Flash. This is the directory in which you store your FLA file.

To import a custom class or package of classes, you can store the file or the directory structure in
the same directory as the FLA file so that Flash will find them with these classpath settings.

Working with component symbols

All components are MovieClip objects, which are a type of symbol. This section describes how to
create new symbols, edit existing symbols, and convert symbols to components.

Adding new symbols

To create a new component, you must insert a new symbol into a new FLA file. You then convert
the symbol to a component so that you can link the component to a class file.

To add a new component symbol:

1. In Flash, create a blank Flash document.

2. Select Insert > New Symbol.

The Create New Symbol dialog box appears.
Working with component symbols 823

3. In the Name field, enter the fully qualified symbol name. You should use package names and
avoid simple names such as Button or List to avoid naming conflicts with existing components.

The symbol name will be the component name, including the package (if any) that it resides
in. A good convention to use is to name the component by capitalizing the first letter of each
word in the component (for example, myPackage.MyComponent or MyComponent).

4. Select the Movie Clip option for the behavior.

A MovieClip object has its own multiframe Timeline that plays independently of the main
Timeline.

5. Click the Advanced button.

The advanced settings appear in the dialog box.
6. In the Identifier field, enter a fully qualified linkage identifier (for example,

myPackage.MyComponent).

The identifier is used as symbol name, linkage name, and as the associated class name. It
should be the same as the symbol name.

7. In the AS 2.0 Class field, enter the fully qualified path to the component’s ActionScript 2.0 class
file, relative to your classpath settings. If the ActionScript file is in a package, you must include
the package name (for example, myPackage.MyComponent).

Note: Do not include the filename’s extension; the AS 2.0 Class text box points to the packaged
location of the class and not the file system’s name for the file. This field’s value should be the
same as the Identifier.

8. Select Export for ActionScript. This tells Flash to package the component by default with any
Flash content that is used by the component.

9. Deselect Export in First Frame (it is selected by default).

10. Click OK.

Flash adds the new symbol to the Library and switches to Edit Symbols mode. In this mode,
the name of the symbol appears above the upper left corner of the Stage, and a cross-hair
pointer indicates the symbol’s registration point.
You can edit the linkage identifier and ActionScript class for the new symbol by right-clicking
on the symbol in the Library and selecting Properties.

Editing symbols

Each symbol has its own Timeline. You can add frames, keyframes, and layers to a symbol’s
Timeline, just as you can to the main Timeline. On these layers and in these frames you store the
graphical assets for the symbol.

To edit the symbol’s linkage information

• Right-click the symbol in the Flash Library, and select Linkage.

When creating components, you often start with a single symbol. Flash provides the following
ways for you to edit symbols:
824 Chapter 39: Working with Flash MX 2004

• Edit the symbol in the context of the other objects on the Stage by selecting the Edit in Place
command. Other objects are dimmed to distinguish them from the symbol you are editing.
The name of the symbol you are editing is displayed in an edit bar at the top of the Stage, to
the right of the current scene name.

• Edit the symbol in a separate window by selecting the Edit in New Window command.
Editing a symbol in a separate window lets you see the symbol and the main Timeline at the
same time. The name of the symbol you are editing is displayed in the edit bar at the top of
the Stage.

• Edit the symbol by changing the window from the Stage view to a view of only the symbol,
using Edit Symbols mode. To enter Edit Symbols mode, select the symbol’s instance from the
Edit Symbols drop-down icon. The name of the symbol you are editing is displayed in the edit
bar at the top of the Stage, to the right of the current scene name:

Editing symbol layers

After you add a new symbol and define the linkages for it, you can define the component’s assets
in the symbol’s Timeline.

A component’s symbol should have two layers. The first layer is the main layer, in which you
invoke the stop() action so that the player does not play the entire movie that the component
comprises. The second layer contains all the skins and graphical symbols used by the component.

This section describes what layers to insert and what to add to those layers.

To edit symbol layers:

1. Enter Edit Symbols mode.

2. Rename an empty layer, or create a layer called main. You can use any name for the main layer,
however, this document refers to this layer as the main layer.
Working with component symbols 825

3. In the first frame of the main layer, add a stop() action in the Actions panel, as the following
figure shows:

Do not add any graphical assets to this layer.
4. Rename an empty layer, or create a layer called assets. You can use any name for the asset layer,

however, this document refers to this layer as the assets layer.

The assets layer includes all the graphical assets used by this component.
5. Insert a blank Keyframe on the assets layer. There should now be two frames on the assets layer.

6. Add any graphical assets used by this component on the second frame of your component’s
assets layer. For example, if you are creating a custom button, add the graphics that represent
the button’s states (up, down, and so on).

7. Drag dependent components onto the Stage of the component symbol’s assets layer, if
necessary. For more information, see “Adding dependent components” on page 827.

8. When you have finished creating the symbol content, do one of the following to return to
document-editing mode:

■ Click the Back button at the left side of the edit bar above the Stage.
■ Select Edit > Edit Document.
■ Click the scene name in the edit bar above the Stage.
826 Chapter 39: Working with Flash MX 2004

Adding dependent components

You can create new components based on existing Flex components, such as Button, CheckBox,
UIObject, and UIComponent. In many cases your new component combines the functionality
and symbols of existing visual Flex components. You must add the component symbols (or
compiled clips) of the components on which your new component depends to the component
FLA file’s Library.

After you add symbols to the Library, Flash can include the assets in the SWC file when you
export your new component. For example, to create a custom text area component, you must first
add the TextArea component and its assets to the Library.

Also, when building a compound component (a component that is built from multiple
components, such as a ComboBox), you must add each of the subcomponents to the Library.

If you add a dependent component that is not in Flash but is in the Flex architecture, you must
take special steps to produce a SWC file. For more information, see “Using the SWCRepair
utility” on page 831.

To add a dependent component to your component’s Library:

1. Enter Edit Symbols mode for your component symbol.

2. Select the second frame of the assets layer.

3. Select the dependent component’s symbol from the Flex Components drop-down list in the
Components panel. If you do not have a list of Flex Components in your Components panel,
see “Adding Flex classes and components to the Flash IDE” on page 820.

4. Drag the component onto the Stage in the second frame of your new component’s assets layer.

Flash adds the component to the Library.

Converting symbols into components

After you add a symbol to your FLA file, add its assets, and link it to the ActionScript class file,
you must convert it to a component. A component can be inspected and edited with the
Component Definition panel, and can also be exported as a SWC file.

To tell the difference between a symbol and a component, look at the icon in the Library. The
following table shows the symbol icon and the default component icon:

Each built-in Flash component has a distinct icon. For example, the Button control has its own
icon that looks like a button. You can add your own icon for your new component to the Flash
environment, or use one of the Flash component icons. The latter practice is not recommended
because it might cause confusion. The default icon is adequate to indicate a generic component.
For more information, see “Adding an icon” on page 883.

Symbol Component
Working with component symbols 827

You must create the class file before turning the symbol into a component. If Flash does not
convert your symbol into a component, it most likely cannot find the ActionScript class. Another
possibility is that the class file is not in the Flash classpath.

To convert a symbol into a component:

1. Create an ActionScript class file and save it with an .as filename extension. For more
information on creating ActionScript class files, see the examples in Chapter 40, “Creating Basic
Components in Flash MX 2004,” on page 835.

2. Save the FLA file you are working in. If you do not save the document, Flash does not try to
establish a link between the FLA and the class file.

3. Right-click the custom component’s symbol name in the Library.

4. Select Component Definition.

The Component Definition panel appears.
5. Enter the class name in the AS 2.0 Class text box. You must enter the fully qualified class name,

if the class is in a package. Do not include the filename extension. For example, if the classname
is MyComponent.as, enter MyComponent.

6. Click OK.

Flash transforms the symbol into a component and populates the Parameters box with the
component properties that are available in the class file and the classes from which your class
inherits, as the following figure shows:

Exporting components

Flash MX 2004 exports components as component packages (SWC files). This file contains all
the code, SWF files, images, and metadata associated with the component so you can easily add it
to your Flex environment. When you distribute a component, you only need to give your users
the SWC file.

SWC files are usually copied into a single directory for use in Flex or Flash, so each component
must have a unique filename to prevent conflicts.
828 Chapter 39: Working with Flash MX 2004

This section describes a SWC file and explains how to import and export SWC files in Flash.

About component files

When you create a new component with Flash MX 2004, you will have a minimum of four files,
as follows:

• *.fla file The Flash source file containing the symbols and skins used by the component.
• *.as file The ActionScript source class file defining the methods and properties of the

component.
• *.swc file The compiled component file used by Flex.
• *.mxml file The Flex application file from which you invoke the component.

You must be sure to store the *.as and *.fla files in a separate directory from the *.swc and *.mxml
files. The *.as and *.fla files should not be accessible by your users, and their presence in the same
directory as the *.mxml file can cause problems with the ActionScript classpath.

About SWC files

A SWC file is a zip-like file that is generated by the Flash authoring tool, and packaged and
expanded with the PKZip archive format. It contains everything that a component needs to run
in the Flash or Flex environment.

The following table describes the contents of a SWC file:

File Description

catalog.xml (Required) Lists the contents of the component package and its individual
components, and serves as a directory to the other files in the SWC file.

Source code If the component is created with Flash MX 2004, the source code is made up of one
or more ActionScript files that contain a class declaration for the component.
The source code is used only for type checking when subclassing components and is
not compiled by the authoring tool because the compiled bytecode is already in the
implementing SWF file.
The source code might contain intrinsic class definitions that contain no function
bodies and are provided only for type checking.

Implementing
SWF files

(Required) SWF files that implement the components. One or more components
can be defined in a single SWF file. If the component is created with Flash MX 2004,
only one component is exported per SWF file.

Live Preview
SWF files

(Optional) If specified, Live Preview SWF files are used for Live Preview in the
authoring tool. If omitted, the implementing SWF files are used for Live Preview
instead. You can omit the Live Preview SWF file in nearly all cases; include the file
only if the component’s appearance depends on dynamic data (for example, a text
box that shows the result of a web service call).

Debug info (Optional) A SWD file corresponding to the implementing SWF file. The filename is
always the same as that of the SWF file, but with the extension .swd. If it is included in
the SWC file, debugging of the component is allowed. For more information, see
“Including debugging information” on page 833.
Exporting components 829

Flex includes a single SWC file that contains all the built-in components. This SWC file is
located in the flex_app_root/WEB-INF/flex/frameworks directory. In addition, you expanded a
ZIP file containing all of the individual SWC files when preparing the Flash environment in
“Adding Flex classes and components to the Flash IDE” on page 820.

Viewing and changing SWC file contents

To view the contents of a SWC file, you can open it using any compression utility that supports
PKZip format (including WinZip).

You can optionally include other files in the SWC file, after you generate it from the Flash
environment. For example, you might want to include a Read Me file, usage instructions, or the
FLA file, if you want users to have access to the component’s source code.

Using SWC files

This section describes how to create and import SWC files. You should give instructions for
importing SWC files to your component users either as a separate set of instructions or as a
Read Me file inside the SWC file.

Creating SWC files

Flash MX 2004 and Flash MX Professional 2004 create SWC files by exporting a component.
When creating a SWC file, Flash reports compile-time errors as if you were testing a Flash
application. This means that once a component is compiled as a SWC file, you can be reasonably
certain that you will not encounter runtime errors, such as type mismatches.

Note: Once you create a SWC file, you can rename the file but the tag name you use in your MXML
file must match the Linkage Identifier in the original FLA file (or the symbolName in the class file).

To export a SWC file:

1. Select a component in the Flash Library.

2. Right-click the item and select Export SWC File.

3. Save the SWC file.

4. (Optional) Postprocess the SWC file with the SWCRepair utility. This step is necessary only if
your new custom component is a subclass of a component that was not included in Flash, but
is included in Flex. For more information, see “Using the SWCRepair utility” on page 831.

Icon (Optional) A PNG file containing the 18 x 18, 8-bit-per-pixel icon used to display a
component in the authoring tool user interface(s). If you don’t supply an icon, a
default icon is displayed (see “Adding an icon” on page 883).

Property
Inspector

(Optional) If specified, this SWF file is used as a custom Property Inspector in the
authoring tool. If omitted, the default Property Inspector is displayed to the user.

File Description
830 Chapter 39: Working with Flash MX 2004

Using the SWCRepair utility

If your new component extends a component that is not native to the Flash environment (but is
instead in the Flex Components list), you must run the SWCRepair utility against the SWC file
when you finish exporting it from Flash and before you use it in Flex. This applies mostly to
containers, as they are not normally used in Flash.

The SWCRepair utility updates a Flash SWC file for use in Flex; the FlexforFlash.zip file includes
the SWCRepair utility.

When you expand the FlexforFlash.zip file, the SWCRepair utility is expanded to Flash_root/en/
First Run/SWCRepair/bin/. The default location is C:/Program Files/Macromedia/Flash MX
2004/en/First Run/SWCRepair/bin/SWCRepair.exe.

The SWCRepair utility has the following syntax:
SWCRepair SWC_filename [Flash_root/en/First Run/Components/Flex Components]

For example:
C:/Program Files/Macromedia/Flash MX 2004/en/First Run/SWCRepair/bin/

SWCRepair.exe c:/myProjects/myComponent.SWC

The SWCRepair utility assumes that Flash is installed in c:/Program Files/Macromedia/Flash MX
2004. If this is not the actual path, a second argument to the program specifies the Flex
Components directory. For example, if Flash is installed in d:/MM/Flash, running the
SWCRepair utility would look like the following:
d:/MM/Flash/en/First Run/SWCRepair/bin/SWCRepair.exe c:/myProjects/foo.swc

"d:/MM/Flash/en/First Run/Components/Flex Components"

After you run the SWCRepair utility against a SWC file, check whether a log file was created. The
log file name is the same as the SWC filename and appears in the same directory as the SWC file.
For example, if the SWC file is c:/myProjects/foo.swc, the log file is c:/myProjects/foo.log.

If the SWCRepair utility does not generate a log file, check the program arguments and rerun
the utility.

Adding SWC files to Flex

After you generate a SWC file from the Flash IDE, you must store it in a location that Flex can
access so you can use the SWC file in your Flex applications.

To use a SWC file in your Flex application, save it to a directory defined by the <compiler> tag’s
<lib-path> child tag in the flex-config.xml file. The following example from the flex-config.xml
file adds the /WEB-INF/flex/myswcs directory to the <lib-path> setting, in addition to the
user_classes and frameworks directories:
<compiler>

...
<lib-path>

<path-element>/WEB-INF/flex/myswcs</path-element>
<path-element>/WEB-INF/flex/user_classes</path-element>
<path-element>/WEB-INF/flex/frameworks</path-element>

</lib-path>
<compiler>
Exporting components 831

Note: You should not store custom SWC files in the /WEB-INF/flex/frameworks directory.

SWC files must be at the top level of the directory. You cannot put them in subdirectories unless
you explicitly define those subdirectories with the <lib-path> setting. The package information
for the classes in the SWC file are internalized by the SWC file, so you are not required to mirror
that package when referring to the SWC file.

You can also store your SWC file in the flex_app_root/WEB-INF/flex/user_classes directories.

If you export a new version of a SWC file from Flash to Flex, you do not have to restart Flex or
close your browser. The Flex application recognizes that the SWC file was added or changed
based on its timestamp and reloads it in the client when the application refreshes the page.

Instantiating components in Flex

To use your component in your Flex applications, at a minimum you must declare a namespace
and use a tag that matches the name of the component, as the following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" xmlns:my="*">

<my:ModalText />
</mx:Application>

If you store the component in the same directory as the application, you can specify a global
namespace and forego the tag prefix, as the following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" xmlns="*">

<ModalText />
</mx:Application>

If the component’s ActionScript classes are in a package, you must specify a namespace that points
to that package in your MXML file, as the following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

xmlns:myp="myPackage.*" >

<myp:myComponent />

</mx:Application>

For more information on using namespaces for Flex components, see “Defining component
namespaces” on page 792.

To pass properties to the component, add them as tag properties, as the following example shows:
<ModalText labelPlacement="left"/>

You can instantiate a custom component by creating the component’s class in ActionScript using
the createClassObject() method.
<mx:Script>
<![CDATA[

createClassObject(MyComponent, "myComp", 0, {myName:"Ted"});
]]>
</mx:Script>
832 Chapter 39: Working with Flash MX 2004

The previous example is equivalent to the following MXML statement:
<MyComponent id="myComp" myName="Ted" />

Including debugging information

The SWD file contains debugging information for the SWF file. You must use SWD files to use
the Debug Flash Player to debug your component. By default, Flash does not include debugging
information when exporting the SWC file.

When exporting a SWC file, you can include the SWD file in the SWC file by selecting
Debugging permitted in the Publish Settings dialog box. As with all settings in the Publish
Settings dialog box, you must make this change for every FLA file. It is not a global setting.

You should not include debugging information in your SWC file if the SWC file is used in a
production environment. It increases the size of the SWC file and also makes debugging
information available to users.

To include the SWD file in your SWC file:

1. Open your FLA file.

2. In the Flash environment, select File > Publish Settings. The Publish Settings dialog box
appears.

3. Select the Debugging Permitted check box.

4. Click OK.

5. Save the FLA file.

6. Export the SWC file as described in “Creating SWC files” on page 830.

Flash includes the SWD file with the other files in your SWC file.

Importing SWC files into the Flash IDE

SWC files are a convenient way to share components among Flash developers. After you create a
SWC file, you can give that SWC component to anyone else with Flash and they can use your
component in their applications. Flash authors can use custom SWC components as they would
any other component in the Flash Library.

Note: Once you create a SWC file, you can rename the file but the tag name you use in your MXML
file must match the Linkage Identifier in the original FLA file (or the symbolName in the class file).

When you distribute your components to other developers, you can include the following
instructions so that they can install and use them immediately.

To use a SWC file in the Flash authoring environment:

1. Copy the SWC file into the Flash_root/en/First Run/Components directory.

2. Start the Flash authoring environment or reload the Components panel if it was already
running. To reload the component list on the Components panel, click the menu button and
select Reload.
Exporting components 833

The component’s icon appears in the Components panel. You can now use the component as if
it were any of the built-in components.
834 Chapter 39: Working with Flash MX 2004

CHAPTER 40
Creating Basic Components in Flash MX 2004
This chapter includes a set of simple examples that illustrate the basics of component
development. The first part of the chapter introduces the Green Square, Orange Circle, and Blue
Button components, which illustrate simple component construction and usage. The latter part
of the chapter expands on the simple components and describes how to use event handling,
styling, skinning, and other techniques when creating your components.

If you are unfamiliar with working in the Flash environment, see Chapter 39, “Working with
Flash MX 2004,” on page 817. For more advanced information on creating components, see
Chapter 41, “Creating Advanced Components in Flash MX 2004,” on page 857.

Contents

Creating simple components . 835

Working with component properties . 842

Binding properties to a custom component . 843

Adding events to custom components . 845

Setting default sizes . 849

Styling custom components . 850

Skinning custom components . 851

Creating compound components . 853

Creating simple components

This section describes how to create simple components in Macromedia Flash for Macromedia
Flex. As with creating any Hello World–style example, these procedures ignore some practices to
help new component developers achieve early successes and begin creating components.

This section describes how to create the following components:

• Green Square Create a component that exists in a flat namespace. This component’s
ActionScript class file is not part of a package.
835

• Orange Circle Create a component that exists in a package. By developing this component,
you learn how to work in a namespace that uses packaged classes.

• Blue Button Create a component that extends an existing visual component.

These components illustrate the basic concepts of component creation. Building the components
also shows you the minimum requirements for creating a custom visual component in Flash for
use in Flex. For detailed information about building more complex components, see Chapter 41,
“Creating Advanced Components in Flash MX 2004,” on page 857.

Creating the Green Square

Creating the Green Square is similar to creating a Hello World component, but because this is
Flash, the simplest example creates a visual component rather than printing the words Hello
World.

The Green Square component prints a shape on the screen. The shape is green and square.

To create the Green Square:

1. Set up the Flash environment by adding the Flex components and class files. For more
information, see “Adding Flex classes and components to the Flash IDE” on page 820.

2. In Flash, create a new FLA file.

3. Edit the FLA file’s local classpath settings to include the following two classpath entries:

■ $(LocalData)/Flex Classes
■ . (the dot)
For more information, see “Changing the Flash classpath” on page 822.

4. Draw a green square on the stage. Make sure that the origin indicator (or registration point) is
at the top left corner.

5. Save the FLA file as greensquare.fla.

6. Open a text editor and create a file called greensquare.as. Save the ActionScript file in the same
directory as the greensquare.fla file. This should be a directory that is not in the web
application’s directory structure since these are source files for your eventual component.
Furthermore, it cannot be the same directory that you deploy the SWC file and the MXML file
into.

7. Add the following code to the greensquare.as file:
class greensquare extends mx.core.UIObject {

static var symbolName:String="greensquare";

static var symbolOwner:Object = greensquare;

var className:String = "greensquare";

function greensquare() { //empty constructor
}

function init() {
836 Chapter 40: Creating Basic Components in Flash MX 2004

super.init();
invalidate(); // Required call so that Flex draws the component.

}

}

8. Return to the Flash environment. Right-click the square and select Convert to Symbol.

The Convert To Symbol dialog box appears.
9. In the Convert to Symbol dialog box, set the Name, Identifier, and AS 2.0 Class fields to

greensquare. To access the Identifier and AS 2.0 Class fields, you must select the Export for
ActionScript check box.

10. Click OK.

Flash adds the greensquare symbol as a Movie Clip to the Library.
11. Convert the symbol to a component by right-clicking on the symbol in the Flash Library and

selecting Component Definition.

12. In the Component Definition dialog box, set the AS 2.0 Class field to greensquare.

13. Right-click the symbol in the Flash Library and select Export SWC File.

The Export File dialog box appears.
14. Save the new SWC file as greensquare.swc.

15. In a text editor, create a new MXML file that contains the following code:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" xmlns=”*”>

<greensquare/>

</mx:Application>

16. Save the MXML file as greentest.mxml. You cannot name the file greensquare.mxml. You must
give it a name that is different from the component’s name, such as greentest.mxml.

17. Copy the SWC component you created (greensquare.swc) to the same directory as the MXML
file. This should not be the same directory that you saved the ActionScript and FLA file in. This
directory must be in the web application’s directory structure so that Flex can compile a SWF
from the MXML file.

18. Request the MXML file in your browser or a stand-alone Flash Player. You should see a green
square.

Creating the Orange Circle

This section describes how to create the Orange Circle component. This component is different
from the Green Square because its ActionScript class file exists in a package. As a result, there are
additional steps that you must take to build it in Flash, and then refer to it in your MXML file.

The Orange Circle component prints a shape on the screen. The shape is orange and circular.
Creating simple components 837

To create the Orange Circle:

1. Set up the Flash environment by adding the Flex components and class files. For more
information, see “Adding Flex classes and components to the Flash IDE” on page 820.

2. In Flash, create a new FLA file.

3. Edit the FLA file’s local classpath settings to include the following two classpath entries:

■ $(LocalData)/Flex Classes
■ . (the dot)
For more information, see “Changing the Flash classpath” on page 822.

4. Draw an orange circle on the Flash Stage and save the FLA file as orangecircle.fla.

5. Create a file in a text editor and add the following code to it:
class myPackage.orangecircle extends mx.core.UIObject {

static var symbolName:String="myPackage.orangecircle";

static var symbolOwner:Object = myPackage.orangecircle;

var className:String="orangecircle";

function orangecircle() { // Empty constructor.
}

function init() {
super.init();
invalidate(); // Required call so that Flex draws the component.

}

}

6. Save the text file as orangecircle.as in the myPackage subdirectory, below the directory that the
FLA file is stored in. This should be a directory that is not in the web application’s directory
structure since these are source files for your eventual component. Furthermore, it cannot be
the same directory that you deploy the SWC file and the MXML file into.

The files you are using now should be in the following locations:
../orangecircle.fla
../myPackage/orangecircle.as

7. Return to the Flash environment. Right-click the circle on the Stage, and select Convert to
Symbol.

8. In the Convert to Symbol dialog box, set the Name field to orangecircle.

9. Enter myPackage.orangecircle in the AS 2.0 Class and Identifier text boxes.

10. Click OK.

Flash adds the orange circle symbol to the Library.
11. Convert the symbol to a component by right-clicking the symbol in the Flash Library and

selecting Component Definition.

12. In the Component Definition dialog box, set the AS2.0 Class field to myPackage.orangecircle.
838 Chapter 40: Creating Basic Components in Flash MX 2004

13. Right-click the symbol in the Flash Library and select Export SWC File.

14. Save the new SWC file as orangecircle.swc.

15. In a text editor, create an MXML file that contains the following code:
<?xml version="1.0"?>

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"
xmlns:myp="myPackage.*" >

<myp:orangecircle />

</mx:Application>

You must add a namespace declaration that includes the package whenever you access a
component that uses ActionScript files in packages.
You cannot name the file orangecircle.mxml. You must give it a name that is different from the
component’s name, such as oc.mxml.

16. Copy the SWC file that you created (orangecircle.swc) to the same directory as the MXML file.
This should not be the same directory that you saved the ActionScript and FLA file in. This
directory must be in the web application’s directory structure so that Flex can compile a SWF
from the MXML file.

17. Request the MXML file in your browser or a stand-alone Flash Player. You see an orange circle.

Creating the Blue Button

This procedure shows you how to extend an existing Flex control. In this example, it is a button.
The button’s border and text are blue. When you insert the Blue Button component into your
Flex application, it inherits all of the events, behaviors, and capabilities of a standard Button
control, but it has a customized style.

To create the Blue Button:

1. Set up the Flash environment by adding the Flex components and class files. For more
information, see “Adding Flex classes and components to the Flash IDE” on page 820.

2. In Flash, create a FLA file.

3. Edit the FLA file’s local classpath settings to include the following two classpath entries:

■ $(LocalData)/Flex Classes
■ . (the dot)
For more information, see “Changing the Flash classpath” on page 822.

4. Select Insert > New Symbol.

The Create New Symbol dialog box appears.
Rather than convert existing graphical assets to a symbol, you create a symbol and add
dependent components to it as assets.

5. In the Create New Symbol dialog box, perform the following steps:

a Enter BlueButton in the Name field.
Creating simple components 839

b Enter BlueButton in the Identifier field.
c Enter BlueButton in the AS2.0 Class field.
To access the Identifier and AS 2.0 Class field, you must select the Export for ActionScript
check box.

6. Click OK.

7. Save the FLA file as BlueButton.fla.

8. Open a text editor and create a file called BlueButton.as. Save the ActionScript file in the same
directory as the BlueButton.fla file. This should be a directory that is not in the web
application’s directory structure since these are source files for your eventual component.
Furthermore, it cannot be the same directory that you deploy the SWC file and the MXML
file into.

9. Add the following code to the BlueButton.as file:
class BlueButton extends mx.controls.Button {

static var symbolName:String="BlueButton";
static var symbolOwner:Object = BlueButton;
var className:String = "BlueButton";

function BlueButton() {
}

function init() {
//Set the label text to blue.
setStyle("color", 0x6666CC);

super.init();
invalidate();

}
}

This script extends the mx.controls.Button class rather than the base classes (UIObject or
UIComponent). As a result, it inherits all the skins, styles, behaviors, and events of the Button
control.
It also calls the UIObject’s setStyle() method and sets the values of the color property to a
hexadecimal equivalent of the color blue. When settings colors in setStyle() method calls,
you must use the hex values for the value and surround the property name with quotation
marks.

10. Return to the Flash environment and enter Edit Symbols mode to edit the BlueButton symbol.

11. Rename the existing layer main.

12. Add the following line to the main layer’s first frame:
stop();

13. Add a new layer called assets.
840 Chapter 40: Creating Basic Components in Flash MX 2004

14. Insert a blank keyframe in the second frame of the assets layer by selecting the frame, and then
selecting Insert > Timeline > Blank Keyframe. The following figure shows the layers for the
BlueButton symbol:

15. Find the Button control in the Flex Components list:

If you do not see the Flex Components listed in the Components panel, see “Adding Flex
classes and components to the Flash IDE” on page 820.

16. Drag the Button control from the Flex Components list onto the second frame of the
assets layer.

Flash adds the Button as a Compiled Clip asset to the Library.
17. Right-click the BlueButton movie clip in Library and select Component Definition.

18. In the Component Definition dialog box, set the AS2.0 Class field to BlueButton.

19. Click OK.

Flash converts the symbol to a component.
20. Right-click the component in the Flash Library and select Export SWC File.

21. Save the new SWC file as BlueButton.swc.

22. In a text editor, create a new MXML file that contains the following code:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" xmlns=”*”>

<BlueButton label=”Blue Button” />

</mx:Application>

23. Copy the SWC file you created (BlueButton.swc) to the same directory as the MXML file. This
should not be the same directory that you saved the ActionScript and FLA file in. This directory
must be in the web application’s directory structure so that Flex can compile a SWF from the
MXML file.
Creating simple components 841

24. Request the MXML file in your browser or a stand-alone Flash Player.

Working with component properties

Most components have instance properties that the Flex author can set while adding the
component to the application. To make this possible, you add properties to the class definition.
You can set all component properties as properties in MXML and in ActionScript, unless they are
explicitly marked private.

You can expose component properties by doing the following:

• Creating a class variable
• Defining getters and setters

These methods are described in the following sections.

Creating a class variable

Creating class variables is simple. In the component’s ActionScript class file, you declare a
variable:
var myName:String;

If the variable declaration does not specify a default value, your code must either take into
account that myName might be undefined, or the user could encounter unexpected results.

In MXML, you set that property using a tag property:
<MyComponent myName="Ted" />

As a result, you should define a default value for most regular properties, as the following example
shows:
var myName:String = "Fred";

You can use the Inspectable keyword to set the default value of a property and to limit the
available values for the property; for example:
[Inspectable(defaultValue="left", enumeration="left, right")]
function set labelPlacement(p:String)
...

In this example, the labelPlacement property is limited to the values left or right, and the
default value is left. For more information on using the Inspectable keyword, see “Inspectable”
on page 875. The ModalText example class file shows the use of the Inspectable keyword. For
more information, see “ModalText.as example” on page 885.

Defining getters and setters

The recommended way of exposing properties in your class file is with a pair of getters and setters.
These functions must be public. The advantage of getters and setters is that you can calculate the
return value in a single place and trigger events when the variable changes.

You define getter and setter functions using the get and set method properties within a class
definition block.
842 Chapter 40: Creating Basic Components in Flash MX 2004

The following example declares a getter and setter for the myName variable:
private var _myName:String = “Fred”;

public function get myName():String {
return _myName;

}
public function set myName(name:String) {

_myName = name;
}

The local value of _myName is private, while the getter and setter methods are public.

In getters and setters, you cannot use the same name of the property in the function name. As a
result, you should use some convention, such as prefixing the member name with an underscore
character (_).

Binding properties to a custom component

Most properties should be bindable so that developers can use the contents of your component as
parameters to a web service call or to update the UI. The simplest form of binding is to use the { }
syntax that binds a property of a control to another control’s property. In the component’s
ActionScript class, you can declare a variable as follows:
var myName:String = "Fred";

In your MXML file, you then bind the value of a control’s property to the component’s property,
as the following example shows:
<MyComponent id="myComp1" name="Fred" />
<mx:TextArea text="{myComp1.myName}" />

Although it is sometimes useful, this simple binding technique does not take real advantage of
binding. If the user changes the value of MyComponent’s myName property, the TextArea
component is not notified. To keep the two synchronized, the MXML author must write code
that stores and periodically compares the two values.

With a little modification, the component’s class file can support dynamic binding so that
whenever the component’s property changes, the Flex control reflects that change.

To be dynamically bindable, a property must dispatch an event when it is changed. The main
property of a component often dispatches either a change or click event when it is accessed, but
you can use any event.

Add the ChangeEvent metadata keyword to the getter, and a dispatchEvent() method call
inside the setter. When the property’s value is set, the component dispatches the change event.
Since the getter is bound to the ChangeEvent change, the binding subsystem knows what to
listen for when that property changes.

At the top of the class file, you must also add the Event metadata keyword to identify change as
an event that this component emits.

The following ActionScript class file shows how to bind a property to an event:
[Event("change")]
class BindChar extends mx.core.UIComponent {
Binding properties to a custom component 843

static var symbolName:String="BindChar";
static var symbolOwner:Object = BindChar;
var className:String = "BindChar";

function BindChar() {
}

// This example uses a TextField to store and display the character.
var myCharField:TextField;

function init() {
super.init();
tabEnabled = true;
invalidate();

}

function keyDown(evt:Object):Void {
//triggers the setter on every keystroke
char = String.fromCharCode(evt.ascii);

}

[ChangeEvent("change")]
public function get char():String {

return myCharField.text;
}

public function set char(c:String) {
myCharField.text = c;
dispatchEvent({ type: "change" });

}
}

The following MXML file binds the component’s char property to the TextArea’s text property:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" xmlns=”*” >

<BindChar id="myComp1" char="F" />

<mx:TextArea id="ta1" text="{myComp1.char}" />

</mx:Application>

If your custom SWC has properties typed Array, do not use data-binding to supply initial values
for that array properties. For example, if your custom SWC has a labels property which is typed
Array, do not use data-binding in the MXML as shown below:
<yourSWC labels={myArray}/>

<mx:Script>
<![CDATA[

var myArray=["cat", "dog", "bird"];
]]>
</mx:Script>
844 Chapter 40: Creating Basic Components in Flash MX 2004

The problem is that Flex instantiates the SWC before data binding occurs. Instead, you define the
the array using the <mx:Array> tag, as the following example shows:
<yourSWC>

<labels>
<mx:Array>

<mx:String>cat</mx:String>
<mx:String>dog</mx:String>
<mx:String>bird</mx:String>

</mx:Array>
</labels>

</yourSWC>

Adding events to custom components

All visual controls inherit a large set of events from the base classes, UIObject and UIComponent.
From UIComponent, components inherit events such as focusIn, focusOut, keyDown, and
keyUp. From UIObject, components inherit events such as mouseDown, mouseUp, mouseOver,
and mouseOut. For a complete list of UIObject and UIComponent events, see “Using base class
events” on page 433.

Components can emit and consume events. In most cases, you want your component to emit an
event and the MXML application to consume and handle it.

Custom components that extend existing Flex classes inherit those events. For example, if you
extend the mx.controls.Button class, you have the set of click-related events at your disposal, in
addition to the events that all controls inherit, such as mouseOver and mouseDown.

This section describes how to add event handling and emitting functionality to your custom
components.

Handling the initialize event

When Flex finishes creating a component, it emits the component’s initialize event. This
event is used by MXML developers to populate data, debug, or perform some other function
before the user starts interacting with the application.

Because nearly all classes extend the UIObject, the initialize event is already supported in
custom components. To define a handler for it, you add the initialize property to the
component’s MXML tag, and then add ActionScript code that processes the event, as the
following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" xmlns=”*”>

<mx:Script>
<![CDATA[
function myInit() {

trace('init greensquare');
}
]]>
</mx:Script>
Adding events to custom components 845

<greensquare initialize="myInit();" />

</mx:Application>

Handling mouse events

All visual components that inherit from UIObject support a number of navigational mouse
events, including:

• mouseOver
• mouseOut
• mouseDown
• mouseUp

These events do not include the click event. For a complete list of events supported by visual
components, see the information about the control in the Controls chapter.

To use the common mouse events, you point to a handler in your MXML file. There is no
additional coding of the component source code required.

The following example changes the alpha (transparency) of the Green Square component when
the mouse moves over the component, and again when the mouse moves away from the
component:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" xmlns=”*”>

<mx:Script>
<![CDATA[
var startAlpha:Number = 40;

function myInit() {
myGS.alpha=startAlpha;

}

function changeAlpha(curAlpha:Number) {
myGS.alpha=curAlpha;

}
]]>
</mx:Script>

<greensquare id="myGS" mouseOver="changeAlpha(100);"
mouseOut="changeAlpha(startAlpha);" />

</mx:Application>

To handle an event that is not supported by the current parent class, such as a click event on a
UIObject, you must edit the component class file. However, to add a click event to your
component, it is sometimes easier to extend the Button or SimpleButton class than it is to write
the code to support a click.

For information on defining new events and event handlers for your custom component, see
“Emitting events” on page 847.
846 Chapter 40: Creating Basic Components in Flash MX 2004

Emitting events

You can define an event that is not inherited from the component’s parent class, such as a click for
a control that is not a subclass of button. In the following example, Flex throws an error because
the Green Square component does not emit a click event:
<greensquare id="myGS" click="changeAlpha(0);" />

If you try to use a click handler in the MXML file, you get an error similar to the following:
Error: unknown attribute 'click' on greensquare

This means you have to go back to the component’s ActionScript class and tell the component to
emit a click event. You do this by adding a call to dispatchEvent() in the component’s
ActionScript class file. You must also include the Event metadata keyword so that Flex recognizes
the dispatched event. For more information on the dispatchEvent() method, see “Handling
events” on page 415.

The following example adds a metadata keyword identifying click as an event that this
component can emit, and then dispatches the click event when the onRelease() method is
triggered. In this case, the click event causes a change in the instance’s alpha property.
[Event("click")]
class greensquare extends mx.core.UIObject {

static var symbolName:String="greensquare";
static var symbolOwner:Object = greensquare;
var className:String = "greensquare";

function greensquare() {
}

function init() {
super.init();
invalidate();

}

function onRelease(Void):Void {
dispatchEvent({ type: "click" });

}
}

The following MXML file handles the click event within an <mx:Script> block:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" xmlns=”*”

initialize="createListener();" >

<mx:Script>
<![CDATA[
var startAlpha:Number = 40;
var curState:Number = 100;

function myInit() {
myGS.alpha=startAlpha;

}

Adding events to custom components 847

function modAlpha(curAlpha:Number) {
gs.alpha=curAlpha;
if (curState==100) {

curState=40;
} else {

curState=100;
}

}
]]>
</mx:Script>

<greensquare id="gs" initialize="myInit();" click="modAlpha(curState);" />

</mx:Application>

For an example of a custom component that emits and handles its events, see “Creating
compound components” on page 853.

Handling keyboard events

Keyboard events are emitted by all components that extend UIComponent. To make use of
keyboard events in your MXML files, you should capture the keys and include the value of the
key in your event object. Then dispatch the keyboard event with the event object.

The following component class emits the keyDown event so that the Flex application can handle
it. It builds an event object, adding the ASCII value of the key that the user pressed as the myKey
property of the event object. The class extends UIComponent and not UIObject, which does not
handle this event.
[Event("mykeydown")]
class greensquare extends mx.core.UIComponent {

static var symbolName:String="greensquare";
static var symbolOwner:Object = greensquare;
var className:String = "greensquare";

function greensquare() {
}

function init() {
super.init();
tabEnabled = true;
invalidate();

}

function keyDown(Void):Void {
var k = Key.getCode();
trace("key: " + k);
dispatchEvent({type:"mykeydown", myKey:k});

}
}

The following MXML file handles the keyboard event that the class file emits. The MXML file
inspects the event object’s myKey property to determine which key the user pressed:
848 Chapter 40: Creating Basic Components in Flash MX 2004

<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" xmlns=”*”>

<mx:Script>
<![CDATA[
function handleKeyDown(evt) {

if (evt.myKey == 8) { // backspace
ta1.text = "";

} else {
ta1.text='pressed: ' + evt.myKey;

}
}
]]>
</mx:Script>

<greensquare id="myGS" mykeydown="handleKeyDown(event);" />

<mx:TextArea id="ta1" text="" />

</mx:Application>

Setting default sizes

You can set the default size of a custom component by setting the values of the
_measuredPreferredWidth and _measuredPreferredHeight properties in the measure()
method. These values will be used if no explicit width and height are specified in the component’s
MXML tag. Your measure function should not set the preferredWidth and preferredHeight
properties.

The following class sets the default size of the BlueButton control to 500 by 200 pixels, and uses
the setStyle() method to define the default fontSize property for the button’s label.
class BlueButton extends mx.controls.Button {

static var symbolName:String="BlueButton";
static var symbolOwner:Object = BlueButton;
var className:String = "BlueButton";

function BlueButton() {
}

function init() {
setStyle("fontSize", 24);
super.init();
invalidate();

}

function measure() {
_measuredPreferredWidth=500;
_measuredPreferredHeight=200;

}
}

The following MXML file instantiates the BlueButton control. All instances of this BlueButton
control have a default of 500 by 200 pixels, with a label fontSize of 24.
Setting default sizes 849

<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" xmlns=”*” >

<BlueButton label="My Big Button" />

</mx:Application>

You can override custom style settings in the MXML file, as the following example shows:
<BlueButton label="My Big Button" fontSize="12" />

Styling custom components

Style properties define the look of a component, from the size of the fonts used to the color of the
background. To change style properties in custom components, use the setStyle() method in
the component’s init() function. This applies the same style to all instances of the component,
but Flex application authors can override the settings of setStyle() in their MXML tags. Any
style properties that are not explicitly set in the component’s class file are inherited from the
component’s superclass.

This section includes a class file that extends an existing control. For more information on setting
up the Flash environment and exporting this custom component as a SWC file, see “Creating the
Blue Button” on page 839.

The following ActionScript class file sets the color and themeColor styles of the BlueButton
control:
class BlueButton extends mx.controls.Button {

static var symbolName:String="BlueButton";
static var symbolOwner:Object = BlueButton;
var className:String = "BlueButton";

function BlueButton() {
}

function init() {

// Set the label text to blue.
setStyle("color", 0x6666CC);

// Set the background and border to blue when mouse hovers over control.
setStyle("themeColor", 0x6666CC);

super.init();
invalidate();

}
}

The following MXML file instantiates the BlueButton control without overriding the default
styles set in the component’s class file:
<?xml version="1.0"?>

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" xmlns=”*” >
850 Chapter 40: Creating Basic Components in Flash MX 2004

<BlueButton label=”Blue Button” />

</mx:Application>

In addition to setting the color property, you can also set the font face, font size, and other style
properties. For more information on the available style properties, see Chapter 19, “Using Styles,
Fonts, and Themes,” on page 455.

Skinning custom components

When you extend an existing visual control, you can include additional graphics inside the SWC
file and instruct the new control to use these graphical assets to represent its appearance. The
process of changing the appearance of a control is called skinning. Skins can be any kind of
graphic that Flash supports, from a simple line drawing to a multipart SWF file.

To skin a component, you start with a FLA file, just as you would when creating any new
component. However, you add a new symbol that defines the skin to the FLA file in addition to
the component’s symbol itself.

The structure of a FLA file that includes new skins for the component is generally as follows:

In the component’s class file, you must also override the name of the skin. Macromedia
recommends that you apply the skin to your component as a clip parameter in the
constructObject2() method rather than rely on the timing of the instantiation process. This is
especially true when the component creates child components that rely on the positioning of
the skin.

You can override some or all of the control’s skins. For example, the Button control has the
following basic skins, each representing a state of the control:
• falseUpSkin
• falseDownSkin
• falseOverSkin
• falseDisabledSkin
• trueUpSkin
• trueDownSkin

Name Frame Description

Main Layer 1
Frame 1

The top level of the FLA file contains a single blank frame.

Symbol: custom
component

Layer 1
Frame 1

First layer named main, with an ActionScript stop()
statement.

 Layer 2
Frame 1

Empty.

 Layer 2
Frame 2

Second layer named assets contains the skin symbol plus any
additional graphical assets used by this component.

Symbol: skin graphics Layer 1
Frame 1-x

The new symbol contains as many frames as are necessary to
represent the new skin. For a simple, static graphic, you can
draw the new skin on a single frame.
Skinning custom components 851

• trueOverSkin
• trueDisabledSkin

Each state is represented as a variable in the class file, or is an inherited variable. By setting the
value of one of these variables, you instruct Flex to apply a new skin, using the symbol name to
find the skin.

When you add a new skin, it should respond to resizing and drawing methods of the component.
For a list of what skins are used by what controls, see each control’s entry in the Controls chapter.

This section describes a simple method for changing the skin for one of the states of the standard
Button control. You can use the steps in this process to change the skin for any visual control
in Flex.

To create a custom component with a different skin:

1. In the Flash environment, create a FLA file and set the classpath settings to include the Flex
classes and the local directory. For more information, see “Changing the Flash classpath”
on page 822.

2. Insert a new symbol. This is the new component.

3. In the Create New Symbol dialog box, perform the following steps:

a Select the MovieClip for Behavior option (the default).
b Select the Export for ActionScript check box.
c Enter the appropriate name, identifier and class file in the Name, Identifier, and AS 2.0

Class fields.
For more information on creating a new symbol, see “Adding new symbols” on page 823.

d Deselect the Export in First Frame check box.
4. In Edit Symbols mode for the new symbol, rename the Timeline’s first layer to main, and add

a stop() action in the Actions Frame.

5. Add a second layer called assets, and add a second blank keyframe to this layer.

6. Return to the main FLA file.

7. Insert a second new symbol. This is the new skin.

8. In the Create New Symbol dialog box, perform the following steps:

a Select the MovieClip for Behavior option (the default).
b Select the Export for ActionScript check box.
c Enter a symbol Name.

Do not specify an AS 2.0 Class name or an Identifier for this symbol. For more information
on creating a new symbol, see “Adding new symbols” on page 823.

d Deselect the Export in First Frame check box.
9. Draw the new skin on the second symbol’s Stage in Edit Symbols mode. The new skin can be

a simple graphic or a composite of MovieClips.

10. Return to Edit Symbols mode and edit the component’s symbol (the first symbol you created).

11. Drag the skin symbol you created onto the second frame of the component’s assets layer.
852 Chapter 40: Creating Basic Components in Flash MX 2004

12. Create a new ActionScript class file. In this file, extend the existing control, set the value of the
skin to the new skin name, and apply the skin as a clip parameter in the constructObject2()
method.

The following example overrides the falseUpSkin skin with the symbol named redbox in a
new Button control called SkinnedButton:
class SkinnedButton extends mx.controls.Button {

// Set the value of the falseUpSkin state to the new skin.
var falseUpSkin:String = "redbox";

static var symbolName:String="SkinnedButton";
static var symbolOwner:Object = SkinnedButton;
var className:String = "SkinnedButton";

function SkinnedButton() {
}

function init() {
super.init();
invalidate();

}

static var clipParameters:Object = { redbox:1 };

function constructObject2(o:Object):Void {
super.constructObject2(o);
applyProperties(o, SkinnedButton.clipParameters);

}
}

13. Right-click the component’s symbol in the Library and select Component Definition. In the
AS 2.0 Class field, enter the class name.

14. Export the SWC file. For more information, see “Creating SWC files” on page 830.

15. Add the new component to an MXML file and request that file to see the new skin.

If the skin is not positioned properly on the Stage, you can rearrange it by returning to the FLA
file and editing the skin’s symbol.

Creating compound components

Compound components are components that include the assets of multiple controls inside them.
They might be graphical assets or a combination of graphical assets and classes. For example, you
can create a component that includes a button and a text field, or a component that includes a
button, text field, and a validator.

When creating compound components, you should instantiate the controls inside the
component’s class file. Assuming that some of these controls have graphical assets, you must plan
the layout of the controls that you are including, and set properties such as default values in your
class file. You must also ensure that you import all the necessary classes that the compound
component uses.
Creating compound components 853

Since the class extends one of the base classes, such as mx.core.UIComponent, and not a controls
class like mx.controls.Button, you must instantiate each of the controls as children of the custom
component and arrange them on the screen.

Properties of the individual controls are not accessible from the MXML author’s environment
unless you design your class to allow this. For example, if you create a new component that
extends UIComponent and uses a Button and a TextArea component, you cannot set the label
text in the MXML tag because you do not directly extend the Button class.

To instantiate controls inside your compound component, use the createClassObject()
method inside the createChildren() method. For more information, see “Implementing the
createChildren() method” on page 866.

This section uses an example component, called CompoundComponent, that combines a Button
control and a TextArea control. It handles the click event of the Button control and writes a
message to the TextArea control.

Since this component handles events (and not just emits them), it includes an event listener and
an event handler in the class file.

The layout of the controls inside the component is handled in the layoutChildren() method.
This method calls the control’s move() method to arrange the Button control centered below the
TextArea control. The values passed to the move() method are relative to the registration point in
the FLA file. This appears in the Flash Stage as a “+”.

Another example of a compound component is ModalText, which uses a TextInput control and a
SimpleButton control. For more information, see “ModalText.as example” on page 885.

The following ActionScript class file creates a component that instantiates TextArea and Button
controls:
// Import all necessary classes.
import mx.core.UIComponent;
import mx.controls.Button;
import mx.controls.TextArea;

[Event("click")]
class CompoundComponent extends UIComponent {

static var symbolName:String="CompoundComponent";
static var symbolOwner:Object = CompoundComponent;
var className:String = "CompoundComponent";

function CompoundComponent() {
}

function init() {
super.init();
invalidate();

}

// Declare two children member variables.
var text_mc:TextArea;
var mode_mc:Button;
854 Chapter 40: Creating Basic Components in Flash MX 2004

function createChildren():Void {
if (mode_mc == undefined)

createClassObject(Button, "mode_mc", 1, { });
if (text_mc == undefined)

createClassObject(TextArea, "text_mc", 0, { preferredWidth: 150,
editable: false });

mode_mc.addEventListener("click", this);
mode_mc.label = "Click Me";

}

function layoutChildren():Void {
mode_mc.move(text_mc.width/2-5, 50);

}

// Handle events that are dispatched by the children.
function handleEvent(evt:Object):Void {

if (evt.type == "click")
text_mc.text = "the button was clicked";

}
}

Creating compound components 855

856 Chapter 40: Creating Basic Components in Flash MX 2004

CHAPTER 41
Creating Advanced Components in

Flash MX 2004
This chapter describes the details of creating visual, interactive components in the Macromedia
Flash MX 2004 workspace for use in Macromedia Flex applications. The majority of the work is
in writing the ActionScript class file, which derives from Flex’s existing classes, and adding your
own custom functionality.

For a set of simple examples that show the basics of component development, see Chapter 40,
“Creating Basic Components in Flash MX 2004,” on page 835. If you are unfamiliar with
working in the Flash environment, see Chapter 39, “Working with Flash MX 2004,” on
page 817.

Contents

Creating components overview . 857

Writing the component’s ActionScript code . 858

Skinning custom controls. 881

Adding styles . 882

Making components accessible. 883

Improving component usability . 883

Best practices when designing a component . 884

ModalText.as example . 885

Troubleshooting. 888

Creating components overview

This section describes the general process for creating a component that extends an existing Flash
MX 2004 class. If you want to create a component that is based on the Button, for example, you
can subclass the mx.controls.Button class. However, if you want to invent your own component,
you will likely extend either mx.core.UIComponent or mx.core.UIObject classes. Choosing one
of these base classes is discussed later, but Macromedia recommends that most custom
components extend UIComponent rather than UIObject.
857

The process of creating a Flex component in Flash is different from the one for creating general-use
Flash components. It is possible, and even desirable, to create components that operate in both
environments, however, there are certain optimizations available to Flex applications that require
that components behave in a more sophisticated manner.

Flex components are different from Flash components because Flex does not expose the Timeline,
which means that the infrastructure can have more control over how components are instantiated.
In addition, Flex does not have a Stage with objects.

Use the following general process for creating a new Flex component in Flash:

1. Create a symbol and add assets in the FLA file.

a Insert a new symbol onto the Flash Stage and convert it to a component.
b Add dependent components to the new symbol.

2. Create an ActionScript class file.

a Extend one of the base classes (UIObject, UIComponent) or another component.
b Specify symbolName, symbolOwner, and className.
c Specify properties that can be set using an MXML tag property (Clip Parameters).
d Implement the constructObject2() method.
e Implement the init() method.
f Implement the createChildren() method.
g Implement the measure() method.
h Implement the layoutChildren() method.
i Implement the draw() method.
j Add properties, methods, and metadata.

3. Link the class file to the FLA file.

4. Generate a SWC file.

Writing the component’s ActionScript code

Most components include some ActionScript code. When creating a component symbol that
derives from a parent class, you link the symbol to an external ActionScript 2.0 class file. (For
information on defining this file, see “Working with component symbols” on page 823.)

The external ActionScript class extends another class, adds methods, adds getters and setters, and
defines events and event handlers for the component. When extending an existing component
class, you can inherit from only one class. ActionScript 2.0 does not allow multiple inheritance.

To edit ActionScript class files, you can use Flash, any text editor, or an Integrated Development
Environment (IDE).

Simple example of a class file

The following is a simple example of a class file called MyComponent.as. If you were creating this
component, you would link this file to the component in the Flash IDE.
858 Chapter 41: Creating Advanced Components in Flash MX 2004

This example contains a minimal set of imports, methods, and declarations for a component that
inherits from the UIObject class.
//Import packages.
import mx.core.UIObject;

//Declare the class and extend from the parent class.
class myPackage.MyComponent extends UIObject {

// Identify the symbol name that this class is bound to.
static var symbolName:String = "myPackage.MyComponent";

// Identify the fully-qualified package name of the symbol owner.
static var symbolOwner:Object = Object(myPackage.MyComponent);

// Provide the className variable.
var className:String = "MyComponent";

// Define an empty constructor.
function MyComponent() {
}

// Override the init method, and call the parent’s init method.
function init(Void):Void {

super.init();

// Call invalidate() to display graphics.
invalidate();

}

}

General process for writing a class file

Use the following general process when writing a component’s ActionScript class file. Depending
on the type of component that you create, whether you override any of the superclass’s methods is
optional. For the simplest form of component, you are not required to implement any of these
methods.

To write the ActionScript file for a component:

1. Select and extend a parent class.

2. Define the symbolName, symbolOwner, and className variables.

3. Write an empty class constructor.

4. Specify properties that can be set using an MXML tag property (clip parameters).

5. Implement the constructObject2() method.

6. Implement the init() method.

7. Implement the createChildren() method.

8. Implement the measure() method.

9. Implement the layoutChildren() method.
Writing the component’s ActionScript code 859

10. Implement the draw() method.

11. Add properties, methods, and metadata.

The ordering of methods that you implement in this process mirror those in the component
instantiation life cycle. By understanding which methods are called and in what order, you can
better understand how you write a component’s class file. For more information, see “About the
component instantiation life cycle” on page 863.

Each of the steps in this process are covered in more detail in the rest of this chapter.

Selecting a parent class

Most components share some common behavior and functionality. Flash includes two base classes
to supply this commonality, UIObject and UIComponent. By extending these classes, your
components have a basic set of methods, properties, and events.

Note: Macromedia recommends that you base your components on the UIComponent class rather
than UIObject. UIComponent provides more built-in functionality, but maintains the flexibility of
extending UIObject.

UIObject and UIComponent are the base classes of the component architecture. Understanding
the principles at work in these two classes is important for building components.

The following table briefly describes the two base classes:

Class Extends Description

mx.core.UIComponent UIObject UIComponent is the base class for all Flex components. It can
participate in tabbing, accept low-level events such as keyboard
and mouse input, and be disabled so it does not receive mouse
and keyboard input.
UIComponent lets you perform the following tasks:
• Creating focus navigation
• Enabling and disabling components
• Resizing components
Macromedia recommends using UIComponent rather than
UIObject as the base class for your custom components.

mx.core.UIObject MovieClip UIObject is the base class for all graphical objects. It can have
shape, draw itself, and be invisible.
UIObject lets you perform the following tasks:
• Editing styles
• Handling events
• Resizing by scaling
Macromedia does not recommend using UIObject rather than
UIComponent as the base class for your custom components.
860 Chapter 41: Creating Advanced Components in Flash MX 2004

About the UIObject and UIComponent classes

Components based on version 2 of the Macromedia Component Architecture descend from the
UIObject class, which wraps the MovieClip class. The MovieClip class is the base class for the
classes in Flash that can draw on the screen. By providing a wrapper around its methods and
properties, Flex makes the UIObject syntax more intuitive and improves the conceptual
management of representing graphic objects.

Many MovieClip properties and methods are related to the Timeline. The UIObject class
abstracts many of those details. Subclasses of the MovieClip class do not use unnecessary
MovieClip properties and methods. However, you can access these properties and methods, if
you want.

The UIObject (mx.core.UIObject) class hides the mouse handling and frame handling in the
MovieClip class. The UIObject class also defines the styles, skins, and event aspects of the
component architecture. The UIObject class and its subclasses broadcast their events just before
drawing. If you are familiar with Flash, this event is analogous to the enterFrame() MovieClip
event. The UIObject class posts events to its listeners just before drawing when loading and
unloading, and when its layout changes (move, resize).

A UIObject class or UIObject subclass resizes itself by scaling. When you change its size using the
setSize() method, the new dimensions are handed to the _width and _height properties of the
Movie Clip, which scale the subclass.

The UIComponent (mx.core.UIComponent) class is a subclass of the UIObject class. It defines
high-level behaviors that are specific to a graphical object. The UIComponent class handles end-
user interactions (such as clicking and focus) and component enabling and disabling. The
UIComponent class inherits all the methods, properties, and events of the UIObject class.

UIComponent also handles dragging, but you should not override the startDrag() method
when defining custom components.

Extending other classes

You can extend any component class to create a new component class. For example, if you want to
create a component that behaves almost the same as a Button component does, you can extend
the Button class instead of recreating all the functionality of the Button class from the base classes.

To make component construction easier, you can extend a subclass for any class in the component
architecture; you are not required to extend the UIObject or UIComponent class directly. If you
extend any other component’s class, you extend these classes by default because all components
are subclasses of the UIComponent class, which is a subclass of the UIObject class.

When you add dependent components, you should override the createChildren() and
layoutChildren() methods to instantiate, position, and resize the components properly.
Writing the component’s ActionScript code 861

Accessing application scope

Every class that extends the UIObject class has an application property that stores a reference to
the Application object. You can use this property to access data or methods at the application
level. Because the event handlers and the bindings of a component execute in the context of that
component, using the Application object gives you access to the application scope.

To access the Application object, you must import the Application package in your class file, as
the following example shows:
import mx.core.Application;

Some nonvisual components, such as Validator, do not inherit from the UIObject class. As a
result, some components do not have an application property. For these components, you can
access the application by using the static property Application.application.

In the following example, the component calls the getName() method on the Application object.
Assume that the method is written in the MXML file or some dependent class that uses your
component:
var name:String = application.getName();

Identifying the class, symbol, and owner names

To help Flash find the proper ActionScript classes and packages and to preserve the component’s
naming, you must set the symbolName, symbolOwner, and className variables in your
component’s ActionScript class file.

The following table describes these variables:

Variable Type Description

symbolName String Symbol name for the object (name of the ActionScript class). The
symbol name must be the fully qualified class name (for example,
myPackage.MyComponent).
This name must match the Linkage Identifier and AS 2.0 Class fields in
the Create New Symbol dialog box described in “Adding new symbols”
on page 823.
You must declare this variable as static.

symbolOwner Object Class used in the internal call to the createClassObject() method.
The symbol owner must be the fully qualified class name (for example,
myPackage.MyComponent).
Do not use quotation marks around the symbolOwner value, as it is of
type Object.
This name must match the Linkage Identifier and AS 2.0 Class fields in
the Create New Symbol dialog box described in “Adding new symbols”
on page 823.
You must declare this variable as static.

className String Name of the component class. This does not include the package
name and has no corresponding setting in the Flash development
environment.
You can use the value of this variable when setting style properties.
862 Chapter 41: Creating Advanced Components in Flash MX 2004

The following example adds the symbolName, symbolOwner, and className variables to the
MyButton class:
class MyButton extends mx.controls.Button {

static var symbolName:String = "myPackage.MyButton";
static var symbolOwner = myPackage.MyButton;
var className:String = "MyButton";
...

}

About the component instantiation life cycle

When you instantiate a new component, Flex calls a number of methods, and those methods call
other methods that you can override. Instantiating a new control in your application triggers the
following method calls by Flex:

1. Class constructor

After the class constructor is called, Flex calls the constructObject2() method.
2. constructObject2()

When you implement constructObject2(), you must call super.constructObject2() or
make manual calls to the init() and createChildren() methods.

3. init()

Flex calls init() from the parent class’ constructObject2() method.
4. createChildren()

Flex calls createChildren() from the parent class’ constructObject2() method.
5. commitProperties()

Flex calls commitProperties().
6. measure()

Flex calls measure().
7. layoutChildren()

Flex calls layoutChildren().
8. draw()

Flex calls draw().

Each of the commitProperties(), measure(), layoutChildren(), and draw() methods has a
corresponding invalidate function. For more information, see “About invalidation” on page 881.

The remaining sections describe each of these methods. For the purposes of initialization, you are
not required to add any explicit calls to these methods because Flex initiates each call. However,
you may be required to explicitly call some of these methods to refresh the object’s state after it
has been created and displayed.

Writing the constructor

Generally, component constructors should be empty so that the object can be customized with its
properties interface. For example, the following code shows a constructor for MyComponent:
Writing the component’s ActionScript code 863

function MyComponent() {
}

In this example, when a new component is instantiated, the MyComponent() constructor is called.
Setting properties in the constructor can lead to overwriting default values, depending on the
ordering of initialization calls.

The empty constructor is not the only method necessary to instantiate the object with property
values. You can also override the constructObject2() method. This happens because the
constructor is called too early in the life cycle of the object to support the proper construction of
it and its children. As a result, Flex finally instantiates the object when the constructObject2()
method is called. For more information, see “Implementing the constructObject2() method”
on page 866.

Each class can contain only one constructor function; overloaded constructor functions are not
supported in ActionScript 2.0.

Specifying clip parameters

Clip parameters define the instance properties that you can set as an MXML tag’s property. The
values of these are stored in the initObject so that Flex can apply them to the component during
instantiation. Clip parameters mirror the set of properties in the Flash UI Property Inspector.
They are used in Flex as a list of properties to be applied during the construction of the object.
Clip parameters are roughly equivalent to constructor parameters in Java or C++, although they
are not set in the constructor call, but later, in the constructObject2() method.

Clip parameters are not meant to set default values, but rather to apply tag attributes to the
component when it is created.

You define clip parameters and then apply them to the object using the
UIObject.applyProperties() method inside the constructObject2() method. You use the
applyProperties() method to apply the clip parameters, based on values set by the user in the
MXML tag.

When playing a standard Flash movie, the Flash Player applies clip parameters before the object's
constructor is called (which calls the constructObject() method, which calls the init()
method).

In Flex, the Flash Player no longer applies clip parameters by default. This lets you control when
they are applied, which should be in the constructObject2() method. If you do not apply the
clip parameters explicitly in the constructObject2() method, Flex applies them after the
constructor finishes.

In an MXML file, you might have a tag that defines a foo property, as the following example
shows:
<MyComponent foo="myvalue" />

When it instantiates the component, the Flex framework creates an initialization object, {foo:
"myvalue"} and passes it to the constructObject2() method. The constructObject2()
method sets this property.
864 Chapter 41: Creating Advanced Components in Flash MX 2004

Clip parameters can take any number of comma-separated arguments. Flex stores the clip
parameters as an array. Every argument in the clip parameter definition must have a “:1” after it in
order for Flex to let you use it.

The following example creates the clip parameters text, html, and autoSize, and then calls the
applyProperties() method from within constructObject2():
var clipParameters:Object = { text: 1, html: 1, autoSize: 1};

function constructObject2(obj:Object):Void {
...
applyProperties(obj, Label.prototype.clipParameters);

}

The applyProperties() method has the following signature:
applyProperties(Object, Object):Void

Thus, when you have a component like this:
class MyComponent extends UIComponent {

...

private var clipParameters:Object = {someProperty: 1};

private static var mergedClipParameters =
mx.core.UIObject.mergeClipParameters(MyComponent.prototype.
clipParameters,UIComponent.prototype.clipParameters);

public var someProperty:String;
...

}

You can do this:
function constuctObject2(initObj:Object) {

super.constructObject2(initObj);
this.applyProperties(initObj, clipParameters);

}

Which uses the bracket notation to get around type checking. If it runs in Flash, the
constructObject2() method is never called and UIObject.init takes care of all property
initialization. If it runs in Flex, it calls the constructObject2() method and this function
applies properties as required.

You can dynamically create a list of clip parameters using the mergeClipParameters() method.
This method creates the list of clip parameters using ActionScript shorthand; for example:
static function mergeClipParameters(obj, par):Boolean {

for (var i in par) {
obj[i] = par[i];

}
return true;

}

Writing the component’s ActionScript code 865

Implementing the constructObject2() method

The constructObject2() method is effectively the constructor for your class. The
UIObject.constructObject2() method calls the init() and createChildren() methods. It
should apply any properties in the initObj that are needed by init() and createChildren(),
and then call super.constructObject2().

The signature for the constructObject2() method is as follows:
constructObject2(initObj:Object):Void

In addition, if you use clip parameters, you should add a call to applyProperties() at the end
of the constructObject2() method; for example:
function constructObject2(o:Object):Void {

super.constructObject2(o);
applyProperties(o, Label.prototype.clipParameters);

}

If you override constructObject2(), you must at least call super.constructObject2().

The initObj contains all the component instance’s properties that are set in the MXML tag
(and stored as clip parameters). Flex creates this object implicitly during instantiation of the
component.

Implementing the init() method

Flash calls the init() method when the class is created. At a minimum, the init() method
should call the superclass’s init() method. The width, height, and clip parameters are not
properly set until after this method is called.
function init(Void):Void {

super.init();
}

The implicit init object (initObj) contains everything passed in through the initObj argument to
the createClassObject() method. You can access it in the init() method.

Note: Do not create child objects in the init() method. You should use it only for setting up initial
variables.

Implementing the createChildren() method

Components implement the createChildren() method to create subobjects (such as other
components) in the component. Rather than calling the subobject’s constructor in the
createChildren() method, call createClassObject() to instantiate a subobject of your
component.

The createClassObject() method has the following signature:
createClassObject(className, instanceName, depth, initObject)
866 Chapter 41: Creating Advanced Components in Flash MX 2004

The following table describes the parameters:

To call createClassObject(), you must know what those children are (for example, a border or
a button that you always need), because you must specify the name and type of the object, plus
any initialization parameters in the call to createClassObject().

The following example calls createClassObject() to create a new Label object for use inside a
component:
up_mc.createClassObject(Label, "label_mc", 1); // create a label in the holder

You set properties in the call to createClassObject() by adding them as part of the
initObject parameter. The following examples sets the value of the label property:
form.createClassObject(CheckBox, "cb", 0, {label:"Check this"});

The following example creates TextInput and SimpleButton components:
function createChildren():Void {

if (text_mc == undefined)
createClassObject(TextInput, "text_mc", 0, { preferredWidth: 80,

editable:false });
text_mc.addEventListener("change", this);
text_mc.addEventListener("focusOut", this);

if (mode_mc == undefined)
createClassObject(SimpleButton, "mode_mc", 1, { falseUpSkin:

modeUpSkinName, falseOverSkin: modeOverSkinName, falseDownSkin:
modeDownSkinName });
mode_mc.addEventListener("click", this);

}

If your component is a container, and you do not know exactly which children it contains, call the
createComponents() method. This method creates all child objects. For more information on
using createComponents(), see “Using the createComponent() method” on page 562.

At the end of the createChildren() method, call the necessary invalidate methods
(invalidate(), invalidateSize(), or invalidateLayout()) in order to refresh the screen.
For more information, see “About invalidation” on page 881.

Implementing the commitProperties() method

Flex calls the commitProperties() method before measure(). It provides a chance to set
variables that are used by measure() after the constructor has finished and MXML attributes
have been applied.

Parameter Type Description

className Object The name of the class.

instanceName String The name of the instance.

depth Number The depth for the instance.

initObject Object Object containing initialization properties.
Writing the component’s ActionScript code 867

For example, the ViewStack control uses the commitProperties() method to maximize
performance. When you set the ViewStack.selectedIndex property, the ViewStack doesn’t
update to a new page right away. Instead, it privately stores a pendingSelectedIndex property.
When it is time for Flash Player to update the screen, Flex calls the commitProperties(),
measure(), layoutChildren(), and draw() methods. In the commitProperties() method,
the ViewStack checks to see if the pendingSelectedIndex property is set, and it updates the
selected index at that time.

The motivation to use the commitProperties() method is to delay processing until the last
minute, so that Flash Player avoids doing computationally expensive, redundant work. For
example, if a script changes the ViewStack.selectedIndex property 15 times, you would want
to minimize the number of times the display of ViewStack updates when the selectedIndex
changes. By using commitProperties(), you can update the pendingSelectedIndex property
15 times, and then only do the rendering once.

This is most useful for properties that are computationally expensive to update. If setting a
property is inexpensive, then you can avoid using the commitProperties() method.

The commitProperties() is only called if invalidateProperties() method is called.

Implementing the measure() method

Generally, the measure() method is only called once when the component is instantiated. The
component’s container sets the initial size and Flex calculates the preferred minimum and
maximum sizes. You can use the measure() method to explicitly set the size of the component,
although Macromedia does not recommend doing this when developing components.

You can set the following properties in the measure() method. Flex calculates them, but you can
override them:

• _measuredMinWidth
• _measuredMaxWidth
• _measuredMinHeight
• _measuredMaxHeight
• _measuredWidthFlex
• _measuredHeightFlex
• _measuredPreferredWidth
• _measuredPreferredHeight

The Flex properties (those that end with the word Flex) define limits for when the object is
resized. These “measured” properties are used for layout in containers if your component doesn’t
explicitly set a preferredWidth or preferredHeight attribute.

Controls calculate the values of these based on runtime properties. For example, the Button
control’s measure() method examines how wide its label is in order to compute the value of
_measuredPreferredWidth.
868 Chapter 41: Creating Advanced Components in Flash MX 2004

By default, Flex sets the values of _measuredPreferredWidth and _measuredPreferredHeight
to the value of the current height and width, but you should override them. The following
example of the measure() method from the Label component sets a default width and height if
the label text field is empty:
function measure(Void):Void {

var myTF = _getTextFormat();
var txt = text;

if (txt == undefined || txt.length < 2) {
txt = "Wj";

}
var textExt = myTF.getTextExtent2(txt);
var textW = textExt.width + 4;
var textH = textExt.height + 4;

if (textW == undefined) {
textW = 20;

}

if (textH == undefined) {
textH = 8;

}

trace("Label: " + textW + " " + textH);

_measuredPreferredWidth = textW;
_measuredPreferredHeight = textH;

}

Implementing the layoutChildren() method

The layoutChildren() method positions subobjects within the confines set by the
layoutWidth and layoutHeight properties of your component. Each component should
implement this method. The layoutChildren() method deprecates the size() method, which
is used primarily by Flash designers to perform the same function.

Use the width and height properties of the child controls when changing the size of the children.
These properties are scaled for use inside the component. Use the layoutWidth and
layoutHeight properties when changing the size of the component itself. These properties are
not scaled because the component is at the top level.

The layoutChildren() method does not update the screen unless you call an invalidation
method. Flex only calls the layoutChildren() method if the invalidateLayout() method was
previously called. For more information, see “About invalidation” on page 881.

The following example checks for the value of the labelPlacement property and lays out the
mode_mc object accordingly:
function layoutChildren():Void {

text_mc.setSize(layoutWidth - mode_mc.width, layoutHeight);

if (labelPlacement == "left")
Writing the component’s ActionScript code 869

{
mode_mc.move(layoutWidth - mode_mc.width, 0);
text_mc.move(0, 0);

}
else {

mode_mc.move(0, 0);
text_mc.move(mode_mc.width, 0);

}

}

Implementing the draw() method

The draw() method displays objects on the screen. Whenever the component needs to draw an
interface element, it calls a draw() method. You use the draw() method to create or modify
elements that are subject to change.

Everything is made visible in the draw() method. A border does not actually call the drawing API
until its draw() method is called. Any graphical assets that you bring in for the purposes of
measuring are invisible until the draw() method is called.

You should not call the draw() method directly. Instead, call one of the invalidation methods,
and that method calls draw(). Flex also calls the draw() method from the redraw() method.
However, Flex calls the redraw() method only if the object is invalidated, so you should actually
call an invalidation method if you want Flex to invoke draw() or redraw(). If you do not call an
invalidation method, the component remains invisible unless you set its visibility property to
true in MXML. For more information, see “About invalidation” on page 881.

Flex also calls the draw() method after the layoutChildren() method.

Inside the draw() method, you can use calls to the Flash drawing API to draw borders, rules, and
other graphical elements. You can also call the clear() method, which removes the visible
objects. In general, you should use this.layoutWidth and this.layoutHeight instead of
width and height in the draw() method to set lengths.

The following example clears the component and then draws a border around the component:
function draw():Void {

clear();
if (bTextChanged) {

bTextChanged = false;
text_mc.text = text;

}
// Draw a border around everything
drawRect(0, 0, this.layoutWidth, this.layoutHeight);

}

Defining getters and setters

Getters and setters provide visibility to component properties and control access to those
properties by other objects.
870 Chapter 41: Creating Advanced Components in Flash MX 2004

To define getter and setter methods, precede the method name with get or set, followed by a
space and the property name. Macromedia recommends that you use initial capital letters for the
second word and each word that follows.

The variable that stores the property’s value cannot have the same name as the getter or setter. By
convention, precede the name of the getter and setter variables with two underscores (__). In
addition, Macromedia recommends that you declare the variable as private.

The following example shows the declaration of initialColor, and getter and setter methods
that get and set the value of this property:
...
private var __initialColor:Color = 42;
...
public function get initialColor():Number {

return __initialColor;
}
public function set initialColor(newColor:Number) {

__initialColor = newColor;
}

You commonly use getters and setters in conjunction with metadata keywords to define properties
that are visible, are bindable, and have other properties. For more information, see “Component
metadata” on page 871.

Component metadata

The Flash compiler recognizes component metadata statements in your external ActionScript
class files. The metadata tags define component attributes, data binding properties, events, and
other properties of the component. Flash interprets these statements during compilation; they are
never interpreted during runtime in Flex or Flash.

Using metadata keywords

Metadata statements are associated with a class declaration or an individual data field. They are
bound to the next line of the ActionScript file. When defining a component property, add the
metadata tag on the line before the property declaration. When defining component events or
other aspects of a component that affect more than a single property, add the metadata tag outside
the class definition so that the event is bound to the entire class.

In the following example, the Inspectable metadata keywords apply to the flavorStr, colorStr,
and shapeStr parameters:
[Inspectable(defaultValue="strawberry")]
public var flavorStr:String;

[Inspectable(defaultValue="blue")]
public var colorStr:String;

[Inspectable(defaultValue="circular")]
public var shapeStr:String;
Writing the component’s ActionScript code 871

Metadata tags

The following table describes the metadata tags that you can use in ActionScript class files:

The following sections describe the component metadata tags in more detail.

Bindable

Data binding connects components to each other. You achieve visual data binding through the
Bindings tab of the Component Inspector panel. From there, you add, view, and remove bindings
for a component.

Although data binding works with any component, its main purpose is to connect user-interface
components to external data sources, such as web services and XML documents. These data
sources are available as components with properties, which you can bind to other component
properties. The Component Inspector panel is the main tool used in Flash MX Professional 2004
to do data binding.

Use the Bindable metadata keyword to make properties and getter/setter functions in your
ActionScript classes appear in the Bindings tab in the Component Inspector panel.

Tag Description

Bindable Reveals a property in the Bindings tab of the Component Inspector
panel. For more information, see “Bindable” on page 872.

ChangeEvent Identifies events that cause data binding to occur. For more
information, see “ChangeEvent” on page 873.

Effect Defines the valid property name for the tag’s effect. For more
information, see “Effect” on page 874.

Event Describes the events that the component emits. For more
information, see “Event” on page 874.

IconFile Identifies the filename for the icon that represents the component
in the Flash Components panel. For more information, see “Adding
an icon” on page 883.

Inspectable Defines an attribute exposed to component users in the
Component Inspector panel. Also limits allowable values of the
property. For more information, see “Inspectable” on page 875.

InspectableList Identifies which subset of inspectable parameters should be listed
in the Flash MX 2004’s Property inspector. If you don't add an
InspectableList property to your component's class, all inspectable
parameters appear in the Property inspector. For more information,
see “InspectableList” on page 876.

NonCommittingChangeEvent Identifies an event as an interim trigger.
For more information, see “NonCommittingChangeEvent”
on page 877.

Style Describes a style property allowed on the component. For more
information on using the Style metadata keyword, see “Style”
on page 878.
872 Chapter 41: Creating Advanced Components in Flash MX 2004

The Bindable metadata keyword has the following syntax:
[Bindable[readonly|writeonly[,type="datatype"]]]

The Bindable keyword must precede a property, getter/setter function, or other metadata
keyword that precedes a property or getter/setter function.

The following example defines the variable flavorStr as a public, inspectable variable that is also
accessible on the Bindings tab of the Component Inspector panel:
[Bindable]
[Inspectable(defaultValue="strawberry")]
public var flavorStr:String = "strawberry";

The Bindable metadata keyword takes three arguments that specify the type of access to the
property, as well as the data type of that property. The following table describes these options:

You can combine the access option and the data type option, as the following example shows:
[Bindable(param1="writeonly",type="DataProvider")]

The Bindable keyword is required when you use the ChangeEvent metadata keyword. For more
information, see “ChangeEvent” on page 873.

ChangeEvent

Use the ChangeEvent metadata keyword to generate one or more component events when
changes are made to properties.

The syntax for this keyword is as follows:
[ChangeEvent("event_name"[,...)]
property_declaration or get/set function

You can use this keyword only with variable declarations or getter/setter functions, although it is
not required.

In the following example, the component generates the change event when the value of the
property flavorStr changes:

Option Description

readonly Instructs Flash to allow the property to be only the source of a binding, as this
example shows:
[Bindable("readonly")]

writeonly Instructs Flash to allow the property to be only the destination of a binding, as
this example shows:
[Bindable("writeonly")]

type="datatype" Specifies the data type of the property that is being bound. If you do not specify
this option, data binding uses the property’s data type as declared in the
ActionScript code.
If datatype is a registered data type, you can use the functionality in the Schema
tab’s Data Type pop-up menu.
The following example sets the data type of the property to String:
[Bindable(type="String")]
Writing the component’s ActionScript code 873

[ChangeEvent("change")]
public var flavorStr:String;

When the event specified in the metadata occurs, Flash informs whatever is bound to the
property that the property has changed.

You can also instruct your component to generate an event when a getter or setter function is
called, as the following example shows:
[ChangeEvent("change")]
function get selectedDate():Date

In most cases, you set the change event on the getter, and dispatch the event on the setter.

You can register multiple change events in the metadata so that more than one event is generated
when the property changes, as the following example shows:
[ChangeEvent("change1", "change2", "change3")]

Any one of those events indicates a change to the variable. They do not all have to occur to
indicate a change.

Effect

The Effect metadata keyword defines the name of the property that you can assign to an Effect for
the MXML tag.

The syntax of the Effect metadata keyword is as follows:
[Effect("effect_name")]

The effect_name generally matches the event_name listed in the Event metadata plus the word
Effect. The following example means that a tag may have a resizeEffect property assigned to
the effect to play when the resize event triggers:
[Effect("resizeEffect")]

Event

Use the Event metadata keyword to define events dispatched by this component. Add the Event
statements outside the class definition in the ActionScript file so that they are bound to the class
and not a particular member of the class.

The syntax for this keyword is as follows:
[Event("event_name")]

The following example identifies the myClickEvent event as an event that the component can
dispatch:
[Event("myClickEvent")]

If you do not identify an event in the class file with the Event metadata keyword, the compiler
ignores the event during compilation, and Flex ignores this event triggered by the component
during runtime. The metadata for events is inherited from the parent class, however, so are not
required to tag events that are already tagged with the Event metadata keyword in the parent class.
874 Chapter 41: Creating Advanced Components in Flash MX 2004

The following example shows the Event metadata for the UIObject class, which handles the
resize, move, and draw events:
...

[Event("resize")]
[Event("move")]
[Event("draw")]

class mx.core.UIObject extends MovieClip {
...

}

Inspectable

You specify the user-editable (or “inspectable”) parameters of a component in the class definition
for the component using the Inspectable metadata keyword. If you tag a property as Inspectable,
it appears in the Component Inspector panel of the Flash user interface.

Prior to this metadata keyword, you had to define the property in the ActionScript class file and
in the Component Inspector panel, which introduced the possibility of errors because the
property was defined in multiple locations. Now, you define the property only once.

The Inspectable metadata statement must immediately precede the property’s variable declaration
to be bound to that property.

The syntax for the Inspectable metadata keyword is as follows:
[Inspectable(value_type=value[,attribute=value,...])]
property_declaration name:type;

The following table describes the properties of the Inspectable metadata keyword:

Property Type Description

category String (Optional) Groups the property into a specific subcategory in the
Property inspector of the Flash user interface.

defaultValue String or
Number

(Required) A default value for the inspectable property. This
property is required if used in a getter/setter. The default value is
determined from the property definition.

enumeration String (Optional) Specifies a comma-delimited list of legal values for the
property. Only these values are allowed; for example, item1, item2,
item3.

environment String (Optional) Notes which inspectable properties should not be
allowed (none), which are used only for Flash (Flash), and which
are used only by Flex and not Flash (MXML).

format String (Optional) Indicates that the property holds a value with a file path.

listOffset Number (Optional) Added for backward compatibility with Flash MX
components. Used as the default index into a List value.

name String (Optional) A display name for the property; for example, Font
Width. If not specified, use the property’s name, such as
_fontWidth.
Writing the component’s ActionScript code 875

The following example defines the enabled parameter as inspectable:
[Inspectable(defaultValue=true, verbose=1, category="Other")]
var enabled:Boolean;

The Inspectable keyword supports loosely typed properties, as the following example shows:
[Inspectable("danger", 1, true, maybe)]

InspectableList

Use the InspectableList metadata keyword to specify exactly which subset of inspectable
parameters should appear in the Property Inspector or Component definition panels in the Flash
MX 2004 user interface.

The InspectableList metadata keyword eliminates inheritance of inspectable properties in the base
class. Only the properties in this list are marked as inspectable. Use InspectableList in
combination with Inspectable to hide inherited attributes for subclassed components.

If you do not add an InspectableList metadata keyword to your component’s class, all inspectable
parameters, including those of the component’s parent classes, appear in the Flash Property
inspector.

The InspectableList syntax is as follows:
[InspectableList("attribute1"[,...])]

The InspectableList keyword must immediately precede the class definition because it applies to
the entire class and not individual members of the class.

type String (Optional) A type specifier. If omitted, use the property’s type. The
following values are acceptable:
• Array
• Object
• List
• String
• Number
• Boolean
• Font Name
• Color
If the property is an array, you must list the valid values for the
array.

variable String (Optional) Added for backward compatibility with Flash MX
components. Used to specify the variable that this parameter is
bound to.

verbose Number (Optional) Indicates that this inspectable property should be
displayed in the Flash user interface only when the user indicates
that verbose properties should be included. If this property is not
specified, Flash assumes that the property should be displayed.

Property Type Description
876 Chapter 41: Creating Advanced Components in Flash MX 2004

The following example allows the flavorStr and colorStr properties to be displayed in the
Property inspector, but excludes other inspectable properties (such as flavorAge) from the
DotParent class:
[InspectableList("flavorStr","colorStr")]
class BlackDot extends DotParent {

[Inspectable(defaultValue="strawberry")]
public var flavorStr:String;

[Inspectable(defaultValue="blue")]
public var colorStr:String;

[Inspectable(defaultValue="10")]
public var flavorAge:String;

...
}

NonCommittingChangeEvent

The NonCommittingChangeEvent metadata keyword identifies an event as an interim trigger.
You use this keyword for properties that might change often, but you do not want validation to
occur on every change.

An example of this is if you tied a validator function to the text property of a TextInput control.
The text property changes on every keystroke, but you do not want to validate the property until
the user presses the Enter key or changes focus away from the field. The
NonCommittingChangeEvent keyword lets you trigger validation when the user is done editing
the text field.

The syntax for the NonCommittingChangeEvent metadata keyword is as follows:
[NonCommittingChangeEvent("event_name")]

In the following example, the component is aware that the property has changed if the change is
triggered, however, that change is not final. There is another [ChangeEvent] that probably
triggers when the change is final:
[Event("change")]
...
[ChangeEvent("valueCommitted")]
[NonCommittingChangeEvent("change")]
function get text():String {

return getText();
}

function set text(t):Void {
setText(t);

}

Writing the component’s ActionScript code 877

Style

The Style metadata keyword describes a style property allowed for the component. The syntax for
the Style metadata keyword is as follows:
[Style(name=style_name[,attribute=value,...])]

The following table describes the attributes for the Style metadata keyword:

The following example shows the textSelectedColor property:
[Style(name="textSelectedColor",type="Number",format="Color",inherit="yes")]

Defining component parameters

When building a component, you can add parameters that define its appearance and behavior.
The most commonly used properties appear as authoring parameters in the Component
Inspector panel. You define these properties by using the Inspectable keyword (see “Inspectable”
on page 875). You can also set all inspectable parameters with ActionScript. Setting a parameter
with ActionScript in your MXML application overrides any value set during component
authoring.

The following example sets several component parameters in the JellyBean class file, and exposes
them with the Inspectable metadata keyword in the Component Inspector panel:
class JellyBean{

// a string parameter
[Inspectable(defaultValue="strawberry")]
public var flavorStr:String;

// a string list parameter
[Inspectable(enumeration="sour,sweet,juicy,rotten",defaultValue="sweet")]
public var flavorType:String;

// an array parameter
[Inspectable(name="Flavors", defaultValue="strawberry,grape,orange",
verbose=1, category="Fruits")]
var flavorList:Array;

// an object parameter
[Inspectable(defaultValue="belly:flop,jelly:drop")]
public var jellyObject:Object;

// a color parameter
[Inspectable(defaultValue="#ffffff")]
public var jellyColor:Color;

Option Type Description

name String (Required) The name of the style.

type String The type of data.

format String Units of the property.

inheriting String Whether the property is inheriting. Valid values are yes and no.
878 Chapter 41: Creating Advanced Components in Flash MX 2004

// a setter
[Inspectable(defaultValue="default text")]
function set text(t:String)

}

Parameters can be any of the following supported types:

• Array
• Object
• List
• String
• Number
• Boolean
• Font Name
• Color

Handling events

The event model is a dispatcher-listener model based on the DOM Level 3 proposal for event
architectures. Every component in the architecture emits events in a standard format, as defined
by the convention. Those events vary across components, depending on the functionality that the
component provides.

Components generate and dispatch events and consume (listen to) other events. An object that
wants to know about another object’s events registers with that object. When an event occurs, the
object dispatches the event to all registered listeners by calling a function requested during
registration. To receive multiple events from the same object, you must register for each event.

Although every component can define unique events, events are inherited from the core classes of
the architecture, mx.core.UIObject and mx.core.UIComponent. These classes define low-level
component events, such as draw, resize, move, load, and others that are fundamental to all
components. Subclasses of these classes inherit and broadcast these events.

Dispatching events

In the body of your component’s ActionScript class file, you broadcast events using the
dispatchEvent() method. The signature for the dispatchEvent() method is as follows:
dispatchEvent(eventObj)

The eventObj parameter is the event object that describes the event. You can explicitly build an
event object before dispatching the event, as the following example shows:
var eventObj = new Object();
eventObj.type = "myEvent";
dispatchEvent(eventObj);

You can also use a shortcut syntax that sets the value of the type property for the event object and
dispatches the event in a single line:
dispatchEvent({type:"myEvent"});
Writing the component’s ActionScript code 879

The event object has an implicit property, target, that is a reference to the object that triggered
the event.

For more information on events, see “About events” on page 413.

Defining event handlers

You define the event handler object or event handler function that listens for your component’s
events in your application’s ActionScript. The following example handles the change, focusOut,
and click events of the children of the component:
function handleEvent(evt:Object):Void {

if (evt.type == "change") {
dispatchEvent({ type: "change" });

} else if (evt.type == "focusOut") {
text_mc.editable = false;

} else if (evt.type = "click") {
text_mc.editable = !text_mc.editable;

}
}

When you know that a particular object is the only listener for an event, you can take advantage
of the fact that the new event model always calls a method on the component instance. This
method is the event name plus the word Handler. For example, to handle the click event, write
the following code:
myComponentInstance.clickHandler = function(o){

// Insert your code here.
}

In this example, the this keyword, if used in the callback function, is scoped to
myComponentInstance.

Using the Event metadata

Add Event metadata in your ActionScript class file for each event listener. The value of the Event
keyword becomes the first argument in calls to the addEventListener() method, as the
following example shows:
[Event("click")] // event declaration
...
class FCheckBox{

function addEventListener(eventName:String, eventHandler:Object) {
... // eventName is String

}
}

Event metadata describes the events that this component emits, not the ones it consumes. For
more information on the Event metadata keyword, see “Event” on page 874.
880 Chapter 41: Creating Advanced Components in Flash MX 2004

About invalidation

Macromedia recommends that a component not update itself immediately in most cases, but
instead save a copy of the new property value, set a flag indicating what is changed, and call one of
the three invalidation methods.

The invalidation methods are the following:

• invalidateSize() Indicates that one of the _measuredProperties may have changed. This
results in a call to the measure() method. If the measure() method changes the value of one
of the _measured properties, it calls the layoutChildren() method.

• invalidateLayout() Indicates that the position and/or size of one of the subobjects may have
changed, but the _measuredXXXX properties have not been affected. This results in a call to the
layoutChildren() method. If you change a subobject in the layoutChildren() method,
you should call the invalidate() method.

• invalidate() Indicates that just the visuals for the object have changed, but size and position
of subobjects have not. This method calls the draw() method.

• invalidateProperties() Indicates that you have changed properties. This method calls the
commitProperties() method.

You should call the invalidateSize() method as little as possible because it measures and
redraws everything on the screen, and this can be an expensive action. Sometimes it is necessary to
call more than one of these methods to force a layout even though the computed sizes did not
change.

You must call an invalidation method at least once during the instantiation of your component.
The most common place for you to do this is in the createChildren() or layoutChildren()
methods.

Skinning custom controls

A user interface control is composed entirely of attached MovieClip objects or symbols that are
stored inside a SWF file. All assets for a user interface control can be external to the user interface
control, so they can also be used by other components. For example, if your component needs
button functionality, you can reuse the existing Button component assets.

The Button component uses a separate symbol to represent each of its states (FalseDown,
FalseUp, Disabled, Selected, and so on). However, you can associate your custom symbols —
called skins — with these states. At runtime, the old and new symbols are exported in the SWF
file. The old states become invisible to give way to the new symbols. This ability to change skins
during author-time as well as runtime is called skinning.

To use skinning in components, create a variable for every skin element or linkage used in the
component in your ActionScript class file. This lets someone set a different skin element just by
changing a parameter in the component, as the following example shows:
var falseUpSkin = "mySkin";

The name mySkin is subsequently used as the linkage name of the symbol to display the
FalseUpSkin.
Skinning custom controls 881

The following example shows the skin variables for the various states of the Button component:
var falseUpSkin:String = "ButtonSkin";
var falseDownSkin:String = "ButtonSkin";
var falseOverSkin:String = "ButtonSkin"
var falseDisabledSkin:String = "ButtonSkin";
var trueUpSkin:String = "ButtonSkin";
var trueDownSkin:String = "ButtonSkin";
var trueOverSkin:String = "ButtonSkin";
var trueDisabledSkin:String = "ButtonSkin";
var falseUpIcon:String = "";
var falseDownIcon:String = "";
var falseOverIcon:String = "";
var falseDisabledIcon:String = "";
var trueUpIcon:String = "";
var trueDownIcon:String = "";
var trueOverIcon:String = "";
var trueDisabledIcon:String = "";

In some cases, you must call the invalidate() method after changing skin properties. This
depends on where you set the skin. If you set it prior to the layoutChildren() method, the
invalidate() call in that method takes care of it for you. But if you set skin properties late in the
component instantiation life cycle, you might have to call the invalidate() method again to
have Flash draw the new skins.

Adding styles

Adding styles is the process of registering all the graphic elements in your component with a class
and letting that class control the graphics at runtime. Flex gathers style information from style
sheets and external files, and builds a styleDeclaration object that stores this information.

When the component checks a style property, it queries its own style properties (and therefore the
properties of its ancestors). If it cannot find the style property, it checks to see if it has a
styleDeclaration object assigned to it.

If it does, it returns the corresponding property in the styleDeclaration. If not, and the property is
not inherited, the value of the style is undefined. If the property is inherited, it checks the style
property of its parent component. The parent component returns the property if it has it or
bubbles it up to its parent. When the last parent is queried and no style has been found, Flex
checks for a global style object.

To set or get styles on an instance of an object, you access the UIObject getStyle() or
setStyle() methods. The following example sets the color on a button instance:
myButton.setStyle("buttonColor", 0xFF00FF);

Even though you can access the styles as ".propertyName", Macromedia recommends using the
getStyle() or setStyle() methods. This abstracts the code that handles inheriting styles and
updating of a component after a style change.

The getStyle() and setStyle() methods have the following signatures:
getStyle(styleName:String);
setStyle(styleName:String, value):Void;
882 Chapter 41: Creating Advanced Components in Flash MX 2004

The getStyle() method returns a string, number, or object representing the styleName. It
returns undefined if the style does not exist.

The setStyle() method sets a style on the object (and children if it is a cascading style).

You are not required to implement code in your component to support styles and style
inheritance because it is implemented in the base classes. For more information about styles, see
Chapter 19, “Using Styles, Fonts, and Themes,” on page 455.

Making components accessible

A growing requirement for web content is that it should be accessible to people who have
disabilities. Visually impaired people can use the visual content in Flash applications by means of
screen reader software, which provides an audio description of the material on the screen.

When you create a component, you can include ActionScript that enables the component and a
screen reader to communicate. Then, when developers use your component to build an
application in Flash, they use the Accessibility panel to configure each component instance.

Flash MX 2004 includes the following accessibility features:

• Custom focus navigation
• Custom keyboard shortcuts
• Screen-based documents and the screen authoring environment
• An Accessibility class

To enable accessibility in your component, add the following line to your component’s class file:
mx.accessibility.ComponentName.enableAccessibility();

For example, the following line enables accessibility for the MyButton component:
mx.accessibility.MyButton.enableAccessibility();

When developers add the MyButton component to an application, they can use the Accessibility
panel to make it available to screen readers.

Improving component usability

After you create the component and prepare it for packaging, you can make it easier for your users
to use. This section describes some techniques for adding usability to your component.

Adding an icon

You can add an icon that represents your component in the Components panel of the Flash
authoring environment.

To add an icon for your component:

1. Create an image with the following specifications:

■ 18 pixels x 18 pixels
■ Saved in PNG format
■ 8-bit with alpha transparency
Improving component usability 883

■ A transparent upper-left pixel, to support masking
2. Add the following definition to your component’s ActionScript class file before the class

definition:
[IconFile("component_name.png")]

3. Add the image to the same directory as the FLA file.

When you export the SWC file, Flash includes the image at the root level of the archive.

Adding ToolTips

ToolTips appear when a user rolls the mouse over your component name or icon in the
Components panel of the Flash authoring environment.

To add ToolTips to your component, use the tiptext keyword outside the class definition in the
component’s ActionScript class file. You must comment out this keyword using an asterisk (*),
and precede it with an @ symbol for the compiler to recognize it properly.

The following example shows the tooltip for the CheckBox component:
* @tiptext Basic CheckBox component. Extends Button.

Adding versioning

When releasing components, you should define a version number. This lets developers know
whether they should upgrade, and helps with technical support issues. When setting a
component’s version number, use the static variable version, as the following example shows:
static var version:String = "1.0.0.42";

If you create many components as part of a component package, you can include the version
number in an external file. Thus, you update the version number in only one place. For example,
the following code imports the contents of an external file that stores the version number in
one place:
#include "../myPackage/ComponentVersion.as"

The contents of the ComponentVersion.as file are identical to the above variable declaration, as
the following example shows:
static var version:String = "1.0.0.42";

Best practices when designing a component

Use the following practices when designing a component:

• Keep the file size as small as possible.
• Make your component as reusable as possible by generalizing functionality.
• Use the Border class rather than graphical elements to draw borders around objects.
• Use tag-based skinning.
• Assume an initial state. Because style properties are on the object, you can set initial settings for

styles and properties so your initialization code does not have to set them when the object is
constructed, unless the user overrides the default state.
884 Chapter 41: Creating Advanced Components in Flash MX 2004

• When defining the symbol, do not select the Export in First Frame option unless it is
absolutely necessary. Flash loads the component just before it is used in your Flash application,
so if you select this option, Flash preloads the component in the first frame of its parent. The
reason you typically do not preload the component in the first frame is for considerations on
the web: the component loads before your preloader begins, defeating the purpose of the
preloader.

• Avoid multiple frame MovieClips (except for the two-frame trick for assets).
• Always implement an init() method and call the super.init() method, but otherwise keep

the component as lightweight as possible.
• Use the invalidate() and invalidateStyle() methods to invoke the draw() method

instead of calling the draw() method explicitly.

ModalText.as example

The following code implements the class definition for the ModalText component. This is a
sample custom component that is included in the Flex installation in the flex_install_dir/
flexforflash directory. The ModalText.zip file contains ModalText.fla, a file that defines the
symbols for the ModalText component necessary to generate the SWC file. This ZIP file also
contains ModalText.as, which is also provided below.

The ModalText component is a text input whose default is the noneditable mode, but you can
switch to editable mode by clicking on its button.

Save the following code to the file ModalText.as, and then generate the SWC file using the
FLA file.
// Import all necessary classes.
import mx.core.UIComponent;
import mx.controls.SimpleButton;
import mx.controls.TextInput;

// Modal text sends a change event when the text is changed.
[Event("change")]

/*** a) Extend UIComponent. ***/
class ModalText extends UIComponent {

/*** b) Specify symbolName, symbolOwner, className. ***/
static var symbolName:String = "ModalText";
static var symbolOwner:Object = ModalText;
// className is optional and used for determining default styles.
var className:String = "ModalText";

/*** c) Specify clipParameters, which are the properties you want to set
before the call to init() and createChildren() ***/

static var clipParameters = { text:1, labelPlacement: 1 };

/***d) Implement constructObject2(), which is effectively the constructor
for this class. ***/

function constructObject2(o:Object):Void
ModalText.as example 885

{
super.constructObject2(o);
applyProperties(o, ModalText.clipParameters);

}

/*** e) Implement init(). ***/
function init():Void
{

// Set up initial values based on clipParameters, if any (there are none
// in this example).
super.init();

}

/*** f) Implement createChildren(). ***/

// Declare two children member variables.
var text_mc:TextInput;
var mode_mc:SimpleButton;

// Declare default skin names for the button states.
// This is optional if you do not want to allow skinning.
var modeUpSkinName:String = "ModalUpSkin";
var modeOverSkinName:String = "ModalOverSkin";
var modeDownSkinName:String = "ModalDownSkin";

// Note that we test for the existence of the children before creating them.
// This is optional, but we do this so a subclass can create a different
// child instead.
function createChildren():Void
{

if (text_mc == undefined)
createClassObject(TextInput, "text_mc", 0, { preferredWidth: 80,

editable:false });
text_mc.addEventListener("change", this);
text_mc.addEventListener("focusOut", this);

if (mode_mc == undefined)
createClassObject(SimpleButton, "mode_mc", 1,

 { falseUpSkin: modeUpSkinName,
 falseOverSkin: modeOverSkinName,

falseDownSkin: modeDownSkinName });
mode_mc.addEventListener("click", this);

}

/*** g) implement measure ***/
// The default width is the size of the text plus the button.
// The height is dictated by the button.
function measure():Void
{

_measuredPreferredWidth = text_mc.preferredWidth +
mode_mc.preferredWidth;

_measuredPreferredHeight = mode_mc.preferredHeight;
}

886 Chapter 41: Creating Advanced Components in Flash MX 2004

/*** h) implement layoutChildren ***/
// Place the button depending on labelPlacement and fit the text in the
// remaining area.
function layoutChildren():Void
{

text_mc.setSize(width - mode_mc.width, height);
if (labelPlacement == "left")
{

mode_mc.move(width - mode_mc.width, 0);
text_mc.move(0, 0);

}
else
{

mode_mc.move(0, 0);
text_mc.move(mode_mc.width, 0);

}
}

/*** i) implement draw ***/

// Set flags when things change so we only do what we have to.
private var bTextChanged:Boolean = true;

// Set text if it changed, and draw a border.
function draw():Void
{

clear();
if (bTextChanged)
{

bTextChanged = false;
text_mc.text = text;

}
// Draw a simple border around everything.
drawRect(0, 0, width, height);

}

/*** j) add methods, properties, metadata ***/

// The general pattern for properties is to specify a private
// holder variable.
private var __labelPlacement:String = "left";

// Create a getter/setter pair so you know when it changes.
[Inspectable(defaultValue="left", enumeration="left, right")]
function set labelPlacement(p:String)
{

// Store the new value.
__labelPlacement = p;
// Add invalidateSize(), invalidateLayout(), or invalidate(), depending on
// what changed. You may call more than one if you need to.
invalidateLayout();

}

function get labelPlacement():String
{

ModalText.as example 887

return __labelPlacement;
}

var __text:String = "ModalText";

[Inspectable(defaultValue="ModalText")]
function set text(t:String)
{

__text = t;
bTextChanged = true;
invalidate();

}

function get text():String
{

if (bTextChanged)
return __text;

return text_mc.text;
}

// Handle events that are dispatched by the children.
function handleEvent(evt:Object):Void
{

if (evt.type == "change")
{

dispatchEvent({ type: "change" });
}
else if (evt.type == "focusOut")
{

text_mc.editable = false;
}
else if (evt.type = "click")
{

text_mc.editable = !text_mc.editable;
}

}
}

The following is an example MXML file that instantiates the ModalText control and sets the
labelPlacement property to "left":
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" xmlns=”*”

width="800" height="400">
<ModalText labelPlacement="left"/>

</mx:Application>

Troubleshooting

This section describes some common problems and their solutions when creating components for
Flex in Flash.
888 Chapter 41: Creating Advanced Components in Flash MX 2004

I get an error "don't know how to parse ..." when I try to use the component from MXML.

This means that the compiler could not find the SWC file or the contents of the SWC file did not
list the component. The MXML tag must match the symbolName for the component. Also,
ensure that the SWC file is in a directory that Flex searches and ensure that your xmlns property
is pointing to the right place. Try moving the SWC file to the same directory as the MXML file
and setting the namespace to “*” as the following shows:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" xmlns=”*”>

For more information, see “Using SWC files” on page 830.

I get an error "xxx is not a valid attribute ..." when I try to use the component from MXML.

Ensure that the attribute is spelled correctly and is marked as Inspectable in the metadata. The
metadata syntax is not checked, so ensure that there are no misspellings or syntax errors. Also be
sure that it is not private.

For more information, see “Inspectable” on page 875.

I don't get any errors, but nothing shows up.

Verify that the component was instantiated. One way to do this is to put a Button control and a
TextArea control in the MXML application and set the .text property to the id for the
component when the button is clicked.
<!-- This verifies whether a component was instantiated. -->
<zz:mycomponent id="foo" xmlns:zz="zz.custom.mycomponents" />
<mx:TextArea id="output" />
<mx:Button label="Print Output" click="output.text = foo" />

I tried the verification test and I got nothing or "undefined" in the output.

This means that one of your dependent classes was either not loaded or was loaded too late. Print
various classes to the output to see whether they are being created. Any components created with
the createClassObject() method as subcomponents of your component must be placed in
your component symbol.

For more information, see “Adding dependent components” on page 827.

A good practice is to create a hidden frame and place components on that frame. Then put a
stop() action in the frame before, so the hidden frame never gets played. As an example, the
ModalText symbol has a layer called assets and the stop() action on the main layer.

The component is instantiated properly but does not show up (#1)

In some cases, helper classes are not ready by the time your component requires them. Flex adds
classes to the application in the order that they need to be initialized (base classes, then child
classes). However, if you have a static method that gets called as part of the initialization of a class
and that static method has class dependencies, Flex does not know to place that dependent class
before the other class because it does not know when that method is going to be called.

One possible remedy is to add a static variable dependency to the class definition. Flex knows that
all static variable dependencies must be ready before the class is initialized, so it orders the class
loading correctly.
Troubleshooting 889

The following example adds a static variable to tell the linker that class A must be initialized
before class B.
class mx.example.A {

static function foo():Number
{

return 5;
}

}
class mx.example.B
{

static function bar():Number

{
return mx.example.A.foo();

}

static var z = B.bar();
// Dependency
static var ADependency = mx.example.A;

}

The component is instantiated properly but does not show up (#2)

Verify that the _measuredPreferredWidth and _measuredPreferredHeight properties are
nonzero. If they are zero, ensure that you implemented the measure() method correctly.
Sometimes you have to ensure that subobjects are created in order to get the correct
measurements.

You can also check the values of the .preferredWidth and .preferredHeight properties. Other
code might have set those values to 0. If so, set a breakpoint in the setters for the width, height,
preferredWidth and preferredHeight properties to see what is setting them.

You can also verify that the .visible property and the ._visible property are set to true. The
._visible property is an internal property used by the Flash Player. If .visible=true and
._visible=false, ensure that your component called the invalidate() method during its
measure() or layoutChildren() methods.

The system does not call the invalidate() method unless you explicitly do so. All components
must call the invalidate() method at least once, because their layout changes as they are given
their correct size during the layout process.

The component is instantiated properly but does not show up (#3)

It is possible that there is another class or SWC file that overrides your custom class or the
symbols used in your component. Check the ActionScript classes and SWC files in the
flex_app_root/WEB-INF/flex/user_classes directory to ensure that there are no naming conflicts.
890 Chapter 41: Creating Advanced Components in Flash MX 2004

INDEX
Symbols
@Embed tag, image import and 362
@font-face rule 487, 488

A
accessibility

for custom components 883
default reading and tab order 589
enabling in Flex 767
Flash Player and 585
for hearing impaired users 591
keyboard navigation for 591
Macromedia Flash Accessibility web page 584, 586
opaque windowless or transparent windowless

modes and 585
screen readers, configuring 585
testing content 591

Accordion container
Button controls and 346
child initialization order 347
default properties 344
example 345
headerHeight style 470
keyboard navigation 346
navigating panels 344
navigation events 347
skins 349
ToolTips 518

Accordion tag, syntax 348
ActionScript

about 45
accessibility properties 589
analyzing source 738
asynchronous execution 671
classpath in Flash 821
compared to JavaScript 46
compiling 47

component configuration 93
components 394
custom event dispatcher 444
defining components 437
errors 710
events 413
importing classes 53
including and importing 48
packages 47
read-only properties 94
relationship to MXML 37
writing for a new component 858, 859

ActionScript Profiler. See Profiler
activex-download-url 810
addEventListener() method 419
administering, flex-config.xml 757
Alert control

events and 272
icons for 273
styles 274, 478

Alert pop-up. See Alert control
alignment, SWF files 804
anti-aliasing 803
Application class, alert() method 271
Application container

about 27, 265
defaults 265
sizing 248, 266
styles 267

Application object, application property 405
Application property 405
Application tag

display properties 798
syntax 268

application/x-shockwave-flash MIME type 410
891

applications
appearance 62
deploying 790
developing 57
displaying in browser 798
improving start time 557
in MXML components 387
managing data 60
root directory 757
scaling 804
scope 400
securing 773
starting incrementally 567
user interface 60
virtual directories 768
WEB-INF directory 786

applying effects 498
applyProperties 864
architecture, applications 69
archive option 802
AS 2.0 Class option, setting 837, 838, 840, 862
ASP, and Flex coding 58
asprofile query string 762
asynchronous functions, definition 739
audio/mpeg MIME type 410
authentication, configuring 677
auto-update parameters, Flash Player 813

B
background color 465, 802
backgroundColor style 470
backgroundDisabledColor style 471
backgroundImage style 470
barColor style 471
batch files, compiling 755
behaviors

in applications 497
compositing effects 506
custom effect triggers 514
custom effects 506
customizing effects 505
defining custom effects 507, 509
effect triggers 498
effects in ActionScript 512
standard effects 502
using 97
ViewStack container and 330

best practices, security 782
Bindable metadata keyword 872

binding
complex results 668
data 601
service result objects 666
showing warnings 762

BootstrapListener 788
borderCapColor style 471
borderColor style 471
borderStyle style 470
Box container

default properties 282
example 282
sizing 283

breakpoints, web services 718
browser, back and forward commands 549
Button control

about 109
buttonColor style 471
example 110
highlightColor style 472
shadowCapColor style 472
shadowColor style 472
sizing 110
user interaction 110

Button tag, syntax 111
buttonColor style 471
buttonStyleDeclaration property 478

C
cache-mxml 759
cache-swos 759
caching

custom components 759
fonts 760

Canvas container, example 280
Canvas tag, syntax 281
CartView object 71, 75
Cascading Style Sheets. See CSS
catalog object 71, 74
centimeters 458
ChangeEvent metadata keyword 872
characters, special 54
CheckBox control

about 113
background color style 472
example 114
symbolDisabledColor style 473
user interaction 114

CheckBox tag, syntax 115
Checkout object 78
892 Index

child component 239
child controls, deferring creation 557
childDescriptors

definition 564
id property 565
properties property 566
type property 566

children, layoutChildren() method 869
class selectors, about 463
classes

and ActionScript 820
classpath 53
createClassObject() method 866
extending 861
extending subclasses 861
name, for custom component 862
scope 403
securing 775
selecting a parent class 860

classid 801
className 862
className variable 862
classpath

and UserConfig directory 822
changing 822
compiling 757
custom components 441
default in Flash 821

client. See Flash Player
codebase 801
codetype option 802
ColdFusion, moving to Flex 59
color style 469
Color style format, style property 459
color, inheriting styles 471
ComboBox control

change event for 192
data provider 191
editable 189
event handling 190
example 190
keyboard navigation 193
skins 197
user interaction 192

ComboBox tag, syntax 194
commitProperties() method 867
compiler tag 54
compiler, Application tag options 269

compiling
accessibility 755
ActionScript classes 53
debug password 755, 763
optimizing 756
Profiler 756
proxy URL 756
showing stack traces 763
showing warnings 762
symbols 766

component class file code sample 858
component layout

at runtime 253
configuring 247

component sizing
layout pass 247
resizing 248
rules 247
using widthFlex 248

components
about 87
accessibility and 587
calling methods in ActionScript 394
class hierarchy 88
common properties 91
configuring 99
containers 237
creating, MXML 385
destroying 561
dynamic 351
explicit size 249
initialize event 94
initialize method 395
preferred size 248
properties 397
registering events 423
sizing 99, 246
startup order 427
using 87
using Alert 406
zooming 501
See also creating components

compound selectors 464
configuring

ActionScript classpath 765
ActionScript optimizer 764
debugger 714
debugging 792
fonts 490
Index 893

logging 769
Profiler 765
web.xml file 787

console settings 770
constructor, writing for a new component 863
Container class, syntax 243
containers

about 237
Application 265
behaviors 264
Box 282
Canvas 280
class hierarchy 242
common methods 261
common properties 260
configuring 259
ControlBar 284
createComponent() method 562
createComponents() method 563
creating children 256
creating MXML components 386
DividedBox 285
effects and 500
enabling 245
events 263
example 243
Form 290
Grid 306
HBox 282
HDividedBox 285
heightFlex property 251
layout 279
navigators 325
Panel container 245
setChildIndex() method 259
setting creationPolicy 558
skins 264
style inheritance 466
styles 262
TabNavigator 335
Tile 315
TitleWindow 317
transparency 471
VBox 282
VDividedBox 285
widthFlex property 251

content area, sizing 238
content-size 759
content-type 802
context, function scoping 399

ControlBar container
default properties 284
example 285

ControlBar tag, syntax 285
controls

about 104
Alert 270
appearance 109
Button 109
CheckBox 113
class hierarchy 107
ComboBox 189
creating MXML components 385
DataGrid 197
DateChooser 116
DateField 123
deferring instantiation 557
FormHeading 291
history, managing 549
HRule 130
HSlider 133
Label 144
Link 149
List 207
Loader 151
MediaPlayback 361
Menu 216
MenuBar 222
NumericStepper 153
positioning 108
ProgressBar 156
RadioButton 161
ScrollBar 165
sizing 108
Text 166
TextArea 169
TextInput 172
Tree 230
using 103
VRule 130
VSlider 133
See also components

cornerRadius style 470
create() method 400
creating components

adding events 879
code sample for class file 858
component symbol 823
creating SWC files 830
event metadata 880
894 Index

extending a class 861
numChildren property 259
process for writing ActionScript 859
selecting a class name 862
selecting a symbol name 862
using metadata statements 871
writing a constructor 863

creating objects 396
creationComplete event 428
creationPolicy, definition 558
credit cards, validating 628
cross-domain-policy tag 780
CSS

Application type selector 476
colors 460
external 474
global style sheet 474
global type selector 477
supported properties 465

CSSStyleDeclaration class 480
curly braces, data binding 602
currency, formatting 641
Cursor Manager

example 526
SWF files 527
using 525

CursorManager class
setCursor() method 526
syntax 529

cursors
busy 527
creating and removing 526
file types for 525
priority 525
wait 526

custom components 438
ActionScript 858
adding styles 882
advanced overview 857
best practices 884
classpath 441
compound 853
constructObject2() method 866
constructors 863
creating 836
events 440, 845
exporting from Flash 828
faceless 442
init() method 866
instantiating 832

keyboard events 848
metadata 871
mouse events 846
namespace 441
naming 824
packaging 824
passing data 439
properties 842
resizing 881
selecting a parent class 860
sizing 849
skinning 851
types 439
versioning 884

custom tags
taglib definition 789
See also JSP tag library

D
data

binding 19, 595
Binding tag 603
binding, curly braces 602
data service results 666
formatters, custom 651
formatters, standard 640
formatting 639
models 19, 610
results, data service 666
sources, accessing 598
types, converting 690, 692
validating 596, 619
validating models 615
validating, custom 622
validating, form 623
validating, programmatic 620
validators, standard 628

data models
as value object 616
form data and 299

data provider API
for components 177
for controls 179
using 178

data providers
array 176
controls for 175
custom 180
data models and 179, 182
DataProvider interface 176
Index 895

list-based 176
MXML syntax 181
structure 176
TreeNode class and 176
using 175, 176

data services
authentication 677
callback URLs 673
calling 659
common properties 695
debugging 674
declaring 658
diagram 656
Flex proxy 662, 665
HTTP service properties 698
and MXML components 31
remote object service properties 697
results 666
securing 675
web service properties 696
whitelists 700

DataGrid control
binding limitation 200
column order 199
column properties 200
data provider 198
DataGridColumn tag and 199
example 198
keyboard navigation 202
populating 200
printing 574
selected item 201
user interaction 202

DataGrid tag, syntax 203
DataGridColumn tag, syntax 206
Date class

DateChooser control and 116
DateField control and 124

Date control, todayColor style 473
DateChooser control

ActionScript and 118
dateHeaderColor style 471
dateRollOverColor style 472
example 117
selectedDateColor style 472
user interaction 120

DateChooser tag, syntax 120
DateControl control, styles 478

DateField control
about 123
date formatter function 125
DateChooser and 124
example 124

dateHeaderColor style 471
dateRollOverColor style 472
dates

formatting 643
validating 630

debug files, generating 755
debugger

common commands 717
convenience variables 722
example 727
setting default browser 715
status 724
using breakpoints 718
using watchpoints 720

debugging
ActionScript files 712
configuring fdb 714
data services 674
generating SWF files 762
logging compiler errors 763
Profiler 765
remote 716
showing source code 763
SWC files 833
SWD files 713
using fdb debugger 712
web services proxy 762

declarative security 774
default browser

definition 714
setting 715

default button
Form container 293
syntax 246

deferred instantiation
doLater() method 568
example 411, 568
overview 557

delay times 522
deploying

about 785
components 791
context root 767
headless servers 767

detecting, Flash Player version 808
896 Index

Developer Edition 790
development environment, Flex 67
device fonts 485
DHTML, HTML wrapper 795
direction 470
disabledColor style 472
dispatchEvent() method 879
DividedBox container

default properties 286
dividers 287
events 288
example 287
live dragging 288

Document object, scope 404
doLater() method 411, 568
download progress bar

customizing 275
disabling 275
syntax 275
using 274

download-url 810
Drag and Drop Manager

containers as target 539
DataGrid control and 540
drag initiation 533
drag initiator 531
drag proxy 531
drag target 532
dragBegin event 532
dragEnter event 532
DragSource class and 534
example 535
operation 533
using 531

Drag Manager, UIObject class syntax 545
dragBegin event

Drag and Drop Manager and 532
handling 534

dragComplete event
Drag and Drop Manager and 532
handling 539

dragDrop event
Drag and Drop Manager and 532
handling 538

dragEnter event, handling 538
dragExit event

Drag and Drop Manager and 532
handling 538

DragManager class
syntax 543
using 533

dragOver event
Drag and Drop Manager and 532
handling 538

DragSource class
syntax 544
using 533

draw event 428
duration, Time style format 459

E
e-mail address, validating 632
easing functions 507
Edit Symbol mode 824
editing symbols, for components 824
Effect metadata keyword 872, 874
effects

changing components 35
custom components 874
events 499
layout updates and 253
with ToolTips 523

8-bit octet RGB 460
Embed metadata keyword 408
embed tag

default parameters 801
example 800
unsupported parameters 805

embedded fonts
caching 489
identifying 488
isFontEmbedded() method 489

embeddedfontlist property 488
embedding SWF files 409
ems 458
enableAccessibility() method 766, 883
encoding 806
Enterprise Deployment Kit 811
environments, without Windows systems 756
ERROR log level 769
error reporting

error messages 708
error types 708
FTP errors 711
HOMEPATH 709
HTTP errors 711
log file name 707
network errors 712
Index 897

supported errors 710
error text, errorColor style 472
errorColor style 472
event handlers

about 414
definition 29

event handlers, inline 416
event listeners

creating classes 427
inline 420
multiple 423
scope 419

Event metadata keyword 431, 872, 874
event model, standards in MXML 43
event object

definition 414
properties 415
target property 420

events
adding 879
Application 432
binding properties with 843
dispatchEvent() method 431
handler 414
handling 97, 879
handling in custom components 879
manually dispatching 431
metadata 880
mouse 432

explicit parameter passing 660
exporting custom components 828
expressions, JSPs 746
extending classes 861

F
faceless components, definition 439
Fade effect, syntax 502
faults, handling 725
features, summary 81
file naming, MXML 37
file-watcher-interval 760
filepaths in flex-config.xml 758
fillColor style 472
firewalls 776
FLA files, themes 491
Flash 597

data, managing 599
moving to Flex 59

Flash client. See Flash Player
Flash Debug Player, stand-alone version 709

Flash IDE. See Flash MX 2004
Flash MX 2004

authoring environment, adding Flex components
820

creating symbols 823
generating SWD files 736
importing classes 823
using Flex classes 820

Flash Player
accessing files 779
auto-update parameters 813
configuring 731, 812
context menu 572
debug version 706
device fonts 485
embedded fonts 486
frame statistics 739
parameters 813
playback quality 803
security sandbox 775
standard version 16
upgrading 812

flash_detection.swf 811
flashVars

compiling 756
object and embed tags 801
passing request data 797

Flex
about 13
ActionScript and 21
application examples 17
application model 18
benefits 15
configuring 753
development process 20
features 22
license key 790
n-tier model and 13
profiling 16
proxy 662
standards supported 16
URL to 18

Flex applications
accessibility 583
printing 571

Flex JSP tag library 742
Flex proxy 662, 665
898 Index

Flex Store
application 70
component diagram 73
object model diagram 71

flex-config.xml
accessible tag 766
actionscript-classpath tag 765
cache 759
compiler 764
editing 757
fonts 760
global-css-url 474
headless-server 767
keep-generated-as 764
keep-generated-swfs 764
language-range 490
log-compiler-errors tag 770
optimize tag 764
production mode 758
securing named services 781
styles 760
system-classes tag 766

FlexforFlash.zip file 821
FlexStore object 71, 73
font-face

character ranges 490
example 486

fontFamily style 469, 485, 486
fonts

@Embed tag, image import and 362
@font-face rule 487, 488
and Flash Player 485
configuring in flex-config.xml file 490
device 485
embedded 486, 761
multiple faces 488

fontSize style 459, 469
fontStyle style 469
fontWeight style 469
footerColors style 472
for in loops 398
Form container

data services and 303
example 291
FormItem 292
heightFlex of 294
populating data models from 301
required fields of 296

sizing and positioning children 295
spacing within 294
submitting data 301

form data
in controls 297
storing 297

Form tag, syntax 304
formatting, data 597

currency 641
dates 643
errors, handling 640
numbers 646
phone numbers 648
ZIP codes 650

FormHeading tag, syntax 305
FormItem tag, syntax 305
FrameProfilingEnable parameter 732
frames

delay 739
printing 572

frameworks 755, 756
futuresplash MIME type 796

G
gateway URL 755
generated files, saving 762, 763
GET requests 806
GIF files, importing 409
global events 432
global styles 457
global.css 760
glyphs, character ranges 489
graphics, standards in MXML 44
Grid container

children 306
column spacing 310
column span 309
columns, arranging 306
default properties 306
example 307
sizing and positioning children 310

Grid tag, syntax 310
GridItem, syntax 311
GridRow tag, syntax 310
Index 899

H
Halo theme 469, 491
handleEvent() method 425
handling events 415
HBox container. See Box container
HDividedBox container. See DividedBox container
headerColors style 472
headerHeight style 470
headless, java.awt 767
help, ToolTips 517
hexadecimal color format 459
hierarchical data providers

considerations 188
objects for 188
XML data for 184

highlightColor style 472
hints. See ToolTips
history management

custom 551
standard 549

History Manager, about 549
HistoryManager class

methods 551
syntax 551

horizontalAlign style 470
horizontalGap style 470
hotspot 432
HRule control, about 130
HSlider control

about 133
events 135
example 134
keyboard navigation 138
labels 134
multiple thumbs 136
skins 143
slider thumb 134
tick marks 134
tooltips 137
track 134

HSlider tag, syntax 138
HTML

moving to Flex 58
object tag 799

HTML text
anchor tags 146
bold tag 147
font tag 147
in Label control 145
italic tag 147

list tag 147
paragraph tag 148
span tag 148
tags enclosed in quotation marks 146
underline tag 148
See also Label control

HTML wrapper
adding default 795
customizing 799
detection and deployment 810
display tags 802
example 795
parameters 802
suppressing 794

HTTP services
debugging 763
properties 698
standards in MXML 44

http-maximum-age 760
HTTPS 681

deployment settings 810
security and 782

I
icon function, using 210
IconFile metadata keyword 872, 883
icons, for custom component 883
id property 55
identifier. See linkage identifier
Image control

file path 365
positioning 366
sizing 366
visibility 367

image import
about 361
Image control and 362
PNG files 362

Image tag, maintainAspectRatio 367
image/gif MIME type 410
inches 458
include directive 51
including ActionScript 50
information, logging 768
inheriting color 471, 472
initialize event 418, 428

components 845
instantiation order 561

inline styles, overriding 483, 484
Inspectable metadata keyword 872, 875
900 Index

InspectableList metadata keyword 872, 876
instance properties, clip parameters 864
instantiation

childrenCreated event 244
creating children in components 866
deferring 557
order 428
troubleshooting custom components 889, 890

introspection 398
invalidation, methods 881

J
J2EE security 774
Java, standards in MXML 44
JavaScript, compared to ECMAScript 45
JavaServer Pages. See JSP pages
JNDI, accessing 689
JPEG files, importing 409
JSP pages

deploying 796
passing data 748
writing MXML 745

JSP tag library, flashVars parameter 807

K
keyboard events 426

L
Label control

about 144
example 144
HTML text and 146
text property 144

label function, using 209
Label tag, syntax 148
lag time 739
languages, MXML 25
layers, symbols 825
layout containers

about 238, 279
Box 282
ControlBar 284
DividedBox 285
Form 290
Grid 306
Panel 245, 311
Tile 315
TitleWindow 317

layout pass 247

layouts. See components
Length format

about 458
relative units 458

lib-path element 766
license

changing key 790
version 757

licensetool utility 790
life cycle of components 863
lineHeight style 469
Link control

about 149
example 149
user interaction 150

Link tag, syntax 150
linkage identifier 824
LinkBar container

default properties 332
example 332

LinkBar tag, syntax 333
Links

rollOverColor style 472
selectionColor style 472

List control
cell renderers 447
cells, custom 447
data provider 180
Drag and Drop Manager and 540
events 208
example 208
icon field 211
item index 208
keyboard navigation 212
row colors 212
sorting 209
user interaction 212

list data providers
ActionScript and 183
arrays and 181
binding data to 182

List tag
dragEnabled 540
syntax 213

listeners, events 418
Live Preview SWF files 829
Loader control

about 151
example 151
image import 368
Index 901

loading Flex applications 152
sizing 152

Loader tag, syntax 152
loadPolicyFile() method 779
LocalConnection object 777
log files, using trace() function 708

M
managers

Cursor 525
Drag and Drop 531
History Manager 549
PopUp Manager 321
ToolTipManager 521

manifest file 756
margin properties 470
measure() method, preferred properties 868
media controls, sizing 373
media import

about 370
controls 361
MP3 files 370

MediaController control
understanding 371
using 371

MediaDisplay control
understanding 370
using 370

MediaPlayback control
cue points 374
understanding 373
using 373

MediaPlayback tag, syntax 375
Menu control

events 218
keyboard control 220
menu items 217
menu items, type 218
populating 217
separators for 218
syntax 221
XML data for 218

menu item syntax 229
MenuBar control

events 226
menu items, adding 225
user interaction 227
XML data for 223

MenuBar tag, syntax 227
messageStyleDeclaration 478

metadata
event 880
explained 871
in MXML components 390
inspectable properties 875
keywords 872
syntax 871
tags 872

metadata keywords
Bindable 872
ChangeEvent 873
Effect 874
Event 874
IconFile 883
Inspectable 875
InspectableList 876
NonCommittingChangeEvent 877
Style 878

methods, allowDomain 778
millimeters 458
mimeType property 410
mm.cfg

syntax 709
using 709

modalTransparency style 471
model-view-controller architecture 70
models, data 595
mouse events 432
mouse pointer 432
mouseChangeSomewhere 432
mouseDownEvent, Drag and Drop Manager and 532
mouseDownSomewhere 432
mouseMoveSomewhere 432
mouseOver, delay times for ToolTips 522
mouseUpSomewhere 432
mouseX 432
Move effect, syntax 503
movie property 801
MovieClip class, syntax 89
MovieClip, in custom components 861
MP3s, importing 409
MSAA (Microsoft Active Accessibility) 585
MVC architecture 70
mx.controls.ToolTip class 519
mx.managers.ToolTipManager class 521
mx.styles.StyleManager 479
mx:Application tag, Application object 403
mx:Script tag, scope 403
902 Index

MXML
including files in JSPs 747
moving from Flash 25
multiple files 383
separating from ActionScript 63
simple applications 26
style property of tag 41
URLs 26
using flashVars 807

MXML components
custom properties and methods 387
data service components 31
distributing 793
referencing 384

MXML files, deploying 793
mxml tag 745
mxml-size 759
mxmlc tool 754

N
names, for custom components 862
namespaces

assigning local 36
XML 36

navigator containers
about 325
Accordion 343
creationPolicy 559
definition 557
LinkBar 331
TabBar 338
TabNavigator 335
ViewStack 326
See also components

NonCommittingChangeEvent metadata keyword 872,
877

numbers
formatting 646
validating 633

NumericStepper control
about 153
example 154
keyboard navigation 155
sizing 154
skins 156
user interaction 154

NumericStepper tag, syntax 155

O
object listeners 421
object model

developing 70
objects

Application 403
creating 562
listing properties 398
remote 756
scope 400

optimizing
performance 729
Windows auto-install 812

owner names, for custom components 862

P
Panel container

ControlBar and 313
default properties 312
example 312
styles 479

Panel tag, syntax 314
parameter binding 662
parameters, defining for custom components 878
parent class, selecting for a new component 860
parentApplication property 407
Pause effect 503
performance

caching 759
EJBs 729

permission, policy files 779
phone numbers

formatting 648
validating 634

picas 458
pixels 458
Player. See Flash Player
plug-in, deploying 810
plugin-download-url 810
pluginspage 801
PNGs, importing 409
points 458
policy files

example 780
syntax 780

PopUp Manager
passing arguments to 322
TitleWindow container and 321

positioning controls 407
Index 903

postal codes, formatting 650
preferred properties, measure () method 868
printers, supported 572
printing

adding pages 577
bitmaps 579
controls 575
deleting print job 579
Flash Player context menu 572
print area 577
printers supported 572
root document 577
scaling 578
starting print job 576

PrintJob class
addPage() method 577
creating 573
object and class 572
send() method 579
start() method 573
syntax 576
using 573

Product Thumbnail object 72
ProductDetail object 77
production mode 67
production mode, debugging 761
ProductThumbnail object 75
profile() method 733
ProfileFunctionEnable 732
Profiler

about 730
configuring 731
data directory 730
disabling 758
installing 730
SWD files 733
using 730

profiler.war 730
ProfilingOutputDirectory 732
ProfilingOutputFileEnable 732
programmatic security 774
ProgressBar control

about 156
example 157
labels 158
manual mode 157
skins 160

ProgressBar tag, syntax 159

properties
binding to custom components 843
getters and setters for custom components 870
inspectable 875
listing 398
setting in MXML 38

proto chain, debugging 727
proxyallowurloverride 756

Q
query string parameters

special characters 805
using 806

R
RadioButton

backgroundDisabledColor style 471
symbolBackgroundDisabledColor style 472
symbolBackgroundPressedColor style 473
symbolColor style 473
symbolDisabledColor style 473

RadioButton control
about 161
example 161
skins 164
user interaction 162

RadioButton tag, syntax 163
RadioButtonGroup control

about 162
tag, syntax 164

redraw() method 870
relative paths 52
remote object services

properties 697
stateful objects 689
stateless objects 689

remote objects
busy cursor and 529
debugging 763

remote requests, security 781
remoteallowurloverride 757
RemoteObject tag, showBusyCursor 529
removeEventListener() method 419
Repeater object

properties 352
repeating MXML components 354

request data 805
flashVars 807
passing to JSPs 797
904 Index

passing to MXML files 794
passing to SWF files 796
 See also query string parameters

Resize effect, syntax 504
resizing components 250
resizing custom components 868
RGB color format 459
rollOverColor style 472

S
scope

about 398
custom components 862
Document object 404
event handlers 421
global request data 749
isDocument() method 406
parentDocument property 406
this keyword 402

screen readers
accessibility in custom components 883
detecting with ActionScript 590

Script tag 49, 50
Scroll Bar, trackColor style 473
scroll bars

sizing 255
using 255

ScrollBar control
about 165
example 165
sizing 165
user interaction 166

ScrollBar tag, syntax 166
ScrollBar, scrollTrackColor style 472
scrollTrackColor style 472
security

accessing HTTPS resources 780
compatibility with Flash Player 781
data services 675
data transport 782
domains 776, 778
encryption 782
file access 777
Flash Player 775
J2EE 774
resources 783
services 774
SharedObjects 777
whitelist 774

security sandbox, tunnelling 778

selectedDateColor style 472
selectionColor style 472
selectors

class 97, 461
precedence 464
type 97, 461

separators
color 472
strokeWidth style 471

services
configuring access to 675
data 595
RemoteObject service properties 696

sessions, servlet 693
setCursor() method 526
setters, defining for custom components 842
shadowCapColor style 472
shadowColor style 472
SharedObjects, security 776
ShoppingCart object 71, 74
show event 429
skinning

custom components 881
definition 494

skins
Accordion container 349
using 98

Slider object 72, 74
SOAP, web services 656
Social Security numbers, validating 635
Spacer tag, syntax 253
src property 801
SSL 782
stack traces, debugger 724
standards, in MXML 43
startDrag() method 861
strings, validating 636
strokeColor style 472
strokeWidth style 471
style inheritance, flowchart 467
style sheets. See CSS
Style tag

external style sheets 474
local style definitions 475

StyleManager, global styles 479
styles 471, 472

about 455
background colors 473
compound components 477
custom components 850
Index 905

descriptions 469
for custom components 882
inheritance 466
inheriting color 470, 471, 472, 473
inheriting container 470
inheriting text 469
inline 484
noninheriting container 470, 471
noninheriting text 469
plain 464
setStyle() method 482
specifying global style sheets 755
Style metadata keyword 872
Style tag 456
ToolTips 519
using 96
value formats 458
See also CSS

SVG files, importing 364, 409
SWC files

classpath 54
contents 830
creating 830
distributing 791
file format explained 829
importing 409
importing into Flash 833
themes 492
using in Flex 831

SWD files
compiling 754
generating 733

SWF files
analyzing 736
deploying 794
embedding 409
HTTPS 776
importing 363, 409
including in JSPs 748
keeping generated 762
location of 801
MIME types 796
printing frames 572
security 776
symbol import 363
viewing 725

SWO files, caching 759
symbol layers, editing for a new component 825
symbol names, for custom component 862
symbol owners, for custom component 862

symbolBackground Color style 472
symbolBackground DisabledColor style 472
symbolBackground PressedColor style 473
symbolColor style 473
symbolDisabled Color style 473
symbolName variable 862
symbolOwner variable 862
symbols

compiled clips 820
converting to components 827
editing mode 825
editing, for components 824
embedding 409
importing 408
reporting 763
styles 472
variables 862

syntax
for metadata statements 871
requirements 42

system path, virtual directories 768
System.security.loadPolicyFile() method 779

T
tab containers

tabHeight style 471
tabWidth style 471

tab order, overview 589
TabBar container

data initialization 340
data provider 180
default properties 339
events 341
example 339
ViewStack and 328

TabBar tag, syntax 342
tabHeight style 471
TabNavigator container

child initialization order 337
default properties 335
example 336
keyboard navigation 337
sizing children 337

TabNavigator tag, syntax 338
tabWidth style 471
tags

allow-access-from 780
compiler 41
for metadata 872
XML namespaces 36
906 Index

Text control
about 166
example 167
HTML text and 168
sizing 169
text 167

Text tag, syntax 169
text, dynamic ToolTip 523
textAlign style 469
TextArea control, about 169
TextArea control, example 170
TextArea tag, syntax 170
textDecoration style 470
textIndent style 469
TextInput control

about 172
binding and 173
disabledColor style 472
example 173

TextInput tag, syntax 173
themeColor style 473
themes

about 491
Application tag attribute 492
creating 491
default 469
limitations 492
styles 493

this keyword, event handlers 421
ThumbnailView object 72, 76
Tile container

child sizing and positioning 316
default properties 315
example 316
horizontal 315

Tile tag, syntax 317
Timeline

editing symbols 824
in custom components 861

tip text. See ToolTips
titleStyleDeclaration 478
TitleWindow class, syntax 324
TitleWindow container

close button event 320
default properties 318
PopUp Manager and 321
popupWindow() method 318, 320, 539

TitleWindow control, styles 478
todayColor style 473
tools, development 67

toolTip property 518
ToolTipManager 521
ToolTips

adding to custom components 884
delay times 522
enabling and disabling 521
Hslider and 137
maxWidth property 520
Vslider and 137

trackColor style 473
transparency 471
Tree control

events 231
keyboard control 233
keyboard editing, events 233
keyboard editing, labels 233
nodes, editing and expanding 232
root nodes 231
TreeNode class and 187
XML data for 186, 230

Tree node, syntax 236
Tree tag

drag and drop syntax 546
syntax 234

TreeDataProvider interface, API 186
Trial Edition 790
troubleshooting

custom components 888
debugging settings 761
using SWCRepair 831

type selectors
about 463
multiple 473

U
UIComponent class

compared to UIObject class 861
description 860
syntax 90

UIObject class
description 860
parentApplication property 407
parentDocument property 406

Unicode, shortcuts 491
unicode-range attribute 490
UnicodeTable.xml 491
unnamed data services 658
updating Flash Player 813
upgrading Flex 790
URLs, callback 673
Index 907

usability, custom components 883
user experience, instantiation order 557
user interface

MXML tags 28
user_classes

directory 53, 54, 755
distributing components 791

utility classes, Delegate 422

V
validating data 593
validation

complex objects 627
credit cards 628
dates 630
disabling validator 627
e-mail addresses 632
form data 299, 300
forms 623
multiple fields 620
numbers 633
phone numbers 634
Social Security numbers 635
standard validators 628
strings 636
ZIP codes 637

variables, custom components 842
VBox container. See Box container
VBox tag, syntax 283
VDividedBox container. See DividedBox container
VDividedBox tag, syntax 288
version detection

configuring 809
disabling 809

version, Flash Player auto-update 812
versionChecked 812
verticalAlign style 471
verticalGap style 471
VGA name color format 460
ViewStack container

as data provider 184
child initialization order 329
default properties 326
example 327
sizing children 329

ViewStack tag, syntax 331
VRule control, about 130

VRule controls
example 130
sizing 131
styles 132

VRule tag, syntax 133
VSlider control

about 133
events 135
example 134
keyboard navigation 138
labels 134
multiple thumbs 136
skins 143
slider thumb 134
tick marks 134
tooltips 137
track 134

VSlider tag, syntax 138

W
warnings, showing override 762
web applications

about 790
deploying 786
See also applications

web services
RPC-oriented, document-oriented 683
SOAP headers 684
standards in MXML 43
stateful 684
WSDL 682

web.xml file
filter mappings 787
servlet mappings 788

whitelists
data services 700
definition 774, 781
preventing access to services 675

width property 408
Window-less environments 756
Windows, default browser 714
windows-auto-install 811, 812
WipeDown effect, syntax 505

X
x property 407
x-height 458
x-shockwave-flash MIME type 796
XML, namespaces 36
908 Index

Y
y property 407

Z
ZIP codes, validating 637
Zoom effect, syntax 505
zooming, applications 63
Index 909

910 Index

	Contents
	Presenting Flex
	Introducing Flex
	Contents
	About Flex
	Using Flex in an n-tier application model
	Benefits to using Flex
	Developing applications for Macromedia Flash Player
	Flex application requirements

	Developing applications
	Application model
	Typical application development steps
	About the MXML application structure
	Using ActionScript
	Features of Flex

	Where to next

	Using MXML
	Contents
	About MXML
	Writing a simple application
	Laying out a user interface
	Using MXML to trigger runtime code
	Binding data between components
	Using data services
	Storing and validating application-specific data
	Formatting application-specific data
	Using Cascading Style Sheets (CSS)
	Using effects
	Using MXML components
	Using XML namespaces

	The relationship between MXML and ActionScript classes
	Naming MXML files
	Using tags that represent ActionScript classes
	Setting component properties
	Scalar properties
	Arrays of scalar values
	Objects
	Arrays of objects
	Properties that contain XML data
	Style properties

	Compiler tags
	Identifier properties on MXML tags
	MXML tag syntax

	How MXML relates to standards
	XML standards
	Event model standards
	Web services standards
	Java standards
	HTTP standards
	Graphics standards
	Cascading Style Sheets standards

	Using ActionScript
	Contents
	About ActionScript
	Comparing ActionScript and ECMA (JavaScript)
	About ActionScript in MXML applications
	Flex ActionScript packages
	ActionScript compilation

	Using ActionScript in Flex applications
	Including ActionScript code versus importing ActionScript classes
	Using ActionScript blocks in MXML files
	Including ActionScript files
	Using the source attribute
	Using the #include directive
	Referring to external files

	Importing classes and packages
	About the ActionScript classpath
	Using special characters
	Referring to Flex components

	Developing Applications
	Contents
	About the Flex coding process
	Moving to Flex from HTML
	Moving to Flex from an HTML templating environment like JSP
	Moving to Flex from Macromedia Flash MX

	Working with a multitier application model
	User interface
	Data management tier and data life cycle
	Runtime code execution
	Using events to handle user interaction
	Using events to connect application functionality
	Using events to handle errors

	Controlling the appearance of an application
	Enabling application zooming
	Separating ActionScript from MXML
	One MXML document (ActionScript event handling logic in MXML tag)
	One MXML document (function call in MXML tag event)
	One MXML document and one ActionScript file
	One codeless MXML document and one ActionScript file
	One codeless MXML document and one ActionScript component

	About the Flex development environment
	Using Flex development tools
	Architecting an application
	Developing an object model
	Flex Store object model figure

	Determining component types and a messaging strategy
	Flex Store component figure

	Improving application start-up time and performance
	Nesting containers
	Using layout containers
	Using deferred instantiation
	Improving Repeater object performance
	Improving effect performance
	Using a wait state animation
	Displaying multiple pop-up windows
	Using Flash Debug Player

	Summary of Flex application features

	Building User Interfaces to Flex Applications
	Using Flex Components
	Contents
	About components
	Class hierarchy for components
	Using the MovieClip class
	Using the UIObject and UIComponent classes
	Common properties

	Using MXML and ActionScript in an application
	Accessing read-only ActionScript properties in MXML

	Initializing components at runtime
	MXML and ActionScript summary

	Using styles
	Using behaviors
	Handling events
	Applying skins
	Sizing components
	Changing the appearance of a component at runtime
	Extending components

	Using Controls
	Contents
	About controls
	Using data provider controls
	Flex controls

	Working with controls
	Class hierarchy of controls
	Sizing controls
	Positioning controls
	Changing the appearance of controls

	Button control
	Creating a Button control
	Sizing a Button control
	User interaction
	Button control syntax
	Button control skins

	CheckBox control
	Creating a CheckBox control
	User interaction
	CheckBox control syntax
	CheckBox skins

	DateChooser
	Using the Date class
	Creating a DateChooser control
	Setting DateChooser control properties in ActionScript
	User interaction
	DateChooser control syntax
	DataChooser control skins

	DateField control
	Using the Date class
	Using the DateChooser control
	Creating a DateField control
	Using a date formatter function

	DateField control syntax
	DateField control skins

	HRule and VRule controls
	Creating an HRule and VRule controls
	Sizing HRule and VRule controls
	Setting style properties
	HRule and VRule control syntax

	HSlider and VSlider controls
	Creating a Slider control
	Using slider events
	Using multiple thumbs
	Using ToolTips
	Keyboard navigation
	HSlider and VSlider control syntax
	HSlider and VSlider control skins

	Label control
	Creating a Label control
	Using the text property
	Using the htmlText property
	Using HTML-formatted text
	Supported HTML tags
	Underline tag (<u>)

	Label control syntax

	Link control
	Creating a Link control
	User interaction
	Link control syntax

	Loader control
	Creating a Loader control
	Using the Loader control to load a Flex application
	Sizing a Loader control
	Loader control syntax

	NumericStepper control
	Creating a NumericStepper control
	Sizing a NumericStepper control
	User interaction
	NumericStepper control syntax
	NumericStepper control skins

	ProgressBar control
	ProgressBar control modes
	Creating a ProgressBar control
	Defining the label of a ProgressBar control
	ProgressBar control syntax
	ProgressBar control skins

	RadioButton control
	Creating a RadioButton control
	User interaction
	Creating a group using the <mx:RadioButtonGroup> tag
	RadioButton control syntax
	RadioButtonGroup control syntax
	RadioButton control skins

	ScrollBar control
	Creating a ScrollBar control
	Sizing a ScrollBar control
	User interaction
	ScrollBar control syntax

	Text control
	Creating a Text control
	Using the text property
	Using the htmlText property
	Sizing a Text control
	Text control syntax

	TextArea control
	Creating a TextArea control
	TextArea control syntax

	TextInput control
	Creating a TextInput control
	Binding to a TextInput control
	TextInput control syntax

	Using Data Provider Controls
	Contents
	About data providers
	Types of data providers
	The structure of a data provider
	Using a data provider to populate a component
	The data provider API
	Using the data provider API
	Using the data provider API of Flex components
	Converting an object to an array for use with a data providers

	Defining a custom data provider
	Using data providers with list-based components
	Using a data provider in MXML
	Using objects to populate a ComboBox control
	Passing data to a ComboBox control
	Manipulating a list-based data provider at runtime
	Using data providers with LinkBar and TabBar containers

	Using data providers with hierarchical controls
	Using a hierarchical data provider in MXML
	Passing XML data to a Tree control
	Manipulating a hierarchical data provider at runtime
	Creating a data provider using the TreeNode class
	Passing an object as the data provider
	Considerations when using hierarchical data providers

	ComboBox control
	Creating a ComboBox control
	Using objects to populate a ComboBox control

	Broadcasting a change event
	User interaction
	ComboBox control syntax
	ComboBox control skins

	DataGrid control
	Creating a DataGrid control
	Specifying the column order
	Passing data to a DataGrid control
	Limitation when binding data to a DataGrid control

	Handling events in a DataGrid control
	User interaction
	Keyboard navigation

	DataGrid control syntax
	DataGridColumn syntax

	List control
	Creating a List control
	Using a label function
	Sorting a list
	Specifying an icon to the List control

	Alternating row colors in a List control
	User interaction
	Keyboard navigation

	List control syntax

	Menu control
	Creating a Menu control
	Handling Menu control events
	User interaction
	Menu control syntax

	MenuBar control
	Creating a MenuBar control
	Importing XML data for the data provider
	Adding a menu item
	Differences between the Menu and MenuBar controls
	Handling MenuBar control events
	User interaction
	MenuBar control syntax
	Menuitem syntax

	Tree control
	Creating a Tree control
	Handling Tree control events
	Expanding a tree node
	Editing a node label at runtime
	Changing Tree control icons
	Using the keyboard to edit labels
	Editing events

	User interaction
	Tree control syntax
	Node syntax

	Introducing Containers
	Contents
	About containers
	Layout containers and navigator containers

	Using containers
	Flex containers
	Class hierarchy for containers
	Container example
	Handling events when creating components
	Disabling containers
	Using the Panel container
	Defining a default button

	Controlling component sizing and positioning in a container
	The Flex two-pass layout algorithm
	General positioning and sizing rules for all containers
	Setting the Application container size
	Calculating the preferred size of a component
	Specifying an explicit size
	Making a component resizable
	Determining container widthFlex and heightFlex
	Using the Spacer control to control layout
	Triggering a layout at runtime
	Disabling container layout

	Using scroll bars
	Working with scroll bars

	Creating component instances at runtime
	Creating a component as a child of an HBox container
	Creating a child of an Accordion container
	Indexing dynamically created components

	Configuring containers
	Using properties and methods to configure a container
	Using styles to configure a container
	Handling container events
	Using behaviors with containers
	Using skins

	Using the Application Container
	Contents
	Using the Application container
	Sizing an Application container
	Overriding the default Application container styles

	Application container syntax
	Specifying options to the Application container
	Using alerts with the Application container
	Using event handlers with the Alert control pop-up dialog box
	Specifying an Alert control icon
	Alert control styles
	Alert control skins

	Showing the download progress of an application
	Disabling the application preloader
	Using a custom progress bar

	Using Layout Containers
	Contents
	About layout containers
	Canvas layout container
	Canvas container example
	Canvas container syntax

	Box layout container
	Box layout container example
	Sizing a Box container
	Box container syntax

	ControlBar layout container
	Creating a ControlBar container
	ControlBar container syntax

	DividedBox layout container
	Creating a DividedBox container
	Using the dividers
	Using live dragging
	Using DividedBox events
	DividedBox container syntax
	DividedBox container skins

	Form layout container
	Creating a Form container
	Creating a FormHeading control
	Creating a FormItem container
	Defining a default button
	Calculating the widthFlex and heightFlex of a Form container
	Aligning and spacing Form container children
	Sizing and positioning Form container children
	Defining required fields
	Storing and validating form data
	Using Form controls to hold your form data
	Using a Flex data model to store form data
	Populating a Form control from a data model

	Submitting data to a server
	Form container syntax

	Grid layout container
	Grid layout container example
	Setting the row and column span
	Sizing and positioning a child within a Grid container cell
	Setting the spacing between rows and columns
	Grid container syntax

	Panel layout container
	Creating a Panel container
	Adding a ControlBar container to a Panel container
	Panel container syntax
	Panel container skins

	Tile layout container
	Tile layout container example
	Sizing and positioning a child in a Tile container
	Tile container syntax

	TitleWindow layout container
	Creating a pop-up TitleWindow container
	Passing optional arguments to the popupWindow() method

	Creating a pop-up TitleWindow container using the PopUp Manager
	Passing optional arguments to the createPopUp() method
	Passing data to a pop-up TitleWindow container

	TitleWindow container syntax
	TitleWindow container skins

	Using Navigator Containers
	Contents
	About navigator containers
	ViewStack navigator container
	Creating a ViewStack container
	Sizing the children of a ViewStack container
	Order of initialization and creationComplete events
	Applying behaviors to a ViewStack container
	ViewStack container syntax

	LinkBar navigator container
	Creating a LinkBar container
	LinkBar container syntax
	LinkBar container skins

	TabNavigator container
	Creating a TabNavigator container
	Sizing the children of a TabNavigator container
	Order of initialization events
	Keyboard navigation
	TabNavigator container syntax
	TabNavigator container skins

	TabBar navigator container
	Creating a TabBar container
	Passing data to a TabBar container
	Handling TabBar container events
	TabBar container syntax
	TabBar container skin

	Accordion navigator container
	Creating an Accordion container
	Keyboard navigation
	Using Button controls to navigate an Accordion container
	Handling child button events
	Order of initialization events
	Accordion container syntax
	Accordion container skins

	Dynamically Repeating Controls and Containers
	Contents
	Using a Repeater object
	Declaring a Repeater object in MXML
	Referencing repeated components in ActionScript
	Using a Repeater object in a custom MXML component
	Examples

	Dynamically creating components based on data type
	How a Repeater object executes

	Importing Images and Media
	Contents
	Importing images
	Using the <mx:Image> tag
	Importing an image multiple times
	Importing SWF files
	Restrictions on embedding SWF files
	Importing SWF file symbols
	Restriction on symbol access when importing SWF files

	Importing SVG Images
	Referencing external SVG images using the <mx:Image> tag
	Referencing SVG images in MXML tags

	Controlling image importing
	Specifying the image path
	Positioning an image in a Canvas container
	Sizing an image
	Maintaining aspect ratio when sizing

	Setting visibility
	Using the Loader control

	Using media controls
	About the MediaDisplay control
	About the MediaController control
	About the MediaPlayback control
	Sizing a media component
	Adding a cue point
	Syntax for the media controls

	Improving User Experience
	Building an Application with Multiple MXML Files
	Contents
	About MXML components
	Using MXML components
	Referencing MXML components

	Creating MXML components
	Creating and using a control
	Creating and using a container
	Creating and using an application component
	Adding custom properties and methods to a component
	Defining properties in MXML tags
	Defining properties and methods in ActionScript
	Declaring component metadata

	Passing component references
	Referencing an MXML component in other application objects
	Referencing application objects in an MXML component

	Using interfaces

	Working with ActionScript in Flex
	Contents
	Using ActionScript in Flex
	Working with components
	Component basics
	Calling component methods
	Initializing components
	Instantiating ActionScript objects
	Using component properties
	Adding component properties
	Object property introspection

	About scope
	Scoping functions
	Variable scope
	Using the this keyword
	About Document and Application scopes
	About the Application object
	About the Document object
	Accessing Document and Application scopes

	Changing the appearance of a component at runtime
	Importing external resources
	Embedding Flash files and symbols
	Accessing network resources
	Specifying MIME types
	Embed example

	Using the doLater() method

	Using Events
	Contents
	About events
	Using the event object
	Event object properties

	Handling events
	Defining event handlers inline
	Passing parameters to event handlers
	Defining multiple event handlers
	Using ActionScript in event handlers
	Using the initialize event handler

	Using event listeners
	Adding event listeners inline
	Scoping in event handlers
	Registering multiple events and components
	Registering multiple event listeners for one component
	Defining the handleEvent() method

	Creating event listener classes
	About component startup order
	Triggering effects during instantiation

	About show and hide events
	Manually dispatching events

	Handling mouse events
	Using base class events
	Event summary for the UIComponent class
	Event summary for the UIObject class

	Creating ActionScript Components
	Contents
	About ActionScript components
	Benefits of custom components
	Types of custom components
	About scope

	Defining custom user-interface components
	Passing data to a custom tag
	Defining events in ActionScript components
	Adding ActionScript components to the Flex environment
	Determining the ActionScript classpath
	Specifying the component namespace

	Defining nonvisual components
	Flex effect example
	Custom event dispatcher example

	Creating Cell Renderers
	Contents
	Creating a cell renderer class
	Using List-based controls
	About the CellRenderer API
	CellRenderer examples

	Using Styles, Fonts, and Themes
	Contents
	About styles
	Using styles in Flex
	External style sheets
	Local style definitions
	StyleManager class
	getStyle() and setStyle() methods
	Inline styles

	Setting global styles
	About style value formats
	Length format
	Time format
	Color format

	About Cascading Style Sheets
	Applying color formats in CSS
	About inheritance in CSS
	CSS differences
	About class selectors
	About type selectors
	Using compound selectors
	About selector precedence
	Default application style
	Supported CSS properties

	About style inheritance
	Style inheritance order
	Inheritance exceptions
	Style descriptions

	Using external style sheets
	Using the global style sheet

	Using local style definitions
	Using the Application type selector
	Using the global type selector
	Defining styles for complex components

	Using the StyleManager
	Creating style declaration objects

	Using the setStyle() and getStyle() methods
	Using inline styles
	About fonts
	Using device fonts
	Using embedded fonts
	Embedded font syntax
	Adding multiple faces

	Identifying embedded fonts
	Caching embedded font faces
	Setting character ranges
	Setting ranges in font-face declarations
	Setting ranges in flex-config.xml

	Using themes
	Creating themes
	Using the theme property
	Understanding limitations of themes
	About supported styles

	Skinning
	Asset skins
	Programmatic skins

	Using Behaviors
	Contents
	Applying behaviors
	About triggers and effects
	Applying an effect in MXML
	Applying an effect in ActionScript

	Using the effectStart and effectEnd events
	Disabling container layout for effects
	Zooming a component above 100 percent

	List of effects

	Customizing an effect
	Custom effects
	Composite effects
	Easing functions

	Defining a custom effect
	Defining and playing an effect in ActionScript
	Using a custom effect trigger

	Using ToolTips
	Contents
	About ToolTips
	Using ToolTips
	Setting styles in ToolTips
	Setting ToolTip width
	ToolTip events

	Using the ToolTipManager
	Enabling and disabling ToolTips
	Setting delay times
	Using effects with ToolTips
	Using dynamic ToolTip text

	Using the Cursor Manager
	Contents
	About the Cursor Manager
	Using the Cursor Manager
	Creating and removing a cursor
	Setting a busy cursor
	Using the Cursor Manager with the Loader control and other tags

	Cursor Manager syntax
	Class mx.managers.CursorManager syntax
	Syntax for controls that directly support the Cursor Manager

	Using the Drag and Drop Manager
	Contents
	About the Drag and Drop Manager
	Using drag-and-drop
	Drag and drop events
	Initiating a drag-and-drop operation
	Example drag-and-drop operation
	Handling the dragEnter event
	Handling the dragOver event
	Handling the dragDrop event
	Handling the dragExit event
	Handling the dragComplete event

	Using a container as a drop target
	Dragging between SWF files
	Specifying the drag proxy

	Using a List, Tree, or DataGrid control
	Dragging and dropping using a Tree control
	Removing a drag item from a List, Tree, or DataGrid control

	Drag and Drop Manager syntax
	Class mx.managers.DragManager syntax
	Class mx.core.DragSource syntax
	UIObject events
	List, DataGrid, and Tree control syntax

	Using the History Manager
	Contents
	About history management
	Using standard history management
	Using custom history management
	Registering a component with the HistoryManager class
	Implementing the saveState() and loadState() methods
	Calling the HistoryManager class’s static methods

	How the HistoryManager class saves and loads state
	Encoding navigation state data
	Decoding and restoring navigation state data

	Using history management in a custom HTML file

	Applying Deferred Instantiation
	Contents
	About deferred instantiation
	Using deferred instantiation
	Single-view containers
	Multiple-view containers
	Initializing controls in navigator containers

	Uninstantiating objects

	Manually instantiating controls
	Using the createComponent() method
	Using the createComponents() method

	Using the childDescriptors property
	Using the childDescriptors.id property
	Using the childDescriptors.properties property
	Using the childDescriptors.type property

	Starting applications incrementally

	Printing from SWF Files
	Contents
	About Printing
	Supported printers

	Printing from the Flash Player context menu
	Using the ActionScript PrintJob class
	Building a print job
	Modifying a component for printing

	Starting a print job
	Adding pages to a print job
	Specifying a target
	Specifying a print area
	About scaling
	Specifying printing as a vector image or bitmap graphic

	Sending the print job to a printer
	Deleting the print job

	Data Access and Interconnectivity
	Creating Accessible Applications
	Contents
	Accessibility overview
	About worldwide accessibility standards
	Viewing the Macromedia Flex Accessibility web page

	About screen reader technology
	Flash Player and Microsoft Active Accessibility (Windows only)

	Configuring Flex applications for accessibility
	Enabling accessibility in Flex
	Configuring a JAWS screen reader for Flex applications

	Using accessible components and managers
	Creating tab order and reading order
	Creating accessibility with ActionScript
	Implementing screen reader detection with the Accessibility.isActive() method

	Accessibility for hearing-impaired users
	Testing accessible content

	Managing Data in Flex
	Contents
	About Flex data management
	Data services
	Data binding
	Data models
	Data validation
	Data formatting

	Comparing Flex data management to other technologies
	Client-side processing and server-side processing
	Data source access
	Flash MX data management

	Binding and Storing Data in Flex
	Contents
	Binding data
	Binding data with the curly braces syntax
	Binding data with the <mx:binding> tag
	Binding more than one source property to a destination property
	Using ActionScript expressions in Binding tags

	About the binding mechanism
	Working with bindable property chains
	Binding data to and from arrays
	Using binding to pass data between objects
	Considerations
	Debugging data binding

	Using data models
	Defining a data model
	Model tag
	XML tag
	Script-based models
	Class-based models

	Specifying an external source
	Using validators with a data model
	Using a data model as a value object
	Binding data into an XML document

	Validating Data in Flex
	Contents
	Validating data
	Validating multiple fields with one validator
	Triggering validation programmatically
	Working with validation events and error messages
	Validating data in a custom validation function
	Validating a form
	Calling standard validators from another validator
	Using the isStructureValid method to validate an object

	Validating complex objects
	Disabling and enabling a validator

	Using standard validators
	CreditCardValidator
	Example

	DateValidator
	Example

	EmailValidator
	Example

	NumberValidator
	Example

	PhoneNumberValidator
	Example

	SocialSecurityValidator
	Example

	StringValidator
	Example

	ZipCodeValidator
	Example

	Formatting Data
	Contents
	Using formatters
	Writing an error handler function
	Using the standard formatters
	Using the CurrencyFormatter
	Example
	Error handling

	Using the DateFormatter
	Pattern strings
	Example
	Error handling

	Using the NumberFormatter
	Example
	Error handling

	Using the PhoneFormatter
	Example
	Error handling

	Using the ZipCodeFormatter
	Example
	Error handling

	Creating a custom formatter
	Extending Formatter with a simple formatter
	Extending another formatter with Formatter

	Using Data Services
	Contents
	About data services
	Web services
	Remote object services
	HTTP services

	Declaring a data service
	Unnamed services
	Named services

	Calling a data service
	Explicit parameter passing
	Explicit parameter passing with web services and remote object services
	Explicit parameter passing with HTTP services

	Parameter binding
	Parameter binding with web services and remote object services
	Parameter binding with HTTP services

	Using the Flex proxy

	Handling data service results
	Binding a service result object to other objects
	Binding a complex result object to a data model
	Handling request-level events

	Using a service with binding, validation, and event handlers
	Handling asynchronous calls to data services
	Using the Asynchronous Completion Token
	Making a service call when another call is completed

	Using callback URLs
	Callback URLs for web services and HTTP services
	Callback URLs for remote object services

	Generating debugging information for data services
	Securing data services
	Configuring access to services
	Configuring access to web services and HTTP services
	Configuring access to remote object services

	Configuring authentication
	Configuring authentication for web service and HTTP services
	Configuring authentication for remote object services

	Using HTTPS

	Working with web services
	Reading WSDL documents
	RPC-oriented operations and document-oriented operations
	Stateful web services
	Working with SOAP headers
	Adding SOAP headers to web service requests
	Clearing SOAP headers
	Handling SOAP headers returned in SOAP responses
	Redirecting a web service to a different URL

	Working with remote object services
	Java objects in the classpath
	Stateless objects
	Stateful objects

	Enterprise JavaBeans and other objects in JNDI
	Using a service facade class

	Converting data from ActionScript to Java
	Converting data from Java to ActionScript
	Accessing session variables from a Flex application
	Declaring the session service
	Calling the session servlet

	Data service tag properties
	Common data service properties
	Web-service-specific properties
	Remote-object-specific properties
	HTTP-service-specific properties

	Data service whitelist tags
	Common whitelist tags
	Web-service-specific whitelist tags
	Remote-object-specific whitelist tags
	HTTP-service-specific whitelist tags

	Advanced Application Development and Debugging
	Debugging Flex Applications
	Contents
	About debugging
	Enabling debug and warning messages
	Using the error-reporting mechanism
	Error reporting example
	Using the trace() function
	Error types
	Configuring Flash Debug Player

	Supported errors
	ActionScript errors
	Other errors
	HTTP errors
	FTP errors
	Network errors

	About the debugger
	Working with ActionScript files
	About SWD files
	Debugger limitations
	Debugger shortcuts

	Configuring the debugger
	Changing global debugger settings
	Using the debugger in Windows

	Invoking the debugger
	Starting a session with the default browser (Windows only)
	Debugging with the stand-alone Flash Debug Player (Windows and UNIX)

	Using the debugger
	Running the debugger
	Using breakpoints
	Using watchpoints
	Using the source command
	Examining data values
	Changing data values
	Viewing file contents
	Viewing and changing the current file
	Viewing the current working directory
	Using truncated file and function names

	Printing stack traces
	Getting status
	Handling faults
	Getting help
	Terminating the session

	Debugger example

	Profiling ActionScript
	Contents
	About profiling
	About the Profiler
	Using the Profiler
	Installing profiler.war
	Configuring the Profiler
	Adding profile methods to your ActionScript blocks
	Generating SWD files
	Generating SWD files with the ActiveX Flash Player
	Generating SWD files with the stand-alone Player
	Generating SWD files in the Flash authoring environment

	Analyzing data
	Analyzing user-defined methods, functions, and modules
	Analyzing built-in functions
	Analyzing source code
	Analyzing asynchronous function latencies
	Analyzing frame statistics

	Troubleshooting

	Using the Flex JSP Tag Library
	Contents
	Introduction to the Flex JSP tag library
	Using the Flex JSP tag library
	About the Flex tags
	About tag properties
	About caching

	Using the <mxml> tag
	Writing MXML in JSPs
	Mixing JSP expressions with MXML
	Including external MXML files in JSPs

	Using the <flash> tag
	Using the <param> tag

	Administrating Applications
	Administering Flex
	Contents
	Overview
	Using the command-line compiler
	Editing the flex-config.xml file
	Setting production mode
	Configuring caching
	Editing the global style sheet
	Editing font settings
	Editing debugging settings
	Keeping generated files
	Editing compiler settings
	Using the ActionScript optimizer
	Using profiling
	Editing the ActionScript classpath
	Setting the <lib-path>
	Enabling accessibility

	Configuring headless servers

	Changing application server settings
	Editing the context root
	Using virtual directories

	Configuring logging
	About logging messages
	About logging levels
	Configuring logging
	Console settings
	File settings

	Applying Flex Security
	Contents
	Flex security features
	Overview of J2EE security
	Web services and HTTP services
	Java classes

	Flash Player security features
	About the security sandbox
	About domain-based authentication
	Local file I/O access
	Accessing external resources
	Using sandbox tunnelling
	Using policy files
	Using web services and HTTP services
	Compatibility with older Players

	Security of data transport

	Security concerns of an open format technology
	Resources

	Deploying Applications
	Contents
	About deploying
	Adding Flex to your application server
	Adding Flex to an existing web application
	Building applications on top of Flex
	Changing Flex license keys

	Distributing components
	Distributing SWC files
	Defining component namespaces
	Distributing MXML and ActionScript components

	Working with Flex files
	Deploying Flex applications as MXML files
	Displaying MXML files
	Passing data to MXML files
	Suppressing HTML output

	Deploying Flex applications as precompiled SWF files
	Displaying precompiled SWF files
	Passing data to precompiled SWF files
	Defining Flash MIME types

	Deploying Flex applications as JSPs
	Displaying Flex applications in JSP pages
	Passing data to JSPs

	Defining display properties with the <mx:Application> tag

	About the HTML wrapper
	Customizing the HTML wrapper
	About the <object> and <embed> tags
	About the <object> and <embed> tag properties
	About the default properties
	Additional display properties

	Unsupported properties

	Passing request data to Flex applications
	Using query string parameters
	Using flashVars

	Flash Player detection and deployment
	Configuring detection and deployment
	Configuring version detection
	Disabling version detection
	Configuring deployment settings

	Adding detection and deployment to custom wrappers
	About the Enterprise Deployment Kit
	Optimizing version detection

	Managing Flash Player auto-update

	Custom Components
	Working with Flash MX 2004
	Contents
	About creating components
	Component basics
	About component types

	Working in the Flash environment
	About component assets
	Symbols and MovieClips
	Compiled clips
	Classes

	Adding Flex classes and components to the Flash IDE
	About the Flash MX 2004 classpath
	About the default classpath
	Changing the Flash classpath
	About importing classes

	Working with component symbols
	Adding new symbols
	Editing symbols
	Editing symbol layers
	Adding dependent components
	Converting symbols into components

	Exporting components
	About component files
	About SWC files
	Viewing and changing SWC file contents
	Using SWC files
	Creating SWC files
	Using the SWCRepair utility
	Adding SWC files to Flex
	Instantiating components in Flex

	Including debugging information
	Importing SWC files into the Flash IDE

	Creating Basic Components in Flash MX 2004
	Contents
	Creating simple components
	Creating the Green Square
	Creating the Orange Circle
	Creating the Blue Button

	Working with component properties
	Creating a class variable
	Defining getters and setters

	Binding properties to a custom component
	Adding events to custom components
	Handling the initialize event
	Handling mouse events
	Emitting events
	Handling keyboard events

	Setting default sizes
	Styling custom components
	Skinning custom components
	Creating compound components

	Creating Advanced Components in Flash MX 2004
	Contents
	Creating components overview
	Writing the component’s ActionScript code
	Simple example of a class file
	General process for writing a class file
	Selecting a parent class
	About the UIObject and UIComponent classes
	Extending other classes
	Accessing application scope

	Identifying the class, symbol, and owner names
	About the component instantiation life cycle
	Writing the constructor
	Specifying clip parameters
	Implementing the constructObject2() method
	Implementing the init() method
	Implementing the createChildren() method
	Implementing the commitProperties() method
	Implementing the measure() method
	Implementing the layoutChildren() method
	Implementing the draw() method
	Defining getters and setters
	Component metadata
	Using metadata keywords
	Metadata tags

	Defining component parameters
	Handling events
	Dispatching events
	Defining event handlers

	Using the Event metadata
	About invalidation

	Skinning custom controls
	Adding styles
	Making components accessible
	Improving component usability
	Adding an icon
	Adding ToolTips
	Adding versioning

	Best practices when designing a component
	ModalText.as example
	Troubleshooting

	Index

